1
|
Dolgikh AV, Salnikova EA, Dymo AM, Kantsurova ES, Aksenova TS, Yuzikhin OS, Kurchak ON, Onishchuk OP, Dolgikh EA. Characterization and De Novo Genome Assembly for New Rhizobium Ruizarguesonis Rhizobial Strain Vst36-3 Involved in Symbiosis with Pisum and Vicia Plants. Curr Microbiol 2025; 82:284. [PMID: 40335854 DOI: 10.1007/s00284-025-04265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/26/2025] [Indexed: 05/09/2025]
Abstract
Pea and vetch are the important legume crops used as food, forage, and green manure in agriculture. Several new rhizobial isolates were obtained from vetch Vicia sativa root nodules. For one of them, Vst36-3, the nodulation test showed various specificity in relation to plant hosts from the Fabeae tribe, such as pea and vetch. It is in contrast to typical strains of the Rhizobium leguminosarum species complex (Rlc), which formed effective nodules as in pea and vetch. Here, whole genome sequencing was performed followed by de novo genome assembly for Vst36-3 strain. As a result of de novo genome assembly, seven contigs were generated using Oxford Nanopore Technology long reads and subsequently Illumina short reads. Phylogenetic analysis allowed us to identify this strain as Rhizobium ruizarguesonis Vst36-3. Analysis of the Sym plasmid containing the nod and nif genes revealed that R. ruizarguesonis Vst36-3 has a complete suite of essential genes for the development of symbiosis. Nevertheless, this new strain forms ineffective nodules in pea. This makes Rhizobium ruizarguesonis Vst36-3 attractive for the search and investigation of new factors of host specificity in future.
Collapse
Affiliation(s)
- Alexandra V Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608, St.-Petersburg, Russia
| | - Elizaveta A Salnikova
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608, St.-Petersburg, Russia
| | - Alina M Dymo
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608, St.-Petersburg, Russia
| | - Elizaveta S Kantsurova
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608, St.-Petersburg, Russia
| | - Tatyana S Aksenova
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608, St.-Petersburg, Russia
| | - Oleg S Yuzikhin
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608, St.-Petersburg, Russia
| | - Oksana N Kurchak
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608, St.-Petersburg, Russia
| | - Olga P Onishchuk
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608, St.-Petersburg, Russia
| | - Elena A Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608, St.-Petersburg, Russia.
| |
Collapse
|
2
|
Hami A, El Attar I, Mghazli N, Ennajeh S, Ait-Ouakrim EH, Bennis M, Oulghazi S, Badaoui B, Aurag J, Sbabou L, Taha K. Enhancing drought tolerance in Pisum sativum and Vicia faba through interspecific interactions with a mixed inoculum of Rhizobium laguerreae and non-host beneficial rhizobacteria. FRONTIERS IN PLANT SCIENCE 2025; 16:1528923. [PMID: 40078631 PMCID: PMC11898328 DOI: 10.3389/fpls.2025.1528923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
Introduction Harnessing plant growth-promoting rhizobia presents a sustainable and cost-effective method to enhance crop performance, particularly under drought stress. This study evaluates the variability of plant growth-promoting (PGP) traits among three strains of Rhizobium laguerreae LMR575, LMR571, and LMR655, and two native PGP strains Bacillus LMR698 and Enterobacter aerogenes LMR696. The primary objective was to assess the host range specificity of these strains and their effectiveness in improving drought tolerance in three legume species: Pisum sativum, Vicia faba, and Phaseolus vulgaris. Methods In-vitro experiments were conducted to assess the PGP traits of the selected strains, including phosphate solubilization, indole-3-acetic acid (IAA) production, and siderophore production. Greenhouse trials were also performed using a mixed inoculum of performing strains to evaluate their effects on plant physiological and biochemical traits under drought conditions. Results Significant variability in PGP traits was observed among the strains. R. laguerreae LMR655 exhibited the highest phosphate solubilization (113.85 mg mL-1 PO4 2-), while R. laguerreae LMR571 produced the highest IAA concentration (25.37 mg mL-1). E. aerogenes LMR696 demonstrated 82% siderophore production. Symbiotic interactions varied, with R. laguerreae LMR571 and LMR655 forming associations with P. sativum and V. faba, but none establishing compatibility with P. vulgaris. Greenhouse experiments showed that a mixed inoculum of R. laguerreae LMR571, LMR655, and E. aerogenes LMR696 significantly improved proline, total soluble sugars, proteins, and chlorophyll content under drought stress, with V. faba showing the strongest response. Discussion These findings highlight the importance of strain selection based on host specificity and PGP potential. The enhanced drought tolerance observed suggests that tailored microbial inoculants can improve legume resilience in water-limited environments. This study provides valuable insights for optimizing bioinoculant formulations to enhance crop performance under drought stress.
Collapse
Affiliation(s)
- Asma Hami
- Microbiology and Molecular Biology Team, of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Imane El Attar
- Microbiology and Molecular Biology Team, of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- AgroBioscience Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | - Najoua Mghazli
- Microbiology and Molecular Biology Team, of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- Institut de Recherche en Mines et Environnement, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada
| | - Salah Ennajeh
- Microbiology and Molecular Biology Team, of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - El Houcine Ait-Ouakrim
- Microbiology and Molecular Biology Team, of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Meryeme Bennis
- Microbiology and Molecular Biology Team, of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- AgroBioscience Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | - Said Oulghazi
- Biodiversity, Ecology and Genome Laboratory of Zoology and General Biology, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Bouabid Badaoui
- Biodiversity, Ecology and Genome Laboratory of Zoology and General Biology, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Laila Sbabou
- Microbiology and Molecular Biology Team, of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Kaoutar Taha
- Microbiology and Molecular Biology Team, of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
3
|
Kohlmeier MG, O'Hara GW, Ramsay JP, Terpolilli JJ. Closed genomes of commercial inoculant rhizobia provide a blueprint for management of legume inoculation. Appl Environ Microbiol 2025; 91:e0221324. [PMID: 39791879 PMCID: PMC11837538 DOI: 10.1128/aem.02213-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
Rhizobia are soil bacteria capable of establishing symbiosis within legume root nodules, where they reduce atmospheric N2 into ammonia and supply it to the plant for growth. Australian soils often lack rhizobia compatible with introduced agricultural legumes, so inoculation with exotic strains has become a common practice for over 50 years. While extensive research has assessed the N2-fixing capabilities of these inoculants, their genomics, taxonomy, and core and accessory gene phylogeny are poorly characterized. Furthermore, in some cases, inoculant strains have been developed from isolations made in Australia. It is unknown whether these strains represent naturalized exotic organisms, native rhizobia with a capacity to nodulate introduced legumes, or recombinant strains arising from horizontal transfer between introduced and native bacteria. Here, we describe the complete, closed genome sequences of 42 Australian commercial rhizobia. These strains span the genera, Bradyrhizobium, Mesorhizobium, Methylobacterium, Rhizobium, and Sinorhizobium, and only 23 strains were identified to species level. Within inoculant strain genomes, replicon structure and location of symbiosis genes were consistent with those of model strains for each genus, except for Rhizobium sp. SRDI969, where the symbiosis genes are chromosomally encoded. Genomic analysis of the strains isolated from Australia showed they were related to exotic strains, suggesting that they may have colonized Australian soils following undocumented introductions. These genome sequences provide the basis for accurate strain identification to manage inoculation and identify the prevalence and impact of horizontal gene transfer (HGT) on legume productivity. IMPORTANCE Inoculation of cultivated legumes with exotic rhizobia is integral to Australian agriculture in soils lacking compatible rhizobia. The Australian inoculant program supplies phenotypically characterized high-performing strains for farmers but in most cases, little is known about the genomes of these rhizobia. Horizontal gene transfer (HGT) of symbiosis genes from inoculant strains to native non-symbiotic rhizobia frequently occurs in Australian soils and can impact the long-term stability and efficacy of legume inoculation. Here, we present the analysis of reference-quality genomes for 42 Australian commercial rhizobial inoculants. We verify and classify the genetics, genome architecture, and taxonomy of these organisms. Importantly, these genome sequences will facilitate the accurate strain identification and monitoring of inoculants in soils and plant nodules, as well as enable detection of horizontal gene transfer to native rhizobia, thus ensuring the efficacy and integrity of Australia's legume inoculation program.
Collapse
Affiliation(s)
- MacLean G. Kohlmeier
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Graham W. O'Hara
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Joshua P. Ramsay
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Jason J. Terpolilli
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
4
|
Basbuga S, Basbuga S, Can C, Yayla F. Phenotypic and genotypic diversity of root nodule bacteria from wild Lathyrus and Vicia species in Gaziantep, Turkey. Folia Microbiol (Praha) 2024; 69:1145-1157. [PMID: 38526677 DOI: 10.1007/s12223-024-01156-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/08/2024] [Indexed: 03/27/2024]
Abstract
This study identified the phenotypic and genotypic characteristics of the bacteria that nodulate wild Lathyrus and Vicia species natural distribution in the Gaziantep province of Turkey. Principle component analysis of phenotypic features revealed that rhizobial isolates were highly resistant to stress factors such as high salt, pH and temperature. They were found to be highly sensitive to the concentrations (mg/mL) of the antibiotics neomycin 10, kanamycin, and tetracycline 5, as well as the heavy metals Ni 10, and Cu 10, and 5. As a result of REP-PCR analysis, it was determined that the rhizobial isolates were quite diverse, and 5 main groups and many subgroups being found. All of the isolates nodulating wild Vicia species were found to be related to Rhizobium sp., and these isolates were found to be in Clades II, III, IV, and V of the phylogenetic tree based on 16S rRNA. The isolates that nodulated wild Lathyrus species were in Clades I, II, IV, V, VI, VII, and VIII, and they were closely related to Rhizobium leguminasorum, Rhizobium sp., Phyllobacterium sp., Serratia sp., and Pseudomonas sp. According to the genetic analyses, the isolates could not be classified at the species level, the similarity ratio was low, they formed a distinct group that was supported by strong bootstrap values in the phylogenetic tree, and the differences discovered in the network analysis revealed the diversity among the isolates and gave important findings that these isolates may be new species.
Collapse
Affiliation(s)
- Sevil Basbuga
- Biology Department, Science and Letter Faculty, Gaziantep University, Gaziantep, Turkey.
| | - Selcuk Basbuga
- Biology Department, Science and Letter Faculty, Gaziantep University, Gaziantep, Turkey
| | - Canan Can
- Biology Department, Science and Letter Faculty, Gaziantep University, Gaziantep, Turkey
| | - Fatih Yayla
- Biology Department, Science and Letter Faculty, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
5
|
Hsouna J, Gritli T, Ilahi H, Han JC, Ellouze W, Zhang XX, Mansouri M, Rahi P, El Idrissi MM, Lamrabet M, Courty PE, Wipf D, Bekki A, Tambong JT, Mnasri B. Rhizobium aouanii sp. nov., efficient nodulating rhizobia isolated from Acacia saligna roots in Tunisia. Int J Syst Evol Microbiol 2024; 74. [PMID: 39235833 PMCID: PMC11376454 DOI: 10.1099/ijsem.0.006515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Three bacterial strains, 1AS14IT, 1AS12I and 6AS6, isolated from root nodules of Acacia saligna, were characterized using a polyphasic approach. Phylogenetic analysis based on rrs sequences placed all three strains within the Rhizobium leguminosarum complex. Further phylogeny, based on 1 756 bp sequences of four concatenated housekeeping genes (recA, atpD, glnII and gyrB), revealed their distinction from known rhizobia species of the R. leguminosarum complex (Rlc), forming a distinct clade. The closest related species, identified as Rhizobium laguerreae, with a sequence identity of 96.4% based on concatenated recA-atpD-glnII-gyrB sequences. The type strain, 1AS14IT, showed average nucleotide identity (ANI) values of 94.9, 94.3 and 94.1% and DNA-DNA hybridization values of 56.1, 57.4 and 60.0% with the type strains of closest known species: R. laguerreae, Rhizobium acaciae and 'Rhizobium indicum', respectively. Phylogenomic analyses using 81 up-to-date bacteria core genes and the Type (Strain) Genome Server pipeline further supported the uniqueness of strains 1AS14IT, 1AS12I and 6AS6. The relatedness of the novel strains to NCBI unclassified Rhizobium sp. (396 genomes) and metagenome-derived genomes showed ANI values from 76.7 to 94.8% with a species-level cut-off of 96%, suggesting that strains 1AS14I, 1AS12I and 6AS6 are a distinct lineage. Additionally, differentiation of strains 1AS14IT, 1AS12I and 6AS6 from their closest phylogenetic neighbours was achieved using phenotypic, physiological and fatty acid content analyses. Based on the genomic, phenotypic and biochemical data, we propose the establishment of a novel rhizobial species, Rhizobium aouanii sp. nov., with strain 1AS14IT designated as the type strain (=DSM 113914T=LMG 33206T). This study contributes to the understanding of microbial diversity in nitrogen-fixing symbioses, specifically within Acacia saligna ecosystems in Tunisia.
