1
|
Li J, Yang ZD, Wang ET, Sun LQ, Li Y. The Effect of Climate Variables, Soil Characteristics, and Peanut Cultivars on the Rhizobial Bacteria Community. Microorganisms 2025; 13:926. [PMID: 40284762 PMCID: PMC12029271 DOI: 10.3390/microorganisms13040926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Peanuts are widely cultivated across the world; however, peanut's rhizobial community and the determinant factors of their composition are still to be elucidated. This study investigates the biogeography and determinant soil environmental factors for peanut rhizobia. A total of 1001 rhizobial isolates were obtained from the peanut root nodules, mainly belonging to two cultivars (X9 and M6) cultivated in 20 sampling sites across China. According to recA sequence analysis, all the isolates were classified as 84 haplotypes, and a representative strain for each haplotype was randomly selected to perform subsequent analyses. Based on multilocus sequence analysis (MLSA) of housekeeping genes dnaK, glnII, gyrB, recA, and rpoB, all the representative strains were classified as 42 genospecies in the genus Bradyrhizobium, including 12 effectively published and 30 undefined genospecies. Strains belonging to six genospecies were predominant (>5%), including B. ottawaense, B. liaoningense, B. yuanmingense, Bradyrhizobium sp. XXIX, B. guangdongense, and B. nanningense. However, only a single isolate was obtained for 15 genospecies. The diversity indices of peanut rhizobia distributed in South China are obviously higher than those in North China, but no obvious peanut cultivar selection for rhizobial genospecies was found. Correlation analyses indicated that the community composition of peanut rhizobia was mainly affected by MAP, MAT, soil AP, and pH. Nodulation tests indicated that the 79 representative strains belonging to 37 genospecies with both nodC and nifH could perform nitrogen-fixing symbiosis with peanuts. This study revealed the great diversity and varied composition of communities of peanut rhizobia in different geographic regions across China.
Collapse
Affiliation(s)
- Juan Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Zhong-De Yang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - En-Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Li-Qin Sun
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Yan Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
2
|
Krishnan KS, Rangasamy A, Arunan YE, Dananjeyan B, Subramanium T, Saminathan V. Microbial inoculants - fostering sustainability in groundnut production. Sci Prog 2025; 108:368504251338943. [PMID: 40324969 PMCID: PMC12059452 DOI: 10.1177/00368504251338943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Groundnut (Arachis hypogaea L.) is a vital leguminous oilseed crop, widely cultivated in tropical and subtropical regions due to its high nutritional and economic significance in food, feed, and oil purposes. It is a rich source of protein, oil, vitamins, minerals, and bioactive compounds with anti-inflammatory, anticancer, and anti-aging properties. Globally, groundnut production is approximately 54.2 million tonnes, with India contributing 10.1 million tonnes through rainfed cultivation. However, its productivity is constrained by drought, salinity, soil nutrient deficits, and disease infestations. Conventional farming depends on chemical inputs to enhance yield and productivity but negatively impacts soil health and fertility, reduces microbial diversity, and pollutes agroecosystems, creating an urgent need for sustainable alternatives. Microbe-based bioinoculants comprising nitrogen-fixers, phosphorus solubilizers, potassium solubilizers, sulphur oxidizers, other plant growth-promoting rhizobacteria (PGPR), mycorrhizal fungi, and cyanobacteria offer an alternative approach to enhance the growth and yield of groundnut through various direct and indirect mechanisms, including augmenting nutrient absorption, improving quality parameters, suppressing plant pathogens, stimulating plant defence, and increasing resilience to abiotic stresses. This narrative review examines the diversity, benefits, and growth-promoting mechanisms of rhizospheric, phyllospheric, and endophytic microorganisms associated with groundnut. Additionally, molecular docking of groundnut root exudate metabolites, produced upon microbial inoculation, with stress-responsive proteins highlights the significance of microbial inoculants in mitigating drought and salinity stresses. This review synthesizes recent advances in microbial inoculant applications, highlighting their potential to revolutionize sustainable groundnut cultivation. Therefore, microbial inoculants provide a promising solution ensuring sustainability and assurance of food security amid global difficulties.
Collapse
Affiliation(s)
- Kaviya Sree Krishnan
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Anandham Rangasamy
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Yuvasri Errakutty Arunan
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Balachandar Dananjeyan
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Thiyageshwari Subramanium
- Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Vincent Saminathan
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
3
|
Patra D, Pal KK, Mandal S. Inter-species interaction of bradyrhizobia affects their colonization and plant growth promotion in Arachis hypogaea. World J Microbiol Biotechnol 2024; 40:234. [PMID: 38844667 DOI: 10.1007/s11274-024-04035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 05/24/2024] [Indexed: 07/14/2024]
Abstract
Bradyrhizobia are the principal symbiotic partner of the leguminous plant and take active part in biological nitrogen-fixation. The present investigation explores the underlying competition among different strains during colonization in host roots. Six distinct GFP and RFP-tagged Bradyrhizobium strains were engineered to track them inside the peanut roots either independently or in combination. The Bradyrhizobium strains require different time-spans ranging from 4 to 21 days post-infection (dpi) for successful colonization which further varies in presence of another strain. While most of the individual strains enhanced the shoot and root dry weight, number of nodules, and nitrogen fixation capabilities of the host plants, no significant enhancement of plant growth and nodulation efficiency was observed when they were allowed to colonize in combinations. However, if among the combinations one strains is SEMIA 6144, the co-infection results in higher growth and nodulation efficiency of the hosts. From the competition experiments it has been found that Bradyrhizobium japonicum SEMIA 6144 was found to be the most dominant strain for effective nodulation in peanut. The extent of biofilm and exopolysaccharide (EPS) production by these isolates, individually or in combinations, were envisaged to correlate whether these parameters have any impact on the symbiotic association. But the extent of colonization, growth-promotion and nitrogen-fixation ability drastically lowered when a strain present together with other Bradyrhizobium strain. Therefore, it is imperative to understand the interaction between two co-inoculating Bradyrhizobium species for nodulation followed by plant growth promotion to develop suitable consortia for enhancing BNF in peanut and possibly for other legumes.
Collapse
Affiliation(s)
- Dipanwita Patra
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Kamal K Pal
- ICAR-National Institute of Abiotic Stress Management, School of Drought Stress Management, Malegaon Khurd, Baramati, Pune, Maharashtra, 413115, India
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
4
|
Zhang J, Feng Y, Wang J, Wang E, Andrews M. Diverse Bradyrhizobium spp. with Similar Symbiosis Genes Nodulate Peanut in Different Regions of China: Characterization of Symbiovar sv. Arachis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3776. [PMID: 37960132 PMCID: PMC10647606 DOI: 10.3390/plants12213776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
A total of 219 rhizobial strains isolated from peanut grown in soils from six peanut croplands in Zhengyang county, Henan Province, were typed by PCR-RFLP of IGS sequences. Their phylogenetic relationships were refined on representative strains using sequence analyses of 16S rRNA genes, housekeeping genes (atpD, recA, glnII) and symbiosis genes (nodA, nodC and nifH). The 219 rhizobial isolates were classified into 13 IGS types, and twenty representatives were defined within eight Bradyrhizobium genospecies: B. guangdongense covering 5 IGS types (75.2% of total isolates), B. guangzhouense (2 IGS types, 2.7% total isolates), B. zhengyangense (1 IGS type, 11.3% total isolates) and five novel genospecies (5 IGS types, 0.9 to 3.2% total isolates). All representative strains had identical nodA, nodC and nifH sequences except for one nifH sequence. With this one exception, these sequences were identical to those of the type strains of Bradyrhizobium species and several Bradyrhizobium genospecies isolated from peanut in different regions of China. The nodC sequences of all strains showed < 67% similarity to the closest strains on the Genbank database indicating that they are representative of a novel Bradyrhiobium symbiovar. This study has shown that (1) diverse Bradyrhizobium spp. with similar symbiosis genes nodulate peanut in different regions of China. (2) Horizontal transfer of genes involved in nodulating peanut is common between Bradyrhizobium species in soils used to grow the crop in China. (3) The strains studied here are representative of a novel Bradyrhizobium symbiovar that nodulates peanut in China. We propose the name sv. arachis for this novel symbiovar indicating that the strains were isolated from Arachis hypogaea. Results here have practical implications in relation to the selection of rhizobial inoculants for peanut in China.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (Y.F.); (J.W.)
- Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou 450002, China
| | - Yufeng Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (Y.F.); (J.W.)
| | - Jingqi Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (Y.F.); (J.W.)
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| | - Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
5
|
Zhang J, Peng S, Li S, Song J, Brunel B, Wang E, James EK, Chen W, Andrews M. Arachis hypogaea L. from Acid Soils of Nanyang (China) Is Frequently Associated with Bradyrhizobium guangdongense and Occasionally with Bradyrhizobium ottawaense or Three Bradyrhizobium Genospecies. MICROBIAL ECOLOGY 2022; 84:556-564. [PMID: 34528105 DOI: 10.1007/s00248-021-01852-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Henan Province is a major area of peanut production in China but the rhizobia nodulating the crop in this region have not been described. A collection of 217 strains of peanut rhizobia was obtained from six field sites across four soil types in Henan Province, North China, by using peanut as a trap host under glasshouse conditions. The 217 strains separated into 8 distinct types on PCR-RFLP analysis of their IGS sequences. Phylogenetic analysis of the 16S rRNA, recA, atpD, and glnII genes of 11 representative strains of the 8 IGS types identified Bradyrhizobium guangdongense, B. ottawaense and three novel Bradyrhizobium genospecies. Bradyrhizobium guangdongense was dominant, accounting for 75.0% of the total isolates across the field sites while B. ottawaense covered 5.1% and the three novel Bradyrhizobium genospecies 4.1 to 8.8% of the total. The symbiosis-related nodA and nifH gene sequences were not congruent with the core genes on phylogenetic analysis and separated into three groups, two of which were similar to sequences of Bradyrhizobium spp. isolated from peanut in south-east China and the third identical to that of B. yuanmingense isolated from Lespedeza cuneata in northern China. A canonical correlation analysis between the distribution of IGS genotypes and soil physicochemical characteristics and climatic factors indicated that the occurrence of IGS types/species was mainly associated with soil pH and available phosphorus.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Province, Zhengzhou, 450000, People's Republic of China.
