1
|
Lordan C, Roche AK, Delsing D, Nauta A, Groeneveld A, MacSharry J, Cotter PD, van Sinderen D. Linking human milk oligosaccharide metabolism and early life gut microbiota: bifidobacteria and beyond. Microbiol Mol Biol Rev 2024; 88:e0009423. [PMID: 38206006 PMCID: PMC10966949 DOI: 10.1128/mmbr.00094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
SUMMARYHuman milk oligosaccharides (HMOs) are complex, multi-functional glycans present in human breast milk. They represent an intricate mix of heterogeneous structures which reach the infant intestine in an intact form as they resist gastrointestinal digestion. Therefore, they confer a multitude of benefits, directly and/or indirectly, to the developing neonate. Certain bifidobacterial species, being among the earliest gut colonizers of breast-fed infants, have an adapted functional capacity to metabolize various HMO structures. This ability is typically observed in infant-associated bifidobacteria, as opposed to bifidobacteria associated with a mature microbiota. In recent years, information has been gleaned regarding how these infant-associated bifidobacteria as well as certain other taxa are able to assimilate HMOs, including the mechanistic strategies enabling their acquisition and consumption. Additionally, complex metabolic interactions occur between microbes facilitated by HMOs, including the utilization of breakdown products released from HMO degradation. Interest in HMO-mediated changes in microbial composition and function has been the focal point of numerous studies, in recent times fueled by the availability of individual biosynthetic HMOs, some of which are now commonly included in infant formula. In this review, we outline the main HMO assimilatory and catabolic strategies employed by infant-associated bifidobacteria, discuss other taxa that exhibit breast milk glycan degradation capacity, and cover HMO-supported cross-feeding interactions and related metabolites that have been described thus far.
Collapse
Affiliation(s)
- Cathy Lordan
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
| | - Aoife K. Roche
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | - Arjen Nauta
- FrieslandCampina, Amersfoort, the Netherlands
| | | | - John MacSharry
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Orihara K, Yahagi K, Saito Y, Watanabe Y, Sasai T, Hara T, Tsukuda N, Oki K, Fujimoto J, Matsuki T. Characterization of Bifidobacterium kashiwanohense that utilizes both milk- and plant-derived oligosaccharides. Gut Microbes 2023; 15:2207455. [PMID: 37188713 PMCID: PMC10187079 DOI: 10.1080/19490976.2023.2207455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Bifidobacteria are prominent members of the human gut microbiota throughout life. The ability to utilize milk- and plant-derived carbohydrates is important for bifidobacterial colonization of the infant and adult gut. The Bifidobacterium catenulatum subspecies kashiwanohense (B. kashiwanohense) was originally isolated from infant feces. However, only a few strains have been described, and the characteristics of this subspecies have been poorly investigated. Here, we characterized genotypes and phenotypes of 23 B. kashiwanohense-associated strains, including 12 newly sequenced isolates. Genome-based analysis clarified the phylogenetic relationship between these strains, revealing that only 13 strains are genuine B. kashiwanohense. We defined specific marker sequences and investigated the worldwide prevalence of B. kashiwanohense based on metagenome data. This revealed that not only infants but also adults and weaning children harbor this subspecies in the gut. Most B. kashiwanohense strains utilize long-chain xylans and possess genes for extracellular xylanase (GH10), arabinofuranosidase and xylosidase (GH43), and ABC transporters that contribute to the utilization of xylan-derived oligosaccharides. We also confirmed that B. kashiwanohense strains utilize short- and long-chain human milk oligosaccharides and possess genes for fucosidase (GH95 and GH29) and specific ABC transporter substrate-binding proteins that contribute to the utilization of a wide range of human milk oligosaccharides. Collectively, we found that B. kashiwanohense strains utilize both plant- and milk-derived carbohydrates and identified key genetic factors that allow them to assimilate various carbohydrates.
Collapse
Affiliation(s)
- Kento Orihara
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Kana Yahagi
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Yuki Saito
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Yohei Watanabe
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Toshio Sasai
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Taeko Hara
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Naoki Tsukuda
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Kaihei Oki
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Junji Fujimoto
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Takahiro Matsuki
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| |
Collapse
|
3
|
Ndungo E, Holm JB, Gama S, Buchwald AG, Tennant SM, Laufer MK, Pasetti MF, Rasko DA. Dynamics of the Gut Microbiome in Shigella-Infected Children during the First Two Years of Life. mSystems 2022; 7:e0044222. [PMID: 36121169 PMCID: PMC9600951 DOI: 10.1128/msystems.00442-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/23/2022] [Indexed: 02/02/2023] Open
Abstract
Shigella continues to be a major contributor to diarrheal illness and dysentery in children younger than 5 years of age in low- and middle-income countries. Strategies for the prevention of shigellosis have focused on enhancing adaptive immunity. The interaction between Shigella and intrinsic host factors, such as the microbiome, remains unknown. We hypothesized that Shigella infection would impact the developing microbial community in infancy and, conversely, that changes in the gastrointestinal microbiome may predispose infections. To test this hypothesis, we characterized the gastrointestinal microbiota in a longitudinal birth cohort from Malawi that was monitored for Shigella infection using 16S rRNA amplicon sequencing. Children with at least one Shigella quantitative polymerase chain reaction (qPCR) positive sample during the first 2 years of life (cases) were compared to uninfected controls that were matched for sex and age. Overall, the microbial species diversity, as measured by the Shannon diversity index, increased over time, regardless of case status. At early time points, the microbial community was dominated by Bifidobacterium longum and Escherichia/Shigella. A greater abundance of Prevotella 9 and Bifidobacterium kashiwanohense was observed at 2 years of age. While no single species was associated with susceptibility to Shigella infection, significant increases in Lachnospiraceae NK4A136 and Fusicatenibacter saccharivorans were observed following Shigella infection. Both taxa are in the family Lachnospiraceae, which are known short-chain fatty acid producers that may improve gut health. Our findings identified temporal changes in the gastrointestinal microbiota associated with Shigella infection in Malawian children and highlight the need to further elucidate the microbial communities associated with disease susceptibility and resolution. IMPORTANCE Shigella causes more than 180 million cases of diarrhea globally, mostly in children living in poor regions. Infection can lead to severe health impairments that reduce quality of life. There is increasing evidence that disruptions in the gut microbiome early in life can influence susceptibility to illnesses. A delayed or impaired reconstitution of the microbiota following infection can further impact overall health. Aiming to improve our understanding of the interaction between Shigella and the developing infant microbiome, we investigated changes in the gut microbiome of Shigella-infected and uninfected children over the course of their first 2 years of life. We identified species that may be involved in recovery from Shigella infection and in driving the microbiota back to homeostasis. These findings support future studies into the elucidation of the interaction between the microbiota and enteric pathogens in young children and into the identification of potential targets for prevention or treatment.