Collapse
Affiliation(s)
- Jihed Hsouna
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
- University of Carthage, Faculty of Sciences of Bizerte, Tunis, Tunisia
| | - Takwa Gritli
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Houda Ilahi
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Jia-Cheng Han
- Agricultural Cultural Collection of China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100080, PR China
| | - Walid Ellouze
- Agriculture and Agri-Food Canada, 4902 Victoria Avenue North, Vineland Station, Ontario, L0R 2E0, Canada
| | - Xiao Xia Zhang
- Agricultural Cultural Collection of China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100080, PR China
| | - Maroua Mansouri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Praveen Rahi
- Institut Pasteur, Université Paris Cité, Biological Resource Center of Institut Pasteur (CRBIP), Paris, France
| | - Mustapha Missbah El Idrissi
- Faculty of Sciences, Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Mohammed V University in Rabat, Rabat, Morocco
| | - Mouad Lamrabet
- Faculty of Sciences, Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Mohammed V University in Rabat, Rabat, Morocco
| | - Pierre Emmanuel Courty
- Agroécologie, Institut Agro Dijon, CNRS, Univ. Bourgogne, INRAE, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Daniel Wipf
- Agroécologie, Institut Agro Dijon, CNRS, Univ. Bourgogne, INRAE, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Abdelkader Bekki
- Biotechnology of Rhizobia and Plant Breeding Laboratory, Department of Biotechnology, Faculty of Sciences, University of Oran1, Sénia, Algeria
| | - James T Tambong
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Bacem Mnasri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| |
Collapse
|
6
|
Moura FT, Helene LCF, Ribeiro RA, Nogueira MA, Hungria M. The outstanding diversity of rhizobia microsymbionts of common bean (Phaseolus vulgaris L.) in Mato Grosso do Sul, central-western Brazil, revealing new Rhizobium species. Arch Microbiol 2023; 205:325. [PMID: 37659972 DOI: 10.1007/s00203-023-03667-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/04/2023]
Abstract
Common bean is considered a legume of great socioeconomic importance, capable of establishing symbioses with a wide variety of rhizobial species. However, the legume has also been recognized for its low efficiency in fixing atmospheric nitrogen. Brazil is a hotspot of biodiversity, and in a previous study, we identified 13 strains isolated from common bean (Phaseolus vulgaris) nodules in three biomes of Mato Grosso do Sul state, central-western Brazil, that might represent new phylogenetic groups, deserving further polyphasic characterization. The phylogenetic tree of the 16S rRNA gene split the 13 strains into two large clades, seven in the R. etli and six in the R. tropici clade. The MLSA with four housekeeping genes (glnII, gyrB, recA, and rpoA) confirmed the phylogenetic allocation. Genomic comparisons indicated eight strains in five putative new species and the remaining five as R. phaseoli. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) comparing the putative new species and the closest neighbors ranged from 81.84 to 92.50% and 24.0 to 50.7%, respectively. Other phenotypic, genotypic, and symbiotic features were evaluated. Interestingly, some strains of both R. etli and R. tropici clades lost their nodulation capacity. The data support the description of the new species Rhizobium cerradonense sp. nov. (CNPSo 3464T), Rhizobium atlanticum sp. nov. (CNPSo 3490T), Rhizobium aureum sp. nov. (CNPSo 3968T), Rhizobium pantanalense sp. nov. (CNPSo 4039T), and Rhizobium centroccidentale sp. nov. (CNPSo 4062T).
Collapse
Affiliation(s)
- Fernanda Terezinha Moura
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, PR-445, Km 380, Cx. Postal 6001, Londrina, Paraná, CP 86.051-970, Brazil
- Soil Biotechnology Laboratory, Embrapa Soja, Cx. Postal 4006, Londrina, Paraná, 86.085-981, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, Brasília, Distrito Federal, 70.040-020, Brazil
| | - Luisa Caroline Ferraz Helene
- Soil Biotechnology Laboratory, Embrapa Soja, Cx. Postal 4006, Londrina, Paraná, 86.085-981, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, Brasília, Distrito Federal, 71605-001, Brazil
- Vittia Fertilizantes e Biológicos, São Joaquim da Barra, São Paulo, Brazil
| | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, Brasília, Distrito Federal, 71605-001, Brazil
| | - Marco Antonio Nogueira
- Soil Biotechnology Laboratory, Embrapa Soja, Cx. Postal 4006, Londrina, Paraná, 86.085-981, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, Brasília, Distrito Federal, 71605-001, Brazil
| | - Mariangela Hungria
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, PR-445, Km 380, Cx. Postal 6001, Londrina, Paraná, CP 86.051-970, Brazil.
- Soil Biotechnology Laboratory, Embrapa Soja, Cx. Postal 4006, Londrina, Paraná, 86.085-981, Brazil.
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, Brasília, Distrito Federal, 71605-001, Brazil.
| |
Collapse
|
7
|
Bouzroud S, Henkrar F, Fahr M, Smouni A. Salt stress responses and alleviation strategies in legumes: a review of the current knowledge. 3 Biotech 2023; 13:287. [PMID: 37520340 PMCID: PMC10382465 DOI: 10.1007/s13205-023-03643-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/21/2023] [Indexed: 08/01/2023] Open
Abstract
Salinity is one of the most significant environmental factors limiting legumes development and productivity. Salt stress disturbs all developmental stages of legumes and affects their hormonal regulation, photosynthesis and biological nitrogen fixation, causing nutritional imbalance, plant growth inhibition and yield losses. At the molecular level, salt stress exposure involves large number of factors that are implicated in stress perception, transduction, and regulation of salt responsive genes' expression through the intervention of transcription factors. Along with the complex gene network, epigenetic regulation mediated by non-coding RNAs, and DNA methylation events are also involved in legumes' response to salinity. Different alleviation strategies can increase salt tolerance in legume plants. The most promising ones are Plant Growth Promoting Rhizobia, Arbuscular Mycorrhizal Fungi, seed and plant's priming. Genetic manipulation offers an effective approach for improving salt tolerance. In this review, we present a detailed overview of the adverse effect of salt stress on legumes and their molecular responses. We also provide an overview of various ameliorative strategies that have been implemented to mitigate/overcome the harmful effects of salt stress on legumes.
Collapse
Affiliation(s)
- Sarah Bouzroud
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
| | - Fatima Henkrar
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| | - Mouna Fahr
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| |
Collapse
|
8
|
Young JPW, Jorrin B, Moeskjær S, James EK. Rhizobium brockwellii sp. nov., Rhizobium johnstonii sp. nov. and Rhizobium beringeri sp. nov., three genospecies within the Rhizobium leguminosarum species complex. Int J Syst Evol Microbiol 2023; 73. [PMID: 37486744 DOI: 10.1099/ijsem.0.005979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Genomic evidence indicates that the
Rhizobium leguminosarum
species complex comprises multiple distinct species, perhaps 18 or more. Of the five earliest genospecies (gs) to be described, only two have formal names: R. leguminosarum sensu stricto (gsE) and
Rhizobium ruizarguesonis
(gsC). Here, we provide formal descriptions and names for the other three genospecies, based on the publicly available genome sequences for multiple strains of each species: Rhizobium brockwellii sp. nov. (gsA, 37 strains, type strain CC275eT=LMG 6122T = ICMP 2163T=NZP 561T = PDDCC 2163T=HAMBI 13T), Rhizobium johnstonii sp. nov. (gsB, 54 strains, type strain 3841T = LMG 32736T=DSM 114642T) and Rhizobium beringeri sp. nov. (gsD, 8 strains, type strain SM51T = LMG 32895T = DSM 115206T). Each species forms a well-supported clade in a phylogeny based on 120 concatenated core genes. All strains have average nucleotide identity (ANI) above 96 % with the relevant type strain and below 96 % with all other type strains. Each species is characterised by a number of genes that are absent or rare in other species.
Collapse
Affiliation(s)
- J Peter W Young
- Department of Biology, University of York, York YO10 5DD, UK
| | - Beatriz Jorrin
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Sara Moeskjær
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Euan K James
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
9
|
Mahdhi A, Mars M, Rejili M. Members of Ensifer and Rhizobium genera are new bacterial endosymbionts nodulating Pisum sativum (L.). FEMS Microbiol Ecol 2023; 99:fiad001. [PMID: 36597782 DOI: 10.1093/femsec/fiad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023] Open
Abstract
A total of 84 Pisum sativum legume nodulating bacteria (LNB) were isolated from seven geographical sites from southern Tunisia. Phylogenetic analyses based on partial sequences of 16S rRNA gene and the housekeeping genes glnII, and recA grouped strains into six clusters, four of which belonged to the genus Rhizobium and two to the Ensifer genus. Among Rhizobium clusters, 41 strains were affiliated to Rhizobium leguminosarum, two strains to R. pisi, two strains to R. etli, and interestingly two strains belonged to previously undescribed Rhizobium species. The remaining two strains were closely related to Ensifer medicae (two strains) and Ensifer meliloti (two strains). A symbiotic nodC gene-based phylogeny and host specificity test showed that all Rhizobium strains nodulating pea belonged to the symbiovar viciae, whereas the Ensifer strains were associated with the symbiovar meliloti never described to date. All strains under investigation differed in the number of induced root nodules and the effectiveness of atmospheric nitrogen fixation. The R. leguminosarum PsZA23, R. leguminosarum PsGBL42, and E. medicae PsTA22a, forming the most effective symbiosis with the plant host, are potential candidates for inoculation programs.