- Collaborative Innovation Center for Food Production and Safety of Henan Province, Henan Province, Zhengzhou, 450002, People's Republic of China.
| | - Shanshan Peng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Province, Zhengzhou, 450000, People's Republic of China
| | - Shuo Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Province, Zhengzhou, 450000, People's Republic of China
| | - Jiangchun Song
- Nanyang Academy of Agricultural Sciences, Henan Province, Nanyang, 473000, People's Republic of China
| | - Brigitte Brunel
- LSTM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, México, D. F., México
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Wenfeng Chen
- State Key Laboratory of Agrobiotechnology, Beijing, 100193, People's Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand.
| |
Collapse
|
6
|
Klepa MS, Helene LCF, O´Hara G, Hungria M. Bradyrhizobium cenepequi sp. nov., Bradyrhizobium semiaridum sp. nov., Bradyrhizobium hereditatis sp. nov. and Bradyrhizobium australafricanum sp. nov., symbionts of different leguminous plants of Western Australia and South Africa and definition of three novel symbiovars. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005446] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bradyrhizobium
is a heterogeneous bacterial genus capable of establishing symbiotic associations with a broad range of legume hosts, including species of economic and environmental importance. This study was focused on the taxonomic and symbiovar definition of four strains – CNPSo 4026T, WSM 1704T, WSM 1738T and WSM 4400T – previously isolated from nodules of legumes in Western Australia and South Africa. The 16S rRNA gene phylogenetic tree allocated the strains to the
Bradyrhizobium elkanii
supergroup. The multilocus sequence analysis (MLSA) with partial sequences of six housekeeping genes – atpD, dnaK, glnII, gyrB, recA and rpoB – did not cluster the strains under study as conspecific to any described
Bradyrhizobium
species. Average nucleotide identity and digital DNA–DNA hybridization values were calculated for the four strains of this study and the closest species according to the MLSA phylogeny with the highest values being 95.46 and 62.20 %, respectively; therefore, both being lower than the species delineation cut-off values. The nodC and nifH phylogenies included strains WSM 1738T and WSM 4400T in the symbiovars retamae and vignae respectively, and also allowed the definition of three new symbiovars, sv. cenepequi, sv. glycinis, and sv. cajani. Analysis of morphophysiological characterization reinforced the identification of four novel proposed
Bradyrhizobium
species that are accordingly named as follows: Bradyrhizobium cenepequi sp. nov. (CNPSo 4026T=WSM 4798T=LMG 31653T), isolated from Vigna unguiculata; Bradyrhizobium semiaridum sp. nov. (WSM 1704T=CNPSo 4028T=LMG 31654T), isolated from Tephrosia gardneri; Bradyrhizobium hereditatis sp. nov. (WSM 1738T=CNPSo 4025T=LMG 31652T), isolated from Indigofera sp.; and Bradyrhizobium australafricanum sp. nov. (WSM 4400T=CNPSo 4015T=LMG 31648T) isolated from Glycine sp.
Collapse
Affiliation(s)
- Milena Serenato Klepa
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Luisa Caroline Ferraz Helene
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Graham O´Hara
- Centre for Rhizobium Studies (CRS), Murdoch University 90 South St. Murdoch, WA, Australia
| | - Mariangela Hungria
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| |
Collapse
|
7
|
Sun L, Zhang Z, Dong X, Tang Z, Ju B, Du Z, Wang E, Xie Z. Bradyrhizobium aeschynomenes sp. nov., a root and stem nodule microsymbiont of Aeschynomene indica. Syst Appl Microbiol 2022; 45:126337. [DOI: 10.1016/j.syapm.2022.126337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
|
8
|
Mousavi SA, Gao Y, Penttinen P, Frostegård Å, Paulin L, Lindström K. Using amplicon sequencing of rpoB for identification of inoculant rhizobia from peanut nodules. Lett Appl Microbiol 2021; 74:204-211. [PMID: 34753197 DOI: 10.1111/lam.13599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022]
Abstract
To improve the nitrogen fixation, legume crops are often inoculated with selected effective rhizobia. However, there is large variation in how well the inoculant strains compete with the indigenous microflora in soil. To assess the success of the inoculant, it is necessary to distinguish it from other, closely related strains. Methods used until now have generally been based either on fingerprinting methods or on the use of reporter genes. Nevertheless, these methods have their shortcomings, either because they do not provide sufficiently specific information on the identity of the inoculant strain, or because they use genetically modified organisms that need prior authorization to be applied in the field or other uncontained environments. Another possibility is to target a gene that is naturally present in the bacterial genomes. Here we have developed a method that is based on amplicon sequencing of the bacterial housekeeping gene rpoB, encoding the beta-subunit of the RNA polymerase, which has been proposed as an alternative to the 16S rRNA gene to study the diversity of rhizobial populations in soils. We evaluated the method under laboratory and field conditions. Peanut seeds were inoculated with various Bradyrhizobium strains. After nodule development, DNA was extracted from selected nodules and the nodulating rhizobia were analysed by amplicon sequencing of the rpoB gene. The analyses of the sequence data showed that the method reliably identified bradyrhizobial strains in nodules, at least at the species level, and could be used to assess the competitiveness of the inoculant compared to other bradyrhizobia.
Collapse
Affiliation(s)
- S A Mousavi
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences and Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, Finland.,Division of Ecology and Evolutionary Biology, Department of Biology, University of Turku, Turku, Finland
| | - Y Gao
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences and Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, Finland.,Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, As, Norway.,International Research and Development Center, Kingenta Ecological Engineering Group Co. Ltd, Linyi, China
| | - P Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Å Frostegård
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, As, Norway
| | - L Paulin
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - K Lindström
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences and Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Liu G, Liu X, Liu W, Gao K, Chen X, Wang ET, Zhao Z, Du W, Li Y. Biodiversity and Geographic Distribution of Rhizobia Nodulating With Vigna minima. Front Microbiol 2021; 12:665839. [PMID: 34017318 PMCID: PMC8129581 DOI: 10.3389/fmicb.2021.665839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Vigna minima is a climbing annual plant widely distributed in barren wilderness, grass land, and shrub bush of China and other countries such as Japan. However, the rhizobia nodulating with this plant has never been systematically studied. In order to reveal the biodiversity of nodulating rhizobia symbiosis with V. minima, a total of 874 rhizobium isolates were obtained from root nodules of the plant spread in 11 sampling sites of Shandong Peninsula, China, and they were designated as 41 haplotypes in the genus Bradyrhizobium based upon recA sequence analyses. By multilocus sequence analysis (MLSA) of five housekeeping genes (dnaK, glnII, gyrB, recA, and rpoB), the 41 strains representing different recA haplotypes were classified into nine defined species and nine novel genospecies. Bradyrhizobium elkanii, Bradyrhizobium ferriligni, and Bradyrhizobium pachyrhizi were the predominant and universally distributed groups. The phylogeny of symbiotic genes of nodC and nifH showed similar topology and phylogenetic relationships, in which all the representative strains were classified into two clades grouped with strains nodulating with Vigna spp., demonstrating that Vigna spp. shared common nodulating groups in the natural environment. All the representative strains formed nodules with V. minima in a nodulation test performed in green house conditions. The correlation between V. minima nodulating rhizobia and soil characteristics analyzed by CANOCO indicates that available nitrogen, total nitrogen, and organic carbon in the soil samples were the main factors affecting the distribution of rhizobia isolated in this study. This study systematically uncovered the biodiversity and distribution characteristics of V. minima nodulating rhizobia for the first time, which provided novel information for the formation of the corresponding rhizobium community.
Collapse
Affiliation(s)
- Guohua Liu
- College of Life Science, Yantai University, Yantai, China
| | - Xiaoling Liu
- College of Life Science, Yantai University, Yantai, China
| | - Wei Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Kangning Gao
- College of Resources and Environment, Shijiazhuang University, Shijiazhuang, China
| | - Xiaoli Chen
- The Fruit Trees Work Station of Penglai, Yantai, China
| | - En-Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Zhenjun Zhao
- College of Life Science, Yantai University, Yantai, China
| | - Wenxiao Du
- College of Life Science, Yantai University, Yantai, China
| | - Yan Li
- College of Life Science, Yantai University, Yantai, China.,Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
10
|
Helene LCF, Klepa MS, O'Hara G, Hungria M. Bradyrhizobium archetypum sp. nov., Bradyrhizobium australiense sp. nov. and Bradyrhizobium murdochi sp. nov., isolated from nodules of legumes indigenous to Western Australia. Int J Syst Evol Microbiol 2020; 70:4623-4636. [PMID: 32667875 DOI: 10.1099/ijsem.0.004322] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Bradyrhizobium is considered as the probable ancestor lineage of all rhizobia, broadly spread in a variety of ecosystems and with remarkable diversity. A polyphasic study was performed to characterize and clarify the taxonomic position of eight bradyrhizobial strains isolated from indigenous legumes to Western Australia. As expected for the genus, the 16S rRNA gene sequences were highly conserved, but the results of multilocus sequence analysis with four housekeeping genes (dnaK, glnII, gyrB and recA) confirmed three new distinct clades including the following strains: (1) WSM 1744T, WSM 1736 and WSM 1737; (2) WSM 1791T and WSM 1742; and (3) WSM 1741T, WSM 1735 and WSM 1790. The highest ANI values of the three groups in relation to the closest type strains were 92.4, 92.3 and 93.3 %, respectively, below the threshold of species circumscription. The digital DNA-DNA hybridization analysis also confirmed new species descriptions, with less than 52 % relatedness with the closest type strains. The phylogeny of the symbiotic gene nodC clustered the eight strains into the symbiovar retamae, together with seven Bradyrhizobium type strains, sharing from 94.2-98.1 % nucleotide identity (NI), and less than 88.7 % NI with other related strains and symbiovars. Morpho-physiological, phylogenetics, genomic and symbiotic traits were determined for the new groups and our data support the description of three new species, Bradyrhizobium archetypum sp. nov., Bradyrhizobium australiense sp. nov. and Bradyrhizobium murdochi sp. nov., with WSM 1744T (=CNPSo 4013T=LMG 31646T), WSM 1791T (=CNPSo 4014T=LMG 31647T) and WSM 1741T (=CNPSo 4020T=LMG 31651T) designated as type strains, respectively.