Collapse
Affiliation(s)
- Esther Ndungo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Johanna B. Holm
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Syze Gama
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Andrea G. Buchwald
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Miriam K. Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marcela F. Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Ojima MN, Asao Y, Nakajima A, Katoh T, Kitaoka M, Gotoh A, Hirose J, Urashima T, Fukiya S, Yokota A, Abou Hachem M, Sakanaka M, Katayama T. Diversification of a Fucosyllactose Transporter within the Genus Bifidobacterium. Appl Environ Microbiol 2022; 88:e0143721. [PMID: 34731055 PMCID: PMC8788664 DOI: 10.1128/aem.01437-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
Human milk oligosaccharides (HMOs), which are natural bifidogenic prebiotics, were recently commercialized to fortify formula milk. However, HMO assimilation phenotypes of bifidobacteria vary by species and strain, which has not been fully linked to strain genotype. We have recently shown that specialized uptake systems, particularly for the internalization of major HMOs (fucosyllactose [FL]), are associated with the formation of a Bifidobacterium-rich gut microbial community. Phylogenetic analysis revealed that FL transporters have diversified into two clades harboring four clusters within the Bifidobacterium genus, but the underpinning functional diversity associated with this divergence remains underexplored. In this study, we examined the HMO consumption phenotypes of two bifidobacterial species, Bifidobacterium catenulatum subsp. kashiwanohense and Bifidobacterium pseudocatenulatum, both of which possess FL-binding proteins that belong to phylogenetic clusters with unknown specificities. Growth assays, heterologous gene expression experiments, and HMO consumption analyses showed that the FL transporter type from B. catenulatum subsp. kashiwanohense JCM 15439T conferred a novel HMO uptake pattern that includes complex fucosylated HMOs (lacto-N-fucopentaose II and lacto-N-difucohexaose I/II). Further genomic landscape analyses of FL transporter-positive bifidobacterial strains revealed that the H-antigen- or Lewis antigen-specific fucosidase gene(s) and FL transporter specificities were largely aligned. These results suggest that bifidobacteria have acquired FL transporters along with the corresponding gene sets necessary to utilize the imported HMOs. Our results provide insight into the species- and strain-dependent adaptation strategies of bifidobacteria in HMO-rich environments. IMPORTANCE The gut of breastfed infants is generally dominated by health-promoting bifidobacteria. Human milk oligosaccharides (HMOs) from breast milk selectively promote the growth of specific taxa such as bifidobacteria, thus forming an HMO-mediated host-microbe symbiosis. While the coevolution of humans and bifidobacteria has been proposed, the underpinning adaptive strategies employed by bifidobacteria require further research. Here, we analyzed the divergence of the critical fucosyllactose (FL) HMO transporter within Bifidobacterium. We have shown that the diversification of the solute-binding proteins of the FL transporter led to uptake specificities of fucosylated sugars ranging from simple trisaccharides to complex hexasaccharides. This transporter and the congruent acquisition of the necessary intracellular enzymes allow bifidobacteria to consume different types of HMOs in a predictable and strain-dependent manner. These findings explain the adaptation and proliferation of bifidobacteria in the competitive and HMO-rich infant gut environment and enable accurate specificity annotation of transporters from metagenomic data.
Collapse
Affiliation(s)
- Miriam N. Ojima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuya Asao
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Aruto Nakajima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Toshihiko Katoh
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Aina Gotoh
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Junko Hirose
- School of Human Cultures, The University of Shiga Prefecture, Hikone, Shiga, Japan
| | - Tadasu Urashima
- Department of Food and Life Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Satoru Fukiya
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Atsushi Yokota
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Maher Abou Hachem
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | | | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Ojima MN, Yoshida K, Sakanaka M, Jiang L, Odamaki T, Katayama T. Ecological and molecular perspectives on responders and non-responders to probiotics and prebiotics. Curr Opin Biotechnol 2021; 73:108-120. [PMID: 34375845 DOI: 10.1016/j.copbio.2021.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022]
Abstract
Bifidobacteria are widely used as a probiotic for their health-promoting effects. To promote their growth, bifidogenic prebiotics, including human milk oligosaccharides (HMOs), have been added to supplements and infant formula. However, the efficacy of both probiotic and prebiotic interventions is often debated, as clinical responses vary significantly by case. Here, we review clinical studies that aimed to proliferate human-residential Bifidobacterium (HRB) strains in the gut, and we highlight the difference between responders and non-responders to such interventions through an ecological, niche-based perspective and an examination of the prevalence of genes responsible for prebiotic assimilation in HRB genomes. We discuss the criteria necessary to better evaluate the efficacy of probiotic and prebiotic interventions and the recent therapeutic potential shown by synbiotics.
Collapse
Affiliation(s)
- Miriam N Ojima
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Keisuke Yoshida
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, 252-8583, Japan
| | - Mikiyasu Sakanaka
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Lin Jiang
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Toshitaka Odamaki
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan; Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, 252-8583, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
6
|
Modesto M, Satti M, Watanabe K, Huang CH, Liou JS, Tamura T, Saito S, Mori K, Huang L, Sandri C, Spiezio C, Sgorbati B, Scarafile D, Cammà C, Ancora M, Patavino C, Arita M, Mattarelli P. Bifidobacteria in two-toed sloths ( Choloepus didactylus): phylogenetic characterization of the novel taxon Bifidobacterium choloepi sp. nov. Int J Syst Evol Microbiol 2021; 70:6115-6125. [PMID: 33052806 DOI: 10.1099/ijsem.0.004506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Seven bifidobacterial strains were isolated from the faeces of two adult males of the two-toed sloth (Choloepus didactylus) housed in Parco Natura Viva, in Italy. Comparative sequence analysis of 16S rRNA and of five housekeeping (hsp60, rpoB, clpC, dnaJ, dnaG) genes revealed that these strains were classified into two clusters. On the basis of 16S rRNA gene sequence similarity, the type strain of Bifidobacterium catenulatum subsp. kashiwanohense DSM 21854T (95.4 %) was the closest neighbour to strain in Cluster I (BRDM 6T), whereas the type strain of Bifidobacterium dentium DSM 20436T (values were in the range of 98‒99.8 %) was the closest neighbour to the other six strains in Cluster II. The average nucleotide identity (ANI) values of BRDM 6T and of strains in Cluster II with the closely related type strains were 76.0 and 98.9 % (mean value) respectively. Therefore, genotyping based on the genome sequence of the strain BRDM 6T combined with phenotypic analyses clearly revealed that the strain BRDM 6T represents a novel species for which the names Bifidobacterium choloepi sp. nov. (BRDM 6T=NBRC 114053T=BCRC 81222T) is proposed.
