1
|
Lee B, Shin D, Kim J, Shin SK, Yi H, Baek MG. Massilia litorea sp. nov., Marinobacter salinisoli sp. nov. and Rhodobacter xanthinilyticus sp. nov., isolated from coastal environments. Int J Syst Evol Microbiol 2024; 74. [PMID: 38289227 DOI: 10.1099/ijsem.0.006255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Three bacterial strains, namely LPB0304T, LPB0319T and LPB0142T, were isolated from coastal environments. The 16S rRNA gene sequences of the three isolates were found to show the highest sequence similarities to Massilia litorea (98.44 %), Marinobacter salinisoli (97.55 %) and Rhodobacter lacus (97.60 %), respectively. The low (<98.7 %) sequence similarities and tree topologies implied the novelty of the three isolates, representing novel genomic species of the genus Massilia, Marinobacter and Rhodobacter. Numerous biochemical and physiological features also supported the distinctiveness of the isolates from previously known species. Based on the phenotypic and phylogenetic data presented in this study, three novel species are suggested with the following names: Massilia litorea sp. nov. (LPB0304T=KACC 21523T=ATCC TSD-216T), Marinobacter salinisoli sp. nov. (LPB0319T=KACC 21522T=ATCC TSD-218T) and Rhodobacter xanthinilyticus sp. nov. (LPB0142T=KACC 18892T=JCM 31567T).
Collapse
Affiliation(s)
- Banseok Lee
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
| | - Donghoon Shin
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
| | - Juseong Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
| | - Su-Kyoung Shin
- Institute for Biomaterials, Korea University, Seoul, Republic of Korea
| | - Hana Yi
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
- Institute for Biomaterials, Korea University, Seoul, Republic of Korea
- School of Biosystems and Biomedical Sciences, Korea University, Seoul, Republic of Korea
| | - Min-Gyung Baek
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Yang WL, An ML, He WH, Luo X, Zhu L, Chen GB, Zhang YT, Wang YN. Marinobacter panjinensis sp. nov., a moderately halophilic bacterium isolated from sea tidal flat environment. Int J Syst Evol Microbiol 2023; 73. [PMID: 37167094 DOI: 10.1099/ijsem.0.005625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Two moderately halotolerant bacterium strains, designated PJ-16T and PJ-38, were isolated from a tidal flat of the red beach in Panjin City, Liaoning Province, PR China. Cells were found to be Gram-stain-negative, aerobic, motile, rod-shaped with a single polar flagellum. Optimum growth of strain PJ-16T occurred at 30 °C, pH 7.0 and 0.2-8.0 % (w/v) NaCl, and strain PJ-38 at 30 °C, pH 6.0-7.0 and 0.2-8.0 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain PJ-16T was most closely related to Marinobacter denitrificans KCTC 62941T (99.2 % 16S rRNA gene sequence similarity), Marinobacter algicola DSM 16394T (98.6 %), Marinobacter salarius JCM 19399T (98.4 %) and Marinobacter confluentis KCTC 42705T (98.2 %), and strain PJ-38 was most closely related to M. denitrificans KCTC 62941T (99.1 %), M. algicola DSM 16394T (98.6 %), M. salarius JCM 19399T (98.4 %) and M. confluentis KCTC 42705T (98.1 %). The G+C content of the genomic DNA of strain PJ-16T based on its draft genomic sequence was 57.4 mol%. The major cellular fatty acids of strain PJ-16T were C16 : 0, C16 : 1 ω7c/C16 : 1 ω6c and C18 : 1 ω9c. The major respiratory quinone of PJ-16T was ubiquinone-9 and the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The results of the phenotypic, phylogenetic and genomic analyses revealed that strains PJ-16T and PJ-38 represent a novel species of the genus Marinobacter, and the name Marinobacter panjinensis sp. nov. is proposed. The type strain is PJ-16T (= CGMCC 1.13694T= KCTC 72023T).