Collapse
Affiliation(s)
- Luisa Caroline Ferraz Helene
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil.,Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Milena Serenato Klepa
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil.,Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil.,Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Graham O'Hara
- Centre for Rhizobium Studies (CRS), Murdoch University 90 South St. Murdoch, WA, Australia
| | - Mariangela Hungria
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil.,Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil.,Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| |
Collapse
|
11
|
Shao S, Chen M, Liu W, Hu X, Wang ET, Yu S, Li Y. Long-term monoculture reduces the symbiotic rhizobial biodiversity of peanut. Syst Appl Microbiol 2020; 43:126101. [PMID: 32847777 DOI: 10.1016/j.syapm.2020.126101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 11/17/2022]
Abstract
Long-term monoculture (LTM) decreases the yield and quality of peanut, even resulting in changes in the microbial community. However, the effect of LTM on peanut rhizobial communities has still not been elucidated. In this study, we isolated and characterized peanut rhizobia from 6 sampling plots with different monoculture cropping durations. The community structure and diversity index for each sampling site were analyzed, and the correlations between a peanut rhizobium and soil characteristics were evaluated to clarify the effects on peanut rhizobial communities. The competitive abilities among representative strains were also analyzed. A total of 283 isolates were obtained from 6 sampling plots. Nineteen recA haplotypes were defined and were grouped into 8 genospecies of Bradyrhizobium, with B. liaoningense and B. ottawaense as the dominant groups in each sample. The diversity indexes of the rhizobial community decreased, and the dominant groups of B. liaoningense and B. ottawaense were enriched significantly with extended culture duration. Available potassium (AK), available phosphorus (AP), available nitrogen (AN), total nitrogen (TN) and organic carbon (OC) gradually increased with increasing monoculture duration. OC, TN, AP and AK were the main soil characteristics affecting the distribution of rhizobial genospecies in the samples. A competitive nodulation test indicated that B. liaoningense presented an excellent competitive ability, which was congruent with its high isolation frequency. This study revealed that soil characteristics and the competitive ability of rhizobia shape the symbiotic rhizobial community and provides information on community formation and the biogeographic properties of rhizobia.
Collapse
Affiliation(s)
- Shuai Shao
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Life Science College, Yantai University, Yantai, 264005, China
| | - Mingna Chen
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Wei Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - En-Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City D.F, 11340, Mexico
| | - Shanlin Yu
- Shandong Peanut Research Institute, Qingdao, 266100, China.
| | - Yan Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
12
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
13
|
Abstract
AbstractWe isolated 18 rhizobial strains from root nodules of a leguminous shrub Laburnum anagyroides (common laburnum) grown in Southeast Poland as an exotic plant. With the use of BOX-PCR fingerprinting, the isolates were clustered into 2 main groups and one separate lineage, which was congruent with the ITS-RFLP results. The phylogenetic trees constructed based on 16S rRNA and combined atpD, dnaK, glnA, and recA gene sequence data separated the representative strains into three evolutionary lineages within the Bradyrhizobium jicamae supergroup, with Bradyrhizobium algeriense and Bradyrhizobium valentinum as the closest relatives. The nodA and nifH gene phylogenies proved that the L. anagyroides symbionts carry a symbiotic gene variant known as Clade IV, representing the symbiovar retamae. Phenotypic characteristics of the isolates and reference strains are also reported. Our study of the rhizobia nodulating L. anagyroides growing in Poland complements earlier few findings on the symbiotic associations of this Genisteae species.
Collapse
|
14
|
Rao GK, Kapadia C, Patel N, Desai K, Narasimha Murthy P. Genetic diversity analysis of greater yam (Dioscorea alata L.) genotypes through RAPD and ISSR markers. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Bai H, Zhang Y, Yu H, Irfan M, Huang Y, Han M, Yang J, Liu N, Wang H, Han X. Phylogenetic diversity and cross-inoculation of indigenous isolated Bradyrhizobium from nodules of peanut in Liaoning province of China. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2019; 8:59-68. [PMID: 31531377 PMCID: PMC6715265 DOI: 10.22099/mbrc.2019.32983.1392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Arachis hypogaea. L is a legume of economic importance, which is nodulated by Bradyrhizobium, a slow-growing bacteria. However there is no well characterization of this rhizobia in many areas of China. In the present study, cross-inoculation experiments were performed in cowpea and soybean. The isolated bacteria strains were characterized physiologyically, biochemically and identified through 16S rDNA sequence analysis showing that it belongs to Bradyrhizobium japonicum. The genetic diversity of the seventeen isolated strains were assessed through PCR-RFLP of 16S rDNA and 16S-23S rDNA IGS region. Cross inoculation test indicated that isolates could nodulate cowpea but not soybean. The cluster analysis based on physiological and biochemical characteristics showed the lower correlation between isolates and sites. The isolates were grouped into four clusters based on 16S rDNA gene sequence analysis. Thirteen polymorphisms were variable across all observations in 16S rDNA RFLP and six different IGS types from isolates. The results implies that there was some association between geographical factor and phylogenetic diversity of indigenous Bradyrhizobium isolates.
Collapse
Affiliation(s)
- Hongzhi Bai
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Yanhua Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Haiqiu Yu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha Pakistan
| | - Yuqian Huang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Mei Han
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Jinfeng Yang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Ning Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Hui Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiaori Han
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
16
|
Ibny FYI, Jaiswal SK, Mohammed M, Dakora FD. Symbiotic effectiveness and ecologically adaptive traits of native rhizobial symbionts of Bambara groundnut (Vigna subterranea L. Verdc.) in Africa and their relationship with phylogeny. Sci Rep 2019; 9:12666. [PMID: 31477738 PMCID: PMC6718677 DOI: 10.1038/s41598-019-48944-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/13/2019] [Indexed: 11/09/2022] Open
Abstract
Bambara groundnut (Vigna subterranea L. Verdc.) is an indigenous, drought-tolerant, underutilized African food legume, with the ability to fix atmospheric N2 in symbiosis with soil bacteria called rhizobia. The aim of this study was to assess the morpho-physiological, symbiotic and phylogenetic characteristics of rhizobia nodulating Bambara groundnut in Ghana, Mali and South Africa. The morpho-physiologically diverse isolates tested were also found to exhibit differences in functional efficiency and phylogenetic positions. Based on Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR banding patterns, the isolates were grouped into eight major clusters. The concentrations of Ca, Na and K in soils had a significant (p ≤ 0.01) effect on the distribution of rhizobia. Though many isolates were symbiotically very effective, the effectiveness index varied markedly (p ≤ 0.05) among them. Moreover, the isolates also exhibited tolerance to a wide range of NaCl (0.5–7%), streptomycin (50–500 µg.ml−1), and kanamycin (25–150 µg.ml−1) concentrations. Additionally, these isolates could produce 0.02 to 69.71 µg.ml−1 of indole-3-acetic acid (IAA) in tryptophan-supplemented medium, as well as solubilize tri-calcium phosphate. Phylogenetic analysis of these rhizobial isolates using 16S rRNA, atpD, glnII, gyrB, recA and symbiotic (nifH and nodC) gene sequences revealed distinct and novel evolutionary lineages related to the genus Bradyrhizobium, with some of them being very close to Bradyrhizobium vignae, B. kavangense, B. subterraneum, B. elkanii and B. pachyrhizi.
Collapse
Affiliation(s)
- Fadimata Y I Ibny
- Department of Crop Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Sanjay K Jaiswal
- Chemistry Department, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| | - Mustapha Mohammed
- Department of Crop Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Felix D Dakora
- Chemistry Department, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
17
|
Li YH, Wang R, Sui XH, Wang ET, Zhang XX, Tian CF, Chen WF, Chen WX. Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov., isolated from effective nodules of peanut in Southeast China. Syst Appl Microbiol 2019; 42:126002. [PMID: 31362902 DOI: 10.1016/j.syapm.2019.126002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 11/25/2022]
Abstract
Nine slow-growing rhizobia isolated from effective nodules on peanut (Arachis hypogaea) were characterized to clarify the taxonomic status using a polyphasic approach. They were assigned to the genus Bradyrhizobium on the basis of 16S rRNA sequences. MLSA of concatenated glnII-recA-dnaK genes classified them into three species represented by CCBAU 53390T, CCBAU 51670T and CCBAU 51778T, which presented the closest similarity to B. guangxiense CCBAU 53363T, B. guangdongense CCBAU 51649T and B. manausense BR 3351T, B. vignae 7-2T and B. forestalis INPA 54BT, respectively. The dDDH (digital DNA-DNA hybridization) and ANI (Average Nucleotide Identity) between the genomes of the three representative strains and type strains for the closest Bradyrhizobium species were less than 42.1% and 91.98%, respectively, below the threshold of species circumscription. Effective nodules could be induced on peanut and Lablab purpureus by all representative strains, while Vigna radiata formed effective nodules only with CCBAU 53390T and CCBAU 51778T. Phenotypic characteristics including sole carbon sources and growth features supported the phylogenetic results. Based on the genotypic and phenotypic features, strains CCBAU 53390T, CCBAU 51670T and CCBAU 51778T are designated the type strains of three novel species, for which the names Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov. are proposed, respectively.