Collapse
Affiliation(s)
- Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Maria Satti
- Department of Genetics, SOKENDAI University (National Institute of Genetics), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Koichi Watanabe
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Jong-Shian Liou
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Tomohiko Tamura
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8, Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Satomi Saito
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8, Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Koji Mori
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8, Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Lina Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Camillo Sandri
- Department of Animal Health Care and Management, Parco Natura Viva - Garda Zoological Park, Bussolengo, Verona, Italy
| | - Caterina Spiezio
- Department of Animal Health Care and Management, Parco Natura Viva - Garda Zoological Park, Bussolengo, Verona, Italy
| | - Barbara Sgorbati
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Donatella Scarafile
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Cesare Cammà
- National Reference Center for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100, Teramo, Italy
| | - Massimo Ancora
- National Reference Center for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100, Teramo, Italy
| | - Claudio Patavino
- National Reference Center for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100, Teramo, Italy
| | - Masanori Arita
- Bioinformation and DDBJ Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| |
Collapse
|
7
|
Exploring the Ecology of Bifidobacteria and Their Genetic Adaptation to the Mammalian Gut. Microorganisms 2020; 9:microorganisms9010008. [PMID: 33375064 PMCID: PMC7822027 DOI: 10.3390/microorganisms9010008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
The mammalian gut is densely inhabited by microorganisms that have coevolved with their host. Amongst these latter microorganisms, bifidobacteria represent a key model to study host–microbe interaction within the mammalian gut. Remarkably, bifidobacteria naturally occur in a range of ecological niches that are either directly or indirectly connected to the animal gastrointestinal tract. They constitute one of the dominant bacterial members of the intestinal microbiota and are among the first colonizers of the mammalian gut. Notably, the presence of bifidobacteria in the gut has been associated with several health-promoting activities. In this review, we aim to provide an overview of current knowledge on the genetic diversity and ecology of bifidobacteria. Furthermore, we will discuss how this important group of gut bacteria is able to colonize and survive in the mammalian gut, so as to facilitate host interactions.
Collapse
|
8
|
Neuzil-Bunesova V, Lugli GA, Modrackova N, Vlkova E, Bolechova P, Burtscher J, Longhi G, Mancabelli L, Killer J, Domig K, Ventura M. Five novel bifidobacterial species isolated from faeces of primates in two Czech zoos: Bifidobacterium erythrocebi sp. nov., Bifidobacterium moraviense sp. nov., Bifidobacterium oedipodis sp. nov., Bifidobacterium olomucense sp. nov. and Bifidobacterium panos sp. nov. Int J Syst Evol Microbiol 2020; 71. [PMID: 33226935 DOI: 10.1099/ijsem.0.004573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five Bifidobacterium strains, VB23T, VB24T, VB25T, VB26T and VB31T, were isolated from chimpanzee (Pan troglodytes), cotton-top tamarin (Saguinus oedipus), Goeldi's marmoset (Callimico goeldii), moustached tamarin (Saguinus mystax) and patas monkey (Erythrocebus patas), respectively, which were kept in two Czech zoos. These strains were isolated from faecal samples and were Gram-positive, non-motile, non-sporulating, anaerobic and fructose-6-phosphate phosphoketolase-positive. Phylogenetic analyses based on 16S rRNA revealed close relatedness between VB23T and Bifidobacterium angulatum LMG 11039T (96.0 %), VB24T and Bifidobacterium pullorum subsp. pullorum DSM 20433T (96.1 %), VB25T and Bifidobacterium goeldii LMG 30939T (96.5 %), VB26T and Bifidobacterium imperatoris LMG 30297T (98.1 %), and VB31T and B. angulatum LMG 11039T (99.40 %). Internal transcribed spacer profiling revealed that VB23T, VB24T, VB25T, VB26T and VB31T had highest similarity to Bifidobacterium breve LMG 13208T (77.2 %), Bifidobacterium longum subsp. infantis ATCC 15697T (85.8 %), Bifidobacterium biavatii DSM 23969T (76.9 %), B. breve LMG 13208T (81.2 %) and B. angulatum LMG 11039T (88.2 %), respectively. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) analyses with their closest neighbours supported the independent phylogenetic positions of the strains with values between 86.3 and 94.3 % for ANI and 25.8 and 54.9 % for dDDH. These genomic and phylogenetic analyses suggested that the evaluated strains were novel Bifidobacterium species named Bifidobacterium erythrocebi sp. nov. (VB31T=DSM 109960T=CCUG 73843T), Bifidobacterium moraviense sp. nov. (VB25T=DSM 109958T=CCUG 73842T), Bifidobacterium oedipodis sp. nov. (VB24T=DSM 109957T=CCUG 73932T), Bifidobacterium olomucense sp. nov. (VB26T=DSM 109959T=CCUG 73845T) and Bifidobacterium panos sp. nov. (VB23T=DSM 109963T=CCUG 73840T).
