1
|
Botman D, O’Toole TG, Goedhart J, Bruggeman FJ, van Heerden JH, Teusink B. A yeast FRET biosensor enlightens cAMP signaling. Mol Biol Cell 2021; 32:1229-1240. [PMID: 33881352 PMCID: PMC8351543 DOI: 10.1091/mbc.e20-05-0319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 11/12/2022] Open
Abstract
The cAMP-PKA signaling cascade in budding yeast regulates adaptation to changing environments. We developed yEPAC, a FRET-based biosensor for cAMP measurements in yeast. We used this sensor with flow cytometry for high-throughput single cell-level quantification during dynamic changes in response to sudden nutrient transitions. We found that the characteristic cAMP peak differentiates between different carbon source transitions and is rather homogenous among single cells, especially for transitions to glucose. The peaks are mediated by a combination of extracellular sensing and intracellular metabolism. Moreover, the cAMP peak follows the Weber-Fechner law; its height scales with the relative, and not the absolute, change in glucose. Last, our results suggest that the cAMP peak height conveys information about prospective growth rates. In conclusion, our yEPAC-sensor makes possible new avenues for understanding yeast physiology, signaling, and metabolic adaptation.
Collapse
Affiliation(s)
- Dennis Botman
- Systems Biology Lab/AIMMS, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Tom G. O’Toole
- Department of Molecular Cell Biology and Immunology, Vrije University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Joachim Goedhart
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Frank J. Bruggeman
- Systems Biology Lab/AIMMS, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Johan H. van Heerden
- Systems Biology Lab/AIMMS, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Bas Teusink
- Systems Biology Lab/AIMMS, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Miller KJ, Box WG, Boulton CA, Smart KA. Cell Cycle Synchrony of Propagated and Recycled Lager Yeast and its Impact on Lag Phase in Fermenter. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2011-1216-01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Katherine J. Miller
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Wendy G. Box
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Christopher A. Boulton
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Katherine A. Smart
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
3
|
Fructose-1,6-bisphosphate couples glycolytic flux to activation of Ras. Nat Commun 2017; 8:922. [PMID: 29030545 PMCID: PMC5640605 DOI: 10.1038/s41467-017-01019-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
Yeast and cancer cells share the unusual characteristic of favoring fermentation of sugar over respiration. We now reveal an evolutionary conserved mechanism linking fermentation to activation of Ras, a major regulator of cell proliferation in yeast and mammalian cells, and prime proto-oncogene product. A yeast mutant (tps1∆) with overactive influx of glucose into glycolysis and hyperaccumulation of Fru1,6bisP, shows hyperactivation of Ras, which causes its glucose growth defect by triggering apoptosis. Fru1,6bisP is a potent activator of Ras in permeabilized yeast cells, likely acting through Cdc25. As in yeast, glucose triggers activation of Ras and its downstream targets MEK and ERK in mammalian cells. Biolayer interferometry measurements show that physiological concentrations of Fru1,6bisP stimulate dissociation of the pure Sos1/H-Ras complex. Thermal shift assay confirms direct binding to Sos1, the mammalian ortholog of Cdc25. Our results suggest that the Warburg effect creates a vicious cycle through Fru1,6bisP activation of Ras, by which enhanced fermentation stimulates oncogenic potency. Yeast and cancer cells both favor sugar fermentation in aerobic conditions. Here the authors describe a conserved mechanism from yeast to mammals where the glycolysis intermediate fructose-1,6-bisphosphate binds Cdc25/Sos1 and couples increased glycolytic flux to increased Ras proto-oncoprotein activity.
Collapse
|
4
|
|
5
|
Gonzales K, Kayıkçı O, Schaeffer DG, Magwene PM. Modeling mutant phenotypes and oscillatory dynamics in the Saccharomyces cerevisiae cAMP-PKA pathway. BMC SYSTEMS BIOLOGY 2013; 7:40. [PMID: 23680078 PMCID: PMC3679983 DOI: 10.1186/1752-0509-7-40] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 05/06/2013] [Indexed: 11/10/2022]
Abstract
Background The cyclic AMP-Protein Kinase A (cAMP-PKA) pathway is an evolutionarily conserved signal transduction mechanism that regulates cellular growth and differentiation in animals and fungi. We present a mathematical model that recapitulates the short-term and long-term dynamics of this pathway in the budding yeast, Saccharomyces cerevisiae. Our model is aimed at recapitulating the dynamics of cAMP signaling for wild-type cells as well as single (pde1Δ and pde2Δ) and double (pde1Δpde2Δ) phosphodiesterase mutants. Results Our model focuses on PKA-mediated negative feedback on the activity of phosphodiesterases and the Ras branch of the cAMP-PKA pathway. We show that both of these types of negative feedback are required to reproduce the wild-type signaling behavior that occurs on both short and long time scales, as well as the the observed responses of phosphodiesterase mutants. A novel feature of our model is that, for a wide range of parameters, it predicts that intracellular cAMP concentrations should exhibit decaying oscillatory dynamics in their approach to steady state following glucose stimulation. Experimental measurements of cAMP levels in two genetic backgrounds of S. cerevisiae confirmed the presence of decaying cAMP oscillations as predicted by the model. Conclusions Our model of the cAMP-PKA pathway provides new insights into how yeast respond to alterations in their nutrient environment. Because the model has both predictive and explanatory power it will serve as a foundation for future mathematical and experimental studies of this important signaling network.
Collapse
Affiliation(s)
- Kevin Gonzales
- Department of Mathematics, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
6
|
Vandamme J, Castermans D, Thevelein JM. Molecular mechanisms of feedback inhibition of protein kinase A on intracellular cAMP accumulation. Cell Signal 2012; 24:1610-8. [PMID: 22522182 DOI: 10.1016/j.cellsig.2012.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/22/2012] [Accepted: 04/04/2012] [Indexed: 01/13/2023]
Abstract
The cAMP-protein kinase A (PKA) pathway is a major signalling pathway in the yeast Saccharomyces cerevisiae, but also in many other eukaryotic cell types, including mammalian cells. Since cAMP plays a crucial role as second messenger in the regulation of this pathway, its levels are strictly controlled, both in the basal condition and after induction by agonists. A major factor in the down-regulation of the cAMP level after stimulation is PKA itself. Activation of PKA triggers feedback down-regulation of the increased cAMP level, stimulating its return to the basal concentration. This is accomplished at different levels. The best documented mechanisms are: inhibition of cAMP synthesis by down-regulation of adenylate cyclase and/or its regulatory proteins, stimulation of cAMP breakdown by phosphodiesterases and spatial regulation of cAMP levels in the cell by A-Kinase Anchoring Proteins (AKAPs). In this review we describe these processes in detail for S. cerevisiae, for cells of mammals and selected other organisms, and we hint at other possible targets for feedback regulation of intracellular cAMP levels.