Collapse
Affiliation(s)
- Yong Hua Li
- State Key Lab of Agrobiotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Rui Wang
- State Key Lab of Agrobiotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xin Hua Sui
- State Key Lab of Agrobiotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| | - En Tao Wang
- State Key Lab of Agrobiotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China; Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, 11340 Mexico D. F., Mexico
| | - Xiao Xia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Chang Fu Tian
- State Key Lab of Agrobiotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Wen Feng Chen
- State Key Lab of Agrobiotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Wen Xin Chen
- State Key Lab of Agrobiotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
18
|
Sun R, Li W, Hu C, Liu B. Long-term urea fertilization alters the composition and increases the abundance of soil ureolytic bacterial communities in an upland soil. FEMS Microbiol Ecol 2019; 95:5427915. [DOI: 10.1093/femsec/fiz044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/03/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ruibo Sun
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Yuhua District, Shijiazhuang 050021, China
| | - Wenyan Li
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Yuhua District, Shijiazhuang 050021, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Chunsheng Hu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Yuhua District, Shijiazhuang 050021, China
| | - Binbin Liu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Yuhua District, Shijiazhuang 050021, China
| |
Collapse
|
19
|
Jaiswal SK, Dakora FD. Widespread Distribution of Highly Adapted Bradyrhizobium Species Nodulating Diverse Legumes in Africa. Front Microbiol 2019; 10:310. [PMID: 30853952 PMCID: PMC6395442 DOI: 10.3389/fmicb.2019.00310] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/05/2019] [Indexed: 11/17/2022] Open
Abstract
Bradyrhizobium is one of the most cosmopolitan and diverse bacterial group nodulating a variety of host legumes in Africa, however, the diversity and distribution of bradyrhizobial symbionts nodulating indigenous African legumes are not well understood, though needed for increased food legume production. In this review, we have shown that many African food legumes are nodulated by bradyrhizobia, with greater diversity in Southern Africa compared to other parts of Africa. From a few studies done in Africa, the known bradyrhizobia (i.e., Bradyrhizobium elkanii, B. yuanmingense) along with many novel Bradyrhizobium species are the most dominant in African soils. This could be attributed to the unique edapho-climatic conditions of the contrasting environments in the continent. More studies are needed to identify the many novel bradyrhizobia resident in African soils in order to better understand the biogeography of bradyrhizobia and their potential for inoculant production.
Collapse
Affiliation(s)
- Sanjay K. Jaiswal
- Department of Chemistry, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
| | - Felix D. Dakora
- Department of Chemistry, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
20
|
Ahnia H, Bourebaba Y, Durán D, Boulila F, Palacios JM, Rey L, Ruiz-Argüeso T, Boulila A, Imperial J. Bradyrhizobium algeriense sp. nov., a novel species isolated from effective nodules of Retama sphaerocarpa from Northeastern Algeria. Syst Appl Microbiol 2018; 41:333-339. [DOI: 10.1016/j.syapm.2018.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/14/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
|
21
|
Osei O, Abaidoo RC, Ahiabor BD, Boddey RM, Rouws LF. Bacteria related to Bradyrhizobium yuanmingense from Ghana are effective groundnut micro-symbionts. APPLIED SOIL ECOLOGY : A SECTION OF AGRICULTURE, ECOSYSTEMS & ENVIRONMENT 2018; 127:41-50. [PMID: 29887673 PMCID: PMC5989812 DOI: 10.1016/j.apsoil.2018.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/26/2018] [Accepted: 03/02/2018] [Indexed: 05/27/2023]
Abstract
The identification of locally-adapted rhizobia for effective inoculation of grain legumes in Africa's semiarid regions is strategic for developing and optimizing cheap nitrogen fixation technologies for smallholder farmers. This study was aimed at selecting and characterising effective native rhizobia, from Ghanaian soils for groundnut (Arachis hypogaea L.) inoculation. From surface-disinfected root nodules of cowpea and groundnut plants grown on farmers' fields, 150 bacterial isolates were obtained, 30 of which were eventually found to nodulate groundnut plants. After testing the symbiotic potential of these isolates on groundnut on sterilized substrate, seven of them, designated as KNUST 1001-1007, were evaluated in an open field pot experiment using 15N-labelled soil. Although 15N dilution analyses did not indicate differences among treatments in the proportion of nitrogen (N) derived from the atmosphere (%Ndfa), all seven strains increased total N derived from N2 fixation by inoculated groundnut plants as compared to the non-inoculated control. Inoculation with KNUST 1002 led to total N accumulation as high as that of the groundnut reference strain 32H1. Genetic characterisation of the isolates by sequence analysis of 16S rRNA gene, 16S - 23S rRNA intergenic transcribed spacer (ITS) region and nodC gene revealed that isolates KNUST 1003 and 1007 were related to Rhizobium tropici, a common bean symbiont. The other five isolates, including KNUST 1002 belonged to the Bradyrhizobium genus, being closely related to Bradyrhizobium yuanmingense. Therefore, this study revealed novel native Ghanaian rhizobia with potential for the development of groundnut inoculants.
Collapse
Affiliation(s)
- Ophelia Osei
- Department of Crop and Soil Sciences, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| | - Robert C. Abaidoo
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
- International Institute of Tropical Agriculture, PMB 5320, Ibadan, Nigeria
| | | | - Robert M. Boddey
- Embrapa Agrobiologia, Rodovia BR 465 km 07, Seropédica, Rio de Janeiro 23891-000, Brazil
| | - Luc F.M. Rouws
- Embrapa Agrobiologia, Rodovia BR 465 km 07, Seropédica, Rio de Janeiro 23891-000, Brazil
| |
Collapse
|
22
|
Ruan H, Hu M, Chen J, Li X, Li T, Lai Y, Wang ET, Gu J. Detection of the type III secretion system and its phylogenetic and symbiotic characterization in peanut bradyrhizobia isolated from Guangdong Province, China. Syst Appl Microbiol 2018; 41:437-443. [PMID: 29759900 DOI: 10.1016/j.syapm.2018.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
Abstract
The distribution of rhcRST and rhcJ-C1 fragments located in different loci of the type III secretion system (T3SS) gene cluster in the peanut-nodulating bradyrhizobia isolated from Guangdong Province, China was investigated by PCR-based sequencing. T3SS was detected in approximately one-third of the peanut bradyrhizobial strains and the T3SS-harboring strains belonging to different Bradyrhizobium genomic species. Diverse T3SS groups corresponding to different symbiotic gene types were defined among the 23 T3SS-harboring strains. The same or similar T3SS genes were detected in different genospecies, indicating that interspecies horizontal transfer of symbiotic genes had occurred in the Bradyrhizobium genus.
Collapse
Affiliation(s)
- Huaqin Ruan
- School of Life Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Meijuan Hu
- School of Life Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Jingyu Chen
- School of Life Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Xue Li
- School of Life Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Ting Li
- School of Life Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Yongxiu Lai
- School of Life Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Mexico, D.F., Mexico
| | - Jun Gu
- School of Life Science, South China Normal University, Guangzhou 510631, Guangdong, China.
| |
Collapse
|
23
|
Molecular characterization of novel Bradyrhizobium strains nodulating Eriosema chinense and Flemingia vestita , important unexplored native legumes of the sub-Himalayan region (Meghalaya) of India. Syst Appl Microbiol 2017; 40:334-344. [DOI: 10.1016/j.syapm.2017.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 11/20/2022]
|
24
|
Andrews M, Andrews ME. Specificity in Legume-Rhizobia Symbioses. Int J Mol Sci 2017; 18:E705. [PMID: 28346361 PMCID: PMC5412291 DOI: 10.3390/ijms18040705] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 11/24/2022] Open
Abstract
Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N₂) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga). Specificity for rhizobial species/symbiovar appears to hold for Galega officinalis (Neorhizobium galegeae sv. officinalis), Galega orientalis (Neorhizobium galegeae sv. orientalis), Hedysarum coronarium (Rhizobium sullae), Medicago laciniata (Ensifer meliloti sv. medicaginis), Medicago rigiduloides (Ensifer meliloti sv. rigiduloides) and Trifolium ambiguum (Rhizobium leguminosarum sv. trifolii). Lateral gene transfer of specific symbiosis genes within rhizobial genera is an important mechanism allowing legumes to form symbioses with rhizobia adapted to particular soils. Strain-specific legume rhizobia symbioses can develop in particular habitats.