Collapse
Affiliation(s)
- Wen-Ling Yang
- Key Laboratory of Microbial Engineering at the Institute of Biology, Henan Academy of Sciences, Zhengzhou, 450008, PR China
| | - Ming-Li An
- Key Laboratory of Microbial Engineering at the Institute of Biology, Henan Academy of Sciences, Zhengzhou, 450008, PR China
| | - Wei-Hong He
- Key Laboratory of Microbial Engineering at the Institute of Biology, Henan Academy of Sciences, Zhengzhou, 450008, PR China
| | - Xin Luo
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450008, PR China
| | - Lin Zhu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450008, PR China
| | - Guan-Bin Chen
- School of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, PR China
| | - Ying-Tao Zhang
- Key Laboratory of Microbial Engineering at the Institute of Biology, Henan Academy of Sciences, Zhengzhou, 450008, PR China
| | - Ya-Nan Wang
- Key Laboratory of Microbial Engineering at the Institute of Biology, Henan Academy of Sciences, Zhengzhou, 450008, PR China
| |
Collapse
|
3
|
Cooper ZS, Rapp JZ, Shoemaker AMD, Anderson RE, Zhong ZP, Deming JW. Evolutionary Divergence of Marinobacter Strains in Cryopeg Brines as Revealed by Pangenomics. Front Microbiol 2022; 13:879116. [PMID: 35733954 PMCID: PMC9207381 DOI: 10.3389/fmicb.2022.879116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Marinobacter spp. are cosmopolitan in saline environments, displaying a diverse set of metabolisms that allow them to competitively occupy these environments, some of which can be extreme in both salinity and temperature. Here, we introduce a distinct cluster of Marinobacter genomes, composed of novel isolates and in silico assembled genomes obtained from subzero, hypersaline cryopeg brines, relic seawater-derived liquid habitats within permafrost sampled near Utqiaġvik, Alaska. Using these new genomes and 45 representative publicly available genomes of Marinobacter spp. from other settings, we assembled a pangenome to examine how the new extremophile members fit evolutionarily and ecologically, based on genetic potential and environmental source. This first genus-wide genomic analysis revealed that Marinobacter spp. in general encode metabolic pathways that are thermodynamically favored at low temperature, cover a broad range of organic compounds, and optimize protein usage, e.g., the Entner–Doudoroff pathway, the glyoxylate shunt, and amino acid metabolism. The new isolates contributed to a distinct clade of subzero brine-dwelling Marinobacter spp. that diverged genotypically and phylogenetically from all other Marinobacter members. The subzero brine clade displays genomic characteristics that may explain competitive adaptations to the extreme environments they inhabit, including more abundant membrane transport systems (e.g., for organic substrates, compatible solutes, and ions) and stress-induced transcriptional regulatory mechanisms (e.g., for cold and salt stress) than in the other Marinobacter clades. We also identified more abundant signatures of potential horizontal transfer of genes involved in transcription, the mobilome, and a variety of metabolite exchange systems, which led to considering the importance of this evolutionary mechanism in an extreme environment where adaptation via vertical evolution is physiologically rate limited. Assessing these new extremophile genomes in a pangenomic context has provided a unique view into the ecological and evolutionary history of the genus Marinobacter, particularly with regard to its remarkable diversity and its opportunism in extremely cold and saline environments.
Collapse
Affiliation(s)
- Zachary S. Cooper
- School of Oceanography, University of Washington, Seattle, WA, United States
- Astrobiology Program, University of Washington, Seattle, WA, United States
- *Correspondence: Zachary S. Cooper, , orcid.org/0000-0001-6515-7971
| | - Josephine Z. Rapp
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Center for Northern Studies (CEN), Université Laval, Québec, QC, Canada
- Institute of Integrative Biology and Systems (IBIS), Université Laval, Québec, QC, Canada
| | - Anna M. D. Shoemaker
- Department of Earth Sciences, Montana State University, Bozeman, MT, United States
| | - Rika E. Anderson
- Department of Biology, Carleton College, Northfield, MN, United States
| | - Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, United States
- Department of Microbiology, Ohio State University, Columbus, OH, United States
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States
| | - Jody W. Deming
- School of Oceanography, University of Washington, Seattle, WA, United States
- Astrobiology Program, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Draft Genome Sequence of Marinobacter sp. Strain AL4B, a Marine Bacterium Isolated from Quintero Bay, Chile. Microbiol Resour Announc 2021; 10:e0085621. [PMID: 34672699 PMCID: PMC8530084 DOI: 10.1128/mra.00856-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quintero Bay, located along the central coast of Chile, has suffered different oil spills during the past 10 years, impacting its marine ecosystems. Here, we report the genome sequence of Marinobacter sp. strain AL4B, a marine bacterium isolated from Quintero Bay, Chile.
