1
|
Ahmadi F, Lackner M. Recent findings in methanotrophs: genetics, molecular ecology, and biopotential. Appl Microbiol Biotechnol 2024; 108:60. [PMID: 38183483 DOI: 10.1007/s00253-023-12978-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/08/2023] [Accepted: 10/01/2023] [Indexed: 01/08/2024]
Abstract
The potential consequences for mankind could be disastrous due to global warming, which arises from an increase in the average temperature on Earth. The elevation in temperature primarily stems from the escalation in the concentration of greenhouse gases (GHG) such as CO2, CH4, and N2O within the atmosphere. Among these gases, methane (CH4) is particularly significant in driving alterations to the worldwide climate. Methanotrophic bacteria possess the distinctive ability to employ methane as both as source of carbon and energy. These bacteria show great potential as exceptional biocatalysts in advancing C1 bioconversion technology. The present review describes recent findings in methanotrophs including aerobic and anaerobic methanotroph bacteria, phenotypic characteristics, biotechnological potential, their physiology, ecology, and native multi-carbon utilizing pathways, and their molecular biology. The existing understanding of methanogenesis and methanotrophy in soil, as well as anaerobic methane oxidation and methanotrophy in temperate and extreme environments, is also covered in this discussion. New types of methanogens and communities of methanotrophic bacteria have been identified from various ecosystems and thoroughly examined for a range of biotechnological uses. Grasping the processes of methanogenesis and methanotrophy holds significant importance in the development of innovative agricultural techniques and industrial procedures that contribute to a more favorable equilibrium of GHG. This current review centers on the diversity of emerging methanogen and methanotroph species and their effects on the environment. By amalgamating advanced genetic analysis with ecological insights, this study pioneers a holistic approach to unraveling the biopotential of methanotrophs, offering unprecedented avenues for biotechnological applications. KEY POINTS: • The physiology of methanotrophic bacteria is fundamentally determined. • Native multi-carbon utilizing pathways in methanotrophic bacteria are summarized. • The genes responsible for encoding methane monooxygenase are discussed.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- School of Agriculture and Environment, University of Western Australia, Crawley, 6009, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | | |
Collapse
|
2
|
Zhang WL, Lai MC, Lin S, Chen WC, Deng YC, Lai SJ, Wu SY, Hung CC, Ding JY, Chen SC. Methanooceanicella nereidis gen. nov., sp. nov., the first oceanic Methanocellaceae methanogen, isolated from potential methane hydrate bearing area offshore southwestern Taiwan. Int J Syst Evol Microbiol 2024; 74. [PMID: 38634834 DOI: 10.1099/ijsem.0.006322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
A novel mesophilic, hydrogenotrophic methanogen, strain CWC-04T, was obtained from a sediment sample extracted from a gravity core retrieved at station 22 within the KP-9 area off the southwestern coast of Taiwan during the ORIII-1368 cruise in 2009. Cells of strain CWC-04T were rod-shaped, 1.4-2.9 µm long by 0.5-0.6 µm wide, and occurred singly. Strain CWC-04Tutilized formate, H2/CO2, 2-propanol/CO2 or 2-butanol/CO2 as catabolic substrates. The optimal growth conditions were 42 °C, 0.17 M NaCl and pH 5.35. The genomic DNA G+C content calculated from the genome sequence of strain CWC-04T was 46.19 mol%. Phylogenetic analysis of 16S rRNA gene revealed that strain CWC-04T is affiliated with the genus Methanocella. The 16S rRNA gene sequences similarities within strains Methanocella arvoryzae MRE50T, Methanocella paludicola SANAET and Methanocella conradii HZ254T were 93.7, 93.0 and 91.3 %, respectively. In addition, the optical density of CWC-04T culture dropped abruptly upon entering the late-log growth phase, with virus-like particles (150 nm in diameter) being observed on and around the cells. This observation suggests that strain CWC-04T harbours a lytic virus. Based on these phenotypic, phylogenetic and genomic results, we propose that strain CWC-04T represents a novel species of a novel genus in the family Methanocellaceae, for which the name Methanooceanicella nereidis gen. nov., sp. nov. is proposed. The type strain is CWC-04T (=BCRC AR10050T=NBRC 113165T).
Collapse
Affiliation(s)
- Wei-Ling Zhang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Mei-Chin Lai
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Saulwood Lin
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan, ROC
| | - Wen-Chieh Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Yu-Chen Deng
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Shu-Jung Lai
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan, ROC
- Research Center for Cancer Biology, China Medical University, Taichung City, Taiwan, ROC
| | - Sue-Yao Wu
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Chuan-Chuan Hung
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Jiun-Yan Ding
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Sheng-Chung Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, PR China
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, PR China
| |
Collapse
|
3
|
Li X, Bei Q, Rabiei Nematabad M, Peng J, Liesack W. Time-shifted expression of acetoclastic and methylotrophic methanogenesis by a single Methanosarcina genomospecies predominates the methanogen dynamics in Philippine rice field soil. MICROBIOME 2024; 12:39. [PMID: 38409166 PMCID: PMC10895765 DOI: 10.1186/s40168-023-01739-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/18/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND The final step in the anaerobic decomposition of biopolymers is methanogenesis. Rice field soils are a major anthropogenic source of methane, with straw commonly used as a fertilizer in rice farming. Here, we aimed to decipher the structural and functional responses of the methanogenic community to rice straw addition during an extended anoxic incubation (120 days) of Philippine paddy soil. The research combined process measurements, quantitative real-time PCR and RT-PCR of particular biomarkers (16S rRNA, mcrA), and meta-omics (environmental genomics and transcriptomics). RESULTS The analysis methods collectively revealed two major bacterial and methanogenic activity phases: early (days 7 to 21) and late (days 28 to 60) community responses, separated by a significant transient decline in microbial gene and transcript abundances and CH4 production rate. The two methanogenic activity phases corresponded to the greatest rRNA and mRNA abundances of the Methanosarcinaceae but differed in the methanogenic pathways expressed. While three genetically distinct Methanosarcina populations contributed to acetoclastic methanogenesis during the early activity phase, the late activity phase was defined by methylotrophic methanogenesis performed by a single Methanosarcina genomospecies. Closely related to Methanosarcina sp. MSH10X1, mapping of environmental transcripts onto metagenome-assembled genomes (MAGs) and population-specific reference genomes revealed this genomospecies as the key player in acetoclastic and methylotrophic methanogenesis. The anaerobic food web was driven by a complex bacterial community, with Geobacteraceae and Peptococcaceae being putative candidates for a functional interplay with Methanosarcina. Members of the Methanocellaceae were the key players in hydrogenotrophic methanogenesis, while the acetoclastic activity of Methanotrichaceae members was detectable only during the very late community response. CONCLUSIONS The predominant but time-shifted expression of acetoclastic and methylotrophic methanogenesis by a single Methanosarcina genomospecies represents a novel finding that expands our hitherto knowledge of the methanogenic pathways being highly expressed in paddy soils. Video Abstract.
Collapse
Affiliation(s)
- Xin Li
- Research group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, D-35043, Marburg, Germany
- Present address: Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Strasse 5, Halle (Saale), Germany
| | - Qicheng Bei
- Research group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, D-35043, Marburg, Germany
- Present address: Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Strasse 4, Halle (Saale), Germany
| | - Mehrdad Rabiei Nematabad
- Research group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, D-35043, Marburg, Germany
| | - Jingjing Peng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.
| | - Werner Liesack
- Research group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, D-35043, Marburg, Germany.
| |
Collapse
|
4
|
Zhang C, Chen Z, Zhang M, Jia S. KEGG_Extractor: An Effective Extraction Tool for KEGG Orthologs. Genes (Basel) 2023; 14:genes14020386. [PMID: 36833314 PMCID: PMC9956942 DOI: 10.3390/genes14020386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The KEGG Orthology (KO) database is a widely used molecular function reference database which can be used to conduct functional annotation of most microorganisms. At present, there are many KEGG tools based on the KO entries for annotating functional orthologs. However, determining how to efficiently extract and sort the annotation results of KEGG still hinders the subsequent genome analysis. There is a lack of effective measures used to quickly extract and classify the gene sequences and species information of the KEGG annotations. Here, we present a supporting tool: KEGG_Extractor for species-specific genes extraction and classification, which can output the results through an iterative keyword matching algorithm. It can not only extract and classify the amino acid sequences, but also the nucleotide sequences, and it has proved to be fast and efficient for microbial analysis. Analysis of the ancient Wood Ljungdahl (WL) pathway through the KEGG_Extractor reveals that ~226 archaeal strains contained the WL pathway-related genes. Most of them were Methanococcus maripaludis, Methanosarcina mazei and members of the Methanobacterium, Thermococcus and Methanosarcina genus. Using the KEGG_Extractor, the ARWL database was constructed, which had a high accuracy and complement. This tool helps to link genes with the KEGG pathway and promote the reconstruction of molecular networks. Availability and implementation: KEGG_Extractor is freely available from the GitHub.
