1
|
Semkum P, Kaewborisuth C, Thangthamniyom N, Theerawatanasirikul S, Lekcharoensuk C, Hansoongnern P, Ramasoota P, Lekcharoensuk P. A Novel Plasmid DNA-Based Foot and Mouth Disease Virus Minigenome for Intracytoplasmic mRNA Production. Viruses 2021; 13:1047. [PMID: 34205958 PMCID: PMC8229761 DOI: 10.3390/v13061047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Picornaviruses are non-enveloped, single-stranded RNA viruses that cause highly contagious diseases, such as polio and hand, foot-and-mouth disease (HFMD) in human, and foot-and-mouth disease (FMD) in animals. Reverse genetics and minigenome of picornaviruses mainly depend on in vitro transcription and RNA transfection; however, this approach is inefficient due to the rapid degradation of RNA template. Although DNA-based reverse genetics systems driven by mammalian RNA polymerase I and/or II promoters display the advantage of rescuing the engineered FMDV, the enzymatic functions are restricted in the nuclear compartment. To overcome these limitations, we successfully established a novel DNA-based vector, namely pKLS3, an FMDV minigenome containing the minimum cis-acting elements of FMDV essential for intracytoplasmic transcription and translation of a foreign gene. A combination of pKLS3 minigenome and the helper plasmids yielded the efficient production of uncapped-green florescent protein (GFP) mRNA visualized in the transfected cells. We have demonstrated the application of the pKLS3 for cell-based antiviral drug screening. Not only is the DNA-based FMDV minigenome system useful for the FMDV research and development but it could be implemented for generating other picornavirus minigenomes. Additionally, the prospective applications of this viral minigenome system as a vector for DNA and mRNA vaccines are also discussed.
Collapse
Affiliation(s)
- Ploypailin Semkum
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand;
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.H.)
- Center for Advanced Studies in Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Nattarat Thangthamniyom
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.H.)
| | - Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Chalermpol Lekcharoensuk
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Payuda Hansoongnern
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.H.)
| | - Pongrama Ramasoota
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.H.)
- Center for Advanced Studies in Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
2
|
Galan A, Lozano G, Piñeiro D, Martinez-Salas E. G3BP1 interacts directly with the FMDV IRES and negatively regulates translation. FEBS J 2017; 284:3202-3217. [PMID: 28755480 DOI: 10.1111/febs.14184] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/13/2017] [Accepted: 07/25/2017] [Indexed: 01/05/2023]
Abstract
RNA-protein interactions play a pivotal role in the function of picornavirus internal ribosome entry site (IRES) elements. Here we analysed the impact of Ras GTPase SH3 domain binding protein 1 (G3BP1) in the IRES activity of foot-and-mouth disease virus (FMDV). We found that G3BP1 interacts directly with three distinct sequences of the IRES element using RNA electrophoretic mobility-shift assays. Analysis of the interaction with domain 5 indicated that the G3BP1 binding-site is placed at the single-stranded region although it allows large sequence heterogeneity and the hairpin located upstream of this region enhances retarded complex formation. In addition, G3BP1 interacts directly with the polypyrimidine tract-binding protein and the translation initiation factor 4B (eIF4B) through the C-terminal region. Moreover, G3BP1 is cleaved during FMDV infection yielding two fragments, Ct-G3BP1 and Nt-G3BP1. Both fragments inhibit cap- and IRES-dependent translation, but the Ct-G3BP1 fragment shows a stronger effect on IRES-dependent translation. Assembly of complexes with G3BP1 results in a significantly reduced local flexibility of the IRES element, consistent with the negative effect of this protein. Our results highlight the IRES-binding capacity of G3BP1 and illustrate its function as a translation inhibitor.