Collapse
Affiliation(s)
- Vera Neuzil-Bunesova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Nikol Modrackova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Eva Vlkova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Petra Bolechova
- Department of Ethology and Companion Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Johanna Burtscher
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, Vienna, A-1190, Austria
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Jiri Killer
- Institute of Animal Physiology and Genetics v.v.i., Czech Academy of Sciences, Vídeňská 1083, Prague 4 - Krč, 142 20, Czechia.,Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Konrad Domig
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, Vienna, A-1190, Austria
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
9
|
Metabolism of the predominant human milk oligosaccharide fucosyllactose by an infant gut commensal. Sci Rep 2019; 9:15427. [PMID: 31659215 PMCID: PMC6817895 DOI: 10.1038/s41598-019-51901-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022] Open
Abstract
A number of bifidobacterial species are found at a particularly high prevalence and abundance in faecal samples of healthy breastfed infants, a phenomenon that is believed to be, at least partially, due to the ability of bifidobacteria to metabolize Human Milk Oligosaccharides (HMOs). In the current study, we isolated a novel strain of Bifidobacterium kashiwanohense, named APCKJ1, from the faeces of a four-week old breastfed infant, based on the ability of the strain to utilise the HMO component fucosyllactose. We then determined the full genome sequence of this strain, and employed the generated data to analyze fucosyllactose metabolism in B. kashiwanohense APCKJ1. Transcriptomic and growth analyses, combined with metabolite analysis, in vitro hydrolysis assays and heterologous expression, allowed us to elucidate the pathway for fucosyllactose metabolism in B. kashiwanohense APCKJ1. Homologs of the key genes for this metabolic pathway were identified in particular in infant-derived members of the Bifdobacterium genus, revealing the apparent niche-specific nature of this pathway, and allowing a broad perspective on bifidobacterial fucosyllactose and L-fucose metabolism.
Collapse
|
10
|
Production of Indole-3-Lactic Acid by Bifidobacterium Strains Isolated fromHuman Infants. Microorganisms 2019; 7:microorganisms7090340. [PMID: 31514325 PMCID: PMC6780619 DOI: 10.3390/microorganisms7090340] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 01/03/2023] Open
Abstract
Recent studies have shown that metabolites produced by microbes can be considered as mediators of host-microbial interactions. In this study, we examined the production of tryptophan metabolites by Bifidobacterium strains found in the gastrointestinal tracts of humans and other animals. Indole-3-lactic acid (ILA) was the only tryptophan metabolite produced in bifidobacteria culture supernatants. No others, including indole-3-propionic acid, indole-3-acetic acid, and indole-3-aldehyde, were produced. Strains of bifidobacterial species commonly isolated from the intestines of human infants, such as Bifidobacterium longum subsp. longum, Bifidobacterium longum subsp. infantis, Bifidobacterium breve, and Bifidobacterium bifidum, produced higher levels of ILA than did strains of other species. These results imply that infant-type bifidobacteria might play a specific role in host-microbial cross-talk by producing ILA in human infants.
Collapse
|
11
|
Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, Pukall R, Klenk HP, Goodfellow M, Göker M. Genome-Based Taxonomic Classification of the Phylum Actinobacteria. Front Microbiol 2018; 9:2007. [PMID: 30186281 PMCID: PMC6113628 DOI: 10.3389/fmicb.2018.02007] [Citation(s) in RCA: 459] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/09/2018] [Indexed: 11/29/2022] Open
Abstract
The application of phylogenetic taxonomic procedures led to improvements in the classification of bacteria assigned to the phylum Actinobacteria but even so there remains a need to further clarify relationships within a taxon that encompasses organisms of agricultural, biotechnological, clinical, and ecological importance. Classification of the morphologically diverse bacteria belonging to this large phylum based on a limited number of features has proved to be difficult, not least when taxonomic decisions rested heavily on interpretation of poorly resolved 16S rRNA gene trees. Here, draft genome sequences of a large collection of actinobacterial type strains were used to infer phylogenetic trees from genome-scale data using principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families, and genera, as well as many species and a few subspecies were shown to be in need of revision leading to proposals for the recognition of 2 orders, 10 families, and 17 genera, as well as the transfer of over 100 species to other genera. In addition, emended descriptions are given for many species mainly involving the addition of data on genome size and DNA G+C content, the former can be considered to be a valuable taxonomic marker in actinobacterial systematics. Many of the incongruities detected when the results of the present study were compared with existing classifications had been recognized from 16S rRNA gene trees though whole-genome phylogenies proved to be much better resolved. The few significant incongruities found between 16S/23S rRNA and whole genome trees underline the pitfalls inherent in phylogenies based upon single gene sequences. Similarly good congruence was found between the discontinuous distribution of phenotypic properties and taxa delineated in the phylogenetic trees though diverse non-monophyletic taxa appeared to be based on the use of plesiomorphic character states as diagnostic features.
Collapse
Affiliation(s)
- Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lorena Carro
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marina García-López
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jan P. Meier-Kolthoff
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Rüdiger Pukall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Markus Göker
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
12
|
Pechar R, Killer J, Švejstil R, Salmonová H, Geigerová M, Bunešová V, Rada V, Benada O. Galliscardovia ingluviei gen. nov., sp. nov., a thermophilic bacterium of the family Bifidobacteriaceae isolated from the crop of a laying hen (Gallus gallus f. domestica). Int J Syst Evol Microbiol 2017; 67:2403-2411. [DOI: 10.1099/ijsem.0.001972] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- R. Pechar
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, Prague 6 – Suchdol, 165 00, Czech Republic
| | - J. Killer
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, Prague 6 – Suchdol, 165 00, Czech Republic
- Institute of Animal Physiology and Genetics v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 – Krč, 142 20, Czech Republic
| | - R. Švejstil
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, Prague 6 – Suchdol, 165 00, Czech Republic
| | - H. Salmonová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, Prague 6 – Suchdol, 165 00, Czech Republic
| | - M. Geigerová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, Prague 6 – Suchdol, 165 00, Czech Republic
| | - V. Bunešová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, Prague 6 – Suchdol, 165 00, Czech Republic
| | - V. Rada
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, Prague 6 – Suchdol, 165 00, Czech Republic
| | - O. Benada
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
- Department of Biology, Faculty of Science, J. E. Purkyně University in Ústí nad Labem, Za Válcovnou 1000/8, 400 96 Ústí nad Labem, Czech Republic
| |
Collapse
|
13
|
Pechar R, Killer J, Salmonová H, Geigerová M, Švejstil R, Švec P, Sedláček I, Rada V, Benada O. Bifidobacterium apri sp. nov., a thermophilic actinobacterium isolated from the digestive tract of wild pigs (Sus scrofa). Int J Syst Evol Microbiol 2017; 67:2349-2356. [DOI: 10.1099/ijsem.0.001956] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- R. Pechar