Collapse
Affiliation(s)
- Chao Zhang
- Marine Sustainable Development Research Center, Third Institute of Oceanography, Xiamen 361102, China
| | - Zhongwei Chen
- Nantong Marine Environmental Monitoring Center, Ministry of Natural Resources, Nantong 226002, China
| | - Miming Zhang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shulei Jia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence:
| |
Collapse
|
5
|
Grenier V, Gonzalez E, Brereton NJB, Pitre FE. Dynamics of bacterial and archaeal communities during horse bedding and green waste composting. PeerJ 2023; 11:e15239. [PMID: 37159830 PMCID: PMC10163874 DOI: 10.7717/peerj.15239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
Organic waste decomposition can make up substantial amounts of municipal greenhouse emissions during decomposition. Composting has the potential to reduce these emissions as well as generate sustainable fertilizer. However, our understanding of how complex microbial communities change to drive the chemical and biological processes of composting is still limited. To investigate the microbiota associated with organic waste decomposition, initial composting feedstock (Litter), three composting windrows of 1.5 months (Young phase), 3 months (Middle phase) and 12 months (Aged phase) old, and 24-month-old mature Compost were sampled to assess physicochemical properties, plant cell wall composition and the microbial community using 16S rRNA gene amplification. A total of 2,612 Exact Sequence Variants (ESVs) included 517 annotated as putative species and 694 as genera which together captured 57.7% of the 3,133,873 sequences, with the most abundant species being Thermobifida fusca, Thermomonospora chromogena and Thermobifida bifida. Compost properties changed rapidly over time alongside the diversity of the compost community, which increased as composting progressed, and multivariate analysis indicated significant variation in community composition between each time-point. The abundance of bacteria in the feedstock is strongly correlated with the presence of organic matter and the abundance of plant cell wall components. Temperature and pH are the most strongly correlated parameters with bacterial abundance in the thermophilic and cooling phases/mature compost respectively. Differential abundance analysis revealed 810 ESVs annotated as species significantly varied in relative abundance between Litter and Young phase, 653 between the Young and Middle phases, 1182 between Middle and Aged phases and 663 between Aged phase and mature Compost. These changes indicated that structural carbohydrates and lignin degrading species were abundant at the beginning of the thermophilic phase, especially members of the Firmicute and Actinobacteria phyla. A high diversity of species capable of putative ammonification and denitrification were consistently found throughout the composting phases, whereas a limited number of nitrifying bacteria were identified and were significantly enriched within the later mesophilic composting phases. High microbial community resolution also revealed unexpected species which could be beneficial for agricultural soils enriched with mature compost or for the deployment of environmental and plant biotechnologies. Understanding the dynamics of these microbial communities could lead to improved waste management strategies and the development of input-specific composting protocols to optimize carbon and nitrogen transformation and promote a diverse and functional microflora in mature compost.
Collapse
Affiliation(s)
- Vanessa Grenier
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
- Institut de Recherche en Biologie Végétale, Montréal, Québec, Canada
| | - Emmanuel Gonzalez
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Canadian Centre for Computational Genomics, McGill Genome Centre, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Nicholas JB Brereton
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Frederic E. Pitre
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
- Institut de Recherche en Biologie Végétale, Montréal, Québec, Canada
- Montreal Botanical Garden, Montréal, Québec, Canada
| |
Collapse
|
6
|
Meier AB, Oppermann S, Drake HL, Schmidt O. The root zone of graminoids: A niche for H2-consuming acetogens in a minerotrophic peatland. Front Microbiol 2022; 13:978296. [PMID: 35992704 PMCID: PMC9391049 DOI: 10.3389/fmicb.2022.978296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of acetogens for H2 turnover and overall anaerobic degradation in peatlands remains elusive. In the well-studied minerotrophic peatland fen Schlöppnerbrunnen, H2-consuming acetogens are conceptualized to be largely outcompeted by iron reducers, sulfate reducers, and hydrogenotrophic methanogens in bulk peat soil. However, in root zones of graminoids, fermenters thriving on rhizodeposits and root litter might temporarily provide sufficient H2 for acetogens. In the present study, root-free peat soils from around the roots of Molinia caerulea and Carex rostrata (i.e., two graminoids common in fen Schlöpnnerbrunnen) were anoxically incubated with or without supplemental H2 to simulate conditions of high and low H2 availability in the fen. In unsupplemented soil treatments, H2 concentrations were largely below the detection limit (∼10 ppmV) and possibly too low for acetogens and methanogens, an assumption supported by the finding that neither acetate nor methane substantially accumulated. In the presence of supplemental H2, acetate accumulation exceeded CH4 accumulation in Molinia soil whereas acetate and methane accumulated equally in Carex soil. However, reductant recoveries indicated that initially, additional unknown processes were involved either in H2 consumption or the consumption of acetate produced by H2-consuming acetogens. 16S rRNA and 16S rRNA gene analyses revealed that potential acetogens (Clostridium, Holophagaceae), methanogens (Methanocellales, Methanobacterium), iron reducers (Geobacter), and physiologically uncharacterized phylotypes (Acidobacteria, Actinobacteria, Bacteroidetes) were stimulated by supplemental H2 in soil treatments. Phylotypes closely related to clostridial acetogens were also active in soil-free Molinia and Carex root treatments with or without supplemental H2. Due to pronounced fermentation activities, H2 consumption was less obvious in root treatments, and acetogens likely thrived on root organic carbon and fermentation products (e.g., ethanol) in addition to H2. Collectively, the data highlighted that in fen Schlöppnerbrunnen, acetogens are associated to graminoid roots and inhabit the peat soil around the roots, where they have to compete for H2 with methanogens and iron reducers. Furthermore, the study underscored that the metabolically flexible acetogens do not rely on H2, potentially a key advantage over other H2 consumers under the highly dynamic conditions characteristic for the root-zones of graminoids in peatlands.
Collapse
Affiliation(s)
- Anja B. Meier
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Sindy Oppermann
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Harold L. Drake
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Oliver Schmidt
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Oliver Schmidt,
| |
Collapse
|
7
|
Murphy CWM, Davis GB, Rayner JL, Walsh T, Bastow TP, Butler AP, Puzon GJ, Morgan MJ. The role of predicted chemotactic and hydrocarbon degrading taxa in natural source zone depletion at a legacy petroleum hydrocarbon site. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128482. [PMID: 35739665 DOI: 10.1016/j.jhazmat.2022.128482] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 06/15/2023]
Abstract
Petroleum hydrocarbon contamination is a global problem which can cause long-term environmental damage and impacts water security. Natural source zone depletion (NSZD) is the natural degradation of such contaminants. Chemotaxis is an aspect of NSZD which is not fully understood, but one that grants microorganisms the ability to alter their motion in response to a chemical concentration gradient potentially enhancing petroleum NSZD mass removal rates. This study investigates the distribution of potentially chemotactic and hydrocarbon degrading microbes (CD) across the water table of a legacy petroleum hydrocarbon site near Perth, Western Australia in areas impacted by crude oil, diesel and jet fuel. Core samples were recovered and analysed for hydrocarbon contamination using gas chromatography. Predictive metagenomic profiling was undertaken to infer functionality using a combination of 16 S rRNA sequencing and PICRUSt2 analysis. Naphthalene contamination was found to significantly increase the occurrence of potential CD microbes, including members of the Comamonadaceae and Geobacteraceae families, which may enhance NSZD. Further work to explore and define this link is important for reliable estimation of biodegradation of petroleum hydrocarbon fuels. Furthermore, the outcomes suggest that the chemotactic parameter within existing NSZD models should be reviewed to accommodate CD accumulation in areas of naphthalene contamination, thereby providing a more accurate quantification of risk from petroleum impacts in subsurface environments, and the scale of risk mitigation due to NSZD.
Collapse
Affiliation(s)
- Cameron W M Murphy
- Environmental and Water Resources Section, Department of Civil and Environmental Engineering, Imperial College of Science,Technology and Medicine, Exhibition Road, London, United Kingdom; Centre for Environment and Life Sciences, CSIRO Land and Water, Private Bag No 5, Wembley, WA 6913, Australia
| | - Greg B Davis
- Centre for Environment and Life Sciences, CSIRO Land and Water, Private Bag No 5, Wembley, WA 6913, Australia
| | - John L Rayner
- Centre for Environment and Life Sciences, CSIRO Land and Water, Private Bag No 5, Wembley, WA 6913, Australia
| | - Tom Walsh
- Black Mountain Laboratories, CSIRO Land and Water, Acton, P.O. Box 1700, Canberra, ACT 2601, Australia
| | - Trevor P Bastow
- Centre for Environment and Life Sciences, CSIRO Land and Water, Private Bag No 5, Wembley, WA 6913, Australia
| | - Adrian P Butler
- Environmental and Water Resources Section, Department of Civil and Environmental Engineering, Imperial College of Science,Technology and Medicine, Exhibition Road, London, United Kingdom
| | - Geoffrey J Puzon
- Centre for Environment and Life Sciences, CSIRO Land and Water, Private Bag No 5, Wembley, WA 6913, Australia.
| | - Matthew J Morgan
- Black Mountain Laboratories, CSIRO Land and Water, Acton, P.O. Box 1700, Canberra, ACT 2601, Australia
| |
Collapse
|
8
|
Liu Y, Wang Q, Pan Q, Zhou X, Peng Z, Jahng D, Yang B, Pan X. Ventilation induced evolution pattern of archaea, fungi, bacteria and their potential roles during co-bioevaporation treatment of concentrated landfill leachate and food waste. CHEMOSPHERE 2022; 289:133122. [PMID: 34871608 DOI: 10.1016/j.chemosphere.2021.133122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/27/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
To obtain a favorable aeration type in co-bioevaporation treatment of concentrated landfill leachate and food waste, and to deeply understand the co-bioevaporation mechanisms, the temporal evolution differences of archaea, fungi and bacteria as well as the related microbial metabolism genes and functional enzymes under intermittent ventilation (IV) and continuous ventilation (CV) were investigated. Results through metagenomics analysis showed that the less sufficient oxygen and longer thermophilic phase in IV stimulated the vigorous growth of archaea, while CV was beneficial for fungal growth. Even genes of carbohydrates and lipids metabolism and ATP-associated enzymes (enzyme 2.7.13.3 and 3.6.4.12), as well as peptidoglycan biosynthesis enzyme (enzyme 3.4.16.4), were more abundant in CV, IV hold better DNA repair ability, higher microbial viability, and less dehydrogenase sensitivity to temperatures due to the critical contribution of Pseudomonas (3.1-45.9%). Furthermore, IV consumed a similar amount of heat for water evaporation with nearly half of the ventilation of CV and was a favorable aeration type in the practical application of co-bioevaporation.