Collapse
Affiliation(s)
- Alfonso Galan
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Spain
| | - Gloria Lozano
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Spain
| | - David Piñeiro
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Spain
| |
Collapse
|
3
|
Loundras EA, Herod MR, Harris M, Stonehouse NJ. Foot-and-mouth disease virus genome replication is unaffected by inhibition of type III phosphatidylinositol-4-kinases. J Gen Virol 2016; 97:2221-2230. [PMID: 27323707 DOI: 10.1099/jgv.0.000527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes economically damaging infections of cloven-hooved animals, with outbreaks resulting in large financial losses to the agricultural industry. Due to the highly contagious nature of FMDV, research with infectious virus is restricted to a limited number of key facilities worldwide. FMDV sub-genomic replicons are therefore important tools for the study of viral translation and genome replication. The type III phosphatidylinositol-4-kinases (PI4Ks) are a family of enzymes that plays a key role in the production of replication complexes (viral factories) of a number of positive-sense RNA viruses and represents a potential target for novel pan-viral therapeutics. Here, we investigated whether type III PI4Ks also play a role in the FMDV life cycle, using a combination of FMDV sub-genomic replicons and bicistronic internal ribosome entry site (IRES)-containing reporter plasmids. We demonstrated that replication of the FMDV replicon was unaffected by inhibitors of either PI4KIIIα or PI4KIIIβ. However, PIK93, an inhibitor previously demonstrated to target PI4KIIIβ, did inhibit IRES-mediated protein translation. Consistent with this, cells transfected with FMDV replicons did not exhibit elevated levels of phosphatidylinositol-4-phosphate lipids. These results are therefore supportive of the hypothesis that FMDV genome replication does not require type III PI4K activity and does not activate these kinases.
Collapse
Affiliation(s)
- Eleni-Anna Loundras
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Morgan R Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
4
|
Forrest S, Lear Z, Herod MR, Ryan M, Rowlands DJ, Stonehouse NJ. Inhibition of the foot-and-mouth disease virus subgenomic replicon by RNA aptamers. J Gen Virol 2014; 95:2649-2657. [PMID: 25096816 PMCID: PMC4233629 DOI: 10.1099/vir.0.067751-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/01/2014] [Indexed: 12/23/2022] Open
Abstract
We have previously documented the inhibitory activity of RNA aptamers to the RNA-dependent RNA polymerase of foot-and-mouth disease virus (3D(pol)). Here we report their modification and use with a subgenomic replicon incorporating GFP (pGFP-PAC replicon), allowing replication to be monitored and quantified in real-time. GFP expression in transfected BHK-21 cells reached a maximum at approximately 8 h post-transfection, at which time change in morphology of the cells was consistent with a virus-induced cytopathic effect. However, transfection of replicon-bearing cells with a 3D(pol) aptamer RNA resulted in inhibition of GFP expression and maintenance of normal cell morphology, whereas a control aptamer RNA had little effect. The inhibition was correlated with a reduction in 3D(pol) (detected by immunoblotting) and shown to be dose dependent. The 3D(pol) aptamers appeared to be more effective than 2'-C-methylcytidine (2'CMC). Aptamers to components of the replication complex are therefore useful molecular tools for studying viral replication and also have potential as diagnostic molecules in the future.
Collapse
Affiliation(s)
- Sophie Forrest
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Zoe Lear
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Morgan R. Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Martin Ryan
- Biomedical Sciences Research Complex (BSRC), School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - David J. Rowlands
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Nicola J. Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
5
|
Tulloch F, Pathania U, Luke GA, Nicholson J, Stonehouse NJ, Rowlands DJ, Jackson T, Tuthill T, Haas J, Lamond AI, Ryan MD. FMDV replicons encoding green fluorescent protein are replication competent. J Virol Methods 2014; 209:35-40. [PMID: 25194890 PMCID: PMC4201441 DOI: 10.1016/j.jviromet.2014.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/06/2014] [Accepted: 08/12/2014] [Indexed: 11/27/2022]
Abstract
FMDV replication can be studied outwith high disease secure facilities. FMDV replicon genomes encoding GFP are replication competent. These FMDV replicon systems can be used to study replication by live-cell imaging/image analyses.
