1
|
Hernández-Granados MJ, Franco-Robles E. Postbiotics in human health: Possible new functional ingredients? Food Res Int 2020; 137:109660. [DOI: 10.1016/j.foodres.2020.109660] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
|
2
|
Popescu NI, Silasi R, Keshari RS, Girton A, Burgett T, Zeerleder SS, Gailani D, Gruber A, Lupu F, Coggeshall KM. Peptidoglycan induces disseminated intravascular coagulation in baboons through activation of both coagulation pathways. Blood 2018; 132:849-860. [PMID: 29921614 PMCID: PMC6107880 DOI: 10.1182/blood-2017-10-813618] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Anthrax infections exhibit progressive coagulopathies that may contribute to the sepsis pathophysiology observed in fulminant disease. The hemostatic imbalance is recapitulated in primate models of late-stage disease but is uncommon in toxemic models, suggesting contribution of other bacterial pathogen-associated molecular patterns (PAMPs). Peptidoglycan (PGN) is a bacterial PAMP that engages cellular components at the cross talk between innate immunity and hemostasis. We hypothesized that PGN is critical for anthrax-induced coagulopathies and investigated the activation of blood coagulation in response to a sterile PGN infusion in primates. The PGN challenge, like the vegetative bacteria, induced a sepsis-like pathophysiology characterized by systemic inflammation, disseminated intravascular coagulation (DIC), organ dysfunction, and impaired survival. Importantly, the hemostatic impairment occurred early and in parallel with the inflammatory response, suggesting direct engagement of coagulation pathways. PGN infusion in baboons promoted early activation of contact factors evidenced by elevated protease-serpin complexes. Despite binding to contact factors, PGN did not directly activate either factor XII (FXII) or prekallikrein. PGN supported contact coagulation by enhancing enzymatic function of active FXII (FXIIa) and depressing its inhibition by antithrombin. In parallel, PGN induced de novo monocyte tissue factor expression in vitro and in vivo, promoting extrinsic clotting reactions at later stages. Activation of platelets further amplified the procoagulant state during PGN challenge, leading to DIC and subsequent ischemic damage of peripheral tissues. These data indicate that PGN may be a major cause for the pathophysiologic progression of Bacillus anthracis sepsis and is the primary PAMP behind the pathogen-induced coagulopathy in late-stage anthrax.
Collapse
Affiliation(s)
| | - Robert Silasi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Ravi S Keshari
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Alanson Girton
- Department of Arthritis and Clinical Immunology and
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | | - Sacha S Zeerleder
- Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN; and
| | - Andras Gruber
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - K Mark Coggeshall
- Department of Arthritis and Clinical Immunology and
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
3
|
1-Deoxynojirimycin from Bacillus subtilis improves antioxidant and antibacterial activities of juvenile Yoshitomi tilapia. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Broecker F, Martin CE, Wegner E, Mattner J, Baek JY, Pereira CL, Anish C, Seeberger PH. Synthetic Lipoteichoic Acid Glycans Are Potential Vaccine Candidates to Protect from Clostridium difficile Infections. Cell Chem Biol 2016; 23:1014-1022. [PMID: 27524293 DOI: 10.1016/j.chembiol.2016.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
Infections with Clostridium difficile increasingly cause morbidity and mortality worldwide. Bacterial surface glycans including lipoteichoic acid (LTA) were identified as auspicious vaccine antigens to prevent colonization. Here, we report on the potential of synthetic LTA glycans as vaccine candidates. We identified LTA-specific antibodies in the blood of C. difficile patients. Therefore, we evaluated the immunogenicity of a semi-synthetic LTA-CRM197 glycoconjugate. The conjugate elicited LTA-specific antibodies in mice that recognized natural LTA epitopes on the surface of C. difficile bacteria and inhibited intestinal colonization of C. difficile in mice in vivo. Our findings underscore the promise of synthetic LTA glycans as C. difficile vaccine candidates.