Collapse
Affiliation(s)
- Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand.
| | - Morag E Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand.
| |
Collapse
|
25
|
de Lajudie P, Martinez-Romero E. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Agrobacterium and Rhizobium Minutes of the meeting, 7 September 2014, Tenerife, Spain. Int J Syst Evol Microbiol 2017; 67:516-520. [DOI: 10.1099/ijsem.0.001597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Philippe de Lajudie
- IRD, LSTM, Campus International de Baillarguet TA A-82/J, 34398 Montpellier Cédex 5, France
| | | |
Collapse
|
26
|
Shamseldin A, Abdelkhalek A, Sadowsky MJ. Recent changes to the classification of symbiotic, nitrogen-fixing, legume-associating bacteria: a review. Symbiosis 2016. [DOI: 10.1007/s13199-016-0462-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Genetic diversity and distribution of bradyrhizobia nodulating peanut in acid-neutral soils in Guangdong Province. Syst Appl Microbiol 2016; 39:418-27. [PMID: 27499533 DOI: 10.1016/j.syapm.2016.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022]
Abstract
To reveal the genetic diversity and geographic distribution of peanut (Arachis hypogaea L.) rhizobia in Guangdong Province, one of the main peanut producing regions in China, 216 bradyrhizobial isolates were trapped by peanut plants inoculated with soil samples (pH 4.7-7.4) collected from ten sites in Guangdong. Based on BOX-PCR fingerprinting analysis, 71 representative isolates were selected for sequence analyses of ribosomal IGS, recA, atpD and symbiotic gene nodA. As a result, 22 genospecies were detected in the peanut rhizobia, including eight minor groups or single strains corresponding to Bradyrhizobium diazoefficiens, B. japonicum, B. yuanmingense, B. arachidis, B. guangdongense, B. guangxiense, B. iriomotense and B. liaoningense, as well as 14 novel Bradyrhizobium genospecies covering the majority of isolates. Five symbiotic clusters were obtained based on the phylogenetic relationships of nodA genes, related to the soybean-nodulating or peanut-nodulating reference strains. Biogeographic patterns, which were mainly correlated with potassium content and pH, were detected in the peanut bradyrhizobial community in Guangdong Province. These findings enriched the diversity of peanut rhizobia, and added the K content as a special determinant for peanut rhizobial distribution in acid soils.
Collapse
|
28
|
Naamala J, Jaiswal SK, Dakora FD. Antibiotics Resistance in Rhizobium: Type, Process, Mechanism and Benefit for Agriculture. Curr Microbiol 2016; 72:804-16. [DOI: 10.1007/s00284-016-1005-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/07/2016] [Indexed: 11/29/2022]
|
29
|
Ferraz Helene LC, Marçon Delamuta JR, Augusto Ribeiro R, Ormeño-Orrillo E, Antonio Rogel M, Martínez-Romero E, Hungria M. Bradyrhizobium viridifuturi sp. nov., encompassing nitrogen-fixing symbionts of legumes used for green manure and environmental services. Int J Syst Evol Microbiol 2015; 65:4441-4448. [DOI: 10.1099/ijsem.0.000591] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Symbiotic nitrogen-fixing bacteria, commonly called rhizobia, are agronomically important because they can provide significant amounts of nitrogen to plants and help in recovery of impoverished soils and improvement of degraded environments. In recent years, with advances in molecular techniques, several studies have shown that these bacteria have high levels of genetic diversity, resulting in taxonomic reclassifications and descriptions of new species. However, despite the advances achieved, highly conserved 16S ribosomal genes (16S rRNA) do not elucidate differences between species of several genera, including the genus Bradyrhizobium. Other methodologies, such as multilocus sequence analysis (MLSA), have been used in such cases, with good results. In this study, three strains (SEMIAs 690T, 6387 and 6428) of the genus Bradyrhizobium, isolated from nitrogen-fixing nodules of Centrosema and Acacia species, without clear taxonomic positions, were studied. These strains differed from genetically closely related species according to the results of MLSA of four housekeeping genes (dnaK, glnII, gyrB and recA) and nucleotide identities of the concatenated genes with those of related species ranged from 87.8 % to 95.7 %, being highest with Bradyrhizobium elkanii. DNA–DNA hybridization (less than 32 % DNA relatedness) and average nucleotide identity values of the whole genomes (less than 90.5 %) indicated that these strains represented a novel species, and phenotypic traits were determined. Our data supported the description of the SEMIA strains as Bradyrhizobium viridifuturi sp. nov., and SEMIA 690T ( = CNPSo 991T = C 100aT = BR 1804T = LMG 28866T), isolated from Centrosema pubescens, was chosen as type strain.
Collapse
Affiliation(s)
- Luisa Caroline Ferraz Helene
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
- Universidade Estadual de Londrina, Dept. of Microbiology, C.P. 10.011, 86057-970, Londrina, Paraná, Brazil
| | - Jakeline Renata Marçon Delamuta
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
- Universidade Estadual de Londrina, Dept. of Microbiology, C.P. 10.011, 86057-970, Londrina, Paraná, Brazil
| | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B – Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Distrito Federal, Brazil
| | | | - Marco Antonio Rogel
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | - Mariangela Hungria
- Universidade Estadual de Londrina, Dept. of Microbiology, C.P. 10.011, 86057-970, Londrina, Paraná, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B – Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Distrito Federal, Brazil
| |
Collapse
|
30
|
Li YH, Wang R, Zhang XX, Young JPW, Wang ET, Sui XH, Chen WX. Bradyrhizobium guangdongense sp. nov. and Bradyrhizobium guangxiense sp. nov., isolated from effective nodules of peanut. Int J Syst Evol Microbiol 2015; 65:4655-4661. [DOI: 10.1099/ijsem.0.000629] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seven slow-growing rhizobia isolated from effective nodules of Arachis hypogaea were assigned to the genus Bradyrhizobium based on sharing 96.3–99.9 % 16S rRNA gene sequence similarity with the type strains of recognized Bradyrhizobium species. Multilocus sequence analysis of glnII, recA, gyrB and dnaK genes indicated that the seven strains belonged to two novel species represented by CCBAU 51649T and CCBAU 53363T. Strain CCBAU 51649T shared 94, 93.4, 92.3 and 94.9 % and CCBAU 53363T shared 91.4, 94.5, 94.6 and 97.7 % sequence similarity for the glnII, recA, gyrB and dnaK genes, respectively, with respect to the closest related species Bradyrhizobium manausense BR 3351T and Bradyrhizobium yuanmingense CCBAU 10071T. Summed feature 8 and C16 : 0 were the predominant fatty acid components for strains CCBAU 51649T and CCBAU 53363T. DNA–DNA hybridization and analysis of phenotypic characteristics also distinguished these strains from the closest related Bradyrhizobium species. The strains formed effective nodules on Arachis hypogaea, Lablab purpureus and Aeschynomene indica, and they had identical nodA genes to Bradyrhizobium sp. PI237 but were phylogenetically divergent from other available nodA genes at less than 66 % similarity. Based in these results, strains CCBAU 51649T ( = CGMCC 1.15034T = LMG 28620T) and CCBAU 53363T ( = CGMCC 1.15035T = LMG 28621T) are designated the type strains of two novel species, for which the names Bradyrhizobium guangdongense sp. nov. and Bradyrhizobium guangxiense sp. nov. are proposed, respectively.
Collapse
Affiliation(s)
- Yong Hua Li
- State Key Lab for Agro-Biotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Rui Wang
- State Key Lab for Agro-Biotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Xiao Xia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | | | - En Tao Wang
- State Key Lab for Agro-Biotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, PR China
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México D. F., Mexico
| | - Xin Hua Sui
- State Key Lab for Agro-Biotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Wen Xin Chen
- State Key Lab for Agro-Biotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|
31
|
Delamuta JRM, Ribeiro RA, Ormeño-Orrillo E, Parma MM, Melo IS, Martínez-Romero E, Hungria M. Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes. Int J Syst Evol Microbiol 2015; 65:4424-4433. [PMID: 26362866 DOI: 10.1099/ijsem.0.000592] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Biological nitrogen fixation is a key process for agricultural production and environmental sustainability, but there are comparatively few studies of symbionts of tropical pasture legumes, as well as few described species of the genus Bradyrhizobium, although it is the predominant rhizobial genus in the tropics. A detailed polyphasic study was conducted with two strains of the genus Bradyrhizobium used in commercial inoculants for tropical pastures in Brazil, CNPSo 1112T, isolated from perennial soybean (Neonotonia wightii), and CNPSo 2833T, from desmodium (Desmodium heterocarpon). Based on 16S-rRNA gene phylogeny, both strains were grouped in the Bradyrhizobium elkanii superclade, but were not clearly clustered with any known species. Multilocus sequence analysis of three (glnII, gyrB and recA) and five (plus atpD and dnaK) housekeeping genes confirmed that the strains are positioned in two distinct clades. Comparison with intergenic transcribed spacer sequences of type strains of described species of the genus Bradyrhizobium showed similarity lower than 93.1 %, and differences were confirmed by BOX-PCR analysis. Nucleotide identity of three housekeeping genes with type strains of described species ranged from 88.1 to 96.2 %. Average nucleotide identity of genome sequences showed values below the threshold for distinct species of the genus Bradyrhizobium ( < 90.6 %), and the value between the two strains was also below this threshold (91.2 %). Analysis of nifH and nodC gene sequences positioned the two strains in a clade distinct from other species of the genus Bradyrhizobium. Morphophysiological, genotypic and genomic data supported the description of two novel species in the genus Bradyrhizobium, Bradyrhizobium tropiciagri sp. nov. (type strain CNPSo 1112T = SMS 303T = BR 1009T = SEMIA 6148T = LMG 28867T) and Bradyrhizobium embrapense sp. nov. (type strain CNPSo 2833T = CIAT 2372T = BR 2212T = SEMIA 6208T = U674T = LMG 2987).