Collapse
Affiliation(s)
- A Mahdhi
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) - Faculty of Sciences of Gabes, University of Gabes, Erriadh, Zrig 6072, Gabes, Tunisia
| | - M Mars
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) - Faculty of Sciences of Gabes, University of Gabes, Erriadh, Zrig 6072, Gabes, Tunisia
| | - M Rejili
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) - Faculty of Sciences of Gabes, University of Gabes, Erriadh, Zrig 6072, Gabes, Tunisia
- Department of Life Sciences, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| |
Collapse
|
10
|
Chammakhi C, Boscari A, Pacoud M, Aubert G, Mhadhbi H, Brouquisse R. Nitric Oxide Metabolic Pathway in Drought-Stressed Nodules of Faba Bean ( Vicia faba L.). Int J Mol Sci 2022; 23:13057. [PMID: 36361841 PMCID: PMC9654674 DOI: 10.3390/ijms232113057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022] Open
Abstract
Drought is an environmental stress that strongly impacts plants. It affects all stages of growth and induces profound disturbances that influence all cellular functions. Legumes can establish a symbiosis with Rhizobium-type bacteria, whose function is to fix atmospheric nitrogen in organs called nodules and to meet plant nitrogen needs. Symbiotic nitrogen fixation (SNF) is particularly sensitive to drought. We raised the hypothesis that, in drought-stressed nodules, SNF inhibition is partly correlated to hypoxia resulting from nodule structure compaction and an increased O2 diffusion barrier, and that the nodule energy regeneration involves phytoglobin-nitric oxide (Pgb-NO) respiration. To test this hypothesis, we subjected faba bean (Vicia faba L.) plants nodulated with a Rhizobium laguerreae strain to either drought or osmotic stress. We monitored the N2-fixation activity, the energy state (ATP/ADP ratio), the expression of hypoxia marker genes (alcohol dehydrogenase and alanine aminotransferase), and the functioning of the Pgb-NO respiration in the nodules. The collected data confirmed our hypothesis and showed that (1) drought-stressed nodules were subject to more intense hypoxia than control nodules and (2) NO production increased and contributed via Pgb-NO respiration to the maintenance of the energy state of drought-stressed nodules.
Collapse
Affiliation(s)
- Chaima Chammakhi
- Sophia Agrobiotech Institute, INRAE 1355, CNRS 7254, Côte d’Azur University, 06903 Sophia Antipolis, France
- Laboratory of Legumes and Sustainable Agrosystems, Biotechnology Center of Borj-Cedria, Hammam-Lif 2050, Tunisia
- National Agronomic Institute of Tunisia, University of Carthage, Tunis 1082, Tunisia
| | - Alexandre Boscari
- Sophia Agrobiotech Institute, INRAE 1355, CNRS 7254, Côte d’Azur University, 06903 Sophia Antipolis, France
| | - Marie Pacoud
- Sophia Agrobiotech Institute, INRAE 1355, CNRS 7254, Côte d’Azur University, 06903 Sophia Antipolis, France
| | - Grégoire Aubert
- Agroecology, INRAE, Agro Institute, Bourgogne Franche-Comté University, 21065 Dijon, France
| | - Haythem Mhadhbi
- Laboratory of Legumes and Sustainable Agrosystems, Biotechnology Center of Borj-Cedria, Hammam-Lif 2050, Tunisia
| | - Renaud Brouquisse
- Sophia Agrobiotech Institute, INRAE 1355, CNRS 7254, Côte d’Azur University, 06903 Sophia Antipolis, France
| |
Collapse
|
11
|
Rajkumari J, Katiyar P, Dheeman S, Pandey P, Maheshwari DK. The changing paradigm of rhizobial taxonomy and its systematic growth upto postgenomic technologies. World J Microbiol Biotechnol 2022; 38:206. [PMID: 36008736 DOI: 10.1007/s11274-022-03370-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Rhizobia are a diazotrophic group of bacteria that are usually isolated form the nodules in roots, stem of leguminous plants and are able to form nodules in the host plant owing to the presence of symbiotic genes. The rhizobial community is highly diverse, and therefore, the taxonomy and genera-wise classification of rhizobia has been constantly changing since the last three decades. This is mainly due to technical advancements, and shifts in definitions, resulting in a changing paradigm of rhizobia taxonomy. Initially, the taxonomic definitions at the species and sub species level were based on phylogenetic analysis of 16S rRNA sequence, followed by polyphasic approach to have phenotypic, biochemical, and genetic analysis including multilocus sequence analysis. Rhizobia mainly belonging to α- and β-proteobacteria, and recently new additions from γ-proteobacteria had been classified. Nowadays rhizobial taxonomy has been replaced by genome-based taxonomy that allows gaining more insights of genomic characteristics. These omics-technologies provide genome specific information that considers nodulation and symbiotic genes, along with molecular markers as taxonomic traits. Taxonomy based on complete genome sequence (genotaxonomy), average nucleotide identity, is now being considered as primary approach, resulting in an ongoing paradigm shift in rhizobial taxonomy. Also, pairwise whole-genome comparisons, phylogenomic analyses offer correlations between DNA and DNA re-association values that have delineated biologically important species. This review elaborates the present classification and taxonomy of rhizobia, vis-a-vis development of technical advancements, parameters and controversies associated with it, and describe the updated information on evolutionary lineages of rhizobia.
Collapse
Affiliation(s)
- Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Prashant Katiyar
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India
| | - Shrivardhan Dheeman
- Department of Microbiology, Sardar Bhagwan Singh University, Dehra Dun, Uttarakhand, 248161, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India.
| |
Collapse
|
12
|
Hsouna J, Gritli T, Ilahi H, Ellouze W, Mansouri M, Chihaoui SA, Bouhnik O, Missbah El Idrissi M, Abdelmoumen H, Wipf D, Courty PE, Bekki A, Tambong JT, Mnasri B. Genotypic and symbiotic diversity studies of rhizobia nodulating Acacia saligna in Tunisia reveal two novel symbiovars within the Rhizobium leguminosarum complex and Bradyrhizobium. Syst Appl Microbiol 2022; 45:126343. [PMID: 35759954 DOI: 10.1016/j.syapm.2022.126343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/08/2022] [Accepted: 06/12/2022] [Indexed: 11/15/2022]
Abstract
Acacia saligna is an invasive alien species that has the ability to establish symbiotic relationships with rhizobia. In the present study, genotypic and symbiotic diversity of native rhizobia associated with A. saligna in Tunisia were studied. A total of 100 bacterial strains were selected and three different ribotypes were identified based on rrs PCR-RFLP analysis. Sequence analyses of rrs and four housekeeping genes (recA, atpD, gyrB and glnII) assigned 30 isolates to four putative new lineages and a single strain to Sinorhizobium meliloti. Thirteen slow-growing isolates representing the most dominant IGS (intergenic spacer) profile clustered distinctly from known rhizobia species within Bradyrhizobium with the closest related species being Bradyrhizobium shewense and Bradyrhizobium niftali, which had 95.17% and 95.1% sequence identity, respectively. Two slow-growing isolates, 1AS28L and 5AS6L, had B. frederekii as their closest species with a sequence identity of 95.2%, an indication that these strains could constitute a new lineage. Strains 1AS14I, 1AS12I and 6AS6 clustered distinctly from known rhizobia species but within the Rhizobium leguminosarum complex (Rlc) with the most closely related species being Rhizobium indicum with 96.3% sequence identity. Similarly, the remaining 11 strains showed 96.9 % and 97.2% similarity values with R. changzhiense and R. indicum, respectively. Based on nodC and nodA phylogenies and cross inoculation tests, these 14 strains of Rlc species clearly diverged from strains of Sinorhizobium and Rlc symbiovars, and formed a new symbiovar for which the name sv. "salignae" is proposed. Bacterial strains isolated in this study that were taxonomically assigned to Bradyrhizobium harbored different symbiotic genes and the data suggested a new symbiovar, for which sv. "cyanophyllae" is proposed. Isolates formed effective nodules on A. saligna.
Collapse
Affiliation(s)
- Jihed Hsouna
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Takwa Gritli
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Houda Ilahi
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Walid Ellouze
- Agriculture and Agri-Food Canada, 4902 Victoria Avenue North, Vineland Station, Ontario L0R 2E0, Canada.
| | - Maroua Mansouri
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Saif-Allah Chihaoui
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Omar Bouhnik
- Faculty of Sciences, Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Mohammed V University, Rabat, Morocco
| | - Mustapha Missbah El Idrissi
- Faculty of Sciences, Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Mohammed V University, Rabat, Morocco
| | - Hanaa Abdelmoumen
- Faculty of Sciences, Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Mohammed V University, Rabat, Morocco
| | - Daniel Wipf
- Agroécologie, Institut Agro Dijon, CNRS, Univ. Bourgogne, INRAE, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Pierre Emmanuel Courty
- Agroécologie, Institut Agro Dijon, CNRS, Univ. Bourgogne, INRAE, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Abdelkader Bekki
- Laboratory of Rhizobia Biotechnology and Plant Breeding, University Oran1, Es Senia 31000, Algeria
| | - James T Tambong
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
| | - Bacem Mnasri
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia.
| |
Collapse
|
13
|
Rajnovic I, Ramírez-Bahena MH, Kajic S, Igual JM, Peix Á, Velázquez E, Sikora S. Rhizobium croatiense sp. nov. and Rhizobium redzepovicii sp. nov., two new species isolated from nodules of Phaseolus vulgaris in Croatia. Syst Appl Microbiol 2022; 45:126317. [DOI: 10.1016/j.syapm.2022.126317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
14
|
Riah N, de Lajudie P, Béna G, Heulin K, Djekoun A. Variability in symbiotic efficiency with respect to the growth of pea and lentil inoculated with various rhizobial genotypes originating from sub-humid and semi-arid regions of eastern Algeria. Symbiosis 2021. [DOI: 10.1007/s13199-021-00821-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Youseif SH, Abd El-Megeed FH, Abdelaal AS, Ageez A, Martínez-Romero E. Plant-microbe-microbe interactions influence the faba bean nodule colonization by diverse endophytic bacteria. FEMS Microbiol Ecol 2021; 97:6381688. [PMID: 34610117 DOI: 10.1093/femsec/fiab138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/30/2021] [Indexed: 11/14/2022] Open
Abstract
Legume root nodules harbor rhizobia and other non-nodulating endophytes known as nodule-associated bacteria (NAB) whose role in the legume symbiosis is still unknown. We analysed the genetic diversity of 34 NAB isolates obtained from the root nodules of faba bean grown under various soil conditions in Egypt using 16S rRNA and concatenated sequences of three housekeeping genes. All isolates were identified as members of the family Enterobacteriaceae belonging to the genera Klebsiella, Enterobacter and Raoultella. We identified nine enterobacterial genospecies, most of which have not been previously reported as NAB. All isolated strains harbored nifH gene sequences and most of them possessed plant growth-promoting (PGP) traits. Upon co-inoculation with an N2 fixing rhizobium (Rlv NGB-FR128), two strains (Enterobacter sichanensis NGB-FR97 and Klebsiella variicola NGB-FR116) significantly increased nodulation, growth and N-uptake of faba bean plants over the single treatments or the uninoculated control. The presence of these enterobacteria in nodules was significantly affected by the host plant genotype, symbiotic rhizobium genotype and endophyte genotype, indicating that the nodule colonization process is regulated by plant-microbe-microbe interactions. This study emphasizes the importance of nodule-associated enterobacteria and suggests their potential role in improving the effectiveness of rhizobial inoculants.