Collapse
Affiliation(s)
- Yanmei Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Qingzuo Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qian Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiandong Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhenghua Peng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Deokjin Jahng
- Department of Environmental Engineering & Energy, Myongji University, San 38-2, Namdong, Cheoingu, Yonginshi, Gyeonggido, 449-728, Republic of Korea
| | - Benqin Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
9
|
Yadav AN, Kour D, Kaur T, Devi R, Yadav A, Dikilitas M, Abdel-Azeem AM, Ahluwalia AS, Saxena AK. Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Kumar M, Yadav AN, Saxena R, Rai PK, Paul D, Tomar RS. Novel methanotrophic and methanogenic bacterial communities from diverse ecosystems and their impact on environment. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Kato S, Takashino M, Igarashi K, Mochimaru H, Mayumi D, Tamaki H. An iron corrosion-assisted H 2-supplying system: a culture method for methanogens and acetogens under low H 2 pressures. Sci Rep 2020; 10:19124. [PMID: 33154519 PMCID: PMC7645788 DOI: 10.1038/s41598-020-76267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
H2 is an important fermentation intermediate in anaerobic environments. Although H2 occurs at very low partial pressures in the environments, the culture and isolation of H2-utilizing microorganisms is usually carried out under very high H2 pressures, which might have hampered the discovery and understanding of microorganisms adapting to low H2 environments. Here we constructed a culture system designated the "iron corrosion-assisted H2-supplying (iCH) system" by connecting the gas phases of two vials (one for the iron corrosion reaction and the other for culturing microorganisms) to achieve cultures of microorganisms under low H2 pressures. We conducted enrichment cultures for methanogens and acetogens using rice paddy field soil as the microbial source. In the enrichment culture of methanogens under canonical high H2 pressures, only Methanobacterium spp. were enriched. By contrast, Methanocella spp. and Methanoculleus spp., methanogens adapting to low H2 pressures, were specifically enriched in the iCH cultures. We also observed selective enrichment of acetogen species by the iCH system (Acetobacterium spp. and Sporomusa spp.), whereas Clostridium spp. predominated in the high H2 cultures. These results demonstrate that the iCH system facilitates culture of anaerobic microorganisms under low H2 pressures, which will enable the selective culture of microorganisms adapting to low H2 environments.
Collapse
Affiliation(s)
- Souichiro Kato
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062-8517, Japan. .,Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan.
| | - Motoko Takashino
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062-8517, Japan
| | - Kensuke Igarashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062-8517, Japan
| | - Hanako Mochimaru
- Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST, 1-1-1 Higashi, Tsukuba, 305-8567, Japan
| | - Daisuke Mayumi
- Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST, 1-1-1 Higashi, Tsukuba, 305-8567, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba, 305-8567, Japan
| |
Collapse
|
12
|
Lam TYC, Mei R, Wu Z, Lee PKH, Liu WT, Lee PH. Superior resolution characterisation of microbial diversity in anaerobic digesters using full-length 16S rRNA gene amplicon sequencing. WATER RESEARCH 2020; 178:115815. [PMID: 32380296 DOI: 10.1016/j.watres.2020.115815] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/18/2020] [Accepted: 04/08/2020] [Indexed: 05/24/2023]
Abstract
In the past decade, the characterisation of the microbial community in anaerobic digestion was primarily done by using high-throughput short-read amplicon sequencing. However, the short-read approach has inherent primer bias and low phylogenetic resolution. Our previous study using Illumina MiSeq suggested that the heterogeneity of AD microbiome was operation-driven. To advance our knowledge towards the complexity of the AD microbiome, we performed full-length 16S rRNA gene amplicon sequencing using PacBio Sequel for a more accurate phylogenetic identification. To this end, purified DNA samples from 19 global anaerobic digesters were sequenced. Sixteen methanogenic archaea were identified at the species level. Among them, Methanosarcina horonobensis and Methanosarcina flavescens had significant presence under specific operating conditions. Methanothrix concilii presented in all digesters sequenced. Unexpectedly, over 90% of the Smithella detected were closely related to alkane-degrading Smithella strains D17 and M82, not Smithella propionica. Using LEfSe and network analysis, the interspecies relationship between the fermentative and syntrophic bacteria was addressed. Comparison of the short- and long-read sequencing results were performed and discussed. From sample preparation to data analysis, this work characterised the digester microbiomes in a superior resolution.
Collapse
Affiliation(s)
- Theo Y C Lam
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Ran Mei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Zhuoying Wu
- Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
13
|
Hallin S, Bodelier PLE. Grand Challenges in Terrestrial Microbiology: Moving on From a Decade of Progress in Microbial Biogeochemistry. Front Microbiol 2020; 11:981. [PMID: 32499774 PMCID: PMC7243610 DOI: 10.3389/fmicb.2020.00981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/23/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
14
|
Wan Z, Peng S, Zhang X, Wang J, Li X, Yue Z. Impact of goethite dosed continuous stirred tank reactor on continuous methane production at different organic loading rates. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:173-176. [PMID: 31529657 DOI: 10.1002/wer.1222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Iron oxides facilitated anaerobic digestion process has been attracted more and more attention in the renewable energy production area. In the current study, goethite was added into the continuous stirred tank reactor with glucose as the substrate. Effect of the influent organic loading rate (OLR) on the reactor performances was explored. Results showed that goethite promoted the methane production significantly (p < 0.05) when OLR was changed between 1.20 and 1.80 g glucose L-1 day-1 . Compared to the control reactor, addition of goethite improved the methane production by13.4%-22.9%. The iron reduction rate had a positive correlation with the methane production rate. Microbial community analysis results showed that OLRs influenced the dominant methanogenic species in the both reactors. Methanothrix, Methanobacterium, Methanosarcina, and Methanocella were dominant under various OLR levels. PRACTITIONER POINTS: Goethite could promote the methanogenic process of glucose in the CSTRs under certain levels of OLRs. Iron reduction rate had a positive correlation with the methane production rate. OLRs influenced the dominant methanogenic species in the goethite-dosed reactors.
Collapse
Affiliation(s)
- Zhanghong Wan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
| | - Shuchuan Peng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
| | - Xun Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
| | - Xiangming Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
15
|
Liu P, Lu Y. Concerted Metabolic Shifts Give New Insights Into the Syntrophic Mechanism Between Propionate-Fermenting Pelotomaculum thermopropionicum and Hydrogenotrophic Methanocella conradii. Front Microbiol 2018; 9:1551. [PMID: 30038609 PMCID: PMC6046458 DOI: 10.3389/fmicb.2018.01551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
Microbial syntrophy is a thermodynamically-based cooperation between microbial partners that share the small amounts of free energy for anaerobic growth. To gain insights into the mechanism by which syntrophic microorganisms coordinate their metabolism, we constructed cocultures of propionate-oxidizing Pelotomaculum thermopropionicum and hydrogenotrophic Methanocella conradii and compared them to monocultures. Transcriptome analysis was performed on these cultures using strand-specific mRNA sequencing (RNA-Seq). The results showed that in coculture both P. thermopropionicum and M. conradii significantly upregulated the expression of genes involved in catabolism but downregulated those for anabolic biosynthesis. Specifically, genes coding for the methylmalonyl-CoA pathway in P. thermopropionicum and key genes for methanogenesis in M. conradii were substantially upregulated in coculture compared to monoculture. The putative flavin-based electron bifurcation/confurcation systems in both organisms were also upregulated in coculture. Formate dehydrogenase encoding genes in both organisms were markedly upregulated, indicating that formate was produced and utilized by P. thermopropionicum and M. conradii, respectively. The inhibition of syntrophic activity by formate and 2-bromoethanesulphonate (2-BES) but not H2/CO2 also suggested that formate production was used by P. thermopropionicum for the recycling of intracellular redox mediators. Finally, flagellum-induced signal transduction and amino acids exchange was upregulated for syntrophic interactions. Together, our study suggests that syntrophic organisms employ multiple strategies including global metabolic shift, utilization of electron bifurcation/confurcation and employing formate as an alternate electron carrier to optimize their metabolisms for syntrophic growth.
Collapse
Affiliation(s)
- Pengfei Liu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
16
|
Sutcliffe B, Chariton AA, Harford AJ, Hose GC, Stephenson S, Greenfield P, Midgley DJ, Paulsen IT. Insights from the Genomes of Microbes Thriving in Uranium-Enriched Sediments. MICROBIAL ECOLOGY 2018; 75:970-984. [PMID: 29128951 DOI: 10.1007/s00248-017-1102-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
Elevated uranium dose (4 g kg-1) causes a shift in billabong sediment communities that result in the enrichment of five bacterial species. These taxa include Geobacter, Geothrix and Dyella species, as well as a novel-potentially predatory-Bacteroidetes species, and a new member of class Anaerolineae (Chloroflexi). Additionally, a population of methanogenic Methanocella species was also identified. Genomic reconstruction and metabolic examination of these taxa reveal a host of divergent life strategies and putative niche partitioning. Resistance-nodulation-division heavy metal efflux (RND-HME) transporters are implicated as potential uranium tolerance strategies among the bacterial taxa. Potential interactions, uranium tolerance and ecologically relevant catabolism are presented in a conceptual model of life in this environment.