Collapse
|
7
|
Dechant R, Binda M, Lee SS, Pelet S, Winderickx J, Peter M. Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J 2010; 29:2515-26. [PMID: 20581803 DOI: 10.1038/emboj.2010.138] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 05/28/2010] [Indexed: 01/04/2023] Open
Abstract
Glucose is the preferred carbon source for most cell types and a major determinant of cell growth. In yeast and certain mammalian cells, glucose activates the cAMP-dependent protein kinase A (PKA), but the mechanisms of PKA activation remain unknown. Here, we identify cytosolic pH as a second messenger for glucose that mediates activation of the PKA pathway in yeast. We find that cytosolic pH is rapidly and reversibly regulated by glucose metabolism and identify the vacuolar ATPase (V-ATPase), a proton pump required for the acidification of vacuoles, as a sensor of cytosolic pH. V-ATPase assembly is regulated by cytosolic pH and is required for full activation of the PKA pathway in response to glucose, suggesting that it mediates, at least in part, the pH signal to PKA. Finally, V-ATPase is also regulated by glucose in the Min6 beta-cell line and contributes to PKA activation and insulin secretion. Thus, these data suggest a novel and potentially conserved glucose-sensing pathway and identify a mechanism how cytosolic pH can act as a signal to promote cell growth.
Collapse
|
8
|
Busti S, Coccetti P, Alberghina L, Vanoni M. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. SENSORS 2010; 10:6195-240. [PMID: 22219709 PMCID: PMC3247754 DOI: 10.3390/s100606195] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 01/05/2023]
Abstract
Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module), the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase) is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.
Collapse
Affiliation(s)
- Stefano Busti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano Bicocca, Piazza della Scienza, 2-20126 Milano, Italy.
| | | | | | | |
Collapse
|
9
|
Tamaki H. Glucose-stimulated cAMP-protein kinase A pathway in yeast Saccharomyces cerevisiae. J Biosci Bioeng 2007; 104:245-50. [PMID: 18023794 DOI: 10.1263/jbb.104.245] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 07/09/2007] [Indexed: 11/17/2022]
Abstract
In the yeast Saccharomyces cerevisiae, glucose signals activate the production of cellular cAMP. This signaling pathway is called the cAMP-protein kinase A (PKA) pathway, which plays a major role in the regulation of cell growth, metabolism, and stress resistance. Extensive studies have been carried out to clarify the mechanism of this pathway, and many factors involved in the pathway have been identified such as small G proteins, the GDP-GTP exchange factor, adenylate cyclase, and PKA. Also, additional elements involved in this pathway have been evaluated in the last decade. A heterotrimeric G protein alpha subunit was identified as a mammalian Galpha homologue, and a G-protein-coupled receptor (GPCR), which initiates the signaling pathway in response to glucose addition, was identified. GPCR-Galpha was shown to function in a signaling pathway that acts parallel to small G proteins. These signaling pathways regulate cell growth and differentiation in response to nutrients.
Collapse
Affiliation(s)
- Hisanori Tamaki
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
10
|
Mirisola MG, Gallo A, De Leo G. Ras-pathway has a dual role in yeast galactose metabolism. FEBS Lett 2007; 581:2009-16. [PMID: 17475260 DOI: 10.1016/j.febslet.2007.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 04/02/2007] [Accepted: 04/02/2007] [Indexed: 11/23/2022]
Abstract
In the yeast Saccharomyces cerevisiae the genes involved in galactose metabolism (GAL1,7,10) are transcriptionally activated more than a 1000-fold in the presence of galactose as the sole carbon source in the culture media. In the present work, we monitored the activity of the GAL10 gene promoter in different Ras-cAMP genetic backgrounds. We demonstrate that overexpression of C-terminus of the nucleotide exchange factor Cdc25p stimulates GAL10 transcription in yeast strains carrying the contemporary deletion of both RAS genes. Moreover, the deletion of the chromosomal CDC25 gene provokes impaired growth on galactose based media in yeast strain lacking both RAS genes and adenylate cyclase (whose viability is assured by the presence of the Bcy1-11 allele). Surprisingly, reconstitution of the Ras-pathway inhibits GAL10-promoter activation. Activation of GAL10 gene promoter is indeed possible in the presence of Ras protein but only in strains with chromosomal deletion of adenylate cyclase. These results indicate a dual role of Ras-pathway on galactose metabolism and suggest that Cdc25p has a Ras-independent role in cellular metabolism.
Collapse
Affiliation(s)
- Mario G Mirisola
- Dipartimento di Biopatologia e Metodologie Biomediche, Via Divisi, 83, Università degli studi di Palermo, 90133 Palermo, Italy.
| | | | | |
Collapse
|
11
|
Belotti F, Tisi R, Martegani E. The N-terminal region of the Saccharomyces cerevisiae RasGEF Cdc25 is required for nutrient-dependent cell-size regulation. MICROBIOLOGY-SGM 2006; 152:1231-1242. [PMID: 16549685 DOI: 10.1099/mic.0.28683-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the Cdc25/Ras/cAMP/protein kinase A (PKA) pathway plays a major role in the control of metabolism, stress resistance and proliferation, in relation to the available nutrients and conditions. The budding yeast RasGEF Cdc25 was the first RasGEF to be identified in any organism, but very little is known about its activity regulation. Recently, it was suggested that the dispensable N-terminal domain of Cdc25 could negatively control the catalytic activity of the protein. In order to investigate the role of this domain, strains were constructed that produced two different versions of the C-terminal domain of Cdc25 (aa 907-1589 and 1147-1589). The carbon-source-dependent cell size control mechanism present in the wild type was found in the first of these mutants, but was lost in the second mutant, for which the cell size, determined as protein content, was the same during exponential growth in both ethanol- and glucose-containing media. A biparametric analysis demonstrated that this effect was essentially due to the inability of the mutant producing the shorter sequence to modify its protein content at budding. A similar phenotype was observed in strains that lacked CDC25, but which possessed a mammalian GEF catalytic domain. Taken together, these results suggest that Cdc25 is involved in the regulation of cell size in the presence of different carbon sources. Moreover, production of the aa 876-1100 fragment increased heat-stress resistance in the wild-type strain, and rescued heat-shock sensitivity in the ira1Delta background. Further work will aim to clarify the role of this region in Cdc25 activity and Ras/cAMP pathway regulation.