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, Prague 6 – Suchdol, 165 21, Czech Republic
| | - J. Killer
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, Prague 6 – Suchdol, 165 21, Czech Republic
- Institute of Animal Physiology and Genetics v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 – Krč, 142 20, Czech Republic
| | - H. Salmonová
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, Prague 6 – Suchdol, 165 21, Czech Republic
| | - M. Geigerová
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, Prague 6 – Suchdol, 165 21, Czech Republic
| | - R. Švejstil
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, Prague 6 – Suchdol, 165 21, Czech Republic
| | - P. Švec
- Czech Collection of Microorganisms, Masaryk University, Faculty of Science, Kamenice 5, building A25, 625 00, Brno, Czech Republic
| | - I. Sedláček
- Czech Collection of Microorganisms, Masaryk University, Faculty of Science, Kamenice 5, building A25, 625 00, Brno, Czech Republic
| | - V. Rada
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, Prague 6 – Suchdol, 165 21, Czech Republic
| | - O. Benada
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
- Department of Biology, Faculty of Science, J. E. Purkyně University in Ústi nad Labem, Za Válcovnou 1000/8, 400 96 Ústí nad Labem, Czech Republic
| |
Collapse
|
14
|
Freitas AC, Hill JE. Quantification, isolation and characterization of Bifidobacterium from the vaginal microbiomes of reproductive aged women. Anaerobe 2017; 47:145-156. [PMID: 28552417 DOI: 10.1016/j.anaerobe.2017.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/23/2017] [Accepted: 05/22/2017] [Indexed: 11/26/2022]
Abstract
The vaginal microbiome plays an important role in women's reproductive health. Imbalances in this microbiota, such as the poorly defined condition of bacterial vaginosis, are associated with increased susceptibility to sexually transmitted infections and negative reproductive outcomes. Currently, a "healthy" vaginal microbiota in reproductive aged women is understood to be dominated by Lactobacillus, although "atypical" microbiomes, such as Bifidobacterium-dominated profiles, have been described. Despite these observations, vaginal bifidobacteria remain relatively poorly characterized, and questions remain regarding their actual abundance in the microbiome. In this study, we used quantitative PCR to confirm the relative abundance of Bifidobacterium in the vaginal microbiomes of healthy reproductive aged women (n = 42), previously determined by deep sequencing. We also isolated and phenotypically characterized vaginal bifidobacteria (n = 40) in the context of features thought to promote reproductive health. Most isolates were identified as B. breve or B. longum based on cpn60 barcode sequencing. Fermentation patterns of vaginal bifidobacteria did not differ substantially from corresponding type strains of gut or oral origin. Lactic acid was produced by all vaginal isolates, with B. longum strains producing the highest levels, but only 32% of isolates produced hydrogen peroxide. Most vaginal bifidobacteria were also able to tolerate high levels of lactic acid (100 mM) and low pH (4.5 or 3.9), conditions typical of vaginal fluid of healthy women. Most isolates were resistant to metronidazole but susceptible to clindamycin, the two most common antibiotics used to treat vaginal dysbiosis. These findings demonstrate that Bifidobacterium is the dominant member of some vaginal microbiomes and suggest that bifidobacteria have the potential to be as protective as lactobacilli according to the current understanding of a healthy vaginal microbiome.
Collapse
Affiliation(s)
- Aline C Freitas
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| | - Janet E Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
15
|
Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neo-tetraose through overlapping, yet distinct pathways. Sci Rep 2016; 6:38560. [PMID: 27929046 PMCID: PMC5144078 DOI: 10.1038/srep38560] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022] Open
Abstract
In this study, we demonstrate that the prototype B. breve strain UCC2003 possesses specific metabolic pathways for the utilisation of lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), which represent the central moieties of Type I and Type II human milk oligosaccharides (HMOs), respectively. Using a combination of experimental approaches, the enzymatic machinery involved in the metabolism of LNT and LNnT was identified and characterised. Homologs of the key genetic loci involved in the utilisation of these HMO substrates were identified in B. breve, B. bifidum, B. longum subsp. infantis and B. longum subsp. longum using bioinformatic analyses, and were shown to be variably present among other members of the Bifidobacterium genus, with a distinct pattern of conservation among human-associated bifidobacterial species.
Collapse
|
16
|
Bunesova V, Lacroix C, Schwab C. Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense. BMC Microbiol 2016; 16:248. [PMID: 27782805 PMCID: PMC5080750 DOI: 10.1186/s12866-016-0867-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/22/2016] [Indexed: 12/31/2022] Open
Abstract
Background Human milk oligosaccharides (HMOs) are one of the major glycan source of the infant gut microbiota. The two species that predominate the infant bifidobacteria community, Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum, possess an arsenal of enzymes including α-fucosidases, sialidases, and β-galactosidases to metabolise HMOs. Recently bifidobacteria were obtained from the stool of six month old Kenyan infants including species such as Bifidobacterium kashiwanohense, and Bifidobacterium pseudolongum that are not frequently isolated from infant stool. The aim of this study was to characterize HMOs utilization by these isolates. Strains were grown in presence of 2′-fucosyllactose (2′-FL), 3′-fucosyllactose (3′-FL), 3′-sialyl-lactose (3′-SL), 6′-sialyl-lactose (6′-SL), and Lacto-N-neotetraose (LNnT). We further investigated metabolites formed during L-fucose and fucosyllactose utilization, and aimed to identify genes and pathways involved through genome comparison. Results Bifidobacterium longum subsp. infantis isolates, Bifidobacterium longum subsp. suis BSM11-5 and B. kashiwanohense strains grew in the presence of 2′-FL and 3′- FL. All B. longum isolates utilized the L-fucose moiety, while B. kashiwanohense accumulated L-fucose in the supernatant. 1,2-propanediol (1,2-PD) was the major metabolite from L-fucose fermentation, and was formed in equimolar amounts by B. longum isolates. Alpha-fucosidases were detected in all strains that degraded fucosyllactose. B. longum subsp. infantis TPY11-2 harboured four α-fucosidases with 95–99 % similarity to the type strain. B. kashiwanohense DSM 21854 and PV20-2 possessed three and one α-fucosidase, respectively. The two α-fucosidases of B. longum subsp. suis were 78–80 % similar to B. longum subsp. infantis and were highly similar to B. kashiwanohense α-fucosidases (95–99 %). The genomes of B. longum strains that were capable of utilizing L-fucose harboured two gene regions that encoded enzymes predicted to metabolize L-fucose to L-lactaldehyde, the precursor of 1,2-PD, via non-phosphorylated intermediates. Conclusion Here we observed that the ability to utilize fucosyllactose is a trait of various bifidobacteria species. For the first time, strains of B. longum subsp. infantis and an isolate of B. longum subsp. suis were shown to use L-fucose to form 1,2-PD. As 1,2-PD is a precursor for intestinal propionate formation, bifidobacterial L-fucose utilization may impact intestinal short chain fatty acid balance. A L-fucose utilization pathway for bifidobacteria is suggested. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0867-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vera Bunesova
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland.,Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland.
