1
|
Duchesneau K, Defrenne CE, Petro C, Malhotra A, Moore JAM, Childs J, Hanson PJ, Iversen CM, Kostka JE. Responses of vascular plant fine roots and associated microbial communities to whole-ecosystem warming and elevated CO 2 in northern peatlands. THE NEW PHYTOLOGIST 2024; 242:1333-1347. [PMID: 38515239 DOI: 10.1111/nph.19690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024]
Abstract
Warming and elevated CO2 (eCO2) are expected to facilitate vascular plant encroachment in peatlands. The rhizosphere, where microbial activity is fueled by root turnover and exudates, plays a crucial role in biogeochemical cycling, and will likely at least partially dictate the response of the belowground carbon cycle to climate changes. We leveraged the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment, to explore the effects of a whole-ecosystem warming gradient (+0°C to 9°C) and eCO2 on vascular plant fine roots and their associated microbes. We combined trait-based approaches with the profiling of fungal and prokaryote communities in plant roots and rhizospheres, through amplicon sequencing. Warming promoted self-reliance for resource uptake in trees and shrubs, while saprophytic fungi and putative chemoorganoheterotrophic bacteria utilizing plant-derived carbon substrates were favored in the root zone. Conversely, eCO2 promoted associations between trees and ectomycorrhizal fungi. Trees mostly associated with short-distance exploration-type fungi that preferentially use labile soil N. Additionally, eCO2 decreased the relative abundance of saprotrophs in tree roots. Our results indicate that plant fine-root trait variation is a crucial mechanism through which vascular plants in peatlands respond to climate change via their influence on microbial communities that regulate biogeochemical cycles.
Collapse
Affiliation(s)
- Katherine Duchesneau
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Camille E Defrenne
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Caitlin Petro
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Avni Malhotra
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jessica A M Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Joanne Childs
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Paul J Hanson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Colleen M Iversen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Joel E Kostka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
2
|
Zhao Y, Sun T, Li Y, Yang Z, Chen J, Wang J, Yu X, Tang X, Xiao H. The host sex contributes to the endophytic bacterial community in Sargassum thunbergii and their receptacles. Front Microbiol 2024; 15:1334918. [PMID: 38559345 PMCID: PMC10978810 DOI: 10.3389/fmicb.2024.1334918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/14/2024] [Indexed: 04/04/2024] Open
Abstract
Endophytic bacteria have a complex coevolutionary relationship with their host macroalgae. Dioecious macroalgae are important producers in marine ecosystems, but there is still a lack of research on how sex influences their endophytic bacteria. In this study, the endophytic bacterial communities in male and female S. thunbergii and their reproductive tissues (receptacles) were compared using culture methods and high-throughput sequencing. The endophytic bacterial communities detected by the two methods were different. Among the 78 isolated strains, the dominant phylum, genus, and species were Bacillota, Alkalihalobacillus, and Alkalihalobacillus algicola, respectively, in the algal bodies, while in the receptacles, they were Bacillota, Vibrio, and Vibrio alginolyticus. However, 24 phyla and 349 genera of endophytic bacteria were identified by high-throughput sequencing, and the dominant phylum and genus were Pseudomonadota and Sva0996_ Marine_ Group, respectively, in both the algal body and the receptacles. The two methods showed similar compositions of endophytic bacterial communities between the samples of different sexes, but the relative abundances of dominant and specific taxa were different. The high-throughput sequencing results showed more clearly that the sex of the host alga had an effect on its endophyte community assembly and a greater effect on the endophytic bacterial community in the receptacles. Moreover, most specific bacteria and predicted functional genes that differed between the samples from the males and females were related to metabolism, suggesting that metabolic differences are the main causes of sex differences in the endophytic bacterial community. Our research is the first to show that host sex contributes to the composition of endophytic bacterial communities in dioecious marine macroalgae. The results enrich the database of endophytic bacteria of dioecious marine macroalgae and pave the way for better understanding the assembly mechanism of the endophytic bacterial community of algae.