Collapse
Affiliation(s)
- Sameh H Youseif
- Department of Microbial Genetic Resources, National Gene Bank, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Fayrouz H Abd El-Megeed
- Department of Microbial Genetic Resources, National Gene Bank, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Ali S Abdelaal
- Department of Genetics, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt
| | - Amr Ageez
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt.,Faculty of Biotechnology, MSA University, 6th of October City 12451, Egypt
| | - Esperanza Martínez-Romero
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
16
|
Ilahi H, Hsouna J, Ellouze W, Gritli T, Chihaoui SA, Barhoumi F, Najib Elfeddy M, Bachkouel S, Ouahmane L, Tambong JT, Mnasri B. Phylogenetic study of rhizobia nodulating pea (Pisum sativum) isolated from different geographic locations in Tunisia. Syst Appl Microbiol 2021; 44:126221. [PMID: 34119907 DOI: 10.1016/j.syapm.2021.126221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
Nodulated Pisum sativum plants showed the presence of native rhizobia in 16 out of 23 soil samples collected especially in northern and central Tunisia. A total of 130 bacterial strains were selected and three different ribotypes were revealed after PCR-RFLP analysis. Sequence analyses of rrs and four housekeeping genes (recA, atpD, dnaK and glnII) assigned 35 isolates to Rhizobium laguerreae, R. ruizarguesonis, Agrobacterium radiobacter, Ensifer meliloti and two putative genospecies. R. laguerreae was the most dominant species nodulating P. sativum with 63%. The isolates 21PS7 and 21PS15 were assigned to R. ruizarguesonis, and this is the first report of this species in Tunisia. Two putative new lineages were identified, since strains 25PS6, 10PS4 and 12PS15 clustered distinctly from known rhizobia species but within the R. leguminosarum complex (Rlc) with the most closely related species being R. indicum with 96.4% sequence identity. Similarly, strains 16PS2, 3PS9 and 3PS18 showed 97.4% and 97.6% similarity with R. sophorae and R. laguerreae, respectively. Based on 16S-23S intergenic spacer (IGS) fingerprinting, there was no clear association between the strains and their geographic locations. According to nodC and nodA phylogenies, strains of Rlc species and, interestingly, strain 8PS18 identified as E. meliloti, harbored the symbiotic genes of symbiovar viciae and clustered in two different clades showing heterogeneity within the symbiovar. All these strains nodulated and fixed nitrogen with pea plants. However, the strains belonging to A. radiobacter and the two remaining strains of E. meliloti were unable to nodulate P. sativum, suggesting that they were non-symbiotic strains. The results of this study further suggest that the Tunisian Rhizobium community is more diverse than previously reported.
Collapse
Affiliation(s)
- Houda Ilahi
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901, Hammam-lif 2050, Tunisia
| | - Jihed Hsouna
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901, Hammam-lif 2050, Tunisia
| | - Walid Ellouze
- Agriculture and Agri-Food Canada, Vineland Station, Ontario L0R 2E0, Canada
| | - Takwa Gritli
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901, Hammam-lif 2050, Tunisia
| | - Saif-Allah Chihaoui
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901, Hammam-lif 2050, Tunisia
| | - Fathi Barhoumi
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901, Hammam-lif 2050, Tunisia
| | - Mohamed Najib Elfeddy
- Phytobacteriology Laboratory, Plant Protection Research Unit, CRRA Marrakesh, National Institute for Agronomical Research, Marrakesh 40000, Morocco
| | - Sarra Bachkouel
- Research Support and Technology Transfer Unity, Centre of Biotechnology of Borj-Cédria, BP 901, Hammam-lif 2050, Tunisia
| | - Lahcen Ouahmane
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - James T Tambong
- Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada
| | - Bacem Mnasri
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901, Hammam-lif 2050, Tunisia.
| |
Collapse
|
17
|
Gürkanlı CT. Genetic diversity of rhizobia associated with Pisum sativum L. in the Northern part of Turkey. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00831-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Efstathiadou E, Ntatsi G, Savvas D, Tampakaki AP. Genetic characterization at the species and symbiovar level of indigenous rhizobial isolates nodulating Phaseolus vulgaris in Greece. Sci Rep 2021; 11:8674. [PMID: 33883620 PMCID: PMC8060271 DOI: 10.1038/s41598-021-88051-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
Phaseolus vulgaris (L.), commonly known as bean or common bean, is considered a promiscuous legume host since it forms nodules with diverse rhizobial species and symbiovars. Most of the common bean nodulating rhizobia are mainly affiliated to the genus Rhizobium, though strains belonging to Ensifer, Pararhizobium, Mesorhizobium, Bradyrhizobium, and Burkholderia have also been reported. This is the first report on the characterization of bean-nodulating rhizobia at the species and symbiovar level in Greece. The goals of this research were to isolate and characterize rhizobia nodulating local common bean genotypes grown in five different edaphoclimatic regions of Greece with no rhizobial inoculation history. The genetic diversity of the rhizobial isolates was assessed by BOX-PCR and the phylogenetic affiliation was assessed by multilocus sequence analysis (MLSA) of housekeeping and symbiosis-related genes. A total of fifty fast-growing rhizobial strains were isolated and representative isolates with distinct BOX-PCR fingerpriniting patterns were subjected to phylogenetic analysis. The strains were closely related to R. anhuiense, R. azibense, R. hidalgonense, R. sophoriradicis, and to a putative new genospecies which is provisionally named as Rhizobium sp. I. Most strains belonged to symbiovar phaseoli carrying the α-, γ-a and γ-b alleles of nodC gene, while some of them belonged to symbiovar gallicum. To the best of our knowledge, it is the first time that strains assigned to R. sophoriradicis and harbored the γ-b allele were found in European soils. All strains were able to re-nodulate their original host, indicating that they are true microsymbionts of common bean.
Collapse
Affiliation(s)
- Evdoxia Efstathiadou
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece
| | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece
| | - Anastasia P Tampakaki
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece.
| |
Collapse
|
19
|
Youseif SH, Abd El-Megeed FH, Abu Zeid AZA, Abd-Elrahman RA, Mohamed AH, Khalifa MA, Saleh SA. Alleviating the deleterious effects of soil salinity and alkalinity on faba bean ( Vicia faba L.) production using Rhizobium/Agrobacterium inoculants. ARCHIVES OF AGRONOMY AND SOIL SCIENCE 2021; 67:577-593. [DOI: 10.1080/03650340.2020.1849626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/07/2020] [Indexed: 09/02/2023]
Affiliation(s)
- Sameh H. Youseif
- Department of Microbial Genetic Resources; National Gene Bank, Agricultural Research Center (ARC), Giza, Egypt
| | - Fayrouz H. Abd El-Megeed
- Department of Microbial Genetic Resources; National Gene Bank, Agricultural Research Center (ARC), Giza, Egypt
| | - Abu Zeid A. Abu Zeid
- Food Legumes Research Department; Field Crops Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Rehab A.M. Abd-Elrahman
- Food Legumes Research Department; Field Crops Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Akram H. Mohamed
- Department of Microbial Genetic Resources; National Gene Bank, Agricultural Research Center (ARC), Giza, Egypt
| | - Mohamed A. Khalifa
- Maize Research Department; Field Crops Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Saleh A. Saleh
- Agricultural Microbiology Research Department, Soils, Water and Environment Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| |
Collapse
|
20
|
Young JPW, Moeskjær S, Afonin A, Rahi P, Maluk M, James EK, Cavassim MIA, Rashid MHO, Aserse AA, Perry BJ, Wang ET, Velázquez E, Andronov EE, Tampakaki A, Flores Félix JD, Rivas González R, Youseif SH, Lepetit M, Boivin S, Jorrin B, Kenicer GJ, Peix Á, Hynes MF, Ramírez-Bahena MH, Gulati A, Tian CF. Defining the Rhizobium leguminosarum Species Complex. Genes (Basel) 2021; 12:111. [PMID: 33477547 PMCID: PMC7831135 DOI: 10.3390/genes12010111] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteria currently included in Rhizobium leguminosarum are too diverse to be considered a single species, so we can refer to this as a species complex (the Rlc). We have found 429 publicly available genome sequences that fall within the Rlc and these show that the Rlc is a distinct entity, well separated from other species in the genus. Its sister taxon is R. anhuiense. We constructed a phylogeny based on concatenated sequences of 120 universal (core) genes, and calculated pairwise average nucleotide identity (ANI) between all genomes. From these analyses, we concluded that the Rlc includes 18 distinct genospecies, plus 7 unique strains that are not placed in these genospecies. Each genospecies is separated by a distinct gap in ANI values, usually at approximately 96% ANI, implying that it is a 'natural' unit. Five of the genospecies include the type strains of named species: R. laguerreae, R. sophorae, R. ruizarguesonis, "R. indicum" and R. leguminosarum itself. The 16S ribosomal RNA sequence is remarkably diverse within the Rlc, but does not distinguish the genospecies. Partial sequences of housekeeping genes, which have frequently been used to characterize isolate collections, can mostly be assigned unambiguously to a genospecies, but alleles within a genospecies do not always form a clade, so single genes are not a reliable guide to the true phylogeny of the strains. We conclude that access to a large number of genome sequences is a powerful tool for characterizing the diversity of bacteria, and that taxonomic conclusions should be based on all available genome sequences, not just those of type strains.
Collapse
Affiliation(s)
| | - Sara Moeskjær
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| | - Alexey Afonin
- Laboratory for Genetics of Plant-Microbe Interactions, ARRIAM, Pushkin, 196608 Saint-Petersburg, Russia;
| | - Praveen Rahi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, India;
| | - Marta Maluk
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; (M.M.); (E.K.J.)
| | - Euan K. James
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; (M.M.); (E.K.J.)
| | - Maria Izabel A. Cavassim
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA;
| | - M. Harun-or Rashid
- Biotechnology Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh 2202, Bangladesh;
| | - Aregu Amsalu Aserse
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland;
| | - Benjamin J. Perry
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand;
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad De México 11340, Mexico;
| | - Encarna Velázquez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Unidad Asociada Grupo de Interacción planta-microorganismo (Universidad de Salamanca-IRNASA-CSIC), 37007 Salamanca, Spain; (E.V.); (R.R.G.)
| | - Evgeny E. Andronov
- Department of Microbial Monitoring, ARRIAM, Pushkin, 196608 Saint-Petersburg, Russia;
| | - Anastasia Tampakaki
- Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855 Athens, Greece;
| | - José David Flores Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal;
| | - Raúl Rivas González
- Departamento de Microbiología y Genética, Universidad de Salamanca, Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Unidad Asociada Grupo de Interacción planta-microorganismo (Universidad de Salamanca-IRNASA-CSIC), 37007 Salamanca, Spain; (E.V.); (R.R.G.)
| | - Sameh H. Youseif
- Department of Microbial Genetic Resources, National Gene Bank (NGB), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Marc Lepetit
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, 06903 Sophia Antipolis, France;
| | - Stéphane Boivin
- Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR INRAE-IRD-CIRAD-UM2-SupAgro, Campus International de Baillarguet, TA-A82/J, CEDEX 05, 34398 Montpellier, France;
| | - Beatriz Jorrin
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK;
| | - Gregory J. Kenicer
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK;
| | - Álvaro Peix
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Unidad Asociada Grupo de Interacción Planta-Microorganismo (Universidad de Salamanca-IRNASA-CSIC), 37008 Salamanca, Spain;
| | - Michael F. Hynes
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
| | - Martha Helena Ramírez-Bahena
- Departamento de Didáctica de las Matemáticas y de las Ciencias Experimentales. Universidad de Salamanca, 37008 Salamanca, Spain;
| | - Arvind Gulati
- Microbial Prospection, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176 061, India;
| | - Chang-Fu Tian
- State Key Laboratory of Agrobiotechnology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
21
|
Assessment of Genetic Diversity and Symbiotic Efficiency of Selected Rhizobia Strains Nodulating Lentil ( Lens culinaris Medik.). PLANTS 2020; 10:plants10010015. [PMID: 33374129 PMCID: PMC7823456 DOI: 10.3390/plants10010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
A total of 14 Rhizobium strains were isolated from lentil accessions grown at the ICARDA experimental research station at Marchouch in Morocco and used for molecular characterization and symbiotic efficiency assessment. Individual phylogenetic analysis using the 16S rRNA gene, house-keeping genes rpoB, recA, and gyrB, and symbiotic genes nodD and nodA along with Multilocus Sequence Analysis (MLSA) of the concatenated genes (16S rRNA-rpoB-recA-gyrB) was carried out for the identification and clustering of the isolates. The symbiotic efficiency of the strains was assessed on three Moroccan lentil cultivars (Bakria, Chakkouf, and Zaria) based on the number of nodules, plant height, plant dry weight, and total nitrogen content in leaves. The results showed that the individual phylogenetic analysis clustered all the strains into Rhizobium laguerreae and Rhizobium leguminosarum with sequence similarity ranging from 94 to 100%, except one strain which clustered with Mesorhizobium huakuii with sequence similarity of 100%. The MLSA of the concatenated genes and the related percentages of similarity clustered these strains into two groups of Rhizobium species, with one strain as a new genospecies when applying the threshold of 96%. For symbiotic efficiency, the Bakria variety showed the best association with 10 strains compared to its non-inoculated control (p-value ≤ 0.05), followed by Chakkouf and Zaria. The present study concluded that the genetic diversity and the symbiotic efficiency of Rhizobium strains appeared to be mainly under the control of the lentil genotypes.