Collapse
Affiliation(s)
- Felix Broecker
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; Department of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Christopher E Martin
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; Department of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Erik Wegner
- Mikrobiologisches Institut ? Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut ? Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ju Yuel Baek
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Claney L Pereira
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Chakkumkal Anish
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; Department of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
5
|
Gut microbiota modulate the immune effect against hepatitis B virus infection. Eur J Clin Microbiol Infect Dis 2015; 34:2139-47. [PMID: 26272175 DOI: 10.1007/s10096-015-2464-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/24/2015] [Indexed: 12/11/2022]
Abstract
The immunological mechanisms by which hepatitis B virus (HBV) initiates and maintains acute or chronic infection, even the formation of cirrhosis and hepatocellular carcinoma, are still undefined. An increasing number of studies have shown that intestinal flora regulate immune homeostasis, and, thus, protect the immunologic function against hepatitis virus infection. In this article, we discuss gut microbiota and its potential immune effects against HBV infection. It may provide a novel insight into the pathogenesis of HBV infection, as well as a potential therapeutic target to HBV-related disease.
Collapse
|
6
|
Mahla RS, Reddy MC, Prasad DVR, Kumar H. Sweeten PAMPs: Role of Sugar Complexed PAMPs in Innate Immunity and Vaccine Biology. Front Immunol 2013; 4:248. [PMID: 24032031 PMCID: PMC3759294 DOI: 10.3389/fimmu.2013.00248] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/09/2013] [Indexed: 12/12/2022] Open
Abstract
Innate sensors play a critical role in the early innate immune responses to invading pathogens through sensing of diverse biochemical signatures also known as pathogen associated molecular patterns (PAMPs). These biochemical signatures primarily consist of a major family of biomolecules such as proteins, lipids, nitrogen bases, and sugar and its complexes, which are distinct from host molecules and exclusively expressed in pathogens and essential to their survival. The family of sensors known as pattern recognition receptors (PRRs) are germ-line encoded, evolutionarily conserved molecules, and consist of Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like receptors (NLRs), C-type lectin-like receptors (CLRs), and DNA sensors. Sensing of PAMP by PRR initiates the cascade of signaling leading to the activation of transcription factors, such as NF-κB and interferon regulatory factors (IRFs), resulting in a variety of cellular responses, including the production of interferons (IFNs) and pro-inflammatory cytokines. In this review, we discuss sensing of different types of glycosylated PAMPs such as β-glucan (a polymeric sugar) or lipopolysaccharides, nucleic acid, and so on (sugar complex PAMPs) by different families of sensors, its role in pathogenesis, and its application in development of potential vaccine and vaccine adjuvants.
Collapse
Affiliation(s)
- Ranjeet Singh Mahla
- Laboratory of Immunology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) , Bhopal , India
| | | | | | | |
Collapse
|
7
|
Fiedler T, Salamon A, Adam S, Herzmann N, Taubenheim J, Peters K. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Exp Cell Res 2013; 319:2883-92. [PMID: 23988607 DOI: 10.1016/j.yexcr.2013.08.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 02/08/2023]
Abstract
Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions.
Collapse
Affiliation(s)
- Tomas Fiedler
- Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Bacillus anthracis peptidoglycan activates human platelets through FcγRII and complement. Blood 2013; 122:571-9. [PMID: 23733338 DOI: 10.1182/blood-2013-02-486613] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Platelet activation frequently accompanies sepsis and contributes to the sepsis-associated vascular leakage and coagulation dysfunction. Our previous work has implicated peptidoglycan (PGN) as an agent causing systemic inflammation in gram-positive sepsis. We used flow cytometry and fluorescent microscopy to define the effects of PGN on the activation of human platelets. PGN induced platelet aggregation, expression of the activated form of integrin αIIbβ3, and exposure of phosphatidylserine (PS). These changes were dependent on immunoglobulin G and were attenuated by the Fcγ receptor IIa-blocking antibody IV.3, suggesting they are mediated by PGN-anti-PGN immune complexes signaling through Fcγ receptor IIa. PS exposure was not blocked by IV.3 but was sensitive to inhibitors of complement activation. PGN was a potent activator of the complement cascade in human plasma and caused deposition of C5b-9 on the platelet surface. Platelets with exposed PS had greatly accelerated prothrombinase activity. We conclude that PGN derived from gram-positive bacteria is a potent platelet agonist when complexed with anti-PGN antibody and could contribute to the coagulation dysfunction accompanying gram-positive infections.