Collapse
Affiliation(s)
- Brodie Sutcliffe
- Macquarie University, Sydney, NSW, 2109, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO BOX 52, North Ryde, NSW, 1670, Australia
| | | | - Andrew J Harford
- Supervising Scientist Branch, Department of the Environment and Energy, Darwin, NT, Australia
| | - Grant C Hose
- Macquarie University, Sydney, NSW, 2109, Australia
| | - Sarah Stephenson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO BOX 52, North Ryde, NSW, 1670, Australia
| | - Paul Greenfield
- Macquarie University, Sydney, NSW, 2109, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO BOX 52, North Ryde, NSW, 1670, Australia
| | - David J Midgley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO BOX 52, North Ryde, NSW, 1670, Australia
| | | |
Collapse
|
17
|
Leandro T, Rodriguez N, Rojas P, Sanz JL, da Costa MS, Amils R. Study of methanogenic enrichment cultures of rock cores from the deep subsurface of the Iberian Pyritic Belt. Heliyon 2018; 4:e00605. [PMID: 29862366 PMCID: PMC5968172 DOI: 10.1016/j.heliyon.2018.e00605] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/15/2018] [Accepted: 04/10/2018] [Indexed: 11/26/2022] Open
Abstract
Two deep boreholes were drilled at 320 and 620 meters below surface in the Iberian Pyritic Belt (IPB) at Peña de Hierro (Huelva, Southwestern Spain). Cores were sampled and used for the establishment of enrichment cultures with methanogenic activity. The cultivable diversity of these enrichments was accessed using different cultivation techniques and several isolates were recovered in pure culture from various depths in both boreholes. Although no archaeal isolates were obtained in pure culture, strict anaerobes and facultative anaerobic bacteria belonging to the phyla Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were isolated and identified using the 16S rRNA gene sequence. Analysis of three selected enrichment cultures by amplification of both bacterial and archaeal 16S rRNA gene followed by pyrosequencing revealed further information on the populations enriched. The archaeal sequences obtained from the methanogenic enrichment cultures belonged to the orders Methanosarcinales and Methanocellales. To best of our knowledge this is the first report of enrichment in members of the Methanocellales in a deep terrestrial subsurface ecosystem. Several bacterial populations, predominantly consisting of Firmicutes and Proteobacteria, were also enriched. The prevalent microbial populations enriched as detected by pyrosequencing analysis, as well as the bacterial isolates cultivated were affiliated with known fermentative, sulfate reducing and acetogenic bacteria or methanogenic archaea. Our results show a great diversity in the microbial communities of the IPB deep subsurface.
Collapse
Affiliation(s)
- Tânia Leandro
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Nuria Rodriguez
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | - Patricia Rojas
- Department of Molecular Biology, Universidad Autónoma de Madrid, Spain
| | - Jose L. Sanz
- Department of Molecular Biology, Universidad Autónoma de Madrid, Spain
| | - Milton S. da Costa
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| |
Collapse
|
18
|
Adam PS, Borrel G, Gribaldo S. Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. Proc Natl Acad Sci U S A 2018; 115:E1166-E1173. [PMID: 29358391 PMCID: PMC5819426 DOI: 10.1073/pnas.1716667115] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) is a five-subunit enzyme complex responsible for the carbonyl branch of the Wood-Ljungdahl (WL) pathway, considered one of the most ancient metabolisms for anaerobic carbon fixation, but its origin and evolutionary history have been unclear. While traditionally associated with methanogens and acetogens, the presence of CODH/ACS homologs has been reported in a large number of uncultured anaerobic lineages. Here, we have carried out an exhaustive phylogenomic study of CODH/ACS in over 6,400 archaeal and bacterial genomes. The identification of complete and likely functional CODH/ACS complexes in these genomes significantly expands its distribution in microbial lineages. The CODH/ACS complex displays astounding conservation and vertical inheritance over geological times. Rare intradomain and interdomain transfer events might tie into important functional transitions, including the acquisition of CODH/ACS in some archaeal methanogens not known to fix carbon, the tinkering of the complex in a clade of model bacterial acetogens, or emergence of archaeal-bacterial hybrid complexes. Once these transfers were clearly identified, our results allowed us to infer the presence of a CODH/ACS complex with at least four subunits in the last universal common ancestor (LUCA). Different scenarios on the possible role of ancestral CODH/ACS are discussed. Despite common assumptions, all are equally compatible with an autotrophic, mixotrophic, or heterotrophic LUCA. Functional characterization of CODH/ACS from a larger spectrum of bacterial and archaeal lineages and detailed evolutionary analysis of the WL methyl branch will help resolve this issue.
Collapse
Affiliation(s)
- Panagiotis S Adam
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institut Pasteur, 75015 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Guillaume Borrel
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - Simonetta Gribaldo
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institut Pasteur, 75015 Paris, France;
| |
Collapse
|
19
|
Cui H, Su X, Wei S, Zhu Y, Lu Z, Wang Y, Li Y, Liu H, Zhang S, Pang S. Comparative Analyses of Methanogenic and Methanotrophic Communities Between Two Different Water Regimes in Controlled Wetlands on the Qinghai-Tibetan Plateau, China. Curr Microbiol 2017; 75:484-491. [PMID: 29188321 DOI: 10.1007/s00284-017-1407-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
Wetlands are an important methane (CH4) emission source. CH4 is mainly produced during the biogeochemical process, in which methanogens and methanotrophs both play important roles. However, little is known how these two microbial communities change under different water regimes. In this study, the diversity and abundance of methanogens and methanotrophs in wetlands on Qinghai-Tibetan Plateau with different water contents (a high water content site DZ2-14-3 and a low water content site DZ2-14-4) were studied by using phylogenetic analysis and quantitative PCR based on mcrA gene and pmoA gene. A total of 16 methanogenic operational taxonomic units (OTUs) and 9 methanotrophic OTUs are obtained. For methanogens, Fen cluster (58.0%) and Methanosaetaceae (20.3%) are the dominant groups in high moisture samples, whereas Methanosaetaceae (32.4%), Methanosarcinaceae (29.4%), and Methanobacteriaceae (22.1%) are prevalent in low moisture samples. Methylobacter (90.0%) of type I methanotrophs are overwhelmingly dominant in high moisture samples, while Methylocystis (53.3%) and Methylomonas (42.2%) belonging to types II and I methanotrophs are the predominant groups in low moisture samples. Furthermore, qPCR analysis revealed that the abundance of methanogens and methanotrophs were higher in high moisture samples than that in low moisture samples. Overall, this comparative study between wetlands controlled by two different water regimes on the Qinghai-Tibetan Plateau provides fundamental data for further research on microbial functions within extreme ecosystems.
Collapse
Affiliation(s)
- Hongpeng Cui
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.,School of Marine Sciences, China University of Geosciences, Beijing, 100083, China
| | - Xin Su
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China. .,School of Marine Sciences, China University of Geosciences, Beijing, 100083, China.
| | - Shiping Wei
- School of Marine Sciences, China University of Geosciences, Beijing, 100083, China
| | - Youhai Zhu
- Oil and Gas Survey, China Geological Survey, Beijing, 100029, China
| | - Zhenquan Lu
- Oil and Gas Survey, China Geological Survey, Beijing, 100029, China
| | - Yanfa Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.,School of Marine Sciences, China University of Geosciences, Beijing, 100083, China
| | - Yuejiao Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.,School of Marine Sciences, China University of Geosciences, Beijing, 100083, China
| | - Hui Liu
- Oil and Gas Survey, China Geological Survey, Beijing, 100029, China
| | - Shuai Zhang
- Oil and Gas Survey, China Geological Survey, Beijing, 100029, China
| | - Shouji Pang
- Oil and Gas Survey, China Geological Survey, Beijing, 100029, China
| |
Collapse
|
20
|
Alpana S, Vishwakarma P, Adhya TK, Inubushi K, Dubey SK. Molecular ecological perspective of methanogenic archaeal community in rice agroecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 596-597:136-146. [PMID: 28431358 DOI: 10.1016/j.scitotenv.2017.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/02/2017] [Accepted: 04/02/2017] [Indexed: 06/07/2023]
Abstract
Methane leads to global warming owing to its warming potential higher than carbon dioxide (CO2). Rice fields represent the major source of methane (CH4) emission as the recent estimates range from 34 to 112 Tg CH4 per year. Biogenic methane is produced by anaerobic methanogenic archaea. Advances in high-throughput sequencing technologies and isolation methodologies enabled investigators to decipher methanogens to be unexpectedly diverse in phylogeny and ecology. Exploring the link between biogeochemical methane cycling and methanogen community dynamics can, therefore, provide a more effective mechanistic understanding of CH4 emission from rice fields. In this review, we summarize the current knowledge on the diversity and activity of methanogens, factors controlling their ecology, possible interactions between rice plants and methanogens, and their potential involvement in the source relationship of greenhouse gas emissions from rice fields.
Collapse
Affiliation(s)
- Singh Alpana
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - P Vishwakarma
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - T K Adhya
- School of Biotechnology, KIIT University, Bhubaneshwar 751024, India
| | - K Inubushi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 2718510, Japan
| | - S K Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
21
|
Dalcin Martins P, Hoyt DW, Bansal S, Mills CT, Tfaily M, Tangen BA, Finocchiaro RG, Johnston MD, McAdams BC, Solensky MJ, Smith GJ, Chin YP, Wilkins MJ. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands. GLOBAL CHANGE BIOLOGY 2017; 23:3107-3120. [PMID: 28117550 DOI: 10.1111/gcb.13633] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/02/2016] [Indexed: 05/04/2023]
Abstract
Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.