Collapse
Affiliation(s)
- Jakeline Renata Marçon Delamuta
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil
- Universidade Estadual de Londrina, Department of Microbiology, C.P. 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, Distrito Federal, Brazil
| | | | | | | | | | - Mariangela Hungria
- Universidade Estadual de Londrina, Department of Microbiology, C.P. 10.011, 86057-970 Londrina, Paraná, Brazil
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, Distrito Federal, Brazil
| |
Collapse
|
32
|
Tiwari R, Howieson J, Yates R, Tian R, Held B, Tapia R, Han C, Seshadri R, Reddy TBK, Huntemann M, Pati A, Woyke T, Markowitz V, Ivanova N, Kyrpides N, Reeve W. Genome sequence of Bradyrhizobium sp. WSM1253; a microsymbiont of Ornithopus compressus from the Greek Island of Sifnos. Stand Genomic Sci 2015; 10:113. [PMID: 26629308 PMCID: PMC4665870 DOI: 10.1186/s40793-015-0115-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 11/25/2015] [Indexed: 11/10/2022] Open
Abstract
Bradyrhizobium sp. WSM1253 is a novel N2-fixing bacterium isolated from a root nodule of the herbaceous annual legume Ornithopus compressus that was growing on the Greek Island of Sifnos. WSM1253 emerged as a strain of interest in an Australian program that was selecting inoculant quality bradyrhizobial strains for inoculation of Mediterranean species of lupins (Lupinus angustifolius, L. princei, L. atlanticus, L. pilosus). In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 8,719,808 bp genome has a G + C content of 63.09 % with 71 contigs arranged into two scaffolds. The assembled genome contains 8,432 protein-coding genes, 66 RNA genes and a single rRNA operon. This improved-high-quality draft rhizobial genome is one of 20 sequenced through a DOE Joint Genome Institute 2010 Community Sequencing Project.
Collapse
Affiliation(s)
- Ravi Tiwari
- />Centre for Rhizobium Studies, Murdoch University, Murdoch, Australia
| | - John Howieson
- />Centre for Rhizobium Studies, Murdoch University, Murdoch, Australia
| | - Ron Yates
- />Centre for Rhizobium Studies, Murdoch University, Murdoch, Australia
- />Department of Agriculture and Food, South Perth, Australia
| | - Rui Tian
- />Centre for Rhizobium Studies, Murdoch University, Murdoch, Australia
| | - Britanny Held
- />Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM USA
| | - Roxanne Tapia
- />Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM USA
| | - Cliff Han
- />Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM USA
| | | | | | | | - Amrita Pati
- />DOE Joint Genome Institute, Walnut Creek, CA USA
| | - Tanja Woyke
- />DOE Joint Genome Institute, Walnut Creek, CA USA
| | - Victor Markowitz
- />Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | | | - Nikos Kyrpides
- />DOE Joint Genome Institute, Walnut Creek, CA USA
- />Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wayne Reeve
- />Centre for Rhizobium Studies, Murdoch University, Murdoch, Australia
| |
Collapse
|
33
|
Azarias Guimarães A, Florentino LA, Alves Almeida K, Lebbe L, Barroso Silva K, Willems A, de Souza Moreira FM. High diversity of Bradyrhizobium strains isolated from several legume species and land uses in Brazilian tropical ecosystems. Syst Appl Microbiol 2015; 38:433-41. [DOI: 10.1016/j.syapm.2015.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/05/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
|
34
|
A database for the taxonomic and phylogenetic identification of the genus Bradyrhizobium using multilocus sequence analysis. BMC Genomics 2015; 16 Suppl 5:S10. [PMID: 26040196 PMCID: PMC4460661 DOI: 10.1186/1471-2164-16-s5-s10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Biological nitrogen fixation, with an emphasis on the legume-rhizobia symbiosis, is a key process for agriculture and the environment, allowing the replacement of nitrogen fertilizers, reducing water pollution by nitrate as well as emission of greenhouse gases. Soils contain numerous strains belonging to the bacterial genus Bradyrhizobium, which establish symbioses with a variety of legumes. However, due to the high conservation of Bradyrhizobium 16S rRNA genes - considered as the backbone of the taxonomy of prokaryotes - few species have been delineated. The multilocus sequence analysis (MLSA) methodology, which includes analysis of housekeeping genes, has been shown to be promising and powerful for defining bacterial species, and, in this study, it was applied to Bradyrhizobium, species, increasing our understanding of the diversity of nitrogen-fixing bacteria. Description Classification of bacteria of agronomic importance is relevant to biodiversity, as well as to biotechnological manipulation to improve agricultural productivity. We propose the construction of an online database that will provide information and tools using MLSA to improve phylogenetic and taxonomic characterization of Bradyrhizobium, allowing the comparison of genomic sequences with those of type and representative strains of each species. Conclusion A database for the taxonomic and phylogenetic identification of the Bradyrhizobium, genus, using MLSA, will facilitate the use of biological data available through an intuitive web interface. Sequences stored in the on-line database can be compared with multiple sequences of other strains with simplicity and agility through multiple alignment algorithms and computational routines integrated into the database. The proposed database and software tools are available at http://mlsa.cnpso.embrapa.br, and can be used, free of charge, by researchers worldwide to classify Bradyrhizobium, strains; the database and software can be applied to replicate the experiments presented in this study as well as to generate new experiments. The next step will be expansion of the database to include other rhizobial species.
Collapse
|
35
|
Durán D, Rey L, Navarro A, Busquets A, Imperial J, Ruiz-Argüeso T. Bradyrhizobium valentinum sp. nov., isolated from effective nodules of Lupinus mariae-josephae, a lupine endemic of basic-lime soils in Eastern Spain. Syst Appl Microbiol 2014; 37:336-41. [DOI: 10.1016/j.syapm.2014.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 11/28/2022]
|
36
|
Durán D, Rey L, Mayo J, Zúñiga-Dávila D, Imperial J, Ruiz-Argüeso T, Martínez-Romero E, Ormeño-Orrillo E. Bradyrhizobium paxllaeri sp. nov. and Bradyrhizobium icense sp. nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.) in Peru. Int J Syst Evol Microbiol 2014; 64:2072-2078. [DOI: 10.1099/ijs.0.060426-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A group of strains isolated from root nodules of Phaseolus lunatus (Lima bean) in Peru were characterized by genotypic, genomic and phenotypic methods. All strains possessed identical 16S rRNA gene sequences that were 99.9 % identical to that of
Bradyrhizobium lablabi
CCBAU 23086T. Despite having identical 16S rRNA gene sequences, the Phaseolus lunatus strains could be divided into two clades by sequence analysis of recA, atpD, glnII, dnaK and gyrB genes. The genome sequence of a representative of each clade was obtained and compared to the genomes of closely related species of the genus
Bradyrhizobium
. Average nucleotide identity values below the species circumscription threshold were obtained when comparing the two clades to each other (88.6 %) and with all type strains of the genus
Bradyrhizobium
(≤92.9 %). Phenotypes distinguishing both clades from all described and closely related species of the genus
Bradyrhizobium
were found. On the basis of the results obtained, two novel species, Bradyrhizobium paxllaeri sp. nov. (type strain LMTR 21T = DSM 18454T = HAMBI 2911T) and Bradyrhizobium icense sp. nov. (type strain LMTR 13T = HAMBI 3584T = CECT 8509T = CNPSo 2583T), are proposed to accommodate the uncovered clades of Phaseolus lunatus bradyrhizobia. These species share highly related but distinct nifH and nodC symbiosis genes.
Collapse
Affiliation(s)
- David Durán
- Departamento de Biotecnología (ETS de Ingenieros Agrónomos) and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Spain
| | - Luis Rey
- Departamento de Biotecnología (ETS de Ingenieros Agrónomos) and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Spain
| | - Juan Mayo
- Laboratorio de Ecología Microbiana y Biotecnología ‘Marino Tabusso’, Universidad Nacional Agraria La Molina, Peru
| | - Doris Zúñiga-Dávila
- Laboratorio de Ecología Microbiana y Biotecnología ‘Marino Tabusso’, Universidad Nacional Agraria La Molina, Peru
| | - Juan Imperial
- Departamento de Biotecnología (ETS de Ingenieros Agrónomos) and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Spain
| | - Tomás Ruiz-Argüeso
- Departamento de Biotecnología (ETS de Ingenieros Agrónomos) and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Spain
| | | | | |
Collapse
|
37
|
Cytisus villosus from Northeastern Algeria is nodulated by genetically diverse Bradyrhizobium strains. Antonie van Leeuwenhoek 2014; 105:1121-9. [DOI: 10.1007/s10482-014-0173-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/08/2014] [Indexed: 11/30/2022]
|
38
|
Lu JK, Dou YJ, Zhu YJ, Wang SK, Sui XH, Kang LH. Bradyrhizobium ganzhouense sp. nov., an effective symbiotic bacterium isolated from Acacia melanoxylon R. Br. nodules. Int J Syst Evol Microbiol 2014; 64:1900-1905. [PMID: 24585376 PMCID: PMC4051118 DOI: 10.1099/ijs.0.056564-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three slow-growing rhizobial strains, designated RITF806T, RITF807 and RITF211, isolated from root nodules of Acacia melanoxylon grown in Ganzhou city, Jiangxi Province, China, had been previously defined, based on amplified 16S rRNA gene restriction analysis, as a novel group within the genus Bradyrhizobium. To clarify their taxonomic position, these strains were further analysed and compared with reference strains of related bacteria using a polyphasic approach. According to 16S rRNA gene sequence analysis, the isolates formed a group that was closely related to ‘Bradyrhizobium rifense’ CTAW71, with a similarity value of 99.9 %. In phylogenetic analyses of the housekeeping and symbiotic gene sequences, the three strains formed a distinct lineage within the genus Bradyrhizobium, which was consistent with the results of DNA–DNA hybridization. In analyses of cellular fatty acids and phenotypic features, some differences were found between the novel group and related species of the genus Bradyrhizobium, indicating that these three strains constituted a novel group distinct from any recognized species of the genus Bradyrhizobium. Based on the data obtained in this study, we conclude that our strains represent a novel species of the genus Bradyrhizobium, for which the name Bradyrhizobium ganzhouense sp. nov. is proposed, with RITF806T ( = CCBAU 101088T = JCM 19881T) as the type strain. The DNA G+C content of strain RITF806T is 64.6 mol% (Tm).