Collapse
|
5
|
Qiu J, Han R, Wang C. Microbial halophilic lipases: A review. J Basic Microbiol 2021; 61:594-602. [PMID: 34096085 DOI: 10.1002/jobm.202100107] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/23/2021] [Indexed: 11/08/2022]
Abstract
Microbial lipases are commercially significant due to their versatile catalytic function of hydrolysis triacylglycerol. Among these, lipases from extremophiles are optimal for industrial application. Halophilic microorganisms living in a high salinity environment, such as the ocean, salt lakes, salt wells, and so on, produce halophilic lipases. In recent decades, many remarkable achievements have been made related to the properties and application of halophilic lipases. This review offers information collected over the last decades on halophilic lipase sources as well as advances in production, factors influencing activity, stability under various conditions, structural characteristics, progress in industrial applications such as food flavor modification, biodiesel production, and waste treatment, to provide theoretical and methodological references for the research in this direction.
Collapse
Affiliation(s)
- Junjie Qiu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Rui Han
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Chuan Wang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| |
Collapse
|
6
|
Ahmad W, Zheng Y, Li Y, Sun W, Hu Y, He X, Liu R, Xue CX, Zhang XH. Marinobacter salinexigens sp. nov., a marine bacterium isolated from hadal seawater of the Mariana Trench. Int J Syst Evol Microbiol 2020; 70:3794-3800. [PMID: 32441615 DOI: 10.1099/ijsem.0.004236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, strictly aerobic, non-motile and rod-shaped bacterium, designated ZYF650T, was isolated from the hadal seawater (9600 m) of the Mariana Trench. Results of phylogenetic analysis based on 16S rRNA gene sequences indicated that ZYF650T formed a lineage within the family Alteromonadaceae that was distinct from the most closely related species Marinobacter mobilis and Marinobacter nitratireducens with 16S rRNA gene sequences similarities of 98.0 and 97.7 %, respectively. Strain ZYF650T showed average nucleotide identity values of 75.7 % with Marinobacter hydrocarbonoclasticus, 73.3 % with Marinobacter mobilis and 79.3 % with Marinobacter nitratireducens, and DNA-DNAhybridization values of 21.5, 21.3 and 22.0 % with M. hydrocarbonoclasticus, M. mobilis and M. nitratireducens, respectively, which were lower than the threshold for species delineation. Strain ZYF650T grew with 0-14 % (w/v) NaCl (optimum, 7-8 %) at a temperature range of 10-45 °C (optimum, 28 °C) and pH 6.0-9.5 (optimum, pH 7.0-8.0). The sole respiratory quinone was ubiquinone-9 (Q-9). The polar lipids in ZYF650T comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, three unidentified polar lipids, two unidentified aminolipids and two phospholipids. The predominant fatty acids (more than 10 % of total fatty acids) were C18 : 1 ω9c (21.9 %), C16 : 0 (21.7 %), C12 : 0 3-OH (14.0 %), C16 : 1 ω9c (13.2 %) and C12 : 0 (12.2 %). The DNA G+C content of strain ZYF650T was 55.6 %. On the basis of polyphasic taxonomic analysis, strain ZY650T is considered to represent a novel specie of the genus Marinobacter in the family Alteromonadaceae, for which the name Marinobacter salinexigens sp. nov. is proposed. The type strain is ZYF650T (=JCM 33013T=MCCC 1K03552T).