The study of replication of viruses that require high bio-secure facilities can be accomplished with less stringent containment using non-infectious ‘replicon’ systems. The FMDV replicon system (pT7rep) reported by Mclnerney et al. (2000) was modified by the replacement of sequences encoding chloramphenicol acetyl-transferase (CAT) with those encoding a functional L proteinase (Lpro) linked to a bi-functional fluorescent/antibiotic resistance fusion protein (green fluorescent protein/puromycin resistance, [GFP-PAC]). Cells were transfected with replicon-derived transcript RNA and GFP fluorescence quantified. Replication of transcript RNAs was readily detected by fluorescence, whilst the signal from replication-incompetent forms of the genome was >2-fold lower. Surprisingly, a form of the replicon lacking the Lpro showed a significantly stronger fluorescence signal, but appeared with slightly delayed kinetics. Replication can, therefore, be quantified simply by live-cell imaging and image analyses, providing a rapid and facile alternative to RT-qPCR or CAT assays.
Collapse
Affiliation(s)
- Fiona Tulloch
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| | - Uday Pathania
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| | - Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| | - John Nicholson
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - David J Rowlands
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Terry Jackson
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 ONF, UK.
| | - Toby Tuthill
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 ONF, UK.
| | - Juergen Haas
- Division of Pathway Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK.
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 5EH, UK.
| | - Martin D Ryan
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| |
Collapse
|
6
|
Abstract
The encephalomyocarditis virus (EMCV) is a small non-enveloped single-strand RNA virus, the causative agent of not only myocarditis and encephalitis, but also neurological diseases, reproductive disorders and diabetes in many mammalian species. EMCV pathogenesis appears to be viral strain- and host-specific, and a better understanding of EMCV virulence factors is increasingly required. Indeed, EMCV is often used as a model for diabetes and viral myocarditis, and is also widely used in immunology as a double-stranded RNA stimulus in the study of Toll-like as well as cytosolic receptors. However, EMCV virulence and properties have often been neglected. Moreover, EMCV is able to infect humans albeit with a low morbidity. Progress on xenografts, such as pig heart transplantation in humans, has raised safety concerns that need to be explored. In this review we will highlight the biology of EMCV and all known and potential virulence factors.
Collapse
Affiliation(s)
- Margot Carocci
- Microbiology Immunology Department, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
7
|
Formation of higher-order foot-and-mouth disease virus 3D(pol) complexes is dependent on elongation activity. J Virol 2011; 86:2371-4. [PMID: 22156531 DOI: 10.1128/jvi.05696-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The replication of many viruses involves the formation of higher-order structures or replication "factories." We show that the key replication enzyme of foot-and-mouth disease virus (FMDV), the RNA-dependent RNA polymerase, forms fibrils in vitro. Although there are similarities with previously characterized poliovirus polymerase fibrils, FMDV fibrils are narrower, are composed of both protein and RNA, and, importantly, are seen only when all components of an elongation assay are present. Furthermore, an inhibitory RNA aptamer prevents fibril formation.
Collapse
|
8
|
New vaccine design based on defective genomes that combines features of attenuated and inactivated vaccines. PLoS One 2010; 5:e10414. [PMID: 20454676 PMCID: PMC2861626 DOI: 10.1371/journal.pone.0010414] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/12/2010] [Indexed: 12/22/2022] Open
Abstract
Background New vaccine designs are needed to control diseases associated with antigenically variable RNA viruses. Foot-and-mouth disease (FMD) is a highly contagious disease of livestock that inflicts severe economic losses. Although the current whole-virus chemically inactivated vaccine has proven effective, it has led to new outbreaks of FMD because of incomplete inactivation of the virus or the escape of infectious virus from vaccine production premises. We have previously shown that serial passages of FMD virus (FMDV) C-S8c1 at high multiplicity of infection in cell culture resulted in virus populations consisting of defective genomes that are infectious by complementation (termed C-S8p260). Principal Finding Here we evaluate the immunogenicity of C-S8p260, first in a mouse model system to establish a proof of principle, and second, in swine, the natural host of FMDV C-S8c1. Mice were completely protected against a lethal challenge with FMDV C-S8c1, after vaccination with a single dose of C-S8p260. Pigs immunized with different C-S8p260 doses and challenged with FMDV C-S8c1 either did not develop any clinical signs or showed delayed and mild disease symptoms. C-S8p260 induced high titers of both FMDV-specific, neutralizing antibodies and activated FMDV-specific T cells in swine, that correlated with solid protection against FMDV. Conclusions The defective virus-based vaccine did not produce detectable levels of transmissible FMDV. Therefore, a segmented, replication-competent form of a virus, such as FMDV C-S8p260, can provide the basis of a new generation of attenuated antiviral vaccines with two safety barriers. The design can be extended to any viral pathogen that encodes trans-acting gene products, allowing complementation between replication-competent, defective forms.