Collapse
|
22
|
Analysis of the Interaction between Pisum sativum L. and Rhizobium laguerreae Strains Nodulating This Legume in Northwest Spain. PLANTS 2020; 9:plants9121755. [PMID: 33322342 PMCID: PMC7763339 DOI: 10.3390/plants9121755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023]
Abstract
Pisum sativum L. (pea) is one of the most cultivated grain legumes in European countries due to the high protein content of its seeds. Nevertheless, the rhizobial microsymbionts of this legume have been scarcely studied in these countries. In this work, we analyzed the rhizobial strains nodulating the pea in a region from Northwestern Spain, where this legume is widely cultivated. The isolated strains were genetically diverse, and the phylogenetic analysis of core and symbiotic genes showed that these strains belong to different clusters related to R. laguerreae sv. viciae. Representative strains of these clusters were able to produce cellulose and cellulases, which are two key molecules in the legume infection process. They formed biofilms and produced acyl-homoserine lactones (AHLs), which are involved in the quorum sensing regulation process. They also exhibited several plant growth promotion mechanisms, including phosphate solubilization, siderophore, and indole acetic acid production and symbiotic atmospheric nitrogen fixation. All strains showed high symbiotic efficiency on pea plants, indicating that strains of R. laguerreae sv. viciae are promising candidates for the biofertilization of this legume worldwide.
Collapse
|
23
|
Youseif SH, Abd El-Megeed FH, Mohamed AH, Ageez A, Veliz E, Martínez-Romero E. Diverse Rhizobium strains isolated from root nodules of Trifolium alexandrinum in Egypt and symbiovars. Syst Appl Microbiol 2020; 44:126156. [PMID: 33232849 DOI: 10.1016/j.syapm.2020.126156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022]
Abstract
Berseem clover (T. alexandrinum) is the main forage legume crop used as animal feed in Egypt. Here, eighty rhizobial isolates were isolated from root nodules of berseem clover grown in different regions in Egypt and were grouped by RFLP-16S rRNA ribotyping. Representative isolates were characterized using phylogenetic analyses of the 16S rRNA, rpoB, glnA, pgi, and nodC genes. We also investigated the performance of these isolates using phenotypic tests and nitrogen fixation efficiency assays. The majority of strains (<90%) were closely related to Rhizobium aegyptiacum and Rhizobium aethiopicum and of the remaining strains, six belonged to the Rhizobium leguminosarum genospecies complex and only one strain was assigned to Agrobacterium fabacearum. Despite their heterogeneous chromosomal background, most of the strains shared nodC gene alleles corresponding to symbiovar trifolii. Some of the strains closely affiliated to R. aegyptiacum and R. aethiopicum had superior nodulation and nitrogen fixation capabilities in berseem clover, compared to the commercial inoculant (Okadein®) and N-added treatments. R. leguminosarum strain NGB-CR 17 that harbored a nodC allele typical of symbiovar viciae, was also able to form an effective symbiosis with clover. Two strains with nodC alleles of symbiovar trifolii, R. aegyptiacum strains NGB-CR 129 and 136, were capable of forming effective nodules in Phaseolus vulgaris in axenic greenhouse conditions. This adds the symbiovar trifolii which is well-established in the Egyptian soils to the list of symbiovars that form nodules in P. vulgaris.
Collapse
Affiliation(s)
- Sameh H Youseif
- Department of Microbial Genetic Resources, National Gene Bank, Agricultural Research Center (ARC), Giza 12619, Egypt.
| | - Fayrouz H Abd El-Megeed
- Department of Microbial Genetic Resources, National Gene Bank, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Akram H Mohamed
- Department of Microbial Genetic Resources, National Gene Bank, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Amr Ageez
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; Faculty of Biotechnology, MSA University, 6 October City, Egypt
| | - Esteban Veliz
- Department of Plant Biology, University of California, Davis, Life Sciences Addition, 1 Shields Ave., Davis, CA, 95616, USA
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, UNAM Cuernavaca, Morelos, Mexico
| |
Collapse
|
24
|
Pagano MC, Miransari M, Corrêa EJ, Duarte NF, Yelikbayev BK. Genomic Research Favoring Higher Soybean Production. Curr Genomics 2020; 21:481-490. [PMID: 33214764 PMCID: PMC7604746 DOI: 10.2174/1389202921999200824125710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 11/29/2022] Open
Abstract
Interest in the efficient production of soybean, as one of the most important crop plants, is significantly increasing worldwide. Soybean symbioses, the most important biological process affecting soybean yield and protein content, were revitalized due to the need for sustainable agricultural practices. Similar to many crop species, soybean can establish symbiotic associations with the soil bacteria rhizobia, and with the soil fungi, arbuscular mycorrhizal fungi, and other beneficial rhizospheric microorganisms are often applied as biofertilizers. Microbial interactions may importantly affect soybean production and plant health by activating different genomic pathways in soybean. Genomic research is an important tool, which may be used to elucidate and enhance the mechanisms controlling such actions and interactions. This review presents the available details on the genomic research favoring higher soybean production. Accordingly, new technologies applied to plant rhizosphere and symbiotic microbiota, root-plant endophytes, and details about the genetic composition of soybean inoculant strains are highlighted. Such details may be effectively used to enhance soybean growth and yield, under different conditions, including stress, resulting in a more sustainable production.
Collapse
Affiliation(s)
- Marcela C. Pagano
- Address correspondence to these authors at the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil;, E-mail: and Department of Book&Article, AbtinBerkeh Scienctifc Ltd. Company, Isfahan, Iran; Tel: +98313231755; Fax: +983132504068; E-mail:
| | - Mohammad Miransari
- Address correspondence to these authors at the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil;, E-mail: and Department of Book&Article, AbtinBerkeh Scienctifc Ltd. Company, Isfahan, Iran; Tel: +98313231755; Fax: +983132504068; E-mail:
| | | | | | | |
Collapse
|
25
|
Efstathiadou E, Savvas D, Tampakaki AP. Genetic diversity and phylogeny of indigenous rhizobia nodulating faba bean (Vicia faba L.) in Greece. Syst Appl Microbiol 2020; 43:126149. [PMID: 33161357 DOI: 10.1016/j.syapm.2020.126149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/19/2020] [Accepted: 09/19/2020] [Indexed: 12/16/2022]
Abstract
The genetic diversity and phylogeny of fast-growing rhizobia isolated from root nodules of Vicia faba grown in different geographical regions of Greece were assessed. Although Rhizobium leguminosarum sv. viciae is the most common symbiont of Vicia spp. in European soils, there is no available information on native rhizobia nodulating faba bean in Greece. Seventy bacterial strains were isolated and grouped into sixteen distinct profiles based on BOX-PCR fingerprinting. The phylogenetic affiliation was further defined by sequence analysis of the rrs and multilocus sequence analysis (MLSA) of three housekeeping genes (recA, atpD and gyrB). Fifty-eight isolates were affiliated with recently described genospecies gsF-2, represented by R. laguerreae FB206T, whereas six isolates were closely related to gsB and two isolates might belong to gsA. Two isolates assigned to R. hidalgonense and another two non-nodulating strains could not be assigned to any validly defined species and possibly belong to a new rhizobial lineage. Interestingly, R. laguerreae strains were commonly found at all sampling sites, suggesting that they could be the main symbionts of faba beans in Greek soils. According to the phylogenies of two symbiosis-related genes (nodC and nifH), all nodulating isolates belonged to symbiovar (sv.) viciae harboring four distinct nodC gene haplotypes and they were grouped into two clades together with strains assigned to R. laguerreae and genospecies of R. leguminosarum isolated from other countries and continents. This is the first report that R. hidalgonense strains belong to sv. viciae. No correlation was observed between the nodC haplotypes, geographic origin and chromosomal background of the isolates in the study.
Collapse
Affiliation(s)
- Evdoxia Efstathiadou
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855 Athens, Greece
| | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855 Athens, Greece
| | - Anastasia P Tampakaki
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855 Athens, Greece.
| |
Collapse
|
26
|
Rahi P, Giram P, Chaudhari D, diCenzo GC, Kiran S, Khullar A, Chandel M, Gawari S, Mohan A, Chavan S, Mahajan B. Rhizobium indicum sp. nov., isolated from root nodules of pea (Pisum sativum) cultivated in the Indian trans-Himalayas. Syst Appl Microbiol 2020; 43:126127. [PMID: 32847793 DOI: 10.1016/j.syapm.2020.126127] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
Abstract
Three strains of rhizobia isolated from effective root nodules of pea (Pisum sativum L.) collected from the Indian trans-Himalayas were characterized using 16S rRNA, atpD and recA genes. Phylogeny of the 16S rRNA genes revealed that the newly isolated strains were members of the genus Rhizobium with ≥99.9% sequence similarity to the members within the "Rhizobium leguminosarum" group. Phylogenetic analyses based on the concatenated sequences of atpD and recA gene, and 92 core genes extracted from the genome sequences indicated that strains JKLM 12A2T and JKLM 13E are grouped as a separate clade closely related to R. laguerreae FB206T. In contrast, the strain JKLM 19E was placed with "R. hidalgonense" FH14T. Whole-genome average nucleotide identity (ANI) values were 97.6% within strains JKLM 12A2T and JKLM 13E, and less than 94% with closely related species. The digital DNA-DNA hybridization (dDDH) values were 81.45 within the two strains and less than 54.8% to closely related species. The major cellular fatty acids were C18:1w7c in summed feature 8, C14:0 3OH/C16:1 iso I in summed feature 2, and C18:0. The DNA G+C content of JKLM 12A2T and JKLM 13E was 60.8mol%. The data on genomic, chemotaxonomic, and phenotypic characteristics indicates that the strains JKLM 12A2T and JKLM 13E represent a novel species, Rhizobium indicum sp. nov. The type strain is JKLM 12A2T (= MCC 3961T=KACC 21380T=JCM 33658T). However, the strain JKLM 19E represents a member of "R. hidalgonense" and the symbiovar viciae.