Collapse
Affiliation(s)
- Waqar Ahmad
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Yanfen Zheng
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Yuying Li
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Wen Sun
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Yuyao Hu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Xinxin He
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Ronghua Liu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Chun-Xu Xue
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Xiao-Hua Zhang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.,College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China.,Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| |
Collapse
|
7
|
Li G, Wang S, Gai Y, Liu X, Lai Q, Shao Z. Marinobacter changyiensis, sp. nov., isolated from offshore sediment. Int J Syst Evol Microbiol 2020; 70:3004-3011. [PMID: 32320379 DOI: 10.1099/ijsem.0.004118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An aerobic, Gram-stain-negative bacterium, designated CLL7-20T, was isolated from a marine sediment sample from offshore of Changyi, Shandong Province, China. Cells of strain CLL7-20T were rod-shaped, motile with one or more polar flagella, and grew optimally at pH 7.0, at 28 °C and with 3 % (w/v) NaCl. The principal fatty acids of strain CLL7-20T were C16 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c). The main polar lipids of strain CLL7-20T were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG) and an unidentified aminolipid (AL). Strain CLL7-20T contained Q-9 as the major respiratory quinone. The G+C content of its genomic DNA was 56.2 mol%. Phylogenetically, strain CLL7-20T branched within the genus Marinobacter, with M. daqiaonensis YCSA40T being its closest phylogenetic relative (96.7 % 16S rRNA gene sequence similarity), followed by M. sediminum R65T (96.6 %). Average nucleotide identity and in silico DNA-DNA hybridization values between strain CLL7-20T and the closest related reference strains were 73.2% and 19.8 %, respectively. On the basis of its phenotypic, phylogenetic and chemotaxonomic characteristics, we suggest that strain CLL7-20T (=MCCC 1A14855T=KCTC 72664T) is the type strain of a novel species in the genus Marinobacter, for which the name Marinobacter changyiensis sp. nov. is proposed. Based on the genomic analysis, siderophore genes were found from strain CLL7-20T, which indicate its potential as a promising alternative to chemical fertilizers in iron-limitated environments such as saline soils.
Collapse
Affiliation(s)
- Guangyu Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, PR China
| | - Shanshan Wang
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, PR China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Yingbao Gai
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, PR China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Xiupian Liu
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, PR China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Qiliang Lai
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, PR China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, PR China
| |
Collapse
|
8
|
Zhang Y, Zhong XC, Xu W, Lu DC, Zhao JX, Du ZJ. Marinobacter vulgaris sp. nov., a moderately halophilic bacterium isolated from a marine solar saltern. Int J Syst Evol Microbiol 2019; 70:450-456. [PMID: 31592762 DOI: 10.1099/ijsem.0.003774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A facultatively anaerobic, Gram-stain-negative and non-gliding bacterium, designated F01T, was isolated from marine solar saltern in Weihai, PR China. Cells of F01T were 0.2-0.4 µm wide and 1.4-4.1 µm long, weakly catalase-positive and oxidase-negative. Growth of F01T was determined to occur at 4-40 °C (optimum, 33-37 °C), pH 6.5-8.5 (optimum, 7.0-8.0), and with 0.5-18.0 % (w/v) NaCl (optimum, 3.0-6.0 %). The 16S rRNA gene sequence analysis indicated that F01T represented a member of the genus Marinobacter within the family Alteromonadaceae. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was most closely related to Marinobacter algicola DSM 16394T, with a sequence similarity of 97.5 %. The DNA G+C content of the isolate was 57.6 mol%. The major respiratory quinone of F01T was ubiquinone-9 (Q-9) and the major fatty acids were anteiso-C15 : 0, C16 : 0 and C18 : 1ω9c. The major polar lipids were phosphoaminolipid, phosphatidylglycerol and phosphatidylethanolamine. On the basis of the results of the phylogenetic analysis and phenotypic properties, it is concluded that F01T can be considered to represent a novel species in the genus Marinobacter, for which the name Marinobacter vulgaris sp. nov. is proposed. The type strain is F01T (=MCCC 1H00290T=KCTC 52700T).