Collapse
Affiliation(s)
- Fiorella Belotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Renata Tisi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Enzo Martegani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
12
|
Folch-Mallol JL, Martínez LM, Casas SJ, Yang R, Martínez-Anaya C, López L, Hernández A, Nieto-Sotelo J. New roles for CDC25 in growth control, galactose regulation and cellular differentiation in Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2005; 150:2865-2879. [PMID: 15347746 DOI: 10.1099/mic.0.27144-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Living organisms display large differences in stress resistance throughout their life cycles. To study the coordinated regulation of development and stress responses in exponentially growing yeast, mutants that displayed elevated heat-shock resistance at this stage were screened for. Here, two new mutant alleles of CDC25 in Saccharomyces cerevisiae, cdc25-21 and cdc25-22, are described. During exponential growth in glucose at 25 degrees C, these mutants are resistant to heat, oxidative, osmotic and ionic shock, accumulate stress-protein transcripts, show slow growth rates, thick cell walls and glycogen hyperaccumulation and lack cAMP signalling in response to glucose. Genetic and cellular analyses revealed that the stationary-phase phenotypes of cdc25-21 and cdc25-22 mutants are not due to entrance to a G(0) state during exponential growth, but are the result of a prolonged G(1) phase. It was found that, in the W303 background, CDC25 is dispensable for growth in glucose media. However, CDC25 is essential for growth in galactose, in non-fermentable carbon sources and under continuous incubation at 38 degrees C. In conclusion, the function of the catalytic, C-terminal domain of Cdc25p is not only important for fermentative growth, but also for growth in non-fermentable carbon sources and to trigger galactose derepression.
Collapse
Affiliation(s)
- Jorge Luis Folch-Mallol
- Department of Plant Molecular Biology, Instituto de Biotecnología de la UNAM, 62250 Cuernavaca, Mor., Mexico
| | - Luz María Martínez
- Department of Plant Molecular Biology, Instituto de Biotecnología de la UNAM, 62250 Cuernavaca, Mor., Mexico
| | - Sergio J Casas
- Department of Plant Molecular Biology, Instituto de Biotecnología de la UNAM, 62250 Cuernavaca, Mor., Mexico
| | - Runying Yang
- Department of Plant Molecular Biology, Instituto de Biotecnología de la UNAM, 62250 Cuernavaca, Mor., Mexico
| | - Claudia Martínez-Anaya
- Department of Plant Molecular Biology, Instituto de Biotecnología de la UNAM, 62250 Cuernavaca, Mor., Mexico
| | - Lorena López
- Department of Plant Molecular Biology, Instituto de Biotecnología de la UNAM, 62250 Cuernavaca, Mor., Mexico
| | - Alejandra Hernández
- Department of Plant Molecular Biology, Instituto de Biotecnología de la UNAM, 62250 Cuernavaca, Mor., Mexico
| | - Jorge Nieto-Sotelo
- Department of Plant Molecular Biology, Instituto de Biotecnología de la UNAM, 62250 Cuernavaca, Mor., Mexico
| |
Collapse
|
13
|
Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M. "Sleeping beauty": quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2004; 68:187-206. [PMID: 15187181 PMCID: PMC419917 DOI: 10.1128/mmbr.68.2.187-206.2004] [Citation(s) in RCA: 443] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The cells of organisms as diverse as bacteria and humans can enter stable, nonproliferating quiescent states. Quiescent cells of eukaryotic and prokaryotic microorganisms can survive for long periods without nutrients. This alternative state of cells is still poorly understood, yet much benefit is to be gained by understanding it both scientifically and with reference to human health. Here, we review our knowledge of one "model" quiescent cell population, in cultures of yeast grown to stationary phase in rich media. We outline the importance of understanding quiescence, summarize the properties of quiescent yeast cells, and clarify some definitions of the state. We propose that the processes by which a cell enters into, maintains viability in, and exits from quiescence are best viewed as an environmentally triggered cycle: the cell quiescence cycle. We synthesize what is known about the mechanisms by which yeast cells enter into quiescence, including the possible roles of the protein kinase A, TOR, protein kinase C, and Snf1p pathways. We also discuss selected mechanisms by which quiescent cells maintain viability, including metabolism, protein modification, and redox homeostasis. Finally, we outline what is known about the process by which cells exit from quiescence when nutrients again become available.
Collapse
Affiliation(s)
- Joseph V Gray
- Division of Molecular Genetics, Faculty of Biomedical and Life Sciences, University of Glasgow, Anderson College, 56 Dumbarton Rd., Glasgow G11 6NU, United Kingdom.
| | | | | | | | | | | |
Collapse
|
14
|
Winderickx J, Holsbeeks I, Lagatie O, Giots F, Thevelein J, de Winde H. From feast to famine; adaptation to nutrient availability in yeast. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/3-540-45611-2_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
15
|
Conlan RS, Tzamarias D. Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. J Mol Biol 2001; 309:1007-15. [PMID: 11399075 DOI: 10.1006/jmbi.2001.4742] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ssn6 (Cyc8) is a component of the yeast general corepressor Ssn6-Tup1 that inhibits the transcription of many diversely regulated genes. The corepressor does not interact directly with DNA but is recruited to different promoters through interactions with distinct pathway-specific, DNA-binding repressor proteins. Using yeast two-hybrid and GST chromatography interaction experiments, we have determined that Sfl1, a novel repressor protein, interacts directly with Ssn6, and in vivo repression data suggest that Sfl1 inhibits transcription by recruiting Ssn6-Tup1 via a specific domain in the Sfl1 protein. Sin4 and Srb10, components of specific RNA polymerase II sub-complexes that are required for Ssn6-Tup1 repression activity, are found to be required for Sfl1 repression function. These results indicate a possible mechanism for Sfl1-mediated repression via Ssn6-Tup1 and specific subunits of the RNA polymerase II holoenzyme. Electrophoretic mobility shift and chromatin immuno-precipitation assays demonstrate that Sfl1 is present at the promoters of three Ssn6-Tup1-repressible genes; namely, FLO11, HSP26, and SUC2. Sfl1 is known to interact with Tpk2, a cAMP-dependent protein kinase that negatively regulates Sfl1 function. Consistently, we show that phosphorylation by protein kinase A inhibits Sfl1 DNA binding in vitro, and that a tpk2Delta mutation increases the levels of Sfl1 protein associated with specific promoter elements in vivo. These data indicate a possible mechanism for regulating Sfl1-mediated repression through modulation of DNA binding by cAMP-dependent protein kinase-dependent phosphorylation. Taken together with previous data, these new observations suggest a link between cAMP signaling and Ssn6-Tup1-mediated transcriptional repression.