Collapse
Affiliation(s)
- Praveen Rahi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411007, India.
| | - Pranoti Giram
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Diptaraj Chaudhari
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - George C diCenzo
- Department of Biology, Queen's University, Kingston, K7L 3N6, Canada
| | - Shashi Kiran
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Aastha Khullar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Mahima Chandel
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Sayali Gawari
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Anagha Mohan
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Shraddha Chavan
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Bhagyashree Mahajan
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411007, India
| |
Collapse
|
27
|
Ayuso-Calles M, García-Estévez I, Jiménez-Gómez A, Flores-Félix JD, Escribano-Bailón MT, Rivas R. Rhizobium laguerreae Improves Productivity and Phenolic Compound Content of Lettuce ( Lactuca sativa L.) under Saline Stress Conditions. Foods 2020; 9:foods9091166. [PMID: 32847018 PMCID: PMC7555320 DOI: 10.3390/foods9091166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 11/27/2022] Open
Abstract
Lettuce (Lactuca sativa L.) is a widely consumed horticultural species. Its significance lies in a high polyphenolic compound content, including phenolic acids and flavonols. In this work, we have probed the ability of Rhizobium laguerreae HUTR05 to promote lettuce growth, under in vitro and greenhouse conditions (both non-saline and saline conditions). This strain has shown several in vitro plant growth promotion mechanisms, as well as capacity to colonize lettuce seedlings roots. We have analyzed the effect of the rhizobacterium inoculation on mineral and bioactive compounds in lettuce, under greenhouse conditions, and found a rise in the content of certain phenolic acids and flavonoids, such as derivatives of caffeoyl acid and quercetin. The genome analysis of the strain has shown the presence of genes related to plant growth-promoting rhizobacteria (PGPR) mechanisms, defense from saline stress, and phenolic compound metabolism (such as naringenin-chalcone synthase or phenylalanine aminotransferase).
Collapse
Affiliation(s)
- Miguel Ayuso-Calles
- Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental de Biología, 37007 Salamanca, Spain; (M.A.-C.); (J.D.F.-F.); (R.R.)
- Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain
| | - Ignacio García-Estévez
- Grupo de Investigación en Polifenoles (GIP), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain; (I.G.-E.); (M.T.E.-B.)
| | - Alejandro Jiménez-Gómez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental de Biología, 37007 Salamanca, Spain; (M.A.-C.); (J.D.F.-F.); (R.R.)
- Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain
- Correspondence: ; Tel.: +34-923294500 (ext. 1919)
| | - José D. Flores-Félix
- Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental de Biología, 37007 Salamanca, Spain; (M.A.-C.); (J.D.F.-F.); (R.R.)
- Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain
| | - M. Teresa Escribano-Bailón
- Grupo de Investigación en Polifenoles (GIP), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain; (I.G.-E.); (M.T.E.-B.)
| | - Raúl Rivas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental de Biología, 37007 Salamanca, Spain; (M.A.-C.); (J.D.F.-F.); (R.R.)
- Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain
- Associated Unit University of Salamanca CSIC (IRNASA), 37008 Salamanca, Spain
| |
Collapse
|
28
|
Jorrin B, Palacios JM, Peix Á, Imperial J. Rhizobium ruizarguesonis sp. nov., isolated from nodules of Pisum sativum L. Syst Appl Microbiol 2020; 43:126090. [PMID: 32690191 DOI: 10.1016/j.syapm.2020.126090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 10/24/2022]
Abstract
Four strains, coded as UPM1132, UPM1133T, UPM1134 and UPM1135, and isolated from nodules of Pisum sativum plants grown on Ni-rich soils were characterised through a polyphasic taxonomy approach. Their 16S rRNA gene sequences were identical and showed 100% similarity with their closest phylogenetic neighbors, the species included in the 'R. leguminosarum group': R. laguerreae FB206T, R. leguminosarum USDA 2370T, R. anhuiense CCBAU 23252T, R. sophoreae CCBAU 03386T, R. acidisoli FH13T and R. hidalgonense FH14T, and 99.6% sequence similarity with R. esperanzae CNPSo 668T. The analysis of combined housekeeping genes recA, atpD and glnII sequences showed similarities of 92-95% with the closest relatives. Whole genome average nucleotide identity (ANI) values were 97.5-99.7% ANIb similarity among the four strains, and less than 92.4% with closely related species, while digital DNA-DNA hybridization average values (dDDH) were 82-85% within our strains and 34-52% with closely related species. Major fatty acids in strain UPM1133T were C18:1 ω7c / C18:1 ω6c in summed feature 8, C14:0 3OH/ C16:1 iso I in summed feature 2 and C18:0. Colonies were small to medium, pearl-white coloured in YMA at 28°C and growth was observed in the ranges 8-34°C, pH 5.5-7.5 and 0-0.7% (w/v) NaCl. The DNA G+C content was 60.8mol %. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strains UPM1132, UPM1133T, UPM1134 and UPM1135 into a novel species of Rhizobium, for which the name Rhizobium ruizarguesonis sp. nov. is proposed. The type strain is UPM1133T (=CECT 9542T=LMG 30526T).
Collapse
Affiliation(s)
- Beatriz Jorrin
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - José Manuel Palacios
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón, Madrid, Spain; Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Álvaro Peix
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain; Unidad Asociada Grupo de Interacción Planta-Microorganismo Universidad de Salamanca-IRNASA (CSIC).
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón, Madrid, Spain; Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
29
|
Missbah El Idrissi M, Lamin H, Bouhnik O, Lamrabet M, Alami S, Jabrone Y, Bennis M, Bedmar EJ, Abdelmoumen H. Characterization of Pisum sativum and Vicia faba microsymbionts in Morocco and definition of symbiovar viciae in Rhizobium acidisoli. Syst Appl Microbiol 2020; 43:126084. [PMID: 32423773 DOI: 10.1016/j.syapm.2020.126084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022]
Abstract
In this work, we analyzed the diversity of seventy-six bacteria isolated from Pea and faba bean nodules in two regions of Morocco. The molecular diversity was realized using the analysis of the sequences of 16S rRNA and six housekeeping genes (recA, glnII, atpD, dnaK, rpoB and gyrB) and two symbiotic genes (nodA and nodC). The phylogeny of the 16S rRNA gene sequences revealed that all strains belong to the genus Rhizobium, being related to the type strains of R. leguminosarum, R. laguerreae, R. indigoferae, R. anhuiense and R. acidisoli. The housekeeping genes phylogenies showed that some strains formed a subclade distinct from the rhizobial species that usually nodulate Vicia faba and Pisum sativum which are closely related to R. acidisoli FH23 with sequence similarity of 98.3%. Analysis of the PGPR activities of the different isolates showed that the strains related to R. laguerreae were able to solubilize phosphates and to produce siderophores and auxin phytohormone. However, R. acidisoli strain F40D2 was unable to solubilize phosphates although they produce siderophores and IAA. The phylogenetic analysis of the nodA and nodC sequences showed that all isolated strains were closely related with the strains of symbiovar viciae. The nodulation tests confirmed the ability to nodulate V. faba and P. sativum but not Cicer arietinum or Phaseolus vulgaris. Hence, in Morocco P. sativum is nodulated by R. laguerreae; whereas V. faba is nodulated by R. laguerreae and the symbiovar viciae of R. acidisoli which has been not previously described in this species.
Collapse
Affiliation(s)
- Mustapha Missbah El Idrissi
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Hanane Lamin
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Omar Bouhnik
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Mouad Lamrabet
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Soufiane Alami
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Youssef Jabrone
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco; Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), E-419, 18080 Granada, Spain
| | - Meryeme Bennis
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), E-419, 18080 Granada, Spain
| | - Hanaa Abdelmoumen
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| |
Collapse
|
30
|
Boivin S, Ait Lahmidi N, Sherlock D, Bonhomme M, Dijon D, Heulin‐Gotty K, Le‐Queré A, Pervent M, Tauzin M, Carlsson G, Jensen E, Journet E, Lopez‐Bellido R, Seidenglanz M, Marinkovic J, Colella S, Brunel B, Young P, Lepetit M. Host-specific competitiveness to form nodules in Rhizobium leguminosarum symbiovar viciae. THE NEW PHYTOLOGIST 2020; 226:555-568. [PMID: 31873949 PMCID: PMC7687279 DOI: 10.1111/nph.16392] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 05/07/2023]
Abstract
Fabeae legumes such as pea and faba bean form symbiotic nodules with a large diversity of soil Rhizobium leguminosarum symbiovar viciae (Rlv) bacteria. However, bacteria competitive to form root nodules (CFN) are generally not the most efficient to fix dinitrogen, resulting in a decrease in legume crop yields. Here, we investigate differential selection by host plants on the diversity of Rlv. A large collection of Rlv was collected by nodule trapping with pea and faba bean from soils at five European sites. Representative genomes were sequenced. In parallel, diversity and abundance of Rlv were estimated directly in these soils using metabarcoding. The CFN of isolates was measured with both legume hosts. Pea/faba bean CFN were associated to Rlv genomic regions. Variations of bacterial pea and/or faba bean CFN explained the differential abundance of Rlv genotypes in pea and faba bean nodules. No evidence was found for genetic association between CFN and variations in the core genome, but variations in specific regions of the nod locus, as well as in other plasmid loci, were associated with differences in CFN. These findings shed light on the genetic control of CFN in Rlv and emphasise the importance of host plants in controlling Rhizobium diversity.
Collapse
Affiliation(s)
- Stéphane Boivin
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| | - Nassima Ait Lahmidi
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| | | | - Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPSUniversité de Toulouse31326Castanet‐TolosanFrance
| | - Doriane Dijon
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| | - Karine Heulin‐Gotty
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| | - Antoine Le‐Queré
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| | - Marjorie Pervent
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| | - Marc Tauzin
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| | - Georg Carlsson
- Department of Biosystems and TechnologySwedish University of Agricultural SciencesSE‐230 53AlnarpSweden
| | - Erik Jensen
- Department of Biosystems and TechnologySwedish University of Agricultural SciencesSE‐230 53AlnarpSweden
| | - Etienne‐Pascal Journet
- AGroécologie, Innovation et teRritoires (AGIR) INRAEENSAT31326Castanet‐TolosanFrance
- Laboratoire des Interactions Plantes MicrorganismesUniversité de Toulouse, INRAE, CNRS31326Castanet‐TolosanFrance
| | - Raphael Lopez‐Bellido
- Departamento de Ciencias y Recursos Agrícolas y ForestalesUniversity of Córdoba14071CórdobaSpain
| | | | | | - Stefano Colella
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| | - Brigitte Brunel
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| | - Peter Young
- Department of BiologyUniversity of YorkYorkYO10 5DDUK
| | - Marc Lepetit
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| |
Collapse
|
31
|
Asfaw B, Aserse AA, Asefa F, Yli-Halla M, Lindström K. Genetically diverse lentil- and faba bean-nodulating rhizobia are present in soils across Central and Southern Ethiopia. FEMS Microbiol Ecol 2020; 96:5727313. [DOI: 10.1093/femsec/fiaa015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/04/2020] [Indexed: 11/13/2022] Open
Abstract
ABSTRACT
In total 196 bacterial isolates were obtained from root nodules of lentil (Lens culinaris) and faba bean (Vicia faba) grown on soil samples collected from 10 different sites in central and southern parts of Ethiopia. All isolates were identified as members of the genus Rhizobium by using recA gene sequence analysis. In the recA phylogenetic tree 195 rhizobial strains were classified into nine genospecies. The phylogeny of symbiotic genes nodC and nifH revealed five and six distinct groups respectively, largely dominated by symbiovar viciae. A multivariate analysis showed that environmental variables of the sampling sites considered in this study had more effect on the distribution and composition of the genospecies than the host legumes of the strains. Twenty representative strains, selected based on their isolation site, host plant and nodC group, were able to nodulate all lentil, faba bean, field pea (Pisum abyssinicum) and grass pea (Lathyrus sativus) plants in a greenhouse test in axenic conditions. The majority of the rhizobial strains were effective nitrogen-fixing symbionts for all tested legumes, indicating their potential to serve as broad host-range inoculants in agriculture. The present work suggests the presence of taxonomically and symbiotically diverse rhizobial species for legumes in the Viciae tribe in Ethiopia.