Collapse
Affiliation(s)
- Yu Zhang
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Xian-Chun Zhong
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Wei Xu
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - De-Chen Lu
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Jin-Xin Zhao
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute and Monash University, Melbourne 3800, Australia
| | - Zong-Jun Du
- College of Marine Science, Shandong University, Weihai 264209, PR China
| |
Collapse
|
9
|
Xu S, Wang D, Wei Y, Cui Q, Li W. Marinobacter bohaiensis sp. nov., a moderate halophile isolated from benthic sediment of the Bohai Sea. Int J Syst Evol Microbiol 2018; 68:3534-3539. [PMID: 30231958 DOI: 10.1099/ijsem.0.003025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, motile, aerobic and rod-shaped bacterial strain, designated T17T, was isolated from benthic sediment sampled at Jiaozhou Bay, Bohai Sea, China, and its taxonomic position was investigated. The 16S rRNA gene sequence of strain T17T exhibited the highest similarity values to those of the type strain Marinobacter lacisalsi FP2.5 (96.2 %) and Marinobacter koreensis DD-M3T (96.2 %). Strain T17T grew optimally at 35 °C, pH 7.0-8.0 and in the presence of 6.0-10.0 % (w/v) NaCl. The predominant ubiquinone in strain T17T was identified as Q-9. The major fatty acids of strain T17T were C12 : 0, C16 : 0 and C16 : 0 10-CH3. The major polar lipids of strain T17T were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidglycerol, an unidentified aminolipid and an unidentified phospholipid. The DNA G+C content of strain T17T was 63.0 mol%. The draft genome sequence of strain T17T includes 4 755 891 bp in total (N50=2 856 325 bp) with a medium read coverage of 100.0x and 11 scaffolds. In silico DNA-DNA hybridization with the three type strains showed 20.3, 19.7 and 19.9 % relatedness to Marinobacter santoriniensis NKSG1T, Marinobacter segnicrescens SS11B1-4T and Marinobacter daqiaonensis CGMCC 1.9167T, respectively. On the basis of the phenotypic, phylogenetic, genomic and chemotaxonomic properties, strain T17T is considered to represent a novel species within the genus Marinobacter, for which the name Marinobacterbohaiensis sp. nov. is proposed. The type strain is T17T (=KCTC 52710T=MCCC 1K03282T).
Collapse
Affiliation(s)
- Shanshan Xu
- 1Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Dandan Wang
- 1Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China.,2Life Science College, Qingdao University, Qingdao 266071, PR China
| | - Yuxi Wei
- 2Life Science College, Qingdao University, Qingdao 266071, PR China
| | - Qiu Cui
- 3Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Science, Qingdao 266101, PR China
| | - Wenli Li
- 1Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China.,4Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| |
Collapse
|
10
|
Lee MD, Kling JD, Araya R, Ceh J. Jellyfish Life Stages Shape Associated Microbial Communities, While a Core Microbiome Is Maintained Across All. Front Microbiol 2018; 9:1534. [PMID: 30050517 PMCID: PMC6052147 DOI: 10.3389/fmicb.2018.01534] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022] Open
Abstract
The key to 650 million years of evolutionary success in jellyfish is adaptability: with alternating benthic and pelagic generations, sexual and asexual reproductive modes, multitudes of body forms and a cosmopolitan distribution, jellyfish are likely to have established a plenitude of microbial associations. Here we explored bacterial assemblages in the scyphozoan jellyfish Chrysaora plocamia (Lesson 1832). Life stages involved in propagation through cyst formation, i.e., the mother polyp, its dormant cysts (podocysts), and polyps recently excysted (excysts) from podocysts – were investigated. Associated bacterial assemblages were assessed using MiSeq Illumina paired-end tag sequencing of the V1V2 region of the 16S rRNA gene. A microbial core-community was identified as present through all investigated life stages, including bacteria with closest relatives known to be key drivers of carbon, nitrogen, phosphorus, and sulfur cycling. Moreover, the fact that half of C. plocamia’s core bacteria were also present in life stages of the jellyfish Aurelia aurita, suggests that this bacterial community might represent an intrinsic characteristic of scyphozoan jellyfish, contributing to their evolutionary success.