Collapse
Affiliation(s)
- Jun Kun Lu
- Research Institute of Tropical Forestry, Guangzhou 510520, PR China
| | - Ya Jing Dou
- Research Institute of Tropical Forestry, Guangzhou 510520, PR China
| | - Ya Jie Zhu
- Research Institute of Tropical Forestry, Guangzhou 510520, PR China
| | - Sheng Kun Wang
- Research Institute of Tropical Forestry, Guangzhou 510520, PR China
| | - Xin Hua Sui
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Li Hua Kang
- Research Institute of Tropical Forestry, Guangzhou 510520, PR China
| |
Collapse
|
39
|
MALDI-TOF mass spectrometry as a tool for differentiation of Bradyrhizobium species: application to the identification of Lupinus nodulating strains. Syst Appl Microbiol 2013; 36:565-71. [PMID: 24168963 DOI: 10.1016/j.syapm.2013.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 09/14/2013] [Accepted: 09/23/2013] [Indexed: 11/22/2022]
Abstract
Genus Bradyrhizobium includes slow growing bacteria able to nodulate different legumes as well as species isolated from plant tumours. The slow growth presented by the members of this genus and the phylogenetic closeness of most of its species difficults their identification. In the present work we applied for the first time Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) to the analysis of Bradyrhizobium species after the extension of MALDI Biotyper 2.0 database with the currently valid species of this genus. With this methodology it was possible to identify strains belonging to phylogenetically closely related species of genus Bradyrhizobium allowing the discrimination among species with rrs gene identities higher than 99%. The application of MALDI-TOF MS to strains isolated from nodules of different Lupinus species in diverse geographical locations allowed their correct identification when comparing with the results of rrs gene and ITS analyses. The nodulation of Lupinus gredensis, an endemic species of the west of Spain, by B. canariense supports the European origin of this species.
Collapse
|
40
|
Delamuta JRM, Ribeiro RA, Ormeño-Orrillo E, Melo IS, Martínez-Romero E, Hungria M. Polyphasic evidence supporting the reclassification of
Bradyrhizobium japonicum
group Ia strains as
Bradyrhizobium
diazoefficiens sp. nov. Int J Syst Evol Microbiol 2013; 63:3342-3351. [DOI: 10.1099/ijs.0.049130-0] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bradyrhizobium japonicum
was described from soybean root-nodule bacterial isolates. Since its description, several studies have revealed heterogeneities among rhizobia assigned to this species. Strains assigned to
B. japonicum
group Ia have been isolated in several countries, and many of them are outstanding soybean symbionts used in inoculants worldwide, but they have also been isolated from other legume hosts. Here, we summarize published studies that indicate that group Ia strains are different from the
B. japonicum
type strain USDA 6T and closely related strains, and present new morphophysiological, genotypic and genomic evidence to support their reclassification into a novel species, for which the name
Bradyrhizobium
diazoefficiens sp. nov. is proposed. The type strain of the novel species is the well-studied strain USDA 110T ( = IAM 13628T = CCRC 13528T = NRRL B-4361T = NRRL B-4450T = TAL 102T = BCRC 13528T = JCM 10833T = TISTR 339T = SEMIA 5032T = 3I1B110T = ACCC 15034T = CCT 4249T = NBRC 14792T = R-12974T = CNPSo 46T).
Collapse
Affiliation(s)
- Jakeline Renata Marçon Delamuta
- Universidade Estadual de Londrina, Dept of Microbiology, C.P. 60001, 86051-990 Londrina, Paraná, Brazil
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil
| | - Renan Augusto Ribeiro
- Universidade Estadual de Londrina, Dept of Microbiology, C.P. 60001, 86051-990 Londrina, Paraná, Brazil
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil
| | - Ernesto Ormeño-Orrillo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | | | - Mariangela Hungria
- Universidade Estadual de Londrina, Dept of Microbiology, C.P. 60001, 86051-990 Londrina, Paraná, Brazil
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil
| |
Collapse
|
41
|
Guerrouj K, Ruíz-Díez B, Chahboune R, Ramírez-Bahena MH, Abdelmoumen H, Quiñones MA, El Idrissi MM, Velázquez E, Fernández-Pascual M, Bedmar EJ, Peix A. Definition of a novel symbiovar (sv. retamae) within Bradyrhizobium retamae sp. nov., nodulating Retama sphaerocarpa and Retama monosperma. Syst Appl Microbiol 2013; 36:218-23. [DOI: 10.1016/j.syapm.2013.03.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/07/2013] [Accepted: 03/10/2013] [Indexed: 10/26/2022]
|
42
|
Phylogenetic evidence of the transfer of nodZ and nolL genes from Bradyrhizobium to other rhizobia. Mol Phylogenet Evol 2013; 67:626-30. [DOI: 10.1016/j.ympev.2013.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 11/18/2022]
|
43
|
Ramírez-Bahena MH, Chahboune R, Velázquez E, Gómez-Moriano A, Mora E, Peix A, Toro M. Centrosema is a promiscuous legume nodulated by several new putative species and symbiovars of Bradyrhizobium in various American countries. Syst Appl Microbiol 2013; 36:392-400. [PMID: 23688383 DOI: 10.1016/j.syapm.2013.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/05/2013] [Accepted: 03/15/2013] [Indexed: 11/29/2022]
Abstract
Centrosema is an American indigenous legume that can be used in agroecosystems for recovery of acidic and degraded soils. In this study, a Centrosema-nodulating rhizobial collection of strains isolated in a poor acid savanna soil from Venezuela was characterized, and the members of the collection were compared to other Centrosema strains from America. The analysis of the rrs gene showed that the strains nodulating Centrosema in American countries were closely related to different species of the genus Bradyrhizobium. However, the analysis of the atpD and recA genes, as well as the 16S-23S ITS region, showed that they formed several new phylogenetic lineages within this genus. The Venezuela strains formed three lineages that were divergent among themselves and with respect to those formed by Centrosema strains isolated in other countries, as well as to the currently described species and genospecies of Bradyrhizobium. In addition, the symbiotic genes nodC and nifH carried by Centrosema-nodulating strains were analyzed for the first time, and it was shown that they belonged to three new phylogenetic lineages within Bradyrhizobium. The nodC genes of the Centrosema strains were divergent among themselves and with respect to the genistearum and glycinearum symbiovars, indicating that Centrosema is a promiscuous legume. According to these results, the currently known Centrosema-nodulating strains represent several new putative species and symbiovars of the genus Bradyrhizobium.
Collapse
|
44
|
Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Syst Appl Microbiol 2013; 36:101-5. [DOI: 10.1016/j.syapm.2012.10.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 11/20/2022]
|
45
|
Wang JY, Wang R, Zhang YM, Liu HC, Chen WF, Wang ET, Sui XH, Chen WX. Bradyrhizobium daqingense sp. nov., isolated from soybean nodules. Int J Syst Evol Microbiol 2013; 63:616-624. [PMID: 22544787 DOI: 10.1099/ijs.0.034280-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thirteen slow-growing rhizobial strains isolated from root nodules of soybean (Glycine max L.) grown in Daqing city in China were classified in the genus Bradyrhizobium based on 16S rRNA gene sequence analysis. Multilocus sequence analysis of IGS, atpD, glnII and recA genes revealed that the isolates represented a novel clade in this genus. DNA-DNA relatedness lower than 42.5 % between the representative strain CCBAU 15774(T) and the type strains of the closely related species Bradyrhizobium liaoningense USDA 3622(T), Bradyrhizobium yuanmingense CCBAU 10071(T) and Bradyrhizobium betae LMG 21987(T), further confirmed that this group represented a novel species. CCBAU 15774(T) shared seven cellular fatty acids with the three above-mentioned species, but the fatty acids 15 : 0 iso and summed feature 5 (18 : 2ω6,9c and/or 18 : 0 anteiso) were unique for this strain. The respiratory quinone in CCBAU 15774(T) was ubiquinone-10 and the cellular polar lipids were phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, cardiolipin and unknown aminolipid, polar lipid and phospholipid. In addition, some phenotypic features could be used to differentiate the novel group from the related species. On basis of these results, we propose the name Bradyrhizobium daqingense sp. nov., with CCBAU 15774(T) ( = LMG 26137(T) = HAMBI 3184(T) = CGMCC 1.10947(T)) as the type strain. The DNA G+C content of the type strain is 61.2 mol% (T(m)).
Collapse
Affiliation(s)
- Jing Yu Wang
- State Key Laboratory for Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Rui Wang
- State Key Laboratory for Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yan Ming Zhang
- State Key Laboratory for Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Hong Can Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen Feng Chen
- State Key Laboratory for Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México DF, Mexico
- State Key Laboratory for Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xin Hua Sui
- State Key Laboratory for Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Wen Xin Chen
- State Key Laboratory for Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
46
|
Fonseca MB, Peix A, de Faria SM, Mateos PF, Rivera LP, Simões-Araujo JL, França MGC, dos Santos Isaias RM, Cruz C, Velázquez E, Scotti MR, Sprent JI, James EK. Nodulation in Dimorphandra wilsonii Rizz. (Caesalpinioideae), a threatened species native to the Brazilian Cerrado. PLoS One 2012; 7:e49520. [PMID: 23185349 PMCID: PMC3501520 DOI: 10.1371/journal.pone.0049520] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 10/09/2012] [Indexed: 11/19/2022] Open
Abstract
The threatened caesalpinioid legume Dimorphandra wilsonii, which is native to the Cerrado biome in Brazil, was examined for its nodulation and N(2)-fixing ability, and was compared with another, less-threatened species, D. jorgei. Nodulation and potential N(2) fixation was shown on seedlings that had been inoculated singly with five bradyrhizobial isolates from mature D. wilsonii nodules. The infection of D. wilsonii by two of these strains (Dw10.1, Dw12.5) was followed in detail using light and transmission electron microscopy, and was compared with that of D. jorgei by Bradyrhizobium strain SEMIA6099. The roots of D. wilsonii were infected via small transient root hairs at 42 d after inoculation (dai), and nodules were sufficiently mature at 63 dai to express nitrogenase protein. Similar infection and nodule developmental processes were observed in D. jorgei. The bacteroids in mature Dimorphandra nodules were enclosed in plant cell wall material containing a homogalacturonan (pectic) epitope that was recognized by the monoclonal antibody JIM5. Analysis of sequences of their rrs (16S rRNA) genes and their ITS regions showed that the five D. wilsonii strains, although related to SEMIA6099, may constitute five undescribed species of genus Bradyrhizobium, whilst their nodD and nifH gene sequences showed that they formed clearly separated branches from other rhizobial strains. This is the first study to describe in full the N(2)-fixing symbiotic interaction between defined rhizobial strains and legumes in the sub-family Caesalpinioideae. This information will hopefully assist in the conservation of the threatened species D. wilsonii.