Collapse
Affiliation(s)
- Beimnet Asfaw
- Institute of Biotechnology, Addis Ababa University, Ethiopia
| | - Aregu Amsalu Aserse
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences and Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, Finland
| | - Fassil Asefa
- Department of Microbial, Cellular and Molecular Biology, College of Life Science, Addis Ababa University, Ethiopia
| | - Markku Yli-Halla
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Kristina Lindström
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences and Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Santos MS, Nogueira MA, Hungria M. Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express 2019; 9:205. [PMID: 31865554 PMCID: PMC6925611 DOI: 10.1186/s13568-019-0932-0] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022] Open
Abstract
More than one hundred years have passed since the development of the first microbial inoculant for plants. Nowadays, the use of microbial inoculants in agriculture is spread worldwide for different crops and carrying different microorganisms. In the last decades, impressive progress has been achieved in the production, commercialization and use of inoculants. Nowadays, farmers are more receptive to the use of inoculants mainly because high-quality products and multi-purpose elite strains are available at the market, improving yields at low cost in comparison to chemical fertilizers. In the context of a more sustainable agriculture, microbial inoculants also help to mitigate environmental impacts caused by agrochemicals. Challenges rely on the production of microbial inoculants for a broader range of crops, and the expansion of the inoculated area worldwide, in addition to the search for innovative microbial solutions in areas subjected to increasing episodes of environmental stresses. In this review, we explore the world market for inoculants, showing which bacteria are prominent as inoculants in different countries, and we discuss the main research strategies that might contribute to improve the use of microbial inoculants in agriculture.
Collapse
Affiliation(s)
- Mariana Sanches Santos
- Embrapa Soja, Cx. Postal 231, Londrina, Paraná 86001-970 Brazil
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, C.P. 60001, Londrina, Paraná 86051-990 Brazil
| | | | - Mariangela Hungria
- Embrapa Soja, Cx. Postal 231, Londrina, Paraná 86001-970 Brazil
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, C.P. 60001, Londrina, Paraná 86051-990 Brazil
| |
Collapse
|
33
|
Gritli T, Ellouze W, Chihaoui SA, Barhoumi F, Mhamdi R, Mnasri B. Genotypic and symbiotic diversity of native rhizobia nodulating red pea (Lathyrus cicera L.) in Tunisia. Syst Appl Microbiol 2019; 43:126049. [PMID: 31870686 DOI: 10.1016/j.syapm.2019.126049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/24/2019] [Accepted: 12/02/2019] [Indexed: 11/15/2022]
Abstract
Nodulation and genetic diversity of native rhizobia nodulating Lathyrus cicera plants grown in 24 cultivated and marginal soils collected from northern and central Tunisia were studied. L. cicera plants were nodulated and showed the presence of native rhizobia in 21 soils. A total of 196 bacterial strains were selected and three different ribotypes were revealed after PCR-RFLP analysis. The sequence analysis of the rrs and two housekeeping genes (recA and thrC) from 36 representative isolates identified Rhizobium laguerreae as the dominant (53%) rhizobia nodulating L. cicera. To the best of our knowledge, this is the first time that this species has been reported among wild populations of the rhizobia-nodulating Lathyrus genus. Twenty-five percent of the isolates were identified as R. leguminosarum and isolates LS11.5, LS11.7 and LS8.8 clustered with Ensifer meliloti. Interestingly, five isolates (LS20.3, LS18.3, LS19.10, LS1.2 and LS21.20) were segregated from R. laguerreae and clustered as a separate clade. These isolates possibly belong to new species. According to nodC and nodA phylogeny, strains of R. laguerreae and R. leguminosarum harbored the symbiotic genes of symbiovar viciae and clustered in three different clades showing heterogeneity within the symbiovar. Strains of E. meliloti harbored symbiotic genes of Clade V and induced inefficient nodules.
Collapse
Affiliation(s)
- Takwa Gritli
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cédria, BP 901, Hammam-lif 2050, Tunisia
| | - Walid Ellouze
- Agriculture and Agri-Food Canada, Vineland Station, Ontario L0R 2E0, Canada
| | - Saif-Allah Chihaoui
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cédria, BP 901, Hammam-lif 2050, Tunisia
| | - Fathi Barhoumi
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cédria, BP 901, Hammam-lif 2050, Tunisia
| | - Ridha Mhamdi
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cédria, BP 901, Hammam-lif 2050, Tunisia
| | - Bacem Mnasri
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cédria, BP 901, Hammam-lif 2050, Tunisia.
| |
Collapse
|
34
|
Huo Y, Tong W, Wang J, Wang F, Bai W, Wang E, Shi P, Chen W, Wei G. Rhizobium chutanense sp. nov., isolated from root nodules of Phaseolus vulgaris in China. Int J Syst Evol Microbiol 2019; 69:2049-2056. [PMID: 31091180 DOI: 10.1099/ijsem.0.003430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-stain-negative, rod-shaped bacterial strains (C5T and C16), isolated from root nodules of Phaseolus vulgaris L. in Jiangxi Province, PR China, were characterized by using a polyphasic taxonomical approach. The phylogenetic analysis of the 16S rRNA gene and three concatenated housekeeping genes (recA-glnII-atpD) revealed that C5T and C16 were members of the genus Rhizobium, yet were distinct from known species. The case for strain C5T representing a novel species was supported by genomic results. Pairwise digital DNA-DNA hybridization and average nucleotide identity values were much lower than the proposed and generally accepted species boundaries. The genome-based phylogenetic tree reconstructed by using the up-to-date bacterial core gene set consisting of 92 genes showed that the strains formed a monophyletic branch, further supporting this result. The symbiotic genes of nodC and nifH were identified in both strains; each could nodulate Phaseolus vulgaris and Glycine max but not Leucaena leucocephala, Pisum sativum or Medicago sativa plants. Major cellular fatty acids of C5T were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c; 58.8 %), C18 : 1 ω7c 11-methyl (14.2 %) and C18 : 0 (8.1 %). The DNA G+C content of C5T was 61.4 mol%. Based on these genomic, chemotaxonomic and phenotypic characteristics, we propose a novel species: Rhizobium chutanense sp. nov. The type strain is C5T (=CCTCC AB 2018143T=LMG 30777T).
Collapse
Affiliation(s)
- Yunyun Huo
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Shaanxi, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Shaanxi, PR China
| | - Wenjun Tong
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Shaanxi, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Shaanxi, PR China
| | - Juanjuan Wang
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Shaanxi, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Shaanxi, PR China
| | - Fang Wang
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Shaanxi, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Shaanxi, PR China
| | - Wenqing Bai
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Shaanxi, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Shaanxi, PR China
| | - Entao Wang
- 3Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico
| | - Peng Shi
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Shaanxi, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Shaanxi, PR China
| | - Weimin Chen
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Shaanxi, PR China
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Shaanxi, PR China
| | - Gehong Wei
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Shaanxi, PR China
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Shaanxi, PR China
| |
Collapse
|
35
|
Flores-Félix JD, Sánchez-Juanes F, García-Fraile P, Valverde A, Mateos PF, Gónzalez-Buitrago JM, Velázquez E, Rivas R. Phaseolus vulgaris is nodulated by the symbiovar viciae of several genospecies of Rhizobium laguerreae complex in a Spanish region where Lens culinaris is the traditionally cultivated legume. Syst Appl Microbiol 2019; 42:240-247. [DOI: 10.1016/j.syapm.2018.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 11/30/2022]
|
36
|
Andrews M, De Meyer S, James EK, Stępkowski T, Hodge S, Simon MF, Young JPW. Horizontal Transfer of Symbiosis Genes within and Between Rhizobial Genera: Occurrence and Importance. Genes (Basel) 2018; 9:E321. [PMID: 29954096 PMCID: PMC6071183 DOI: 10.3390/genes9070321] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 01/17/2023] Open
Abstract
Rhizobial symbiosis genes are often carried on symbiotic islands or plasmids that can be transferred (horizontal transfer) between different bacterial species. Symbiosis genes involved in horizontal transfer have different phylogenies with respect to the core genome of their ‘host’. Here, the literature on legume⁻rhizobium symbioses in field soils was reviewed, and cases of phylogenetic incongruence between rhizobium core and symbiosis genes were collated. The occurrence and importance of horizontal transfer of rhizobial symbiosis genes within and between bacterial genera were assessed. Horizontal transfer of symbiosis genes between rhizobial strains is of common occurrence, is widespread geographically, is not restricted to specific rhizobial genera, and occurs within and between rhizobial genera. The transfer of symbiosis genes to bacteria adapted to local soil conditions can allow these bacteria to become rhizobial symbionts of previously incompatible legumes growing in these soils. This, in turn, will have consequences for the growth, life history, and biogeography of the legume species involved, which provides a critical ecological link connecting the horizontal transfer of symbiosis genes between rhizobial bacteria in the soil to the above-ground floral biodiversity and vegetation community structure.
Collapse
Affiliation(s)
- Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand.
| | - Sofie De Meyer
- Centre for Rhizobium Studies, Murdoch University, Murdoch 6150, Australia.
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium.
| | - Euan K James
- James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| | - Tomasz Stępkowski
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland.
| | - Simon Hodge
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand.
| | - Marcelo F Simon
- Embrapa Genetic Resources and Biotechnology, Brasilia DF 70770-917, Brazil.
| | - J Peter W Young
- Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
37
|
Kuzmanović N, Smalla K, Gronow S, Puławska J. Rhizobium tumorigenes sp. nov., a novel plant tumorigenic bacterium isolated from cane gall tumors on thornless blackberry. Sci Rep 2018; 8:9051. [PMID: 29899540 PMCID: PMC5998023 DOI: 10.1038/s41598-018-27485-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 06/04/2018] [Indexed: 12/02/2022] Open
Abstract
Four plant tumorigenic strains 932, 1019, 1078T and 1081 isolated from cane gall tumors on thornless blackberry (Rubus sp.) were characterized. They shared low sequence identity with related Rhizobium spp. based on comparisons of 16S rRNA gene (≤98%) and housekeeping genes atpD, recA and rpoB (<90%). Phylogenetic analysis indicated that the strains studied represent a novel species within the genus Rhizobium, with Rhizobium tubonense CCBAU 85046T as their closest relative. Furthermore, obtained average nucleotide identity (ANI) and in silico DNA–DNA hybridization (DDH) values calculated for whole-genome sequences of strain 1078T and related Rhizobium spp. confirmed the authenticity of the novel species. The ANI-Blast (ANIb), ANI-MUMmer (ANIm) and in silico DDH values between strain 1078T and most closely related R. tubonense CCBAU 85046T were 76.17%, 84.11% and 21.3%, respectively. The novel species can be distinguished from R. tubonense based on phenotypic and chemotaxonomic properties. Here, we demonstrated that four strains studied represent a novel species of the genus Rhizobium, for which the name Rhizobium tumorigenes sp. nov. is proposed (type strain 1078T = DSM 104880T = CFBP 8567T). R. tumorigenes is a new plant tumorigenic species carrying the tumor-inducing (Ti) plasmid.
Collapse
Affiliation(s)
- Nemanja Kuzmanović
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104, Braunschweig, Germany.