Collapse
Affiliation(s)
- Michael D Lee
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Joshua D Kling
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Rubén Araya
- Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Antofagasta, Chile
| | - Janja Ceh
- Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Antofagasta, Chile.,Laboratory of Microbial Complexity and Functional Ecology, Institute of Antofagasta, University of Antofagasta, Antofagasta, Chile.,Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Han JR, Ling SK, Yu WN, Chen GJ, Du ZJ. Marinobacter salexigens sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2017; 67:4595-4600. [PMID: 28945532 DOI: 10.1099/ijsem.0.002337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel bacterium, designated as strain HJR7T, was isolated from a marine sediment sample collected from the coastal area of Weihai, China (121° 57' E, 37° 29' N). Cells were Gram-stain-negative, facultative anaerobic, non-motile and rod-shaped. The temperature, pH and NaCl ranges for growth were determined as 4-40 °C, pH 6.5-9.5 and 0.5-15.0 % (w/v), respectively. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain HJR7T belongs to the genus Marinobacter in the family Alteromonadaceae. The most closely related species were Marinobacter aromaticivorans (97.6 % 16S rRNA gene sequence similarity) and Marinobacter maritimus (97.3 % similarity). Ubiquinone 9 (Q-9) was the only respiratory quinone detected in strain HJR7T. The major fatty acids of strain HJR7T were C12 : 0, C16 : 0, C16 : 0 N alcohol, C18 : 1ω9c and C18 : 3ω6, 9, 12c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, and an unidentified phospholipid. The DNA G+C content of strain HJR7T was 53.7 mol%. On the basis of phylogenetic, genotypic, phenotypic, and chemotaxonomic analyses, strain HJR7T represents a novel species within the genus Marinobacter, for which the name Marinobacter salexigens sp. nov. is proposed. The type strain is HJR7T (=KCTC 52545T=MCCC 1H00176T).
Collapse
Affiliation(s)
- Ji-Ru Han
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Si-Kai Ling
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Wen-Nan Yu
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Guan-Jun Chen
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Zong-Jun Du
- College of Marine Science, Shandong University, Weihai 264209, PR China.,Joint Research Laboratory for Microbial Oceanography, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, PR China
| |
Collapse
|
12
|
Oves M, Qari HA, Felemban NM, Khan MZ, Rehan ZA, Ismail IMI. Marinobacter lipolyticus from Red Sea for lipase production and modulation of silver nanomaterials for anti-candidal activities. IET Nanobiotechnol 2017; 11:403-410. [PMID: 28530189 PMCID: PMC8676228 DOI: 10.1049/iet-nbt.2016.0104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 11/19/2022] Open
Abstract
In this study, the bacterial strain CEES 33 was isolated from the coastal area of the Red Sea, Jeddah, Kingdom of Saudi Arabia. The bacterium isolate was identified and characterized by using biochemical and molecular methods. The isolate CEES 33 has been identified as Gram-negative rod shaped and cream pigmented spherical colonies. It also demonstrated a positive result for nitrate reduction, oxidase, catalase, citrate utilization, lipase and exopolysaccharide production. Strain CEES 33 was characterized at the molecular level by partial 16S rRNA sequencing and it has been identified as Marinobacter lipolyticus (EMBL|LN835275.1). The lipolytic activity of the isolate was also observed 2.105 nkatml-1. Furthermore, the bacterial aqueous extract was used for green synthesis of silver nanoparticles (AgNPs), which was further confirmed by UV-visible spectra (430 nm), XRD and SEM analysis. Moreover, the biological functional group that involved in AgNPs synthesis was confirmed by FTIR spectra. The biological activities of AgNPs were also investigated, which showed a significant growth inhibition of Candida albicans with 16 ± 2 mm zone of inhibition at 10 μg dose/wells. Therefore, bacterium Marinobacter lipolyticus might be used in future for lipase production and nanoparticles fabrication for biomedical application, to control fungal diseases caused by C. albicans.
Collapse
Affiliation(s)
- Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia.
| | - Huda A Qari
- Department of Biological Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Nadeen M Felemban
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Mohammad Z Khan
- Department of Chemistry, Division Industrial Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Zulfiqar A Rehan
- Center of Excellence in Desalination Technology, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Iqbal M I Ismail
- Department of Chemistry, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Kim JO, Lee HJ, Han SI, Whang KS. Marinobacter halotolerans sp. nov., a halophilic bacterium isolated from a saltern crystallizing pond. Int J Syst Evol Microbiol 2016; 67:460-465. [PMID: 27902258 DOI: 10.1099/ijsem.0.001653] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, moderately halophilic, motile bacterium, designated strain CP12T, was isolated from a crystallizing pond of a saltern of the Yellow Sea in Korea. Cells of strain CP12T were non-spore-forming rods and produced whitish-yellow colonies. Growth was observed at 10-37 °C (optimum 37 °C), at pH 6.0-9.0 (optimum pH 7.0), and in the presence of 0.5-20 % (w/v) NaCl (optimum 3 %). Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain CP12T was closely related to Marinobacter flavimaris SW-145T (98.4 % 16S rRNA gene sequence similarity), Marinobacter algicola DG893T (98.2 %), Marinobacter adhaerens HP15T (98.2 %), Marinobacter salsuginis SD-14BT (97.9 %), Marinobacter salarius R9SW1T (97.6 %) and Marinobacter lipolyticus SM19T (97.1 %). DNA-DNA hybridization studies showed values lower than 18.6 % between strain CP12T and any of these species. The predominant respiratory isoprenoid quinone was ubiquinone-9 and the major cellular fatty acids of strain CP12T were C16 : 0, C12 : 0 3-OH, C12 : 0, Summed feature 3, C16 : 0 10-methyl and C18 : 1ω9c. On the basis of phenotypic properties, and phylogenetic and chemotaxonomic data, it is evident that strain CP12T represents a novel species of the genus Marinobacter, for which the name Marinobacter halotolerans sp. nov. is proposed. The type strain is CP12T (=KACC 18381T=NBRC 110910T).