Collapse
|
9
|
Sun D, Raisley B, Langer M, Iyer JK, Vedham V, Ballard JL, James JA, Metcalf J, Coggeshall KM. Anti-peptidoglycan antibodies and Fcγ receptors are the key mediators of inflammation in Gram-positive sepsis. THE JOURNAL OF IMMUNOLOGY 2012; 189:2423-31. [PMID: 22815288 DOI: 10.4049/jimmunol.1201302] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gram-positive bacteria are an important public health problem, but it is unclear how they cause systemic inflammation in sepsis. Our previous work showed that peptidoglycan (PGN) induced proinflammatory cytokines in human cells by binding to an unknown extracellular receptor, followed by phagocytosis leading to the generation of NOD ligands. In this study, we used flow cytometry to identify host factors that supported PGN binding to immune cells. PGN binding required plasma, and plasma from all tested healthy donors contained IgG recognizing PGN. Plasma depleted of IgG or of anti-PGN Abs did not support PGN binding or PGN-triggered cytokine production. Adding back intact but not F(ab')₂ IgG restored binding and cytokine production. Transfection of HEK293 cells with FcγRIIA enabled PGN binding and phagocytosis. These data establish a key role for anti-PGN IgG and FcγRs in supporting inflammation to a major structural element of Gram-positive bacteria and suggest that anti-PGN IgG contributes to human pathology in Gram-positive sepsis.
Collapse
Affiliation(s)
- Dawei Sun
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yang CY, Ho YC, Pang JC, Huang SS, Tschen JSM. Cloning and expression of an antifungal chitinase gene of a novel Bacillus subtilis isolate from Taiwan potato field. BIORESOURCE TECHNOLOGY 2009; 100:1454-1458. [PMID: 18824348 DOI: 10.1016/j.biortech.2008.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 07/07/2008] [Accepted: 07/12/2008] [Indexed: 05/26/2023]
Abstract
A chitinase producing Bacillus subtilis CHU26 was isolated from Taiwan potato field. This strain exhibited a strong extra-cellular chitinase activity on the colloidal chitin containing agar plate, and showed a potential inhibit activity against phytopathogen, Rhizoctonia solani. The gene encoding chitinase (chi18) was cloned from the constructed B. subtilis CHU26 genomic DNA library. The chi18 consisted of an open reading frame of 1791 nucleotides and encodes 595 amino acids with a deduced molecular weight of 64kDa, next to a promoter region containing a 9 base pair direct repeat sequence (ATTGATGAA). The deduced amino acid sequence of the chitinase from Bacillus subtilis CHU26 exhibits 62% and 81% similarity to those from B. circulans WL-12 and B. licheniformis, respectively. Subcloned chi18 into vector pGEM3Z and pYEP352 to construct recombinant plasmid pGCHI18 and pYCHI18, respectively, chitinase activity could be observed on the colloidal chitin agar plate from recombinant plasmid containing Escherichia coli transformant. Cell-free culture broth of pYCHI18 containing E. coli transformant decreased R. solani pathogenic activity more than 90% in the antagonistic test on the radish seedlings (Raphanus sativus Linn.).
Collapse
Affiliation(s)
- Chi-Yea Yang
- Department of Biotechnology, Vanung University, Taoyuan, Taiwan.
| | | | | | | | | |
Collapse
|
11
|
Jiang-Shieh YF, Yeh KY, Wei IH, Chang CY, Chien HF, Tsai RY, Chang ML, Lee AW, Pai MH, Wu CH. Responses of microglia in vitro to the gram-positive bacterial component, lipoteichoic acid. J Neurosci Res 2006; 82:515-24. [PMID: 16237723 DOI: 10.1002/jnr.20663] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An increase in incidence and severity of gram-positive infections has emerged in the past decade. In this regard, attention has been focused recently on immune responses of microglial cells in the central nervous system to gram-positive bacteria. The underlying immunological and cellular events in microglial activation induced by specific bacterial toxin of gram-positive bacteria, however, have not yet been clarified fully. This study reports that a simple cell wall product, lipoteichoic acid (LTA), derived from gram-positive bacteria (Staphylococcus aureus) could trigger microglial activation in vitro. Microglia challenged with LTA showed intense ruffling of plasma membrane in the form of lamellipodia or rounded up forming cell aggregates. MTT assay and Western blot analysis with anti-proliferating cell nuclear antigen antibody showed a significant microglial proliferation that may be induced at the later phases of LTA treatment with low doses but at the early period with a high dose. Concentrated LTA also caused apoptotic death of cultured microglia showing fragmented nuclei and increased expression of annexin V or caspase 3. In response to LTA, isolated microglia increased the expression of inducible nitric oxide synthase and major histocompatibility complex class II antigen. Microglial LTA receptors such as CD14 molecule, complement receptor type 3, and macrophage scavenger receptor were upregulated concurrently. In conclusion, staphylococcal LTA can exert an immunomodulatory effect on microglial morphology, cell cycle, and immunomolecules, including its receptors.