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104, Braunschweig, Germany
| | - Sabine Gronow
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124, Braunschweig, Germany
| | - Joanna Puławska
- Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100, Skierniewice, Poland
| |
Collapse
|
38
|
Máthé I, Tóth E, Mentes A, Szabó A, Márialigeti K, Schumann P, Felföldi T. A new Rhizobium species isolated from the water of a crater lake, description of Rhizobium aquaticum sp. nov. Antonie van Leeuwenhoek 2018; 111:2175-2183. [DOI: 10.1007/s10482-018-1110-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/01/2018] [Indexed: 11/28/2022]
|
39
|
Tong W, Li X, Huo Y, Zhang L, Cao Y, Wang E, Chen W, Tao S, Wei G. Genomic insight into the taxonomy of Rhizobium genospecies that nodulate Phaseolus vulgaris. Syst Appl Microbiol 2018; 41:300-310. [PMID: 29576402 DOI: 10.1016/j.syapm.2018.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
Abstract
Due to the wide cultivation of bean (Phaseolus vulgaris L.), rhizobia associated with this plant have been isolated from many different geographical regions. In order to investigate the species diversity of bean rhizobia, comparative genome sequence analysis was performed in the present study for 69 Rhizobium strains mainly isolated from root nodules of bean and clover (Trifolium spp.). Based on genome average nucleotide identity, digital DNA:DNA hybridization, and phylogenetic analysis of 1,458 single-copy core genes, these strains were classified into 28 clusters, consistent with their species definition based on multilocus sequence analysis (MLSA) of atpD, glnII, and recA. The bean rhizobia were found in 16 defined species and nine putative novel species; in addition, 35 strains previously described as Rhizobium etli, Rhizobium phaseoli, Rhizobium vallis, Rhizobium gallicum, Rhizobium leguminosarum and Rhizobium spp. should be renamed. The phylogenetic patterns of symbiotic genes nodC and nifH were highly host-specific and inconsistent with the genomic phylogeny. Multiple symbiovars (sv.) within the Rhizobium species were found as a common feature: sv. phaseoli, sv. trifolii and sv. viciae in Rhizobium anhuiense; sv. phaseoli and sv. mimosae in Rhizobium sophoriradicis/R. etli/Rhizobium sp. III; sv. phaseoli and sv. trifolii in Rhizobium hidalgonense/Rhizobium acidisoli; sv. phaseoli and sv. viciae in R. leguminosarum/Rhizobium sp. IX; sv. trifolii and sv. viciae in Rhizobium laguerreae. Thus, genomic comparison revealed great species diversity in bean rhizobia, corrected the species definition of some previously misnamed strains, and demonstrated the MLSA a valuable and simple method for defining Rhizobium species.
Collapse
Affiliation(s)
- Wenjun Tong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangchen Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunyun Huo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Cao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México D.F., Mexico
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
40
|
Taha K, Berraho EB, El Attar I, Dekkiche S, Aurag J, Béna G. Rhizobium laguerreae is the main nitrogen-fixing symbiont of cultivated lentil ( Lens culinaris ) in Morocco. Syst Appl Microbiol 2018; 41:113-121. [DOI: 10.1016/j.syapm.2017.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
|
41
|
Vicia faba L. in the Bejaia region of Algeria is nodulated by Rhizobium leguminosarum sv. viciae , Rhizobium laguerreae and two new genospecies. Syst Appl Microbiol 2018; 41:122-130. [DOI: 10.1016/j.syapm.2017.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/15/2017] [Accepted: 10/17/2017] [Indexed: 11/21/2022]
|
42
|
Jiménez-Gómez A, Flores-Félix JD, García-Fraile P, Mateos PF, Menéndez E, Velázquez E, Rivas R. Probiotic activities of Rhizobium laguerreae on growth and quality of spinach. Sci Rep 2018; 8:295. [PMID: 29321563 PMCID: PMC5762915 DOI: 10.1038/s41598-017-18632-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/14/2017] [Indexed: 12/15/2022] Open
Abstract
The growing interest in a healthy lifestyle and in environmental protection is changing habits regarding food consumption and agricultural practices. Good agricultural practice is indispensable, particularly for raw vegetables, and can include the use of plant probiotic bacteria for the purpose of biofertilization. In this work we analysed the probiotic potential of the rhizobial strain PEPV40, identified as Rhizobium laguerreae through the analysis of the recA and atpD genes, on the growth of spinach plants. This strain presents several in vitro plant growth promotion mechanisms, such as phosphate solubilisation and the production of indole acetic acid and siderophores. The strain PEPV40 produces cellulose and forms biofilms on abiotic surfaces. GFP labelling of this strain showed that PEPV40 colonizes the roots of spinach plants, forming microcolonies typical of biofilm initiation. Inoculation with this strain significantly increases several vegetative parameters such as leaf number, size and weight, as well as chlorophyll and nitrogen contents. Therefore, our findings indicate, for the first time, that Rhizobium laguerreae is an excellent plant probiotic, which increases the yield and quality of spinach, a vegetable that is increasingly being consumed raw worldwide.
Collapse
Affiliation(s)
- Alejandro Jiménez-Gómez
- Microbiology and Genetics Department, University of Salamanca, 37007, Salamanca, Spain
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, Salamanca, Spain
| | - José David Flores-Félix
- Microbiology and Genetics Department, University of Salamanca, 37007, Salamanca, Spain
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, Salamanca, Spain
| | - Paula García-Fraile
- Microbiology and Genetics Department, University of Salamanca, 37007, Salamanca, Spain
- Institute of Microbiology ASCR,v.v.i., Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Pedro F Mateos
- Microbiology and Genetics Department, University of Salamanca, 37007, Salamanca, Spain
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, Salamanca, Spain
- Associated R&D Unit, USAL-CSIC (IRNASA), Salamanca, Spain
| | - Esther Menéndez
- Microbiology and Genetics Department, University of Salamanca, 37007, Salamanca, Spain
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Pólo da Mitra, Ap. 94, 7002-554, Évora, Portugal
| | - Encarna Velázquez
- Microbiology and Genetics Department, University of Salamanca, 37007, Salamanca, Spain
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, Salamanca, Spain
- Associated R&D Unit, USAL-CSIC (IRNASA), Salamanca, Spain
| | - Raúl Rivas
- Microbiology and Genetics Department, University of Salamanca, 37007, Salamanca, Spain.
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, Salamanca, Spain.
- Associated R&D Unit, USAL-CSIC (IRNASA), Salamanca, Spain.
| |
Collapse
|
43
|
Benidire L, Lahrouni M, Daoui K, Fatemi ZEA, Gomez Carmona R, Göttfert M, Oufdou K. Phenotypic and genetic diversity of Moroccan rhizobia isolated from Vicia faba and study of genes that are likely to be involved in their osmotolerance. Syst Appl Microbiol 2018; 41:51-61. [DOI: 10.1016/j.syapm.2017.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 01/28/2023]
|
44
|
Marek-Kozaczuk M, Wdowiak-Wróbel S, Kalita M, Chernetskyy M, Deryło K, Tchórzewski M, Skorupska A. Host-dependent symbiotic efficiency of Rhizobium leguminosarum bv. trifolii strains isolated from nodules of Trifolium rubens. Antonie van Leeuwenhoek 2017; 110:1729-1744. [PMID: 28791535 PMCID: PMC5676844 DOI: 10.1007/s10482-017-0922-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/29/2017] [Indexed: 11/28/2022]
Abstract
Trifolium rubens L., commonly known as the red feather clover, is capable of symbiotic interactions with rhizobia. Up to now, no specific symbionts of T. rubens and their symbiotic compatibility with Trifolium spp. have been described. We characterized the genomic diversity of T. rubens symbionts by analyses of plasmid profiles and BOX-PCR. The phylogeny of T. rubens isolates was inferred based on the nucleotide sequences of 16S rRNA and two core genes (atpD, recA). The nodC phylogeny allowed classification of rhizobia nodulating T. rubens as Rhizobium leguminosarum symbiovar trifolii (Rlt). The symbiotic efficiency of the Rlt isolates was determined on four clover species: T. rubens, T. pratense, T. repens and T. resupinatum. We determined that Rlt strains formed mostly inefficient symbiosis with their native host plant T. rubens and weakly effective (sub-optimal) symbiosis with T. repens and T. pratense. The same Rlt strains were fully compatible in the symbiosis with T. resupinatum. T. rubens did not exhibit strict selectivity in regard to the symbionts and rhizobia closely related to Rhizobium grahamii, Rhizobium galegae and Agrobacterium radiobacter, which did not nodulate Trifolium spp., were found amongst T. rubens nodule isolates.
Collapse
Affiliation(s)
- Monika Marek-Kozaczuk
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Sylwia Wdowiak-Wróbel
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Michał Kalita
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Mykhaylo Chernetskyy
- The Botanic Garden of Maria Curie-Skłodowska University, Sławinkowska 3, 20-810, Lublin, Poland
| | - Kamil Deryło
- Department of Molecular Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Anna Skorupska
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
45
|
de Lajudie PM, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee for the Taxonomy of Rhizobium and Agrobacterium Minutes of the meeting, Budapest, 25 August 2016. Int J Syst Evol Microbiol 2017; 67:2485-2494. [PMID: 28771120 DOI: 10.1099/ijsem.0.002144] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - J Peter W Young
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
46
|
Celador-Lera L, Menéndez E, Peix A, Igual JM, Velázquez E, Rivas R. Rhizobium zeae sp. nov., isolated from maize (Zea mays L.) roots. Int J Syst Evol Microbiol 2017; 67:2306-2311. [DOI: 10.1099/ijsem.0.001944] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lorena Celador-Lera
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
| | - Esther Menéndez
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
| | - Alvaro Peix
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas, (IRNASA-CSIC), Salamanca, Spain
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
| | - José M. Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas, (IRNASA-CSIC), Salamanca, Spain
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
| | - Encarna Velázquez
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
| | - Raúl Rivas
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
| |
Collapse
|
47
|
Flores-Félix JD, Ramírez-Bahena MH, Salazar S, Peix A, Velázquez E. Reclassification of Arthrobacter viscosus as Rhizobium viscosum comb. nov. Int J Syst Evol Microbiol 2017; 67:1789-1792. [DOI: 10.1099/ijsem.0.001864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- José David Flores-Félix
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
| | - Martha Helena Ramírez-Bahena
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas, (IRNASA-CSIC), Salamanca, Spain
| | - Sergio Salazar
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas, (IRNASA-CSIC), Salamanca, Spain
| | - Alvaro Peix
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas, (IRNASA-CSIC), Salamanca, Spain
| | - Encarna Velázquez
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
48
|
Andrews M, Andrews ME. Specificity in Legume-Rhizobia Symbioses. Int J Mol Sci 2017; 18:E705. [PMID: 28346361 PMCID: PMC5412291 DOI: 10.3390/ijms18040705] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 11/24/2022] Open
Abstract
Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N₂) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga). Specificity for rhizobial species/symbiovar appears to hold for Galega officinalis (Neorhizobium galegeae sv. officinalis), Galega orientalis (Neorhizobium galegeae sv. orientalis), Hedysarum coronarium (Rhizobium sullae), Medicago laciniata (Ensifer meliloti sv. medicaginis), Medicago rigiduloides (Ensifer meliloti sv. rigiduloides) and Trifolium ambiguum (Rhizobium leguminosarum sv. trifolii). Lateral gene transfer of specific symbiosis genes within rhizobial genera is an important mechanism allowing legumes to form symbioses with rhizobia adapted to particular soils. Strain-specific legume rhizobia symbioses can develop in particular habitats.
Collapse
Affiliation(s)
- Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand.
| | - Morag E Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand.
| |
Collapse
|
49
|
Analysis of rhizobial endosymbionts of Vicia, Lathyrus and Trifolium species used to maintain mountain firewalls in Sierra Nevada National Park (South Spain). Syst Appl Microbiol 2017; 40:92-101. [DOI: 10.1016/j.syapm.2016.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
|
50
|
Improvement of Faba Bean Yield Using Rhizobium/Agrobacterium Inoculant in Low-Fertility Sandy Soil. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7010002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|