Collapse
Affiliation(s)
- Ju-Ok Kim
- Department of Microbial & Nano Materials, Mokwon University, Daejeon 302-729, Republic of Korea
| | - Hyo-Jin Lee
- Institute of Microbial Ecology & Resources, Mokwon University, Daejeon 302-729, Republic of Korea
| | - Song-Ih Han
- Department of Microbial & Nano Materials, Mokwon University, Daejeon 302-729, Republic of Korea
| | - Kyung-Sook Whang
- Institute of Microbial Ecology & Resources, Mokwon University, Daejeon 302-729, Republic of Korea.,Department of Microbial & Nano Materials, Mokwon University, Daejeon 302-729, Republic of Korea
| |
Collapse
|
14
|
Complete genome of Marinobacter psychrophilus strain 20041(T) isolated from sea-ice of the Canadian Basin. Mar Genomics 2016; 28:1-3. [PMID: 26908308 DOI: 10.1016/j.margen.2016.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 11/21/2022]
Abstract
Marinobacter psychrophilus strain 20041(T) was isolated from sea-ice of the Canadian Basin. Here we report the complete sequence of the 3.9-Mb genome of this strain. The complete genome sequence will facilitate the study of the physiology and evolution of Marinobacter species.
Collapse
|
15
|
Park S, Kim S, Kang CH, Jung YT, Yoon JH. Marinobacter confluentis sp. nov., a lipolytic bacterium isolated from a junction between the ocean and a freshwater lake. Int J Syst Evol Microbiol 2015; 65:4873-4879. [DOI: 10.1099/ijsem.0.000659] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, motile, aerobic and rod-shaped bacterium, designated HJM-18T, was isolated from the place where the ocean and a freshwater lake meet at Hwajinpo, South Korea, and subjected to a taxonomic study using a polyphasic approach. Strain HJM-18T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 1.0–3.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences showed that strain HJM-18T belonged to the genus Marinobacter. Strain HJM-18T exhibited 16S rRNA gene sequence similarity values of 97.05–98.22 % to the type strains of Marinobacter algicola, Marinobacter flavimaris, Marinobacter adhaerens, Marinobacter salarius, Marinobacter salsuginis, Marinobacter guineae and Marinobacter gudaonensis and of 93.21–96.98 % to the type strains of the other species of the genus Marinobacter. Strain HJM-18T contained Q-9 as the predominant ubiquinone and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C18 : 1ω9c as the major fatty acids. The major polar lipids detected in strain HJM-18T were phosphatidylethanolamine, phosphatidylglycerol and one unidentified aminophospholipid. The DNA G+C content was 58 mol% and the mean DNA–DNA relatedness values with the type strains of the seven phylogenetically related species of the genus Marinobacter were 10–27 %. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain HJM-18T is separated from recognized species of the genus Marinobacter. On the basis of the data presented, strain HJM-18T represents a novel species of the genus Marinobacter, for which the name Marinobacter confluentis sp. nov. is proposed. The type strain is HJM-18T ( = KCTC 42705T = NBRC 111223T).
Collapse
Affiliation(s)
- Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
| | - Sona Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
| | - Chul-Hyung Kang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
- University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon, South Korea
| | - Yong-Taek Jung
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
- University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon, South Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
| |
Collapse
|