| |
Collapse
|
17
|
Bunesova V, Vlkova E, Rada V, Killer J, Musilova S. Bifidobacteria from the gastrointestinal tract of animals: differences and similarities. Benef Microbes 2015; 5:377-88. [PMID: 24889892 DOI: 10.3920/bm2013.0081] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
At present, the genus Bifidobacterium includes 48 species and subspecies, and this number is expected to increase. Bifidobacteria are found in different ecological niches. However, most were originally isolated from animals, mainly mammals, especially during the milk feeding period of life. Their presence in high numbers is associated with good health of the host. Moreover, bifidobacteria are often found in poultry and insects that exhibit a social mode of life (honeybees and bumblebees). This review is designed as a summary of currently known species of the genus Bifidobacterium, especially focused on their difference and similarities. The primary focus is on their occurrence in the digestive tract of animals, as well as the specificities of animal strains, with regard to their potential use as probiotics.
Collapse
Affiliation(s)
- V Bunesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - E Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - V Rada
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - J Killer
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14200 Prague 4-Krč, Czech Republic
| | - S Musilova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| |
Collapse
|
18
|
Complete Genome Sequence of Bifidobacterium kashiwanohense JCM 15439T, Isolated from Feces from a Healthy Japanese Infant. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00255-15. [PMID: 25883283 PMCID: PMC4400426 DOI: 10.1128/genomea.00255-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
We isolated Bifidobacterium kashiwanohense JCM 15439 from the feces of a healthy Japanese infant and proposed it as the type strain of a novel species within the genus Bifidobacterium. Here, we report the complete genome sequence of this organism.
Collapse
|
19
|
Complete and Assembled Genome Sequence of Bifidobacterium kashiwanohense PV20-2, Isolated from the Feces of an Anemic Kenyan Infant. GENOME ANNOUNCEMENTS 2015; 3:3/1/e01467-14. [PMID: 25614572 PMCID: PMC4319591 DOI: 10.1128/genomea.01467-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complete genome sequence of Bifidobacterium kashiwanohense strain PV20-2, an infant feces isolate, was determined using single-molecule real-time sequencing (SMRT). Hierarchical genome assembly resulted in a completely assembled genome of 2,370,978 bp. The B. kashiwanohense PV20-2 genome is the first completely sequenced and assembled genome of the species.
Collapse
|
20
|
Vazquez-Gutierrez P, Lacroix C, Jaeggi T, Zeder C, Zimmerman MB, Chassard C. Bifidobacteria strains isolated from stools of iron deficient infants can efficiently sequester iron. BMC Microbiol 2015; 15:3. [PMID: 25591860 PMCID: PMC4320568 DOI: 10.1186/s12866-014-0334-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/18/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bifidobacteria is one of the major gut commensal groups found in infants. Their colonization is commonly associated with beneficial effects to the host through mechanisms like niche occupation and nutrient competition against pathogenic bacteria. Iron is an essential element necessary for most microorganisms, including bifidobacteria and efficient competition for this micronutrient is linked to proliferation and persistence. For this research we hypothesized that bifidobacteria in the gut of iron deficient infants can efficiently sequester iron. The aim of the present study was to isolate bifidobacteria in fecal samples of iron deficient Kenyan infants and to characterize siderophore production and iron internalization capacity. RESULTS Fifty-six bifidobacterial strains were isolated by streaking twenty-eight stool samples from Kenyan infants, in enrichment media. To target strains with high iron sequestration mechanisms, a strong iron chelator 2,2-dipyridyl was supplemented to the agar media. Bifidobacterial isolates were first identified to species level by 16S rRNA sequencing, yielding B. bifidum (19 isolates), B. longum (15), B. breve (11), B. kashiwanohense (7), B. pseudolongum (3) and B. pseudocatenulatum (1). While most isolated bifidobacterial species are commonly encountered in the infantile gut, B. kashiwanohense was not frequently reported in infant feces. Thirty strains from culture collections and 56 isolates were characterized for their siderophore production, tested by the CAS assay. Siderophore activity ranged from 3 to 89% siderophore units, with 35 strains (41%) exhibiting high siderophore activity, and 31 (36%) and 20 (23%) showing intermediate or low activity. The amount of internalized iron of 60 bifidobacteria strains selected for their siderophore activity, was in a broad range from 8 to118 μM Fe. Four strains, B. pseudolongum PV8-2, B. kashiwanohense PV20-2, B. bifidum PV28-2a and B. longum PV5-1 isolated from infant stool samples were selected for both high siderophore activity and iron internalization. CONCLUSIONS A broad diversity of bifidobacteria were isolated in infant stools using iron limited conditions, with some strains exhibiting high iron sequestration properties. The ability of bifidobacteria to efficiently utilize iron sequestration mechanism such as siderophore production and iron internalization may confer an ecological advantage and be the basis for enhanced competition against enteropathogens.
Collapse
Affiliation(s)
- Pamela Vazquez-Gutierrez
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland.
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland.
| | - Tanja Jaeggi
- Laboratory of Human Nutrition, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland.
| | - Christophe Zeder
- Laboratory of Human Nutrition, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland.
| | - Michael Bruce Zimmerman
- Laboratory of Human Nutrition, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland.
| | - Christophe Chassard
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland.
| |
Collapse
|
21
|
Investigation of the evolutionary development of the genus Bifidobacterium by comparative genomics. Appl Environ Microbiol 2014; 80:6383-94. [PMID: 25107967 DOI: 10.1128/aem.02004-14] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bifidobacterium genus currently encompasses 48 recognized taxa, which have been isolated from different ecosystems. However, the current phylogeny of bifidobacteria is hampered by the relative paucity of genotypic data. Here, we reassessed the taxonomy of this bacterial genus using genome-based approaches, which demonstrated that the previous taxonomic view of bifidobacteria contained several inconsistencies. In particular, high levels of genetic relatedness were shown to exist between particular Bifidobacterium taxa which would not justify their status as separate species. The results presented are here based on average nucleotide identity analysis involving the genome sequences for each type strain of the 48 bifidobacterial taxa, as well as phylogenetic comparative analysis of the predicted core genome of the Bifidobacterium genus. The results of this study demonstrate that the availability of complete genome sequences allows the reconstruction of a more robust bifidobacterial phylogeny than that obtained from a single gene-based sequence comparison, thus discouraging the assignment of a new or separate bifidobacterial taxon without such a genome-based validation.