Collapse
Affiliation(s)
- R S Conlan
- Institute of Molecular Biology & Biotechnology-Foundation of Research & Technology, Vassilika Vouton, Heraklion, Crete, GR-711 10, Greece.
| | | |
Collapse
|
16
|
Rolland F, Wanke V, Cauwenberg L, Ma P, Boles E, Vanoni M, de Winde JH, Thevelein JM, Winderickx J. The role of hexose transport and phosphorylation in cAMP signalling in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 2001; 1:33-45. [PMID: 12702461 DOI: 10.1111/j.1567-1364.2001.tb00011.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Glucose-induced cAMP signalling in Saccharomyces cerevisiae requires extracellular glucose detection via the Gpr1-Gpa2 G-protein coupled receptor system and intracellular glucose-sensing that depends on glucose uptake and phosphorylation. The glucose uptake requirement can be fulfilled by any glucose carrier including the Gal2 permease or by intracellular hydrolysis of maltose. Hence, the glucose carriers do not seem to play a regulatory role in cAMP signalling. Also the glucose carrier homologues, Snf3 and Rgt2, are not required for glucose-induced cAMP synthesis. Although no further metabolism beyond glucose phosphorylation is required, neither Glu6P nor ATP appears to act as metabolic trigger for cAMP signalling. This indicates that a regulatory function may be associated with the hexose kinases. Consistently, intracellular acidification, another known trigger of cAMP synthesis, can bypass the glucose uptake requirement but not the absence of a functional hexose kinase. This may indicate that intracellular acidification can boost a downstream effect that amplifies the residual signal transmitted via the hexose kinases when glucose uptake is too low.
Collapse
Affiliation(s)
- F Rolland
- Katholieke Universiteit Leuven, Leuven-Heverlee, Flanders, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shenhar G, Kassir Y. A positive regulator of mitosis, Sok2, functions as a negative regulator of meiosis in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:1603-12. [PMID: 11238897 PMCID: PMC86706 DOI: 10.1128/mcb.21.5.1603-1612.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The choice between meiosis and alternative developmental pathways in budding yeast depends on the expression and activity of transcriptional activator Ime1. The transcription of IME1 is repressed in the presence of glucose, and a low basal level of IME1 RNA is observed in vegetative cultures with acetate as the sole carbon source. IREu, a 32-bp element in the IME1 promoter, exhibits upstream activation sequence activity depending on Msn2 and -4 and the presence of acetate. We show that in the presence of glucose IREu functions as a negative element and that Sok2 mediates this repression activity. We show that Sok2 associates with Msn2. Sok2 functions as a general repressor whose availability and activity depend on glucose. The activity of Sok2 as a repressor depends on phosphorylation of T598 by protein kinase A (PKA). Relief of repression of Sok2 depends on both the N-terminal domain of Sok2 and Ime1. In the absence of glucose and the presence of Ime1 Sok2 is converted to a weak activator. Overexpression of Sok2 or mild expression of Sok2 with its N-terminal domain deleted leads to a decrease in sporulation. Previously it was reported that overexpression of Sok2 suppresses the growth defect resulting from a temperature-sensitive PKA; thus Sok2 has a positive role in mitosis. We show that Candida albicans Efg1, a homolog of Sok2, complements sok2 Delta in repressing IREu. Our results demonstrate that Sok2, a positive regulator of mitosis, and Efg1, a positive regulator of filamentation, function as negative regulators of meiosis. We suggest that cells use the same regulators with opposing effects to ensure that meiosis will be an alternative to mitosis.
Collapse
Affiliation(s)
- G Shenhar
- Department of Biology, Technion, Technion City, Haifa 32000, Israel
| | | |
Collapse
|
18
|
Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme Microb Technol 2000; 26:819-825. [PMID: 10862891 DOI: 10.1016/s0141-0229(00)00177-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Yeast cells growing in the presence of glucose or a related rapidly-fermented sugar differ strongly in a variety of physiological properties compared to cells growing in the absence of glucose. Part of these differences appear to be caused by the protein kinase A (PKA) and related signal transduction pathways. Addition of glucose to cells previously deprived of glucose triggers cAMP accumulation, which is apparently mediated by the Gpr1-Gpa2 G-protein coupled receptor system. However, the resulting effect on PKA-controlled properties is only transient when there is no complete growth medium present. When an essential nutrient is lacking, the cells arrest in the stationary phase G0. At the same time they acquire all characteristics of cells with low PKA activity, even if there is ample glucose present. When the essential nutrient is added again, a similar PKA-dependent protein phosphorylation cascade is triggered as observed after addition of glucose to glucose-deprived cells, but which is not cAMP-mediated. Because the pathway involved requires a fermentable carbon source and a complete growth medium, at least for its sustained activation, it has been called "fermentable growth medium (FGM)-induced pathway."
Collapse
|
19
|
Portillo F. Regulation of plasma membrane H(+)-ATPase in fungi and plants. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1469:31-42. [PMID: 10692636 DOI: 10.1016/s0304-4157(99)00011-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The plasma membrane H+-ATPase from fungi and plants is a proton pump which plays a key role in the physiology of these organisms controlling essential functions such as nutrient uptake and intracellular pH regulation. In fungal and plant cells the activity of the proton pump is regulated by a large number of environmental factors at both transcriptional and post-translational levels. During the last years the powerful tools of molecular biology have been successfully used in fungi and plants allowing the cloning of a wide diversity of H+-ATPase genes and rapid progress on the molecular basis of reaction mechanism and regulation of the proton pump. This review focuses on recent results on regulation of plasma membrane H+-ATPase obtained by molecular approaches.
Collapse
Affiliation(s)
- F Portillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier, 4, E-28029, Madrid, Spain.
| |
Collapse
|
20
|
Rudoni S, Mauri I, Ceriani M, Coccetti P, Martegani E. The overexpression of the CDC25 gene of Saccharomyces cerevisiae causes a derepression of GAL system and an increase of GAL4 transcription. Int J Biochem Cell Biol 2000; 32:215-24. [PMID: 10687955 DOI: 10.1016/s1357-2725(99)00121-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The CDC25 gene product is an exchange factor for Ras proteins and it activates the Ras/cAMP pathway in the yeast Saccharomyces cerevisiae. The overexpression of the CDC25 gene in S. cerevisiae cells causes a partial glucose-derepressed phenotype which is particularly evident for expression of invertase. To define domains of Cdc25 protein relevant for this derepression and to test another glucose repressed system, different to invertase, we have overexpressed different regions of the CDC25 gene under the control of a GAL-promoter. We found that a derepression of both GAL regulated promoters and invertase was related to the overexpression of CDC25 regions that contain a functional guanine nucleotide exchange (GEF) domain. The effect on GAL-promoters was particular evident when the CDC25 gene was under the control of a UASgal element and operates at transcriptional level, although a moderate derepression was found also for UASgal/lacZ reporter gene. Finally, the overexpression of the GEF domain of CDC25 also caused an increase in the expression of the GAL4 regulatory gene, while a constitutive activation of the Ras/cAMP pathway did not produce any increase in GAL4 expression. These findings indicate that the overexpression of the catalytic domain of CDC25 gene is necessary and sufficient to give a glucose-derepression of GAL promoters and of invertase. They also suggest that the derepression of GAL promoters occurs through an increase of GAL4 expression in a Ras cAMP independent way.