Collapse
Affiliation(s)
| | - David W Hoyt
- Environmental Molecular Sciences Laboratory, Richland, WA, 99350, USA
| | - Sheel Bansal
- United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown, ND, 58401, USA
| | - Christopher T Mills
- United States Geological Survey, Crustal Geophysics and Geochemistry Science Center, Building 20, Denver Federal Center, Denver, CO, 80225, USA
| | - Malak Tfaily
- Environmental Molecular Sciences Laboratory, Richland, WA, 99350, USA
| | - Brian A Tangen
- United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown, ND, 58401, USA
| | - Raymond G Finocchiaro
- United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown, ND, 58401, USA
| | - Michael D Johnston
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Brandon C McAdams
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Matthew J Solensky
- United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown, ND, 58401, USA
| | - Garrett J Smith
- Microbiology Department, The Ohio State University, Columbus, OH, 43210, USA
| | - Yu-Ping Chin
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael J Wilkins
- Microbiology Department, The Ohio State University, Columbus, OH, 43210, USA
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
22
|
Mondav R, McCalley CK, Hodgkins SB, Frolking S, Saleska SR, Rich VI, Chanton JP, Crill PM. Microbial network, phylogenetic diversity and community membership in the active layer across a permafrost thaw gradient. Environ Microbiol 2017; 19:3201-3218. [DOI: 10.1111/1462-2920.13809] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/29/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Rhiannon Mondav
- Department of Ecology and Genetics, LimnologyUppsala UniversityUppsala75236 Sweden
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbane QLD 4072 Australia
| | - Carmody K. McCalley
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucson AZ 85721 USA
- Institute for the Study of Earth, Oceans, and SpaceUniversity of New HampshireDurham NH 03824 USA
| | - Suzanne B. Hodgkins
- Department of Earth Ocean and Atmospheric ScienceFlorida State UniversityTallahassee FL 32306‐4320 USA
| | - Steve Frolking
- Institute for the Study of Earth, Oceans, and SpaceUniversity of New HampshireDurham NH 03824 USA
| | - Scott R. Saleska
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucson AZ 85721 USA
| | - Virginia I. Rich
- Department of Soil, Water and Environmental ScienceUniversity of ArizonaTucson AZ 85721 USA
| | - Jeff P. Chanton
- Department of Earth Ocean and Atmospheric ScienceFlorida State UniversityTallahassee FL 32306‐4320 USA
| | - Patrick M. Crill
- Department of Geology and GeochemistryStockholm UniversityStockholm 10691 Sweden
| |
Collapse
|
23
|
Medvedev KE, Kolchanov NA, Afonnikov DA. Identification of residues of the archaeal RNA-binding Nip7 proteins specific to environmental conditions. J Bioinform Comput Biol 2017; 15:1650036. [DOI: 10.1142/s0219720016500360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The understanding of biological and molecular mechanisms providing survival of cells under extreme temperatures and pressures will help to answer fundamental questions related to the origin of life and to design of biotechnologically important enzymes with new properties. Here, we analyze amino acid sequences of the Nip7 proteins from 35 archaeal species to identify positions containing mutations specific to the hydrostatic pressure and temperature of organism’s habitat. The number of such positions related to pressure change is much lower than related to temperature change. The results suggest that adaptation to temperature changes of the Nip7 protein cause more pronounced modifications in sequence and structure, than to the pressure changes. Structural analysis of residues at these positions demonstrated their involvement in salt-bridge formation, which may reflect the importance of protein structure stabilization by salt-bridges at extreme environmental conditions.
Collapse
Affiliation(s)
- Kirill E. Medvedev
- Department of Biophysics, University of Texas Southwestern, Medical Center, Dallas, Texas 75390, USA
- Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl., 1, Moscow 123182, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Dmitry A. Afonnikov
- Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| |
Collapse
|
24
|
Peng J, Wegner CE, Liesack W. Short-Term Exposure of Paddy Soil Microbial Communities to Salt Stress Triggers Different Transcriptional Responses of Key Taxonomic Groups. Front Microbiol 2017; 8:400. [PMID: 28400748 PMCID: PMC5368272 DOI: 10.3389/fmicb.2017.00400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/27/2017] [Indexed: 11/30/2022] Open
Abstract
Soil salinization due to seawater intrusion along coastal areas is an increasing threat to rice cultivation worldwide. While the detrimental impact on rice growth and yield has been thoroughly studied, little is known about how severe salinity affects structure and function of paddy soil microbial communities. Here, we examined their short-term responses to half- and full-strength seawater salinity in controlled laboratory experiments. Slurry microcosms were incubated under anoxic conditions, with rice straw added as carbon source. Stress exposure time was for 2 days after a pre-incubation period of 7 days. Relative to the control, moderate (300 mM NaCl) and high (600 mM NaCl) salt stress suppressed both net consumption of acetate and methane production by 50% and 70%, respectively. Correspondingly, community-wide mRNA expression decreased by 50–65%, with significant changes in relative transcript abundance of family-level groups. mRNA turnover was clearly more responsive to salt stress than rRNA dynamics. Among bacteria, Clostridiaceae were most abundant and the only group whose transcriptional activity was strongly stimulated at 600 mM NaCl. In particular, clostridial mRNA involved in transcription/translation, fermentation, uptake and biosynthesis of compatible solutes, and flagellar motility was significantly enriched in response salt stress. None of the other bacterial groups were able to compete at 600 mM NaCl. Their responses to 300 mM NaCl were more diverse. Lachnospiraceae increased, Ruminococcaceae maintained, and Peptococcaceae, Veillonellaceae, and Syntrophomonadaceae decreased in relative mRNA abundance. Among methanogens, Methanosarcinaceae were most dominant. Relative to other family-level groups, salt stress induced a significant enrichment of transcripts related to the CO dehydrogenase/acetyl-coenzyme A synthase complex, methanogenesis, heat shock, ammonium uptake, and thermosomes, but the absolute abundance of methanosarcinal mRNA decreased. Most strikingly, the transcriptional activity of the Methanocellaceae was completely suppressed already at 300 mM NaCl. Apparently, the key taxonomic groups involved in the methanogenic breakdown of plant polymers significantly differ in their ability to cope with severe salt stress. Presumably, this different ability is directly linked to differences in their genetic potential and metabolic flexibility to reassign available energy resources for cellular adaptation to salt stress.
Collapse
Affiliation(s)
- Jingjing Peng
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology Marburg, Germany
| | - Carl-Eric Wegner
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology Marburg, Germany
| | - Werner Liesack
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology Marburg, Germany
| |
Collapse
|
25
|
Distribution of Bathyarchaeota Communities Across Different Terrestrial Settings and Their Potential Ecological Functions. Sci Rep 2017; 7:45028. [PMID: 28322330 PMCID: PMC5359579 DOI: 10.1038/srep45028] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/17/2017] [Indexed: 01/24/2023] Open
Abstract
High abundance and widespread distribution of the archaeal phylum Bathyarchaeota in marine environment have been recognized recently, but knowledge about Bathyarchaeota in terrestrial settings and their correlation with environmental parameters is fairly limited. Here we reported the abundance of Bathyarchaeota members across different ecosystems and their correlation with environmental factors by constructing 16S rRNA clone libraries of peat from the Dajiuhu Peatland, coupling with bioinformatics analysis of 16S rRNA data available to date in NCBI database. In total, 1456 Bathyarchaeota sequences from 28 sites were subjected to UniFrac analysis based on phylogenetic distance and multivariate regression tree analysis of taxonomy. Both phylogenetic and taxon-based approaches showed that salinity, total organic carbon and temperature significantly influenced the distribution of Bathyarchaeota across different terrestrial habitats. By applying the ecological concept of 'indicator species', we identify 9 indicator groups among the 6 habitats with the most in the estuary sediments. Network analysis showed that members of Bathyarchaeota formed the "backbone" of archaeal community and often co-occurred with Methanomicrobia. These results suggest that Bathyarchaeota may play an important ecological role within archaeal communities via a potential symbiotic association with Methanomicrobia. Our results shed light on understanding of the biogeography, potential functions of Bathyarchaeota and environment conditions that influence Bathyarchaea distribution in terrestrial settings.
Collapse
|
26
|
Rothenberg SE, Anders M, Ajami NJ, Petrosino JF, Balogh E. Water management impacts rice methylmercury and the soil microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:608-617. [PMID: 27450246 PMCID: PMC5099098 DOI: 10.1016/j.scitotenv.2016.07.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/03/2016] [Accepted: 07/03/2016] [Indexed: 05/24/2023]
Abstract
Rice farmers are pressured to grow rice using less water. The impacts of water-saving rice cultivation methods on rice methylmercury concentrations are uncertain. Rice (Oryza sativa L. cv. Nipponbare) was cultivated in fields using four water management treatments, including flooded (no dry-downs), alternating wetting and drying (AWD) (with one or three dry-downs), and furrow-irrigated fields (nine dry-downs) (n=16 fields). Anoxic bulk soil was collected from rice roots during the rice maturation phase, and rice grain was harvested after fields were dried. Total mercury and methylmercury concentrations were determined in soil and polished rice samples, and the soil microbiome was analyzed using 16S (v4) rRNA gene profiling. Soil total mercury did not differ between fields. However, compared to continuously flooded fields, soil and rice methylmercury concentrations averaged 51% and 38% lower in the AWD fields, respectively, and 95% and 96% lower in the furrow-irrigated fields, respectively. Compared to flooded fields, grain yield was reduced on average by <1% in the AWD fields and 34% in the furrow-irrigated fields. Additionally, using 16S (v4) rRNA gene profiling, the relative abundance of genera (i.e., highest resolution via this method) known to contain mercury methylators averaged 2.9-fold higher in flooded and AWD fields compared to furrow-irrigated fields. These results reinforce the benefits of AWD in reducing rice methylmercury concentrations with minimal changes in rice production yields. In the furrow-irrigated fields, a lower relative abundance of genera known to contain mercury methylators suggests an association between lower concentrations of soil and rice methylmercury and specific soil microbiomes.
Collapse
Affiliation(s)
- Sarah E Rothenberg
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA.
| | - Merle Anders
- Department of Crop, Soil and Environmental Sciences, University of Arkansas Rice Research & Extension Center, Stuttgart, AR, USA.
| | - Nadim J Ajami
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Joseph F Petrosino
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Erika Balogh
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
27
|
Holmes D, Smith J. Biologically Produced Methane as a Renewable Energy Source. ADVANCES IN APPLIED MICROBIOLOGY 2016; 97:1-61. [PMID: 27926429 DOI: 10.1016/bs.aambs.2016.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methanogens are a unique group of strictly anaerobic archaea that are more metabolically diverse than previously thought. Traditionally, it was thought that methanogens could only generate methane by coupling the oxidation of products formed by fermentative bacteria with the reduction of CO2. However, it has recently been observed that many methanogens can also use electrons extruded from metal-respiring bacteria, biocathodes, or insoluble electron shuttles as energy sources. Methanogens are found in both human-made and natural environments and are responsible for the production of ∼71% of the global atmospheric methane. Their habitats range from the human digestive tract to hydrothermal vents. Although biologically produced methane can negatively impact the environment if released into the atmosphere, when captured, it can serve as a potent fuel source. The anaerobic digestion of wastes such as animal manure, human sewage, or food waste produces biogas which is composed of ∼60% methane. Methane from biogas can be cleaned to yield purified methane (biomethane) that can be readily incorporated into natural gas pipelines making it a promising renewable energy source. Conventional anaerobic digestion is limited by long retention times, low organics removal efficiencies, and low biogas production rates. Therefore, many studies are being conducted to improve the anaerobic digestion process. Researchers have found that addition of conductive materials and/or electrically active cathodes to anaerobic digesters can stimulate the digestion process and increase methane content of biogas. It is hoped that optimization of anaerobic digesters will make biogas more readily accessible to the average person.