Collapse
Affiliation(s)
- Márcia Bacelar Fonseca
- Depto de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alvaro Peix
- Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Unidad Asociada Universidad de Salamanca-CSIC ‘Interacción Planta-Microorganismo’, Salamanca, Spain
| | | | - Pedro F. Mateos
- Departamento de Microbiología y Genética-CIALE, Universidad de Salamanca, Unidad Asociada Universidad de Salamanca-CSIC ‘Interacción Planta-Microorganismo’, Salamanca, Spain
| | - Lina P. Rivera
- Departamento de Microbiología y Genética-CIALE, Universidad de Salamanca, Unidad Asociada Universidad de Salamanca-CSIC ‘Interacción Planta-Microorganismo’, Salamanca, Spain
| | | | | | | | - Cristina Cruz
- Universidade de Lisboa, Faculdade de Ciências, Centro de Biologia Ambiental (CBA), Lisboa, Portugal
| | - Encarna Velázquez
- Departamento de Microbiología y Genética-CIALE, Universidad de Salamanca, Unidad Asociada Universidad de Salamanca-CSIC ‘Interacción Planta-Microorganismo’, Salamanca, Spain
| | - Maria Rita Scotti
- Depto de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Janet I. Sprent
- Division of Plant Sciences, University of Dundee at James Hutton Institute, Dundee, United Kingdom
| | | |
Collapse
|
47
|
Aserse AA, Räsänen LA, Aseffa F, Hailemariam A, Lindström K. Phylogenetically diverse groups of Bradyrhizobium isolated from nodules of Crotalaria spp., Indigofera spp., Erythrina brucei and Glycine max growing in Ethiopia. Mol Phylogenet Evol 2012; 65:595-609. [PMID: 22842091 DOI: 10.1016/j.ympev.2012.07.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/09/2012] [Accepted: 07/14/2012] [Indexed: 12/16/2022]
Abstract
Ethiopian Bradyrhizobium strains isolated from root nodules of Crotalaria spp., Indigofera spp., Erythina brucei and soybean (Glycine max) represented genetically diverse phylogenetic groups of the genus Bradyrhizobium. Strains were characterized using the amplified fragment length polymorphism fingerprinting technique (AFLP) and multilocus sequence analysis (MLSA) of core and symbiotic genes. Based on phylogenetic analyses of concatenated recA-glnII-rpoB-16S rRNA genes sequences, Bradyrhizobium strains were distributed into fifteen phylogenetic groups under B. japonicum and B. elkanii super clades. Some of the isolates belonged to the species B. yuanmingense, B. elkanii and B. japonicum type I. However, the majority of the isolates represented unnamed Bradyrhizobium genospecies and of these, two unique lineages that most likely represent novel Bradyrhizobium species were identified among Ethiopian strains. The nodulation nodA gene sequence analysis revealed that all Ethiopian Bradyrhizobium isolates belonged to nodA sub-clade III.3. Strains were further classified into 14 groups together with strains from Africa, as well as some originating from the other tropical and subtropics regions. Strains were also clustered into 14 groups in nodY/K phylogeny similarly to the nodA tree. The nifH phylogenies of the Ethiopian Bradyrhizobium were generally also congruent with the nodA gene phylogeny, supporting the monophyletic origin of the symbiotic genes in Bradyrhizobium. The phylogenies of nodA and nifH genes were also partially congruent with that inferred from the concatenated core genes sequences, reflecting that the strains obtained their symbiotic genes vertically from their ancestor as well as horizontally from more distantly related Bradyrhizobium species.
Collapse
Affiliation(s)
- Aregu Amsalu Aserse
- University of Helsinki, Department of Food and Environmental Sciences, POB 56, FIN-00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
48
|
Zhang YM, Li Y, Chen WF, Wang ET, Sui XH, Li QQ, Zhang YZ, Zhou YG, Chen WX. Bradyrhizobium huanghuaihaiense sp. nov., an effective symbiotic bacterium isolated from soybean (Glycine max L.) nodules. Int J Syst Evol Microbiol 2012; 62:1951-1957. [PMID: 22003042 DOI: 10.1099/ijs.0.034546-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a survey of the biodiversity and biogeography of rhizobia associated with soybean (Glycine max L.) in different sites of the Northern (Huang-Huai-Hai) Plain of China, ten strains were defined as representing a novel genomic species in the genus of Bradyrhizobium. They were distinguished from defined species in restriction fragment length polymorphism (RFLP) analysis of the 16S rRNA gene and the 16S-23S rRNA gene intergenic spacer (IGS). In BOX-PCR, these strains presented two patterns that shared 94% similarity, demonstrating that they were a homogenous group with limited diversity. In phylogenetic analyses of the 16S rRNA gene, IGS and housekeeping gene sequences, four representative strains formed a distant lineage within the genus Bradyrhizobium, which was consistent with the results of DNA-DNA hybridization. The strains of this novel group formed effective nodules with G. max, Glycine soja and Vigna unguiculata in cross-nodulation tests and harboured symbiotic genes (nodC and nifH) identical to those of reference strains of Bradyrhizobium japonicum, Bradyrhizobium liaoningense and 'Bradyrhizobium daqingense' originating from soybean, implying that the novel group may have obtained these symbiotic genes by lateral gene transfer. In analyses of cellular fatty acids and phenotypic features, some differences were found between the novel group and related Bradyrhizobium species, demonstrating that the novel group is distinct phenotypically from other Bradyrhizobium species. Based upon the data obtained, these strains are proposed to represent a novel species, Bradyrhizobium huanghuaihaiense sp. nov., with CCBAU 23303(T) ( = LMG 26136(T) = CGMCC 1.10948(T) = HAMBI 3180(T)) as the type strain. The DNA G+C content of strain CCBAU 23303(T) is 61.5 mol% (T(m)).
Collapse
Affiliation(s)
- Yan Ming Zhang
- State Key Laboratory of Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Ying Li
- State Key Laboratory of Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Wen Feng Chen
- State Key Laboratory of Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México Distrito Federal, Mexico
- State Key Laboratory of Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xin Hua Sui
- State Key Laboratory of Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qin Qin Li
- State Key Laboratory of Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yun Zeng Zhang
- State Key Laboratory of Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yu Guang Zhou
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
49
|
Chahboune R, Carro L, Peix A, Ramírez-Bahena MH, Barrijal S, Velázquez E, Bedmar EJ. Bradyrhizobium rifense sp. nov. isolated from effective nodules of Cytisus villosus grown in the Moroccan Rif. Syst Appl Microbiol 2012; 35:302-5. [DOI: 10.1016/j.syapm.2012.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 05/28/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
|
50
|
Stępkowski T, Watkin E, McInnes A, Gurda D, Gracz J, Steenkamp ET. Distinct Bradyrhizobium [corrected] communities nodulate legumes native to temperate and tropical monsoon Australia. Mol Phylogenet Evol 2012; 63:265-77. [PMID: 22230030 DOI: 10.1016/j.ympev.2011.12.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 12/14/2011] [Accepted: 12/19/2011] [Indexed: 11/29/2022]
Abstract
Geographic isolation and growing climate aridity played major roles in the evolution of Australian legumes. It is likely that these two factors also impacted on the evolution of their root-nodule bacteria. To investigate this issue, we applied a multilocus sequence analysis (MLSA) approach to examine Bradyrhizobium isolates originating from temperate areas of Western Australia (WA) and the tropical-monsoon area of the Northern Territory (NT). The isolates were mostly collected from the nodules of legumes belonging to tribes, genera and species endemic or native to Australia. Phylogenetic analyses of sequences for the housekeeping atpD, dnaK, glnII, gyrB, recA and 16S rRNA genes and nodulation nodA gene revealed that most isolates belonged to groups that are distinct from non-Australian Bradyrhizobium isolates, which is in line with earlier studies based on 16S rRNA gene sequence analyses. Phylogenetic analysis of the nodA data allowed identification of five major Clades among the WA and NT isolates. All WA isolates grouped in a subgroup I.1 of Clade I with strains originating from temperate eastern Australia. In contrast, the NT isolates formed part of Clades I (subgroup I.2), III (subgroup III.3), IV, V and X. Of these nodA clades, Clade I, Clade IV, Clade X presumably have an Australian origin. Overall, these data demonstrate that the impact of geographic isolation of the Australian landmass is manifested by the presence of numerous unique clusters in housekeeping and nodulation gene trees. In addition, the intrinsic climate characteristics of temperate WA and tropical-monsoon NT were responsible for the formation of distinct legume communities selecting for unrelated Bradyrhizobium groups.
Collapse
Affiliation(s)
- Tomasz Stępkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland.
| | | | | | | | | | | |
Collapse
|