Collapse
Affiliation(s)
- Ya-Fen Jiang-Shieh
- Department of Anatomy, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Timm M, Hansen EW, Moesby L, Christensen JD. Utilization of the human cell line HL-60 for chemiluminescence based detection of microorganisms and related substances. Eur J Pharm Sci 2006; 27:252-8. [PMID: 16310347 DOI: 10.1016/j.ejps.2005.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 08/23/2005] [Accepted: 10/24/2005] [Indexed: 10/25/2022]
Abstract
In this paper we describe a new pyrogen assay using the human leukemia cell line HL-60. The cell line is differentiated using all-trans retinoic acid (ATRA) to generate a cell population that resembles mature granulocytes. The differentiated HL-60 cell is capable of generating reactive oxygen species (ROS) when challenged with pyrogenic substances. In a luminol enhanced chemilumimetric assay the responsiveness of differentiated HL-60 cells is tested towards Salmonella typhimurium, Bacillus subtilis, Saccharomyces cerevisiae, Candida albicans, lipopolysaccharide (LPS) and lipoteichoic acid (LTA). The results show a poor sensitivity to S. typhimurium but displays good sensitivity towards B. subtilis, LTA and LPS. Furthermore, the sensitivity towards the yeasts C. albicans and S. cerevisiae is considerably better than obtained in other in vitro cell systems. Overall these results indicate that the HL-60 cell assay possibly could be evolved to a supplementary assay for the known pyrogenic detection assays. Furthermore, the utilization of the assay for pyrogenic examination of recombinant drugs derived from yeast expression systems would be relevant to examine.
Collapse
Affiliation(s)
- Michael Timm
- Department of Pharmacology, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
13
|
Lee DH, Sung HJ, Han DW, Lee MS, Ryu GH, Aihara M, Takatori K, Park JC. In vitro bioassay of endotoxin using fluorescein as a pH indicator in a macrophage cell culture system. Yonsei Med J 2005; 46:268-74. [PMID: 15861501 PMCID: PMC2823024 DOI: 10.3349/ymj.2005.46.2.268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Based on the biological activity of endotoxin, we propose a possible new method for detecting endotoxin using a pH-indication system of macrophage culture media. After RAW 264.7 macrophage cells were treated with lipopolysaccharide (LPS), the addition of fluorescein to the LPS-treated media reproductively reduced its absorption and emission spectra (it was a dose-dependent reduction). The advantages of this LPS-detection method were compared with the Limulus Amebocyte Lysate (LAL) test by using purified bacterial LPS (Salmonella minnessota, Escherichia coli, and Pseudomonas aeruginosa). Additionally, the absorption and fluorescence intensity of fluorescein, following treatment of RAW 264.7 cells with a high concentration of Staphylococcus aureus (Gram-positive, lysed bacteria), could not generally be detected by the LAL test, but they were found to be reduced, in a dose-response relationship, with this new system. The macrophage culture system-method might be a good supplement to the LAL assay for detection of LPS, Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Dong Hee Lee
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Korea
| | - Hak-Joon Sung
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Korea
| | - Dong-Wook Han
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Sub Lee
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Korea
| | - Gyu Ha Ryu
- Department of Medical Devices & Radiation Health, Korea Food & Drug Administration, Seoul, Korea
| | - Maki Aihara
- Division of Microbiology, National Institute of Health Sciences, Tokyo, Japan
| | - Kosuke Takatori
- Division of Microbiology, National Institute of Health Sciences, Tokyo, Japan
| | - Jong-Chul Park