Collapse
|
28
|
Tong H, Liu C, Li F, Luo C, Chen M, Hu M. The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing. JOURNAL OF HAZARDOUS MATERIALS 2015; 298:252-260. [PMID: 26073380 DOI: 10.1016/j.jhazmat.2015.05.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Pentachlorophenol (PCP) is a common residual persistent pesticide in paddy soil and has resulted in harmful effect on soil ecosystem. The anaerobic microbial transformation of PCP, therefore, has been received much attentions, especially the functional microbial communities for the reductive transformation. However, the key functional microorganisms for PCP mineralization in the paddy soil still remain unknown. In this work, DNA-based stable isotope probing (SIP) was applied to explore the key microorganisms responsible for PCP mineralization in paddy soil. The SIP results indicated that the dominant bacteria responsible for PCP biodegradation belonged to the genus Dechloromonas of the class β-Proteobacteria. In addition, the increased production of (13)CH4 and (13)CO2 indicated that the addition of lactate enhanced the rate of biodegradation and mineralization of PCP. Two archaea classified as the genera of Methanosaeta and Methanocella of class Methanobacteria were enriched in the heavy fraction when with lactate, whereas no archaea was detected in the absence of lactate. These findings provide direct evidence for the species of bacteria and archaea responsible for anaerobic PCP or its breakdown products mineralization and reveal a new insight into the microorganisms linked with PCP degradation in paddy soil.
Collapse
Affiliation(s)
- Hui Tong
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, PR China; Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550009, PR China
| | - Fangbai Li
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, PR China.
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Manjia Chen
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, PR China
| | - Min Hu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, PR China
| |
Collapse
|
29
|
Merkel AY, Podosokorskaya OA, Chernyh NA, Bonch-Osmolovskaya EA. Occurrence, diversity, and abundance of methanogenic archaea in terrestrial hot springs of Kamchatka and Saõ Miguel Island. Microbiology (Reading) 2015. [DOI: 10.1134/s002626171504013x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Response of a rice paddy soil methanogen to syntrophic growth as revealed by transcriptional analyses. Appl Environ Microbiol 2015; 80:4668-76. [PMID: 24837392 DOI: 10.1128/aem.01259-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of Methanocellales are widespread in paddy field soils and play the key role in methane production. These methanogens feature largely in these organisms’ adaptation to low H2 and syntrophic growth with anaerobic fatty acid oxidizers. The adaptive mechanisms, however, remain unknown. In the present study, we determined the transcripts of 21 genes involved in the key steps of methanogenesis and acetate assimilation of Methanocella conradii HZ254, a strain recently isolated from paddy field soil. M. conradii was grown in monoculture and syntrophically with Pelotomaculum thermopropionicum (a propionate syntroph) or Syntrophothermus lipocalidus (a butyrate syntroph). Comparison of the relative transcript abundances showed that three hydrogenase-encoding genes and all methanogenesis-related genes tested were upregulated in cocultures relative to monoculture. The genes encoding formylmethanofuran dehydrogenase (Fwd), heterodisulfide reductase (Hdr), and the membrane-bound energy-converting hydrogenase (Ech) were the most upregulated among the evaluated genes. The expression of the formate dehydrogenase (Fdh)-encoding gene also was significantly upregulated. In contrast, an acetate assimilation gene was downregulated in cocultures. The genes coding for Fwd, Hdr, and the D subunit of F420-nonreducing hydrogenase (Mvh) form a large predicted transcription unit; therefore, the Mvh/Hdr/Fwd complex, capable of mediating the electron bifurcation and connecting the first and last steps of methanogenesis, was predicted to be formed in M. conradii. We propose that Methanocella methanogens cope with low H2 and syntrophic growth by (i) stabilizing the Mvh/Hdr/Fwd complex and (ii) activating formatedependent methanogenesis.
Collapse
|
31
|
Lyu Z, Lu Y. Comparative genomics of three Methanocellales strains reveal novel taxonomic and metabolic features. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:526-537. [PMID: 25727385 DOI: 10.1111/1758-2229.12283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/22/2015] [Indexed: 06/04/2023]
Abstract
Methanocellales represents a new order of methanogens, which is widespread in environments and plays specifically the important role in methane emissions from paddy fields. To gain more insights into Methanocellales, comparative genomic studies were performed among three Methanocellales strains through the same annotation pipeline. Genetic relationships among strains revealed by genome alignment, pan-genome reconstruction and comparison of amino average identity suggest that they should be classified in different genera. In addition, multiple copies of cell cycle regulator proteins were identified for the first time in Archaea. Core metabolisms were reconstructed, predicting certain unique and novel features for Methanocellales, including a set of methanogenesis genes potentially organized toward specialization in utilizing low concentrations of H2, a new route of disulfide reduction catalysed by a disulfide-reducing hydrogenase (Drh) complex phylogenetically related to sulfate-reducing prokaryotes, an oxidative tricarboxylic acid (TCA) cycle, a sophisticated nitrogen uptake and regulation system as well as a versatile sulfur utilization system. These core metabolisms are largely conserved among the three strains, but differences in gene copy number and metabolic diversity are evident. The present study thus adds new dimensions to the unique ecophysiology of Methanocellales and offers a road map for further experimental characterization of this methanogen lineage.
Collapse
Affiliation(s)
- Zhe Lyu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yahai Lu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
32
|
Wegner CE, Liesack W. Microbial community dynamics during the early stages of plant polymer breakdown in paddy soil. Environ Microbiol 2015; 18:2825-42. [PMID: 25712035 DOI: 10.1111/1462-2920.12815] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/04/2015] [Accepted: 02/11/2015] [Indexed: 12/01/2022]
Abstract
We used paddy soil slurries amended with rice straw to identify the microbial populations involved in the methanogenic breakdown of plant polymers. Rice straw greatly stimulated microbial activity over the 28-day incubation period. On day 7, the transient peak concentration of acetate (24 mM) coincided with the onset of increased methane production. Microbial 16S rRNA transcript numbers increased by one to two orders of magnitude, but not the 16S rRNA gene copy numbers. Using metatranscriptomic rRNA, Clostridiaceae, Lachnospiraceae, Ruminococcaceae, Veillonellaceae and Pseudomonadaceae were identified to be the most abundant and the most dynamic bacterial groups. Changes in methanogen rRNA and mRNA abundances corresponded well with methanogenic activity. Acetate determined the abundance ratio between Methanosarcinaceae and Methanosaetaceae. Methanocellaceae dominated hydrogenotrophic methanogenesis. Transcript levels of mRNA families involved in plant polymer breakdown increased slightly with time. Glycosyl hydrolase (GH) transcripts involved in cellulose and chitin breakdown were predominantly expressed by the Firmicutes, whereas those involved in hemicellulose breakdown exhibited more diverse taxonomic sources, including Acidobacteria, Bacteriodetes and Chloroflexi. Taken together, we observed strong population dynamics and the expression of taxonomically diverse GH families, suggesting that not only Firmicutes, but also less abundant groups play a major functional role in the decomposition of rice straw.
Collapse
Affiliation(s)
- Carl-Eric Wegner
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg (Lahn), Germany
| | - Werner Liesack
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg (Lahn), Germany.
| |
Collapse
|
33
|
Jabłoński S, Rodowicz P, Łukaszewicz M. Methanogenic archaea database containing physiological and biochemical characteristics. Int J Syst Evol Microbiol 2015; 65:1360-1368. [PMID: 25604335 DOI: 10.1099/ijs.0.000065] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The methanogenic archaea are a group of micro-organisms that have developed a unique metabolic pathway for obtaining energy. There are 150 characterized species in this group; however, novel species continue to be discovered. Since methanogens are considered a crucial part of the carbon cycle in the anaerobic ecosystem, characterization of these micro-organisms is important for understanding anaerobic ecology. A methanogens database (MDB; http://metanogen.biotech.uni.wroc.pl/), including physiological and biochemical characteristics of methanogens, was constructed based on the descriptions of isolated type strains. Analysis of the data revealed that methanogens are able to grow from 0 to 122 °C. Methanogens growing at the same temperature may have very different growth rates. There is no clear correlation between the optimal growth temperature and the DNA G+C content. The following substrate preferences are observed in the database: 74.5% of archaea species utilize H2+CO2, 33% utilize methyl compounds and 8.5% utilize acetate. Utilization of methyl compounds (mainly micro-organisms belonging to the genera Methanosarcina and Methanolobus ) is seldom accompanied by an ability to utilize H2+CO2. Very often, data for described species are incomplete, especially substrate preferences. Additional research leading to completion of missing information and development of standards, especially for substrate utilization, would be very helpful.
Collapse
Affiliation(s)
| | - Paweł Rodowicz
- Department of Information, Wrocław University of Technology, Wrocław, Poland.,Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
34
|
Primers: Functional Genes and 16S rRNA Genes for Methanogens. SPRINGER PROTOCOLS HANDBOOKS 2015. [DOI: 10.1007/8623_2015_138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
35
|
Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally AC, Johs A, Hurt RA, Bailey KL, Elias DA. Mercury methylation by novel microorganisms from new environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:11810-20. [PMID: 24024607 DOI: 10.1021/es403075t] [Citation(s) in RCA: 444] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microbial mercury (Hg) methylation transforms a toxic trace metal into the highly bioaccumulated neurotoxin methylmercury (MeHg). The lack of a genetic marker for microbial MeHg production has prevented a clear understanding of Hg-methylating organism distribution in nature. Recently, a specific gene cluster (hgcAB) was linked to Hg methylation in two bacteria.1 Here we test if the presence of hgcAB orthologues is a reliable predictor of Hg methylation capability in microorganisms, a necessary confirmation for the development of molecular probes for Hg-methylation in nature. Although hgcAB orthologues are rare among all available microbial genomes, organisms are much more phylogenetically and environmentally diverse than previously thought. By directly measuring MeHg production in several bacterial and archaeal strains encoding hgcAB, we confirmed that possessing hgcAB predicts Hg methylation capability. For the first time, we demonstrated Hg methylation in a number of species other than sulfate- (SRB) and iron- (FeRB) reducing bacteria, including methanogens, and syntrophic, acetogenic, and fermentative Firmicutes. Several of these species occupy novel environmental niches for Hg methylation, including methanogenic habitats such as rice paddies, the animal gut, and extremes of pH and salinity. Identification of these organisms as Hg methylators now links methylation to discrete gene markers in microbial communities.