Collapse
|
9
|
Bai X, Li P, Cao Y, Li D, Lu Z, Guo J, Sun D, Zheng H, Sun P, Liu X, Luo J, Liu Z. Engineering infectious foot-and-mouth disease virus in vivo from a full-length genomic cDNA clone of the A/AKT/58 strain. ACTA ACUST UNITED AC 2009; 52:155-62. [PMID: 19277527 DOI: 10.1007/s11427-009-0007-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
Two full-length genomic cDNA clones, pTA/FMDV and pCA/FMDV, were constructed that contained three point-mutants [A174G and A308G (not present in pTA/FMDV); T1029G] in the genome compared with the wild type A/AKT/58 strain of foot-and-mouth disease virus. These two viruses were rescued by co-transfection of pCA/FMDV with pCT7RNAP, which can express T7 RNA polymerase in BHK-21 cell-lines, or by transfection of the in vitro transcribed RNA. Their biological properties were analyzed for their antigenicity, virulence in suckling-mice (LD50) and growth kinetics in BHK-21 cells. The in vivo rescued viruses showed high pathogenicity for 3-day-old unweaned mice (LD50=10(-7.5)). However, the in vitro transcribed RNA derived from pTA/FMDV had lower pathogenicity for suckling-mice (LD50=10(-6)), and the in vivo transcribed RNA recovered from pCA/FMDV co-transfected with pCT7RNAP showed no significant differences from the wild type virus. These data showed that recovery of the infectious foot-and-mouth disease virus directly from the use of in vivo techniques was better than from in vitro methods. Furthermore, the reverse genetic procedure technique was simplified to a faster one-step procedure based on co-transfection with pCT7RNAP. These results suggest that in vivo RNA transcripts may be more valuable for engineering recombinant foot-and-mouth disease virus than in vitro RNA transcripts, and may contribute to further understanding of the biological properties, such as replication, maturation and quasispecies, of the foot-and-mouth disease virus.
Collapse
Affiliation(s)
- XingWen Bai
- Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
García-Arriaza J, Manrubia SC, Toja M, Domingo E, Escarmís C. Evolutionary transition toward defective RNAs that are infectious by complementation. J Virol 2004; 78:11678-85. [PMID: 15479809 PMCID: PMC523252 DOI: 10.1128/jvi.78.21.11678-11685.2004] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Passage of foot-and-mouth disease virus (FMDV) in cell culture resulted in the generation of defective RNAs that were infectious by complementation. Deletions (of nucleotides 417, 999, and 1017) mapped in the L proteinase and capsid protein-coding regions. Cell killing followed two-hit kinetics, defective genomes were encapsidated into separate viral particles, and individual viral plaques contained defective genomes with no detectable standard FMDV RNA. Infection in the absence of standard FMDV RNA was achieved by cotransfection of susceptible cells with transcripts produced in vitro from plasmids encoding the defective genomes. These results document the first step of an evolutionary transition toward genome segmentation of an unsegmented RNA virus and provide an experimental system to compare rates of RNA progeny production and resistance to enhanced mutagenesis of a segmented genome versus its unsegmented counterpart.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | | | | | | | |
Collapse
|
11
|
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. The disease was initially described in the 16th century and was the first animal pathogen identified as a virus. Recent FMD outbreaks in developed countries and their significant economic impact have increased the concern of governments worldwide. This review describes the reemergence of FMD in developed countries that had been disease free for many years and the effect that this has had on disease control strategies. The etiologic agent, FMD virus (FMDV), a member of the Picornaviridae family, is examined in detail at the genetic, structural, and biochemical levels and in terms of its antigenic diversity. The virus replication cycle, including virus-receptor interactions as well as unique aspects of virus translation and shutoff of host macromolecular synthesis, is discussed. This information has been the basis for the development of improved protocols to rapidly identify disease outbreaks, to differentiate vaccinated from infected animals, and to begin to identify and test novel vaccine candidates. Furthermore, this knowledge, coupled with the ability to manipulate FMDV genomes at the molecular level, has provided the framework for examination of disease pathogenesis and the development of a more complete understanding of the virus and host factors involved.