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Moesby L, Hansen EW, Christensen JD, Tommerup L, Nielsen C. Endospores of B subtilis are pyrogenic and activate Mono Mac 6 cells: importance of the CD14 receptor. Eur J Pharm Sci 2003; 19:245-51. [PMID: 12885389 DOI: 10.1016/s0928-0987(03)00117-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The monocytic cell line Mono Mac 6 is sensitive to pyrogens and interleukin-6 secretion is induced after exposure to pyrogens. The aim of this study is to examine the pyrogenic activity and the interleukin-6-inducing capacity of the Gram-positive B. subtilis bacteria, endospores and isolated cell wall components. Furthermore the involvement of CD14 in activation of interleukin-6 release is investigated. All test substances are pyrogenic in the rabbit pyrogen test. The test substance is incubated with monocytic cells (Mono Mac 6) for 24 h and the secreted interleukin-6 is determined in a sandwich immunoassay. B. subtilis bacteria and endospores induce interleukin-6 in a dose-dependent manner. Endospores are less potent than bacteria. Lipoteichoic acid (LTA) isolated from B. subtilis induces interleukin-6 in a dose-dependent manner, whereas muramyl dipeptide (MDP) is unable to induce interleukin-6. Lipopolysaccharides (LPS) dose-dependently induce interleukin-6 release, but the curve differs from that of LTA both in shape and offset. The interleukin-6 secretion induced by LPS, LTA and B. subtilis bacteria can be blocked by 73-85% by an antibody directed against CD14, whereas the antibody only blocks 25% of B. subtilis endospores-induced interleukin-6 release. The results might indicate that B. subtilis endospores use an additional pathway to CD14 to activate mononuclear cells.
Collapse
Affiliation(s)
- Lise Moesby
- Department of Pharmacology, The Royal Danish School of Pharmacy, 2 Universitetsparken, DK-2100, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
15
|
Airaksinen U, Penttilä T, Wahlström E, Vuola JM, Puolakkainen M, Sarvas M. Production of Chlamydia pneumoniae proteins in Bacillus subtilis and their use in characterizing immune responses in the experimental infection model. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2003; 10:367-75. [PMID: 12738633 PMCID: PMC154951 DOI: 10.1128/cdli.10.3.367-375.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Due to intracellular growth requirements, large-scale cultures of chlamydiae and purification of its proteins are difficult and laborious. To overcome these problems we produced chlamydial proteins in a heterologous host, Bacillus subtilis, a gram-positive nonpathogenic bacterium. The genes of Chlamydia pneumoniae major outer membrane protein (MOMP), the cysteine-rich outer membrane protein (Omp2), and the heat shock protein (Hsp60) were amplified by PCR, and the PCR products were cloned into expression vectors containing a promoter, a ribosome binding site, and a truncated signal sequence of the alpha-amylase gene from Bacillus amyloliquefaciens. C. pneumoniae genes were readily expressed in B. subtilis under the control of the alpha-amylase promoter. The recombinant proteins MOMP and Hsp60 were purified from the bacterial lysate with the aid of the carboxy-terminal histidine hexamer tag by affinity chromatography. The Omp2 was separated as an insoluble fraction after 8 M urea treatment. The purified proteins were successfully used as immunogens and as antigens in serological assays and in a lymphoproliferation test. The Omp2 and Hsp60 antigens were readily recognized by the antibodies appearing after pulmonary infection following intranasal inoculation of C. pneumoniae in mice. Also, splenocytes collected from mice immunized with MOMP or Hsp60 proteins proliferated in response to in vitro stimulation with the corresponding proteins.
Collapse
Affiliation(s)
- Ulla Airaksinen
- Department of Vaccines, National Public Health Institute, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
16
|
Thiemermann C. Interactions between lipoteichoic acid and peptidoglycan from Staphylococcus aureus: a structural and functional analysis. Microbes Infect 2002; 4:927-35. [PMID: 12106785 DOI: 10.1016/s1286-4579(02)01620-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The cell wall of Gram-positive bacteria contains lipoteichoic acid (LTA) and peptidoglycan (PepG), which synergise to cause shock and organ failure in animals, and to activate human blood to release proinflammatory cytokines. The structural elements within LTA and PepG that are essential for the observed synergism are discussed.