Collapse
Affiliation(s)
- Cynthia C Gilmour
- Smithsonian Environmental Research Center , Edgewater, Maryland, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK. Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 2013; 15:2395-417. [DOI: 10.1111/1462-2920.12149] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 01/06/2023]
Affiliation(s)
- Loïc Nazaries
- Hawkesbury Institute for the Environment; University of Western Sydney; Building L9; Locked Bag 1797; Penrith South; NSW; 2751; Australia
| | - J. Colin Murrell
- School of Environmental Sciences; University of East Anglia; Norwich Research Park; Norwich; NR4 7TJ; UK
| | - Pete Millard
- Landcare Research; PO Box 40; Lincoln; 7604; New Zealand
| | - Liz Baggs
- Institute of Biological and Environmental Sciences; University of Aberdeen; Zoology Building; Tillydrone Avenue; Aberdeen; AB24 2TZ; Scotland; UK
| | - Brajesh K. Singh
- Hawkesbury Institute for the Environment; University of Western Sydney; Building L9; Locked Bag 1797; Penrith South; NSW; 2751; Australia
| |
Collapse
|
37
|
Daebeler A, Gansen M, Frenzel P. Methyl fluoride affects methanogenesis rather than community composition of methanogenic archaea in a rice field soil. PLoS One 2013; 8:e53656. [PMID: 23341965 PMCID: PMC3544908 DOI: 10.1371/journal.pone.0053656] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
The metabolic pathways of methane formation vary with environmental conditions, but whether this can also be linked to changes in the active archaeal community structure remains uncertain. Here, we show that the suppression of aceticlastic methanogenesis by methyl fluoride (CH3F) caused surprisingly little differences in community composition of active methanogenic archaea from a rice field soil. By measuring the natural abundances of carbon isotopes we found that the effective dose for a 90% inhibition of aceticlastic methanogenesis in anoxic paddy soil incubations was <0.75% CH3F (v/v). The construction of clone libraries as well as t-RFLP analysis revealed that the active community, as indicated by mcrA transcripts (encoding the α subunit of methyl-coenzyme M reductase, a key enzyme for methanogenesis), remained stable over a wide range of CH3F concentrations and represented only a subset of the methanogenic community. More precisely, Methanocellaceae were of minor importance, but Methanosarcinaceae dominated the active population, even when CH3F inhibition only allowed for aceticlastic methanogenesis. In addition, we detected mcrA gene fragments of a so far unrecognised phylogenetic cluster. Transcription of this phylotype at methyl fluoride concentrations suppressing aceticlastic methanogenesis suggests that the respective organisms perform hydrogenotrophic methanogenesis. Hence, the application of CH3F combined with transcript analysis is not only a useful tool to measure and assign in situ acetate usage, but also to explore substrate usage by as yet uncultivated methanogens.
Collapse
Affiliation(s)
- Anne Daebeler
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Martina Gansen
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Peter Frenzel
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- * E-mail:
| |
Collapse
|
38
|
Ahn JH, Song J, Kim BY, Kim MS, Joa JH, Weon HY. Characterization of the bacterial and archaeal communities in rice field soils subjected to long-term fertilization practices. J Microbiol 2012; 50:754-65. [PMID: 23124742 DOI: 10.1007/s12275-012-2409-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/26/2012] [Indexed: 12/23/2022]
Abstract
The bacterial and archaeal communities in rice field soils subjected to different fertilization regimes for 57 years were investigated in two different seasons, a non-planted, drained season (April) and a rice-growing, flooded season (August), by performing soil dehydrogenase assay, real-time PCR assay and pyrosequencing analysis. All fertilization regimes increased the soil dehydrogenase activity while the abundances of bacteria and archaea increased in the plots receiving inorganic fertilizers plus compost and not in those receiving inorganic fertilizers only. Rice-growing and flooding decreased the soil dehydrogenase activity while they increased the bacterial diversity in rice field soils. The bacterial communities were dominated by Chloroflexi, Proteobacteria, and Actinobacteria and the archaeal communities by Crenarchaeota at the phylum level. In principal coordinates analysis based on the weighted Fast UniFrac metric, the bacterial and archaeal communities were separated primarily by season, and generally distributed along with soil pH, the variation of which had been caused by long-term fertilization. Variations in the relative abundance according to the season or soil pH were observed for many bacterial and archaeal groups. In conclusion, the microbial activity, prokaryotic abundance and diversity, and prokaryotic community structure in the rice field soils were changed by season and long-term fertilization.
Collapse
Affiliation(s)
- Jae-Hyung Ahn
- Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | | | | | | | | | | |
Collapse
|
39
|
Complete genome sequence of a thermophilic methanogen, Methanocella conradii HZ254, isolated from Chinese rice field soil. J Bacteriol 2012; 194:2398-9. [PMID: 22493204 DOI: 10.1128/jb.00207-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Members of the order Methanocellales play a key role in methane emissions in paddy fields. Because of their slow growth and fastidious culture conditions, pure cultures are difficult to isolate and have been unavailable until recently. Here we report the complete genome sequence of a novel isolate in this group, Methanocella conradii strain HZ254.
Collapse
|
40
|
Lü Z, Lu Y. Methanocella conradii sp. nov., a thermophilic, obligate hydrogenotrophic methanogen, isolated from Chinese rice field soil. PLoS One 2012; 7:e35279. [PMID: 22530002 PMCID: PMC3328440 DOI: 10.1371/journal.pone.0035279] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/15/2012] [Indexed: 11/18/2022] Open
Abstract
Background Methanocellales contributes significantly to anthropogenic methane emissions that cause global warming, but few pure cultures for Methanocellales are available to permit subsequent laboratory studies (physiology, biochemistry, etc.). Methodology/Principal Findings By combining anaerobic culture and molecular techniques, a novel thermophilic methanogen, strain HZ254T was isolated from a Chinese rice field soil located in Hangzhou, China. The phylogenetic analyses of both the 16S rRNA gene and mcrA gene (encoding the α subunit of methyl-coenzyme M reductase) confirmed its affiliation with Methanocellales, and Methanocella paludicola SANAET was the most closely related species. Cells were non-motile rods, albeit with a flagellum, 1.4–2.8 µm long and by 0.2–0.3 µm in width. They grew at 37–60°C (optimally at 55°C) and salinity of 0–5 g NaCl l−1 (optimally at 0–1 g NaCl l−1). The pH range for growth was 6.4–7.2 (optimum 6.8). Under the optimum growth condition, the doubling time was 6.5–7.8 h, which is the shortest ever observed in Methanocellales. Strain HZ254T utilized H2/CO2 but not formate for growth and methane production. The DNA G+C content of this organism was 52.7 mol%. The sequence identities of 16S rRNA gene and mcrA gene between strain HZ254T and SANAET were 95.0 and 87.5% respectively, and the genome based Average Nucleotide Identity value between them was 74.8%. These two strains differed in phenotypic features with regard to substrate utilization, possession of a flagellum, doubling time (under optimal conditions), NaCl and temperature ranges. Taking account of the phenotypic and phylogenetic characteristics, we propose strain HZ254T as a representative of a novel species, Methanocella conradii sp. nov. The type strain is HZ254T ( = CGMCC 1.5162T = JCM 17849T = DSM 24694T). Conclusions/Significance Strain HZ254T could potentially serve as an excellent laboratory model for studying Methanocellales due to its fast growth and consistent cultivability.
Collapse
Affiliation(s)
- Zhe Lü
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yahai Lu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
41
|
Angel R, Claus P, Conrad R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME JOURNAL 2011. [PMID: 22071343 DOI: 10.1038/ismej.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prototypical representatives of the Euryarchaeota--the methanogens--are oxygen sensitive and are thought to occur only in highly reduced, anoxic environments. However, we found methanogens of the genera Methanosarcina and Methanocella to be present in many types of upland soils (including dryland soils) sampled globally. These methanogens could be readily activated by incubating the soils as slurry under anoxic conditions, as seen by rapid methane production within a few weeks, without any additional carbon source. Analysis of the archaeal 16S ribosomal RNA gene community profile in the incubated samples through terminal restriction fragment length polymorphism and quantification through quantitative PCR indicated dominance of Methanosarcina, whose gene copy numbers also correlated with methane production rates. Analysis of the δ(13)C of the methane further supported this, as the dominant methanogenic pathway was in most cases aceticlastic, which Methanocella cannot perform. Sequences of the key methanogenic enzyme methyl coenzyme M reductase retrieved from the soil samples before incubation confirmed that Methanosarcina and Methanocella are the dominant methanogens, though some sequences of Methanobrevibacter and Methanobacterium were also detected. The global occurrence of only two active methanogenic archaea supports the hypothesis that these are autochthonous members of the upland soil biome and are well adapted to their environment.