Collapse
Affiliation(s)
- S Rudoni
- Dipartimento di Fisiologia e Biochimica Generali, Università de Milano, Milan, Italy
| | | | | | | | | |
Collapse
|
21
|
Thevelein JM, de Winde JH. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 1999; 33:904-18. [PMID: 10476026 DOI: 10.1046/j.1365-2958.1999.01538.x] [Citation(s) in RCA: 484] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cAMP-protein kinase A (PKA) pathway in the yeast Saccharomyces cerevisiae plays a major role in the control of metabolism, stress resistance and proliferation, in particular in connection with the available nutrient conditions. Extensive information has been obtained on the core section of the pathway, i.e. Cdc25, Ras, adenylate cyclase, PKA, and on components interacting directly with this core section, such as the Ira proteins, Cap/Srv2 and the two cAMP phosphodiesterases. Recent work has now started to reveal upstream regulatory components and downstream targets of the pathway. A G-protein-coupled receptor system (Gpr1-Gpa2) acts upstream of adenylate cyclase and is required for glucose activation of cAMP synthesis in concert with a glucose phosphorylation-dependent mechanism. Although a genuine signalling role for the Ras proteins remains unclear, they appear to mediate at least part of the potent stimulation of cAMP synthesis by intracellular acidification. Recently, several new targets of the PKA pathway have been discovered. These include the Msn2 and Msn4 transcription factors mediating part of the induction of STRE-controlled genes by a variety of stress conditions, the Rim15 protein kinase involved in stationary phase induction of a similar set of genes and the Pde1 low-affinity cAMP phosphodiesterase, which specifically controls agonist-induced cAMP signalling. A major issue that remains to be resolved is the precise connection between the cAMP-PKA pathway and other nutrient-regulated components involved in the control of growth and of phenotypic characteristics correlated with growth, such as the Sch9 and Yak1 protein kinases. Cln3 appears to play a crucial role in the connection between the availability of certain nutrients and Cdc28 kinase activity, but it remains to be clarified which nutrient-controlled pathways control Cln3 levels.
Collapse
Affiliation(s)
- J M Thevelein
- Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit Leuven, Kardinaal Mercierlaan 92, B-3001 Leuven-Heverlee, Flanders, Belgium.
| | | |
Collapse
|
22
|
Kraakman L, Lemaire K, Ma P, Teunissen AW, Donaton MC, Van Dijck P, Winderickx J, de Winde JH, Thevelein JM. A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 1999; 32:1002-12. [PMID: 10361302 DOI: 10.1046/j.1365-2958.1999.01413.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the yeast Saccharomyces cerevisiae the accumulation of cAMP is controlled by an elaborate pathway. Only two triggers of the Ras adenylate cyclase pathway are known. Intracellular acidification induces a Ras-mediated long-lasting cAMP increase. Addition of glucose to cells grown on a non-fermentable carbon source or to stationary-phase cells triggers a transient burst in the intracellular cAMP level. This glucose-induced cAMP signal is dependent on the G alpha-protein Gpa2. We show that the G-protein coupled receptor (GPCR) Gpr1 interacts with Gpa2 and is required for stimulation of cAMP synthesis by glucose. Gpr1 displays sequence homology to GPCRs of higher organisms. The absence of Gpr1 is rescued by the constitutively activated Gpa2Val-132 allele. In addition, we isolated a mutant allele of GPR1, named fil2, in a screen for mutants deficient in glucose-induced loss of heat resistance, which is consistent with its lack of glucose-induced cAMP activation. Apparently, Gpr1 together with Gpa2 constitute a glucose-sensing system for activation of the cAMP pathway. Deletion of Gpr1 and/or Gpa2 affected cAPK-controlled features (levels of trehalose, glycogen, heat resistance, expression of STRE-controlled genes and ribosomal protein genes) specifically during the transition to growth on glucose. Hence, an alternative glucose-sensing system must signal glucose availability for the Sch9-dependent pathway during growth on glucose. This appears to be the first example of a GPCR system activated by a nutrient in eukaryotic cells. Hence, a subfamily of GPCRs might be involved in nutrient sensing.
Collapse
Affiliation(s)
- L Kraakman
- Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit Leuven, Institute of Botany and Microbiology
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yun CW, Tamaki H, Nakayama R, Yamamoto K, Kumagai H. Gpr1p, a putative G-protein coupled receptor, regulates glucose-dependent cellular cAMP level in yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 1998; 252:29-33. [PMID: 9813141 DOI: 10.1006/bbrc.1998.9600] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
How cells monitor the availability of nutrition and transduce signals is a fundamental, unanswered question. We have found that Gpr1p, a recently identified G-protein (Gpa2p) coupled receptor in yeast Saccharomyces cerevisiae, regulate the cellular cAMP level in response to glucose. The glucose-induced higher cAMP level found in the strain with GPA2 in multicopy plasmid decreased by deletion of GPR1 gene. A transient increase of cAMP in response to glucose was not observed in a Deltagpr1 mutant strain and this defect was complemented and restored by introducing GPR1 gene with YCp vector. Gpr1p was also required for the increase of cAMP in response to other fermentable sugars. Both membrane proximal regions o the third cytosolic loop in Gpr1p, which has been shown to be important for coupling to G-proteins, were also required for glucose-induced transient increase of cAMP. Our findings suggest that Gpr1p is part of the nutrition sensing machinery most likely acting as a receptor to monitor glucose as well as other fermentable sugars and regulate cellular cAMP levels.