Collapse
Affiliation(s)
- Yayun Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Tao Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Qingdao Branch CCCC Water Transportation Consultants Co.,LTD, Qingdao, China
| | - Yang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Shandong Marine Forecast and Hazard Mitigation Service, Qingdao, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinlong Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
3
|
Hink L, Holzinger A, Sandfeld T, Weig AR, Schramm A, Feldhaar H, Horn MA. Microplastic ingestion affects hydrogen production and microbiomes in the gut of the terrestrial isopod Porcellio scaber. Environ Microbiol 2023; 25:2776-2791. [PMID: 37041018 DOI: 10.1111/1462-2920.16386] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/31/2023] [Indexed: 04/13/2023]
Abstract
Microplastic (MP) is an environmental burden and enters food webs via ingestion by macrofauna, including isopods (Porcellio scaber) in terrestrial ecosystems. Isopods represent ubiquitously abundant, ecologically important detritivores. However, MP-polymer specific effects on the host and its gut microbiota are unknown. We tested the hypothesis that biodegradable (polylactic acid [PLA]) and non-biodegradable (polyethylene terephthalate [PET]; polystyrene [PS]) MPs have contrasting effects on P. scaber mediated by changes of the gut microbiota. The isopod fitness after an 8-week MP-exposure was generally unaffected, although the isopods showed avoidance behaviour to PS-food. MP-polymer specific effects on gut microbes were detected, including a stimulation of microbial activity by PLA compared with MP-free controls. PLA stimulated hydrogen emission from isopod guts, while PET and PS were inhibitory. We roughly estimated 107 kg year-1 hydrogen emitted from the isopods globally and identified their guts as anoxic, significant mobile sources of reductant for soil microbes despite the absence of classical obligate anaerobes, likely due to Enterobacteriaceae-related fermentation activities that were stimulated by lactate generated during PLA-degradation. The findings suggest negative effects of PET and PS on gut fermentation, modulation of important isopod hydrogen emissions by MP pollution and the potential of MP to affect terrestrial food webs.
Collapse
Affiliation(s)
- Linda Hink
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| | - Anja Holzinger
- Animal Population Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Tobias Sandfeld
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Alfons R Weig
- Genomics and Bioinformatics, University of Bayreuth, Bayreuth, Germany
| | - Andreas Schramm
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Heike Feldhaar
- Animal Population Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Marcus A Horn
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
4
|
He Y, Pan J, Huang D, Sanford RA, Peng S, Wei N, Sun W, Shi L, Jiang Z, Jiang Y, Hu Y, Li S, Li Y, Li M, Dong Y. Distinct microbial structure and metabolic potential shaped by significant environmental gradient impacted by ferrous slag weathering. ENVIRONMENT INTERNATIONAL 2023; 178:108067. [PMID: 37393724 DOI: 10.1016/j.envint.2023.108067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Alkaline ferrous slags pose global environmental issues and long-term risks to ambient environments. To explore the under-investigated microbial structure and biogeochemistry in such unique ecosystems, combined geochemical, microbial, ecological and metagenomic analyses were performed in the areas adjacent to a ferrous slag disposal plant in Sichuan, China. Different levels of exposure to ultrabasic slag leachate had resulted in a significant geochemical gradient of pH (8.0-12.4), electric potential (-126.9 to 437.9 mV), total organic carbon (TOC, 1.5-17.3 mg/L), and total nitrogen (TN, 0.17-1.01 mg/L). Distinct microbial communities were observed depending on their exposure to the strongly alkaline leachate. High pH and Ca2+ concentrations were associated with low microbial diversity and enrichment of bacterial classes Gamma-proteobacteria and Deinococci in the microbial communities exposed to the leachate. Combined metagenomic analyses of 4 leachate-unimpacted and 2-impacted microbial communities led to the assembly of one Serpentinomonas pangenome and 81 phylogenetically diversified metagenome assembled genomes (MAGs). The prevailing taxa in the leachate-impacted habitats (e.g., Serpentinomonas and Meiothermus spp.) were phylogenetically related to those in active serpentinizing ecosystems, suggesting the analogous processes between the man-made and natural systems. More importantly, they accounted for significant abundance of most functional genes associated with environmental adaptation and major element cycling. Their metabolic potential (e.g., cation/H+ antiporters, carbon fixation on lithospheric carbon source, and respiration coupling sulfur oxidization and oxygen or nitrate reduction) may support these taxa to survive and prosper in these unique geochemical niches. This study provides fundamental understandings of the adaptive strategies of microorganisms in response to the strong environmental perturbation by alkali tailings. It also contributes to a better comprehension of how to remediate environments affected by alkaline industrial material.