Collapse
Affiliation(s)
- Christoph Thiemermann
- Department of Experimental Medicine and Nephrology, The William Harvey Research Institute, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Charterhouse Square, London, UK.
| |
Collapse
|
17
|
Zacharowski K, Chatterjee PK, Thiemermann C. Delayed preconditioning induced by lipoteichoic acid from B. subtilis and S. aureus is not blocked by administration of 5-hydroxydecanoate. Shock 2002; 17:19-22. [PMID: 11795664 DOI: 10.1097/00024382-200201000-00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bacterial walls contain lipopolysaccharide (LPS), lipoteichoic acid (LTA), or peptidoglycan. Pretreatment of rats with low doses of LPS (from E. coli) or LTA (from S. aureus, a pathogenic gram-positive bacterium) for 16-24 h reduces myocardial infarct size caused by a subsequent period of myocardial ischemia-reperfusion. This phenomenon of enhanced tolerance to an ischemic insult has been termed delayed preconditioning (DP). The aim of this study was to investigate whether LTA from B. subtilis (a nonpathogenic gram-positive bacterium) induces DP when administered 16 h before left anterior descending coronary artery (LAD) occlusion-reperfusion in the rat. Furthermore, we investigated whether the specific mitochondrial K(ATP) (mitoK(ATP)) channel inhibitor 5-hydroxydecanoate (5-HD, 5 mg/kg) blocks DP afforded by LTA of both strains of bacteria. Male Wistar rats were subjected to LAD occlusion-reperfusion (25-120 min) and infarct size was determined. In rats pretreated with saline (1 mL/kg i.p.), LAD occlusion-reperfusion resulted in an infarct size of 58%. Pretreatment of animals with LTA (S. aureus, 1 mg/kg i.p.) or LTA (B. subtilis, 1 mg/kg i.p.) reduced infarct size by 22% or 33%, respectively. Administration of 5-HD 10 min before LAD occlusion-reperfusion did not abolish DP afforded by LTA from S. aureus or B. subtilis, respectively. These results imply that late (after 16 h) opening of the mitoK(ATP) channel is not part of the signaling pathway of LTA-induced DP.
Collapse
Affiliation(s)
- Kai Zacharowski
- Department of Cardiac, Vascular, and Inflammation Research, The William Harvey Research Institute, St. Bartholomew's and The Royal London School of Medicine and Dentistry, United Kingdom
| | | | | |
Collapse
|
18
|
Gargir A, Ofek I, Hasty D, Meron‐Sudai S, Tsubery H, Keisari Y, Nissim A. Inhibition of antibody‐dependent stimulation of lipoteichoic acid‐treated human monocytes and macrophages by polyglycerolphosphate‐reactive peptides. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.4.537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Ari Gargir
- Department of Human Microbiology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Itzhak Ofek
- Department of Human Microbiology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Hasty
- Department of Anatomy and Neurobiology, University of Tennessee and Research Service (151) VAMC, Memphis
| | - Shiri Meron‐Sudai
- Department of Human Microbiology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hayim Tsubery
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Yona Keisari
- Department of Human Microbiology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ahuva Nissim
- Bone and Joint Research Unit, St. Bartholomew’s and Royal London School of Medicine and Dentistry, Queen Mary, Charterhouse Square, United Kingdom; and
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Rabin Medical Center, Belinson Campus, Petach Tikva, Israel
| |
Collapse
|
19
|
Moesby L, Jensen S, Hansen EW, Christensen JD. A comparative study of Mono Mac 6 cells, isolated mononuclear cells and Limulus amoebocyte lysate assay in pyrogen testing. Int J Pharm 1999; 191:141-9. [PMID: 10564840 DOI: 10.1016/s0378-5173(99)00294-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pyrogen induced secretion of interleukin 6 (IL-6) in Mono Mac 6 (MM6) cells was measured. The ability of the MM6 cell culture to detect pyrogens was compared to the Limulus amoebocyte lysate (LAL) test and isolated mononuclear cells (MNC). The detection limit of MM6 for lipopolysaccharide (LPS) and Staphylococcus aureus was comparable to that of MNC. Aspergillus niger and Candida albicans induced IL-6 in isolated MNC, but not in MM6. The detection limit for Salmonella typhimurium in the MM6 assay was comparable to that of the LAL assay. As expected, S. aureus and C. albicans did not show any LAL activity. A. niger and Influenza virus showed some activity in the LAL test, but could not be detected by MM6 cells. In conclusion, the MM6 assay is a good supplement to the current pyrogen assays for detection of LPS, S. aureus and S. typhimurium, but the MM6 assay could not detect A. niger, C. albicans and Influenza virus.