Collapse
Affiliation(s)
- C W Yun
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | | | | | | | | |
Collapse
|
24
|
Colombo S, Ma P, Cauwenberg L, Winderickx J, Crauwels M, Teunissen A, Nauwelaers D, de Winde JH, Gorwa MF, Colavizza D, Thevelein JM. Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J 1998; 17:3326-41. [PMID: 9628870 PMCID: PMC1170671 DOI: 10.1093/emboj/17.12.3326] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adenylate cyclase activity in Saccharomyces cerevisiae is dependent on Ras proteins. Both addition of glucose to glucose-deprived (derepressed) cells and intracellular acidification trigger an increase in the cAMP level in vivo. We show that intracellular acidification, but not glucose, causes an increase in the GTP/GDP ratio on the Ras proteins independent of Cdc25 and Sdc25. Deletion of the GTPase-activating proteins Ira1 and Ira2, or expression of the RAS2(val19) allele, causes an enhanced GTP/GDP basal ratio and abolishes the intracellular acidification-induced increase. In the ira1Delta ira2Delta strain, intracellular acidification still triggers a cAMP increase. Glucose also did not cause an increase in the GTP/GDP ratio in a strain with reduced feedback inhibition of cAMP synthesis. Further investigation indicated that feedback inhibition by cAPK on cAMP synthesis acts independently of changes in the GTP/GDP ratio on Ras. Stimulation by glucose was dependent on the Galpha-protein Gpa2, whose deletion confers the typical phenotype associated with a reduced cAMP level: higher heat resistance, a higher level of trehalose and glycogen and elevated expression of STRE-controlled genes. However, the typical fluctuation in these characteristics during diauxic growth on glucose was still present. Overexpression of Ras2(val19) inhibited both the acidification- and glucose-induced cAMP increase even in a protein kinase A-attenuated strain. Our results suggest that intracellular acidification stimulates cAMP synthesis in vivo at least through activation of the Ras proteins, while glucose acts through the Gpa2 protein. Interaction of Ras2(val19) with adenylate cyclase apparently prevents its activation by both agonists.
Collapse
Affiliation(s)
- S Colombo
- Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit Leuven, Flanders, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yin Z, Smith RJ, Brown AJ. Multiple signalling pathways trigger the exquisite sensitivity of yeast gluconeogenic mRNAs to glucose. Mol Microbiol 1996; 20:751-64. [PMID: 8793872 DOI: 10.1111/j.1365-2958.1996.tb02514.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The transcription of the yeast FBP1 and PCK1 genes, which encode the gluconeogenic enzymes fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase, is repressed by glucose. Here, we show that this repression is both very strong and exceptionally sensitive to glucose, being triggered by glucose at concentrations less than 0.005% (0.27 mM). This repression remains operative in yeast mutants carrying any one of the three hexose kinases, but is lost in a triple hxk1, hxk2, glk1 mutant. In addition, 2-deoxyglucose can trigger the repression, but 6-deoxyglucose cannot, suggesting that internalization and phosphorylation of the glucose is essential for repression to occur. While gluconeogenic gene transcription is subject to the Mig 1p-dependent pathway of glucose repression, the exquisite response to glucose is maintained in hxk2 and mig1 mutants, suggesting that this pathway is not essential for the response. The response can also be triggered by the addition of exogenous cAMP, suggesting that the Ras/cAMP pathway can mediate repression of the FPB1 and PCK1 mRNAs. However, the response is not dependent upon this pathway because it remains intact in Ras, adenyl cyclase and protein kinase A mutants. The data show that yeast cells can detect very low glucose concentrations in the environment, and suggest that several distinct signalling pathways operate to repress FPB1 and PCK1 transcription in the presence of glucose.
Collapse
Affiliation(s)
- Z Yin
- Department of Molecular and Cell Biology, University of Aberdeen, Marischal College, UK
| | | | | |
Collapse
|
26
|
Goldberg D, Segal M, Levitzki A. Cdc25 is not the signal receiver for glucose induced cAMP response in S. cerevisiae. FEBS Lett 1994; 356:249-54. [PMID: 7805848 DOI: 10.1016/0014-5793(94)01273-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Ras/cAMP pathway in the yeast S. cerevisiae couples the cell cycle of this unicellular organism to the availability of nutrients. Glucose derepressed S. cerevisiae cells respond to glucose addition by an intracellular rise in cAMP. In the prevailing model, yeast Ras plays a similar role to that of heterotrimeric G-proteins coupled to cell surface receptors. A crucial element of this model is that the exchanger, Cdc25 is activated by glucose. Such activation would result in a glucose-dependent rise in GTP-bound Ras concentration. We here show, in contrast to this view, that Cdc25 cannot be the receiver of the glucose signal. We suggest that the Ras-GTP/cyclase complex is the molecular element directly receiving the signal while Cdc25-dependent exchange constitutes a prerequisite for complex formation.
Collapse
Affiliation(s)
- D Goldberg
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Israel
| | | | | |
Collapse
|
27
|
Kraakman LS, Griffioen G, Zerp S, Groeneveld P, Thevelein JM, Mager WH, Planta RJ. Growth-related expression of ribosomal protein genes in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1993; 239:196-204. [PMID: 8389977 DOI: 10.1007/bf00281618] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The rate of ribosomal protein gene (rp-gene) transcription in yeast is accurately adjusted to the cellular requirement for ribosomes under various growth conditions. However, the molecular mechanisms underlying this co-ordinated transcriptional control have not yet been elucidated. Transcriptional activation of rp-genes is mediated through two different multifunctional transacting factors, ABF1 and RAP1. In this report, we demonstrate that changes in cellular rp-mRNA levels during varying growth conditions are not parallelled by changes in the in vitro binding capacity of ABF1 or RAP1 for their cognate sequences. In addition, the nutritional upshift response of rp-genes observed after addition of glucose to a culture growing on a non-fermentative carbon source turns out not to be the result of increased expression of the ABF1 and RAP1 genes or of elevated DNA-binding activity of these factors. Therefore, growth rate-dependent transcription regulation of rp-genes is most probably not mediated by changes in the efficiency of binding of ABF1 and RAP1 to the upstream activation sites of these genes, but rather through other alterations in the efficiency of transcription activation. Furthermore, we tested the possibility that cAMP may play a role in elevating rp-gene expression during a nutritional shift-up. We found that the nutritional upshift response occurs normally in several mutants defective in cAMP metabolism.
Collapse
Affiliation(s)
- L S Kraakman
- Department of Biochemistry and Molecular Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Goldberg D, Marbach I, Gross E, Levitzki A, Simchen G. A Candida albicans homolog of CDC25 is functional in Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:195-204. [PMID: 8477693 DOI: 10.1111/j.1432-1033.1993.tb17748.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have cloned, by functional complementation of the cdc25-2 mutation of Saccharomyces cerevisiae, a homolog of CDC25 from the pathogenic yeast Candida albicans. The new gene, named CSC25 codes for a 1333-amino-acid protein. The full length gene, as well as a truncated form coding for 795 amino acids, suppresses the thermosensitive phenotype of cdc25ts mutants. Biochemical analysis has shown that Csc25 activates the Ras/adenylyl cyclase pathway in S. cerevisiae at a rate two to three times faster than Cdc25, under the same conditions. The C-terminal domain of Csc25 is highly similar to the C-terminal domain of Cdc25, to almost the same extent as the C-terminus of the endogenous Cdc25 homolog Sdc25. We show that polyclonal anti-Cdc25 antibodies interact with Csc25 expressed in S. cerevisiae. In addition to the full length protein (approximately 150 kDa), we have found a approximately 50-kDa polypeptide which seems to include the C-terminus of the CSC25 gene product.