Collapse
Affiliation(s)
- Yu He
- School of Environmental Studies, China University of Geosciences, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Studies, Shenzhen University, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, China
| | - Dongmei Huang
- School of Environmental Studies, China University of Geosciences, China; Yejin Geological Team of Hubei Geological Bureau, China
| | - Robert A Sanford
- Department of Earth Science & Environmental Change, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Shuming Peng
- Institute of Ecological Environment, Chengdu University of Technology, China
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Weimin Sun
- Guangdong Institute of Eco-environmental and Soil Science, Guangdong, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences, China
| | - Yidan Hu
- School of Environmental Studies, China University of Geosciences, China
| | - Shuyi Li
- School of Environmental Studies, China University of Geosciences, China
| | - Yongzhe Li
- School of Environmental Studies, China University of Geosciences, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Studies, Shenzhen University, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, China.
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China; Hubei Key Laboratory of Wetland Evolution and Ecology Restoration, China.
| |
Collapse
|
5
|
Deng Y, Borewicz K, van Loo J, Olabarrieta MZ, Kokou F, Sipkema D, Verdegem MCJ. In-Situ Biofloc Affects the Core Prokaryotes Community Composition in Gut and Enhances Growth of Nile Tilapia (Oreochromis niloticus). MICROBIAL ECOLOGY 2022; 84:879-892. [PMID: 34609532 PMCID: PMC9622544 DOI: 10.1007/s00248-021-01880-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 05/03/2023]
Abstract
Biofloc technology is commonly applied in intensive tilapia (Oreochromis niloticus) culture to maintain water quality, supply the fish with extra protein, and improve fish growth. However, the effect of dietary supplementation of processed biofloc on the gut prokaryotic (bacteria and archaea) community composition of tilapia is not well understood. In this study one recirculating aquaculture system was used to test how biofloc, including in-situ biofloc, dietary supplementation of ex-situ live or dead biofloc, influence fish gut prokaryotic community composition and growth performance in comparison to a biofloc-free control treatment. A core gut prokaryotic community was identified among all treatments by analyzing the temporal variations in gut prokaryotes. In-situ produced biofloc significantly increased the prokaryotic diversity in the gut by reducing the relative abundance of dominant Cetobacterium and increasing the relative abundance of potentially beneficial bacteria. The in-situ biofloc delivered a unique prokaryotic community in fish gut, while dietary supplementation of tilapias with 5% and 10% processed biofloc (live or dead) only changed the relative abundance of minor prokaryotic taxa outside the gut core microbiota. The modulatory effect of in-situ biofloc on tilapia gut microbiota was associated with the distinct microbial community in the biofloc water and undisturbed biofloc. The growth-promoting effect on tilapia was only detected in the in-situ biofloc treatment, while dietary supplementation of processed biofloc had no effect on fish growth performance as compared to the control treatment.
Collapse
Affiliation(s)
- Yale Deng
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Klaudyna Borewicz
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
- Trouw Nutrition R&D, 3811 MH, Amersfoort, The Netherlands
| | - Joost van Loo
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Fotini Kokou
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Marc C J Verdegem
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Performance of bioelectrochemical systems in treating exhaust gas with power generation: Effects of shock-load, shut-down episodes and microbial community. Bioelectrochemistry 2022; 148:108260. [PMID: 36096073 DOI: 10.1016/j.bioelechem.2022.108260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/27/2022] [Accepted: 09/04/2022] [Indexed: 11/22/2022]
Abstract
A diffusive packed anode-bioelectrochemical (Dpa-Bes) system was constructed by feeding waste gas from the cathode to the anode tank in DPa-Bes through a proton exchange membrane (PEM). The high removal of oxygen by the PEM and the effective combination of the two packing materials reduced the electron loss and enhanced the proton transfer capacity, promoting the removal of acetone from the exhaust gas and increasing the output power. The maximum acetone removal efficiency of the modified Dpa-Bes reached ∼99 % after seven days of closed-circuit operation, with a 3.2-fold increase in maximum power density and a 2.27-fold increase in closed-circuit voltage relative to those of the unmodified Dpa-Bes. When the acetone concentration was 2400 ppm, the removal efficiency was 73.22 % and the elimination capacity was at its highest value of 290.21 g/m3/h. Microbial analysis revealed that the conductive filter contained abundant facultative and anaerobic bacteria, whereas the non-conductive filter was rich in aerobic bacteria. The abundance of anaerobic and facultative microorganisms in Dpa-Bes was much higher than in the unmodified Dpa-Bes, and the dominant bacteria were Flavobacterium and Ferruginibacter.