Collapse
|
22
|
Turroni F, Serafini F, Mangifesta M, Arioli S, Mora D, van Sinderen D, Ventura M. Expression of sortase-dependent pili ofBifidobacterium bifidumPRL2010 in response to environmental gut conditions. FEMS Microbiol Lett 2014; 357:23-33. [DOI: 10.1111/1574-6968.12509] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
- Francesca Turroni
- Alimentary Pharmabiotic Centre and Department of Microbiology; Bioscience Institute; National University of Ireland; Cork Ireland
| | - Fausta Serafini
- Department of Life Sciences; Laboratory of Probiogenomics; University of Parma; Parma Italy
| | | | - Stefania Arioli
- Department of Food Environmental and Nutritional Sciences; University of Milan; Milan Italy
| | - Diego Mora
- Department of Food Environmental and Nutritional Sciences; University of Milan; Milan Italy
| | - Douwe van Sinderen
- Alimentary Pharmabiotic Centre and Department of Microbiology; Bioscience Institute; National University of Ireland; Cork Ireland
| | - Marco Ventura
- Department of Life Sciences; Laboratory of Probiogenomics; University of Parma; Parma Italy
| |
Collapse
|
23
|
Choi JH, Lee KM, Lee MK, Cha CJ, Kim GB. Bifidobacterium faecale sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2014; 64:3134-3139. [PMID: 24944342 DOI: 10.1099/ijs.0.063479-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel strain, designated strain CU3-7(T), was isolated from faeces of a two-week-old baby. The isolate was Gram-staining-positive, anaerobic and rod-shaped. Results from 16S rRNA gene sequence analysis revealed that strain CU3-7(T) was phylogenetically affiliated with members of the genus Bifidobacterium. Strain CU3-7(T) showed the highest level of sequence similarity with Bifidobacterium adolescentis KCTC 3216(T) (98.4 %), followed by Bifidobacterium ruminantium KCTC 3425(T) (97.9 %). Analysis of hsp60 sequences showed that strain CU3-7(T) was closely related to B. adolescentis KCTC 3216(T) (94.0 %) and B. ruminantium KCTC 3425(T) (92.5 %). The DNA-DNA hybridization values with the closely related strains were all below the cut-off value for species delineation, 17.0 % with B. ruminantium KCTC 3425(T) and 14.9 % with B. adolescentis KCTC 3216(T). Fructose-6-phosphate phosphoketolase activity was detected. The predominant cellular fatty acids were C16 : 0 (27.7 %), C18 : 1ω9c (27.4 %) and C18 : 1ω9c dimethylacetate (15.5 %). The DNA G+C content was 58.6 mol%. On the basis of polyphasic taxonomy, strain CU3-7(T) should be classified as the type strain of a novel species within the genus Bifidobacterium, for which the name Bifidobacterium faecale sp. nov. is proposed ( = KACC 17904(T) = JCM 19861(T)).
Collapse
Affiliation(s)
- Jung-Hye Choi
- Department of Systems Biotechnology, Chung-Ang University, Anseong 456-756, Republic of Korea
| | - Kyung Min Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 456-756, Republic of Korea
| | - Myung-Ki Lee
- Fermentation and Functionality Research Group, Korea Food Research Institute, Sungnam 463-746, Republic of Korea
| | - Chang-Jun Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong 456-756, Republic of Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 456-756, Republic of Korea
| |
Collapse
|
24
|
Alloscardovia macacae sp. nov., isolated from the milk of a macaque (Macaca mulatta), emended description of the genus Alloscardovia and proposal of Alloscardovia criceti comb. nov. Int J Syst Evol Microbiol 2013; 63:4439-4446. [DOI: 10.1099/ijs.0.051326-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel bacterial strain, designated M8T, was isolated from milk of a female macaque bred in captivity. The strain was Gram-stain-positive, anaerobic, irregular coccoid–rod-shaped without catalase activity. Analysis of 16S rRNA gene sequence similarity revealed that the isolate was most closely related to
Alloscardovia omnicolens
CCUG 31649T (96.4 %) and
Metascardovia criceti
OMB105T (96.6 %). Sequences of hsp60, fusA, and xfp genes also confirmed that the strain was most closely related to the type strains of
A. omnicolens
and
M. criceti
. The isolate produced fructose-6-phosphate phosphoketolase which is in agreement with classification within the family
Bifidobacteriaceae
. The major fatty acids were C18 : 1ω9c (35.8 %), C16 : 1 (6.2 %) and C14 : 0 (5.7 %). Polar lipid analysis revealed five different glycolipids, two unidentified phospholipids and diphosphatidylglycerol. The peptidoglycan was of the type A4α l-Lys–d-Asp with the presence of d(l)-alanine, d-glutamine, d-asparagine and l-lysine. The DNA G+C content of strain M8T was 50.1 mol%. On the basis of genetic, phylogenetic and phenotypic data, strain M8T represents a novel species of the genus
Alloscardovia
for which the name Alloscardovia macacae sp. nov. is proposed. The type strain is M8T ( = DSM 24762T = CCM 7944T). In addition, our results also revealed that
Alloscardovia omnicolens
DSM 21503T and
Metascardovia criceti
DSM 17774T do not belong to different genera within the family
Bifidobacteriaceae
. We therefore propose to reclassify
Metascardovia criceti
as Alloscardovia criceti comb. nov. An emended description of the genus
Alloscardovia
is also provided.