Collapse
Affiliation(s)
- Roey Angel
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | | |
Collapse
|
42
|
Angel R, Claus P, Conrad R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME JOURNAL 2011; 6:847-62. [PMID: 22071343 DOI: 10.1038/ismej.2011.141] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prototypical representatives of the Euryarchaeota--the methanogens--are oxygen sensitive and are thought to occur only in highly reduced, anoxic environments. However, we found methanogens of the genera Methanosarcina and Methanocella to be present in many types of upland soils (including dryland soils) sampled globally. These methanogens could be readily activated by incubating the soils as slurry under anoxic conditions, as seen by rapid methane production within a few weeks, without any additional carbon source. Analysis of the archaeal 16S ribosomal RNA gene community profile in the incubated samples through terminal restriction fragment length polymorphism and quantification through quantitative PCR indicated dominance of Methanosarcina, whose gene copy numbers also correlated with methane production rates. Analysis of the δ(13)C of the methane further supported this, as the dominant methanogenic pathway was in most cases aceticlastic, which Methanocella cannot perform. Sequences of the key methanogenic enzyme methyl coenzyme M reductase retrieved from the soil samples before incubation confirmed that Methanosarcina and Methanocella are the dominant methanogens, though some sequences of Methanobrevibacter and Methanobacterium were also detected. The global occurrence of only two active methanogenic archaea supports the hypothesis that these are autochthonous members of the upland soil biome and are well adapted to their environment.
Collapse
Affiliation(s)
- Roey Angel
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | | |
Collapse
|
43
|
Narihiro T, Sekiguchi Y. Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea. Microb Biotechnol 2011; 4:585-602. [PMID: 21375721 PMCID: PMC3819009 DOI: 10.1111/j.1751-7915.2010.00239.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/12/2010] [Indexed: 11/28/2022] Open
Abstract
For the identification and quantification of methanogenic archaea (methanogens) in environmental samples, various oligonucleotide probes/primers targeting phylogenetic markers of methanogens, such as 16S rRNA, 16S rRNA gene and the gene for the α-subunit of methyl coenzyme M reductase (mcrA), have been extensively developed and characterized experimentally. These oligonucleotides were designed to resolve different groups of methanogens at different taxonomic levels, and have been widely used as hybridization probes or polymerase chain reaction primers for membrane hybridization, fluorescence in situ hybridization, rRNA cleavage method, gene cloning, DNA microarray and quantitative polymerase chain reaction for studies in environmental and determinative microbiology. In this review, we present a comprehensive list of such oligonucleotide probes/primers, which enable us to determine methanogen populations in an environment quantitatively and hierarchically, with examples of the practical applications of the probes and primers.
Collapse
Affiliation(s)
- Takashi Narihiro
- International Patent Organism Depositary (IPOD), Tsukuba, Ibaraki 305‐8566, Japan
| | - Yuji Sekiguchi
- Bio‐medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305‐8566, Japan
| |
Collapse
|
44
|
Yuan Y, Conrad R, Lu Y. Transcriptional response of methanogen mcrA genes to oxygen exposure of rice field soil. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:320-328. [PMID: 23761278 DOI: 10.1111/j.1758-2229.2010.00228.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Methane production in paddy soil is substantially suppressed after even a brief exposure of soil to oxygen. We hypothesized that the strong response of methanogen activity is reflected in the transcription of functional genes rather than in the composition of the community of methanogens. Therefore, we determined the community composition and the transcriptional response of methanogens in a rice field soil by targeting the mcrA gene (encoding the α subunit of methyl-coenzyme M reductase). Transcription of mcrA genes measured by quantitative PCR decreased by an order of magnitude after brief exposure to O2 . Terminal restriction fragment length polymorphism of mcrA genes and gene transcripts showed that although the community structure of methanogens did not change, the composition of transcripts dramatically responded to O2 exposure. In the beginning, transcripts of Methanocellales were the relatively most abundant, indicating resistance of these hydrogenotrophic methanogens against O2 stress. Later on, mcrA transcripts of acetoclastic methanogens became relatively more abundant coinciding with the turnover of acetate. The transcription of Methanosarcinaceae was relatively greater when acetate accumulated while Methanosaetaceae became more active when acetate concentrations decreased. In the presence of methyl fluoride, a specific inhibitor of acetoclastic methanogenesis, mcrA transcription by Methanosaetaceae was greatly suppressed while that of Methanosarcinaceae was less affected. Our study showed that in contrast to constant community structure as revealed by DNA-based fingerprinting the transcription of functional mcrA genes strongly responded to O2 stress and the presence of inhibitor CH3 F. The response patterns reflected the genomic and physiological traits of individual methanogens.
Collapse
Affiliation(s)
- Yanli Yuan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China. Max-Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str, 35043 Marburg, Germany
| | | | | |
Collapse
|
45
|
Angel R, Matthies D, Conrad R. Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS One 2011; 6:e20453. [PMID: 21655270 PMCID: PMC3105065 DOI: 10.1371/journal.pone.0020453] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/26/2011] [Indexed: 11/20/2022] Open
Abstract
Methanogenesis is traditionally thought to occur only in highly reduced, anoxic environments. Wetland and rice field soils are well known sources for atmospheric methane, while aerated soils are considered sinks. Although methanogens have been detected in low numbers in some aerated, and even in desert soils, it remains unclear whether they are active under natural oxic conditions, such as in biological soil crusts (BSCs) of arid regions. To answer this question we carried out a factorial experiment using microcosms under simulated natural conditions. The BSC on top of an arid soil was incubated under moist conditions in all possible combinations of flooding and drainage, light and dark, air and nitrogen headspace. In the light, oxygen was produced by photosynthesis. Methane production was detected in all microcosms, but rates were much lower when oxygen was present. In addition, the δ(13)C of the methane differed between the oxic/oxygenic and anoxic microcosms. While under anoxic conditions methane was mainly produced from acetate, it was almost entirely produced from H(2)/CO(2) under oxic/oxygenic conditions. Only two genera of methanogens were identified in the BSC-Methanosarcina and Methanocella; their abundance and activity in transcribing the mcrA gene (coding for methyl-CoM reductase) was higher under anoxic than oxic/oxygenic conditions, respectively. Both methanogens also actively transcribed the oxygen detoxifying gene catalase. Since methanotrophs were not detectable in the BSC, all the methane produced was released into the atmosphere. Our findings point to a formerly unknown participation of desert soils in the global methane cycle.
Collapse
Affiliation(s)
- Roey Angel
- Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Diethart Matthies
- Plant Ecology, Department of Ecology, University of Marburg, Marburg, Germany
| | - Ralf Conrad
- Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
46
|
Rui J, Qiu Q, Lu Y. Syntrophic acetate oxidation under thermophilic methanogenic condition in Chinese paddy field soil. FEMS Microbiol Ecol 2011; 77:264-73. [PMID: 21470253 DOI: 10.1111/j.1574-6941.2011.01104.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aim of the present work was to determine and compare the degradation of acetate in a Chinese rice field soil at 25°C and 50°C, respectively, and to identify specifically the active organisms involved in syntrophic acetate oxidation. Soil was preincubated anaerobically for 30 days to reduce alternative electron acceptors other than CO(2). The [2-(13)C] acetate (99% (13)C) was added twice: 0 day and 19 days after preincubation. Addition of [2-(13)C] acetate resulted in an immediate increase of (13)C labeled CH(4) but non-labeling of CO(2) at 25°C. The methanogen community was dominated by Methanosarcinaceae and Methanocellales at 25°C. In contrast, the addition of [2-(13)C] acetate at 50°C resulted in a rapid increase of (13)CO(2). The (13)C labeling of CH(4) gradually increased and reached a similar value to CO(2) (13% (13)C) at the end of incubation (40 days). Nearly all archaeal 16S rRNA genes detected at 50°C belonged to hydrogenotrophic Methanocellales. DNA-based stable isotope probing analysis revealed that the organisms related to Thermacetogenium lineage and the unclassified Thermoanaerobacteraceae group were intensively labeled with (13)C in the incubations at 50°C. Thus, acetate was converted to CH(4) and CO(2) through aceticlastic methanogenesis at 25°C, while syntrophic acetate oxidation occurred at 50°C.
Collapse
Affiliation(s)
- Junpeng Rui
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | | | | |
Collapse
|
47
|
Liu F, Conrad R. Thermoanaerobacteriaceae oxidize acetate in methanogenic rice field soil at 50°C. Environ Microbiol 2010; 12:2341-54. [PMID: 21966924 DOI: 10.1111/j.1462-2920.2010.02289.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rice field soils contain a thermophilic microbial community. Incubation of Italian rice field soil at 50°C resulted in transient accumulation of acetate, but the microorganisms responsible for methane production from acetate are unknown. Without addition of exogenous acetate, the δ(13)C of CH(4) and CO(2) indicated that CH(4) was exclusively produced by hydrogenotrophic methanogenesis. When exogenous acetate was added, acetoclastic methanogenesis apparently also operated. Nevertheless, addition of [2-(13)C]acetate (99% (13)C) resulted in the production not only of (13)C-labelled CH(4) but also of CO(2), which contained up to 27% (13)C, demonstrating that the methyl group of acetate was also oxidized. Part of the (13)C-labelled acetate was also converted to propionate which contained up to 14% (13)C. The microorganisms capable of assimilating acetate at 50°C were targeted by stable isotope probing (SIP) of ribosomal RNA and rRNA genes using [U-(13)C] acetate. Using quantitative PCR, (13)C-labelled bacterial ribosomal RNA and DNA was detected after 21 and 32 days of incubation with [U-(13)C]acetate respectively. In the heavy fractions of the (13)C treatment, terminal restriction fragments (T-RFs) of 140, 120 and 171 bp length predominated. Cloning and sequencing of 16S rRNA showed that these T-RFs were affiliated with the bacterial genera Thermacetogenium and Symbiobacterium and with members of the Thermoanaerobacteriaceae. Similar experiments targeting archaeal RNA and DNA showed that Methanocellales were the dominant methanogens being consistent with the operation of syntrophic bacterial acetate oxidation coupled to hydrogenotrophic methanogenesis. After 17 days, however, Methanosarcinacea increasingly contributed to the synthesis of rRNA from [U-(13)C]acetate indicating that acetoclastic methanogens were also active in methanogenic Italian rice field soil under thermal conditions.
Collapse
Affiliation(s)
- Fanghua Liu
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str.10, 35043 Marburg, Germany
| | | |
Collapse
|