Collapse
Affiliation(s)
- Marvin J Grubman
- Plum Island Animal Disease Center, USDA, Agricultural Research Service, North Atlantic Area, Greenport, New York 11944, USA.
| | | |
Collapse
|
12
|
Tiley L, King AMQ, Belsham GJ. The foot-and-mouth disease virus cis-acting replication element (cre) can be complemented in trans within infected cells. J Virol 2003; 77:2243-6. [PMID: 12525659 PMCID: PMC140903 DOI: 10.1128/jvi.77.3.2243-2246.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A temperature-sensitive (ts) mutation was identified within the 5'-untranslated region of foot-and-mouth disease virus (FMDV) RNA. The mutation destabilizes a stem-loop structure recently identified as a cis-acting replication element (cre). Genetic analyses indicated that the ts defect in virus replication could be complemented. Thus, the FMDV cre can function in trans. It is suggested that the cre be renamed a 3B-uridylylation site (bus).
Collapse
Affiliation(s)
- Laurence Tiley
- Institute for Animal Health, Pirbright, Woking, Surrey GU24 ONF, United Kingdom
| | | | | |
Collapse
|
13
|
Yi M, Lemon SM. Replication of subgenomic hepatitis A virus RNAs expressing firefly luciferase is enhanced by mutations associated with adaptation of virus to growth in cultured cells. J Virol 2002; 76:1171-80. [PMID: 11773393 PMCID: PMC135777 DOI: 10.1128/jvi.76.3.1171-1180.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Replication of hepatitis A virus (HAV) in cultured cells is inefficient and difficult to study due to its protracted and generally noncytopathic cycle. To gain a better understanding of the mechanisms involved, we constructed a subgenomic HAV replicon by replacing most of the P1 capsid-coding sequence from an infectious cDNA copy of the cell culture-adapted HM175/18f virus genome with sequence encoding firefly luciferase. Replication of this RNA in transfected Huh-7 cells (derived from a human hepatocellular carcinoma) led to increased expression of luciferase relative to that in cells transfected with similar RNA transcripts containing a lethal premature termination mutation in 3D(pol) (RNA polymerase). However, replication could not be confirmed in either FrhK4 cells or BSC-1 cells, cells that are typically used for propagation of HAV. Replication was substantially slower than that observed with replicons derived from other picornaviruses, as the basal luciferase activity produced by translation of input RNA did not begin to increase until 24 to 48 h after transfection. Replication of the RNA was reversibly inhibited by guanidine. The inclusion of VP4 sequence downstream of the viral internal ribosomal entry site had no effect on the basal level of luciferase or subsequent increases in luciferase related to its amplification. Thus, in this system this sequence does not contribute to viral translation or replication, as suggested previously. Amplification of the replicon RNA was profoundly enhanced by the inclusion of P2 (but not 5' noncoding sequence or P3) segment mutations associated with adaptation of wild-type virus to growth in cell culture. These results provide a simple reporter system for monitoring the translation and replication of HAV RNA and show that critical mutations that enhance the growth of virus in cultured cells do so by promoting replication of viral RNA in the absence of encapsidation, packaging, and cellular export of the viral genome.
Collapse
Affiliation(s)
- MinKyung Yi
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1019, USA
| | | |
Collapse
|