Collapse
Affiliation(s)
- D Goldberg
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | | | | | |
Collapse
|
29
|
Pardo LA, Lazo PS, Ramos S. Activation of adenylate cyclase in cdc25 mutants of Saccharomyces cerevisiae. FEBS Lett 1993; 319:237-43. [PMID: 8458416 DOI: 10.1016/0014-5793(93)80554-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The activation of adenylate cyclase by guanine nucleotides and 6-deoxyglucose was studied in membrane preparations from S. cerevisiae mutants lacking the CDC25 gene product. Adenylate cyclase from cdc25 ts membranes was activated by GTP and GppNHp in membranes from cells collected after glucose was exhausted from the medium. The activation was also observed in membranes from repressed cells at 2.5 mM Mg2+. It is also shown that 6-deoxyglucose can activate adenylate cyclase in the absence of CDC25 gene product. The relative amount of membrane-bound adenylate cyclase was drastically reduced in cdc25 ts membranes when subjected to the restrictive temperature, while no significant change was observed in the wild type. These data suggest that Cdc25 might not be required in certain conditions for the guanine nucleotide exchange reaction in Ras and that it might be implicated in anchoring the Ras/adenylate cyclase system to the plasma membrane.
Collapse
Affiliation(s)
- L A Pardo
- Departamento de Biología Funcional, Universidad de Oviedo, Spain
| | | | | |
Collapse
|
30
|
Nehlin JO, Carlberg M, Ronne H. Yeast SKO1 gene encodes a bZIP protein that binds to the CRE motif and acts as a repressor of transcription. Nucleic Acids Res 1992; 20:5271-8. [PMID: 1437546 PMCID: PMC334331 DOI: 10.1093/nar/20.20.5271] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have cloned a yeast gene, SKO1, which in high copy number suppresses lethal overexpression of cAMP-dependent protein kinase. SKO1 encodes a bZIP protein that binds to the CRE motif, TGACGTCA. We found that SKO1 also binds to a CRE-like site in SUC2, a yeast gene encoding invertase which is under positive control by cAMP. A disruption of the SKO1 gene causes a partial derepression of SUC2, indicating that SKO1 is a negative regulator of the SUC2 gene. SKO1 interacts positively with MIG1, a zinc finger protein that mediates glucose repression of SUC2. A kinetic analysis revealed a complex regulation of the SUC2 mRNA in response to glucose. First, MIG1 mediates a rapid and strong repression of SUC2, which is complete within 10 minutes. Second, a MIG1-independent process causes a further slow reduction in the mRNA. Third, in the absence of MIG1, there is also a rapid but transient glucose induction of the SUC2 mRNA. This induction is correlated with a transient loss of SKO1-dependent repression.
Collapse
Affiliation(s)
- J O Nehlin
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| | | | | |
Collapse
|
31
|
Schomerus C, Küntzel H. CDC25-dependent induction of inositol 1,4,5-trisphosphate and diacylglycerol in Saccharomyces cerevisiae by nitrogen. FEBS Lett 1992; 307:249-52. [PMID: 1322832 DOI: 10.1016/0014-5793(92)80688-d] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The addition of ammonium sulfate to starved yeast cells leads to a 3- to 4-fold rapid increase of the second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), the products of phosphoinositide-specific phospholipase C (PI-PLC). This response is reduced by dissecting the RAS-activating Cdc25 protein, and is completely abolished by the cdc25-1 mutation even at permissive temperature. Starved cdc25-1 mutant cells have a strongly reduced IP3 content, but an at least 10-fold increased DAG level compared to the isogenic wild-type strain. NH4 does not stimulate cAMP synthesis, and glucose does not induce IP3 and DAG. Our data suggest that the Cdc25 protein controls a nitrogen-specific signalling pathway involving the effector PI-PLC, in addition to the glucose-induced activation of adenylyl cyclase (AC).
Collapse
Affiliation(s)
- C Schomerus
- Max-Planck-Institut für experimentelle Medizin, Göttingen, Germany
| | | |
Collapse
|
32
|
Thevelein JM. The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 1992; 62:109-30. [PMID: 1444331 DOI: 10.1007/bf00584466] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cell cycle of Saccharomyces cerevisiae contains a decision point in G1 called 'start', which is composed of two specific sites. Nutrient-starved cells arrest at the first site while pheromone-treated cells arrest at the second site. Functioning of the RAS-adenylate cyclase pathway is required for progression over the nutrient-starvation site while overactivation of the pathway renders the cells unable to arrest at this site. However, progression of cycling cells over the nutrient-starvation site does not appear to be triggered by the RAS-adenylate cyclase pathway in response to a specific stimulus, such as an exogenous nutrient. The essential function of the pathway appears to be limited to provision of a basal level of cAMP. cAMP-dependent protein kinase rather than cAMP might be the universal integrator of nutrient availability in yeast. On the other hand stimulation of the pathway in glucose-derepressed yeast cells by rapidly-fermented sugars, such as glucose, is well documented and might play a role in the control of the transition from gluconeogenic growth to fermentative growth. The initial trigger of this signalling pathway is proposed to reside in a 'glucose sensing complex' which has both a function in controlling the influx of glucose into the cell and in activating in addition to the RAS-adenylate cyclase pathway all other glucose-induced regulatory pathways in yeast. Two crucial problems remaining to be solved with respect to cell cycle control are the nature of the connection between the RAS-adenylate cyclase pathway and nitrogen-source induced progression over the nutrient-starvation site of 'start' and second the nature of the downstream processes linking the RAS-adenylate cyclase pathway to Cyclin/CDC28 controlled progression over the pheromone site of 'start'.