Collapse
Affiliation(s)
- L Moesby
- The Royal Danish School of Pharmacy, Department of Pharmacology, 2 Universitetsparken, 2100, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
20
|
Sriskandan S, Cohen J. Gram-positive sepsis. Mechanisms and differences from gram-negative sepsis. Infect Dis Clin North Am 1999; 13:397-412. [PMID: 10340174 DOI: 10.1016/s0891-5520(05)70082-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This article has reviewed the mechanisms by which gram-positive bacteria lead to septic shock, with regard to bacterial structure and toxicology and the host responses elicited both in animal models and in the clinical setting. Gram-positive organisms are better suited to invade host tissues and elicit, in general, a brisker phagocytic response than gram-negative organisms. The lack of endotoxin in the outer cell wall is compensated for by the presence of exposed peptidoglycan and a range of other toxic secreted products. It appears that cell wall components of gram-positive bacteria may signal via the same receptor as gram-negative endotoxin, although the type of signal and coreceptor may differ. Both animal and clinical data suggest that, unlike endotoxin-mediated shock, gram-positive infection produces a modest TNF response only and does not respond well to anti-TNF therapies. This leads one to conclude that the mechanisms leading to shock in gram-positive infection may be multifactorial and perhaps more difficult to treat. A thorough review of gram-positive mechanisms of sepsis is hampered by a lack of basic research in this field. Understanding of gram-negative bacterial structure and the regulation of virulence genes is at an advanced stage, yet the molecular tools to analyse virulence factors in the gram-positive genome have only recently become available. There is a paucity of good animal models of gram-positive infection and a lack of microbiologic data from some of the major trials in sepsis that might have given greater insight into the mechanisms leading to shock in various infections.
Collapse
Affiliation(s)
- S Sriskandan
- Department of Infectious Diseases, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | | |
Collapse
|
21
|
Kengatharan KM, De Kimpe S, Robson C, Foster SJ, Thiemermann C. Mechanism of gram-positive shock: identification of peptidoglycan and lipoteichoic acid moieties essential in the induction of nitric oxide synthase, shock, and multiple organ failure. J Exp Med 1998; 188:305-15. [PMID: 9670043 PMCID: PMC2212447 DOI: 10.1084/jem.188.2.305] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/1998] [Indexed: 11/16/2022] Open
Abstract
The incidence of septic shock caused by gram-positive bacteria has risen markedly in the last few years. It is largely unclear how gram-positive bacteria (which do not contain endotoxin) cause shock and multiple organ failure. We have discovered recently that two cell wall fragments of the pathogenic gram-positive bacterium Staphylococcus aureus, lipoteichoic acid (LTA) and peptidoglycan (PepG), synergize to cause the induction of nitric oxide (NO) formation, shock, and organ injury in the rat. We report here that a specific fragment of PepG, N-acetylglucosamine-beta-[1--> 4]-N-acetylmuramyl-L-alanine-D-isoglutamine, is the moiety within the PepG polymer responsible for the synergism with LTA (or the cytokine interferon gamma) to induce NO formation in the murine macrophage cell line J774.2. However, this moiety is also present in the PepG of the nonpathogenic bacterium Bacillus subtilis. We have discovered subsequently that S. aureus LTA synergizes with PepG from either bacterium to cause enhanced NO formation, shock, and organ injury in the rat, whereas the LTA from B. subtilis does not synergize with PepG of either bacterium. Thus, we propose that the structure of LTA determines the ability of a particular bacterium to cause shock and multiple organ failure (pathogenicity), while PepG acts to amplify any response induced by LTA.