Collapse
|
25
|
Tsuchida S, Takahashi S, Nguema PPM, Fujita S, Kitahara M, Yamagiwa J, Ngomanda A, Ohkuma M, Ushida K. Bifidobacterium moukalabense sp. nov., isolated from the faeces of wild west lowland gorilla (Gorilla gorilla gorilla). Int J Syst Evol Microbiol 2013; 64:449-455. [PMID: 24158945 DOI: 10.1099/ijs.0.055186-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gram-staining-positive anaerobic rods were isolated from the faeces of a wild lowland gorilla (Gorilla gorilla gorilla) in Moukalaba-Doudou National Park, Gabon, and strain GG01(T) was taxonomically investigated. Based on phylogenetic analyses and specific phenotypic characteristics, the strain belonged to the genus Bifidobacterium. Phylogenetic analysis of its 16S rRNA gene sequence revealed that strain GG01(T) formed a single monophyletic cluster and had a distinct line of descent. Based on 16S rRNA gene sequence similarity, the type strains of Bifidobacterium catenulatum JCM 1194(T) (98.3%) and Bifidobacterium pseudocatenulatum (98.1%) JCM 1200(T) were the most closely related to this novel strain, although it was clear that they belonged to different species. hsp60 sequences also supported these relationships. The DNA G+C content of this novel strain was 60.1 mol%. Bifidobacterium moukalabense sp. nov. (type strain GG01(T) = JCM 18751(T) = DSM 27321(T)) is proposed.
Collapse
Affiliation(s)
- Sayaka Tsuchida
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan
| | | | | | - Shiho Fujita
- Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Maki Kitahara
- Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Juichi Yamagiwa
- Graduate School of Science, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
| | - Alfred Ngomanda
- Research Institute of Tropical Ecology, Libreville, Bp 13354, Gabon
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Kazunari Ushida
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan
| |
Collapse
|
26
|
Takahata M, Toh H, Nakano A, Takagi M, Murakami M, Ishii Y, Takizawa T, Tanabe S, Morita H. Complete sequence analysis of two cryptic plasmids from Bifidobacterium kashiwanohense JCM 15439 (type strain) isolated from healthy infant feces. Anim Sci J 2013; 85:158-63. [PMID: 23865717 DOI: 10.1111/asj.12095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 04/18/2013] [Indexed: 11/26/2022]
Abstract
Bifidobacterial plasmids reported so far are derived from a limited number of strains and plasmids of bifidobacterial type strains isolated from humans are unknown. We found that Bifidobacterium kashiwanohense JCM 15439 (type strain) isolated from a healthy infant contained two cryptic plasmids, designated pBBKW-1 and pBBKW-2. We determined and analyzed the complete sequences of both plasmids. pBBKW-1 (7716 bp) was predicted to replicate by a rolling-circle mechanism and encode six protein-coding genes, two of which are putative replication proteins. pBBKW-1 seems to be a cointegrate plasmid containing two copies of the plasmid pMG1 from Bifidobacterium longum. pBBKW-2 (2920 bp) was predicted to encode six protein-coding genes and be a theta-type replicating plasmid, which has been reported to be more stable than a rolling circle-type replicating plasmid frequently found in bifidobacteria. Our finding will provide new insights into safe recombinant plasmid constructions for humans.
Collapse
Affiliation(s)
- Muneaki Takahata
- School of Veterinary Medicine, Azabu University, Sagamihara; BioBank Co., Ltd, Okayama
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Baffoni L, Stenico V, Strahsburger E, Gaggìa F, Di Gioia D, Modesto M, Mattarelli P, Biavati B. Identification of species belonging to the Bifidobacterium genus by PCR-RFLP analysis of a hsp60 gene fragment. BMC Microbiol 2013; 13:149. [PMID: 23815602 PMCID: PMC3710250 DOI: 10.1186/1471-2180-13-149] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/27/2013] [Indexed: 11/21/2022] Open
Abstract
Background Bifidobacterium represents one of the largest genus within the Actinobacteria, and includes at present 32 species. These species share a high sequence homology of 16S rDNA and several molecular techniques already applied to discriminate among them give ambiguous results. The slightly higher variability of the hsp60 gene sequences with respect to the 16S rRNA sequences offers better opportunities to design or develop molecular assays, allowing identification and differentiation of closely related species. hsp60 can be considered an excellent additional marker for inferring the taxonomy of the members of Bifidobacterium genus. Results This work illustrates a simple and cheap molecular tool for the identification of Bifidobacterium species. The hsp60 universal primers were used in a simple PCR procedure for the direct amplification of 590 bp of the hsp60 sequence. The in silico restriction analysis of bifidobacterial hsp60 partial sequences allowed the identification of a single endonuclease (HaeIII) able to provide different PCR-restriction fragment length polymorphism (RFLP) patterns in the Bifidobacterium spp. type strains evaluated. The electrophoretic analyses allowed to confirm the different RFLP patterns. Conclusions The developed PCR-RFLP technique resulted in efficient discrimination of the tested species and subspecies and allowed the construction of a dichotomous key in order to differentiate the most widely distributed Bifidobacterium species as well as the subspecies belonging to B. pseudolongum and B. animalis.
Collapse
|
28
|
Quantification of human fecal bifidobacterium species by use of quantitative real-time PCR analysis targeting the groEL gene. Appl Environ Microbiol 2012; 78:2613-22. [PMID: 22307308 DOI: 10.1128/aem.07749-11] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Quantitative real-time PCR assays targeting the groEL gene for the specific enumeration of 12 human fecal Bifidobacterium species were developed. The housekeeping gene groEL (HSP60 in eukaryotes) was used as a discriminative marker for the differentiation of Bifidobacterium adolescentis, B. angulatum, B. animalis, B. bifidum, B. breve, B. catenulatum, B. dentium, B. gallicum, B. longum, B. pseudocatenulatum, B. pseudolongum, and B. thermophilum. The bifidobacterial chromosome contains a single copy of the groEL gene, allowing the determination of the cell number by quantification of the groEL copy number. Real-time PCR assays were validated by comparing fecal samples spiked with known numbers of a given Bifidobacterium species. Independent of the Bifidobacterium species tested, the proportion of groEL copies recovered from fecal samples spiked with 5 to 9 log(10) cells/g feces was approximately 50%. The quantification limit was 5 to 6 log(10) groEL copies/g feces. The interassay variability was less than 10%, and variability between different DNA extractions was less than 23%. The method developed was applied to fecal samples from healthy adults and full-term breast-fed infants. Bifidobacterial diversity in both adults and infants was low, with mostly ≤3 Bifidobacterium species and B. longum frequently detected. The predominant species in infant and adult fecal samples were B. breve and B. adolescentis, respectively. It was possible to distinguish B. catenulatum and B. pseudocatenulatum. We conclude that the groEL gene is a suitable molecular marker for the specific and accurate quantification of human fecal Bifidobacterium species by real-time PCR.
Collapse
|