Collapse
Affiliation(s)
- J M Thevelein
- Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit te Leuven, Heverlee, Flanders, Belgium
| |
Collapse
|
33
|
dos Passos JB, Vanhalewyn M, Brandão RL, Castro IM, Nicoli JR, Thevelein JM. Glucose-induced activation of plasma membrane H(+)-ATPase in mutants of the yeast Saccharomyces cerevisiae affected in cAMP metabolism, cAMP-dependent protein phosphorylation and the initiation of glycolysis. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1136:57-67. [PMID: 1322708 DOI: 10.1016/0167-4889(92)90085-p] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Addition of glucose-related fermentable sugars or protonophores to derepressed cells of the yeast Saccharomyces cerevisiae causes a 3- to 4-fold activation of the plasma membrane H(+)-ATPase within a few minutes. These conditions are known to cause rapid increases in the cAMP level. In yeast strains carrying temperature-sensitive mutations in genes required for cAMP synthesis, incubation at the restrictive temperature reduced the extent of H(+)-ATPase activation. Incubation of non-temperature-sensitive strains, however, at such temperatures also caused reduction of H(+)-ATPase activation. Yeast strains which are specifically deficient in the glucose-induced cAMP increase (and not in basal cAMP synthesis) still showed plasma membrane H(+)-ATPase activation. Yeast mutants with widely divergent activity levels of cAMP-dependent protein kinase displayed very similar levels of activation of the plasma membrane H(+)-ATPase. This was also true for a yeast mutant carrying a deletion in the CDC25 gene. These results show that the cAMP-protein kinase A signaling pathway is not required for glucose activation of the H(+)-ATPase. They also contradict the specific requirement of the CDC25 gene product. Experiments with yeast strains carrying point or deletion mutations in the genes coding for the sugar phosphorylating enzymes hexokinase PI and PII and glucokinase showed that activation of the H(+)-ATPase with glucose or fructose was completely dependent on the presence of a kinase able to phosphorylate the sugar. These and other data concerning the role of initial sugar metabolism in triggering activation are consistent with the idea that the glucose-induced activation pathways of cAMP-synthesis and H(+)-ATPase have a common initiation point.
Collapse
Affiliation(s)
- J B dos Passos
- Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- J M Gancedo
- Instituto de Investigaciones Biomédicas del C.S.I.C., Facultad de Medicina UAM, Spain
| |
Collapse
|
35
|
Martegani E, Vanoni M, Zippel R, Coccetti P, Brambilla R, Ferrari C, Sturani E, Alberghina L. Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator. EMBO J 1992; 11:2151-7. [PMID: 1376246 PMCID: PMC556682 DOI: 10.1002/j.1460-2075.1992.tb05274.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae genetic and biochemical evidence indicates that the product of the CDC25 gene activates the RAS/adenylyl cyclase/protein kinase A pathway by acting as a guanine nucleotide protein. Here we report the isolation of a mouse brain cDNA homologous to CDC25. The mouse cDNA, called CDC25Mm, complements specifically point mutations and deletion/disruptions of the CDC25 gene. In addition, it restores the cAMP levels and CDC25-dependent glucose-induced cAMP signalling in a yeast strain bearing a disruption of the CDC25 gene. The CDC25Mm-encoded protein is 34% identical with the catalytic carboxy terminal part of the CDC25 protein and shares significant homology with other proteins belonging to the same family. The protein encoded by CDC25Mm, prepared as a glutathione S-transferase fusion in Escherichia coli cells, activates adenylyl cyclase in yeast membranes in a RAS2-dependent manner. Northern blot analysis of mouse brain poly(A)+ RNA reveals two major transcripts of approximately 1700 and 5200 nucleotides. Transcripts were found also in mouse heart and at a lower level in liver and spleen.
Collapse
Affiliation(s)
- E Martegani
- Dipartimento di Fisiologia e Biochimica Generali, Università degli Studi di Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hohmann S, Huse K, Valentin E, Mbonyi K, Thevelein JM, Zimmermann FK. Glucose-induced regulatory defects in the Saccharomyces cerevisiae byp1 growth initiation mutant and identification of MIG1 as a partial suppressor. J Bacteriol 1992; 174:4183-8. [PMID: 1597433 PMCID: PMC206133 DOI: 10.1128/jb.174.12.4183-4188.1992] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Saccharomyces cerevisiae byp1-3 mutants displayed a long lag phase when shifted from a nonfermentable carbon source to a medium containing glucose. The byp1-3 mutation also caused several defects in regulatory phenomena which occur during the transition from the derepressed state to the repressed state. As opposed to wild-type cells, the addition of glucose to cells of the byp1-3 mutant grown on nonfermentable carbon sources did not induce a cyclic AMP signal. Fructose-2,6-bisphosphate formation and inactivation of fructose-1,6-bisphosphatase were severely delayed, but trehalase activation was not affected. In addition, the induction of pyruvate decarboxylase both at the level of activity and that of transcription was very slow compared with that in wild-type cells. These pleotropic defects in glucose-induced regulatory phenomena might be responsible for the very long lag phase of byp1-3 cells and the inability of ascospores to initiate growth after germination on glucose media. Screening of a yeast gene library for clones complementing the byp1-3 phenotype resulted in the isolation of a truncated form of the previously described zinc finger transcription repressor MIG1. The entire MIG1 gene and the truncated form suppressed even on a single-copy vector the growth initiation defect but not the regulatory abnormalities of the byp1-3 mutant. MIG1 is not allelic to byp1-3.
Collapse
Affiliation(s)
- S Hohmann
- Institut für Mikrobiologie, Technische Hochschule Darmstadt, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Uno I. Role of signal transduction systems in cell proliferation in yeast. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 139:309-32. [PMID: 1330967 DOI: 10.1016/s0074-7696(08)61415-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- I Uno
- Life Science Research Center, Nippon Steel Corporation, Kawasaki, Japan
| |
Collapse
|
38
|
Thevelein JM. Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: the relationship to nutrient-induced cell cycle control. Mol Microbiol 1991; 5:1301-7. [PMID: 1664904 DOI: 10.1111/j.1365-2958.1991.tb00776.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The RAS proteins of the yeast Saccharomyces cerevisiae fulfil a similar control function on yeast adenylate cyclase as the mammalian Gs proteins on mammalian adenylate cyclase. The discovery that glucose and other fermentable sugars act as specific activators of the RAS-adenylate cyclase pathway in yeast appeared to offer a mechanism for the way in which at least one nutrient would control progression over the start point in the G1 phase of the yeast cell cycle by means of this pathway. Recently, however, evidence has been obtained to show that the glucose-activation pathway of adenylate cyclase is a glucose-repressible pathway and therefore not operative during growth on glucose. In addition, mutant strains were obtained which lack the glucose-activation pathway and show normal exponential growth on glucose. This appears to confine the physiological role of this pathway to control of the transition from the derepressed state (growth on respirative carbon sources) to the repressed state (growth on fermentative carbon sources) by means of an already well-documented cAMP-triggered protein phosphorylation cascade. Intracellular acidification also stimulates the RAS-adenylate cyclase pathway, which might constitute a rescue mechanism for cells suffering from stress conditions. The presence of a nitrogen source does not stimulate the RAS-adenylate cyclase pathway. Although other nutrient signals for the pathway might still be discovered, it appears more and more likely that the well-known requirement of cAMP for progression over the start point of the yeast cell cycle is limited to providing a basal cAMP level rather than acting as a second messenger for an extracellular signal.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J M Thevelein
- Laboratorium voor Cellulaire Biochemie, Katholieke Universiteit te Leuven, Belgium
| |
Collapse
|