Collapse
Affiliation(s)
- K M Kengatharan
- William Harvey Research Institute, St. Bartholomew's and the Royal London School of Medicine and Dentistry, London EC1M 6BQ, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Greenberg JW, Fischer W, Joiner KA. Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infect Immun 1996; 64:3318-25. [PMID: 8757870 PMCID: PMC174224 DOI: 10.1128/iai.64.8.3318-3325.1996] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lipoteichoic acids (LTAs) belong to the immunostimulatory class of molecules of gram-positive bacteria (GPB). Previous investigations showed that the macrophage scavenger receptor (SR), a glycosylated trimeric transmembrane protein, binds directly to many GPB, possibly via LTA. SR binding to other ligands is dependent upon the spatial characteristics of the repeating negative charge of the ligand. We therefore investigated SR recognition of LTA species with various charge densities and distributions by determining the capacity of these LTAs to compete with the binding of metabolically labeled SR to beads coated with the known SR ligand polyguanylic acid. Staphylococcus aureus LTA, a classical LTA type (unbranched 1,3-linked polyglycerophosphate chain covalently bound to a membrane diacylglyceroglycolipid), had a 50% inhibitory concentration (IC50) for inhibition of SR binding of 0.84 microg/ml. When the S. aureus LTA was rendered more negatively charged by removal of ester-linked alanine from the polyglycerophosphate backbone, the IC50 dropped to 0.23 microg/ml. Other polyglycerophosphate LTAs from Enterococcus faecalis, Enterococcus faecium, Enterococcus hirae, Listeria monocytogenes, Listeria welshimeri, and Streptococcus sanguis showed IC50S of 0.5 to 2.1 microg/ml, supporting the role of negative charge in binding to SR. Accordingly, the zwitterionic LTA of Streptococcus pneumoniae and Clostridium innocuum LTA substituted with positively charged sugar residues had no binding capacity. Monoglycerophosphate branches, but not succinyl ester, affected binding of lipoglycans. The data presented above parallel the previous findings for whole organisms and support the role of surface-associated LTA as a major ligand of GPB for binding to SR. Whether binding of LTA and whole GPB to macrophages initiates uptake and degradation or results in signal transduction remains to be determined.
Collapse
Affiliation(s)
- J W Greenberg
- Infectious Disease Section, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8022, USA
| | | | | |
Collapse
|
23
|
De Kimpe SJ, Kengatharan M, Thiemermann C, Vane JR. The cell wall components peptidoglycan and lipoteichoic acid from Staphylococcus aureus act in synergy to cause shock and multiple organ failure. Proc Natl Acad Sci U S A 1995; 92:10359-63. [PMID: 7479784 PMCID: PMC40796 DOI: 10.1073/pnas.92.22.10359] [Citation(s) in RCA: 248] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although the incidence of Gram-positive sepsis has risen strongly, it is unclear how Gram-positive organisms (without endotoxin) initiate septic shock. We investigated whether two cell wall components from Staphylococcus aureus, peptidoglycan (PepG) and lipoteichoic acid (LTA), can induce the inflammatory response and multiple organ dysfunction syndrome (MODS) associated with septic shock caused by Gram-positive organisms. In cultured macrophages, LTA (10 micrograms/ml), but not PepG (100 micrograms/ml), induces the release of nitric oxide measured as nitrite. PepG, however, caused a 4-fold increase in the production of nitrite elicited by LTA. Furthermore, PepG antibodies inhibited the release of nitrite elicited by killed S. aureus. Administration of both PepG (10 mg/kg; i.v.) and LTA (3 mg/kg; i.v.) in anesthetized rats resulted in the release of tumor necrosis factor alpha and interferon gamma and MODS, as indicated by a decrease in arterial oxygen pressure (lung) and an increase in plasma concentrations of bilirubin and alanine aminotransferase (liver), creatinine and urea (kidney), lipase (pancreas), and creatine kinase (heart or skeletal muscle). There was also the expression of inducible nitric oxide synthase in these organs, circulatory failure, and 50% mortality. These effects were not observed after administration of PepG or LTA alone. Even a high dose of LTA (10 mg/kg) causes only circulatory failure but no MODS. Thus, our results demonstrate that the two bacterial wall components, PepG and LTA, work together to cause systemic inflammation and multiple systems failure associated with Gram-positive organisms.
Collapse
Affiliation(s)
- S J De Kimpe
- William Harvey Research Institute, St. Bartholomew's Hospital, Medical College, Charterhouse Square, London, United Kingdom
| | | | | | | |
Collapse
|
24
|
Affiliation(s)
- S Sriskandan
- Department of Infectious Diseases and Bacteriology, Royal Postgraduate Medical School, London, U.K
| | | |
Collapse
|