Collapse
|
7
|
Li Y, Chen Z, Peng Y, Huang W, Liu J, Mironov V, Zhang S. Deeper insights into the effects of substrate to inoculum ratio selection on the relationship of kinetic parameters, microbial communities, and key metabolic pathways during the anaerobic digestion of food waste. WATER RESEARCH 2022; 217:118440. [PMID: 35429887 DOI: 10.1016/j.watres.2022.118440] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 05/23/2023]
Abstract
The substrate to inoculum ratio (S/I) is a crucial factor that affects not only the stability of the anaerobic digestion (AD) of food waste (FW) but also the methanogenic capacity of the substrate. This is of great significance for the start-up of small-scale batch reactors and the directional regulation of methanogenesi and organic acid production. Most studies have merely clarified the optimal S/I ratio for methane production and revealed the basic composition of microbial communities. However, the mechanism of microbial interactions and the metabolic pathways behind the optimal S/I ratio still remain unclear. Herein, the effects of different S/I ratios (VS basis) on the relationship of kinetic parameters, microbial communities, and metabolic pathways during the AD process of FW were holistically explored. The results revealed that high S/I ratios (4:1, 3:1, 2:1, and 1:1) were prone to irreversible acidification, while low S/I ratios (1:2, 1:3, and 1:4) were favorable for methanogenesis. Moreover, a kinetic analysis demonstrated that the methane yield of S/I = 1:3 were the highest. A bioinformatics analysis found that the diversity of bacteria and archaea of S/I = 1:3 were the most abundant, and the enrichment of Bacteroides and Synergistetes could help to establish a syntrophic relationship with hydrogenotrophic methanogens, which could aid in the fulfillment of a unique niche in the system. In contrast to the findings with the other S/I ratios, the cooperation among microbes in S/I = 1:3 was more apparent. Notably, the abundances of genes encoding key enzymes involved in the methanogenesis pathway under S/I = 1:3 were all the highest. This knowledge will be helpful for revealing the influence mechanism of the ratio relationship between microorganisms and substrates on the biochemical metabolic process of anaerobic digestion, thereby providing effective guidance for the directional regulation of FW batch anaerobic reactors.
Collapse
Affiliation(s)
- Yanzeng Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Zhou Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Yanyan Peng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Weizhao Huang
- Lianyijiyuan Environmental Protection Engineering Co. Ltd, Xiamen 361021, China
| | - Junxiao Liu
- Lianyijiyuan Environmental Protection Engineering Co. Ltd, Xiamen 361021, China
| | - Vladimir Mironov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Shenghua Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
8
|
Li J, Chen X, Yang Z, Liu Z, Chen Y, Wang YE, Xie H. Denitrification performance and mechanism of sequencing batch reactor with a novel iron-polyurethane foam composite carrier. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Danilova OV, Ivanova AA, Terent’eva IE, Glagolev MV, Sabrekov AF. Microbial Community Composition of Floodplains Shallow-Water Seeps in the Bolshaya Rechka Floodplain, Western Siberia. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721050040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
10
|
Li N, Li X, Zhang HJ, Fan XY, Liu YK. Microbial community and antibiotic resistance genes of biofilm on pipes and their interactions in domestic hot water system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144364. [PMID: 33429277 DOI: 10.1016/j.scitotenv.2020.144364] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
This study aimed to explore the dynamics of microbial communities and antibiotic resistance genes (ARGs) during biofilm formation on polypropylene random (PPR), polyvinyl chloride and stainless steel pipes in domestic hot water system (DHWS), as well as their interactions. Full-scale classification was used to divide abundant and rare genera with 0.1% and 1% as the thresholds. The biofilm community structure presented a temporal pattern, which was mainly determined by conditionally rare or abundant taxa (CRAT) and conditionally rare taxa (CRT). The dynamics of microbial community during biofilm formation were observed, and the effect of pipe material on conditionally abundant taxa (CAT) and CRAT was greater than CRT and rare taxa (RT). CRAT showed the most complex internal associations and were identified as the core taxa. Notably, CRT and RT with low relative abundance, also played an important role in the network. For potential pathogens, 17 genera were identified in this study, and their total relative abundance was the highest (3.6-28.9%) in PPR samples. Enterococcus of CRAT was the dominant potential pathogen in young biofilms. There were 36 more co-exclusion patterns (140) observed between potential pathogens and nonpathogenic bacteria than co-occurrence (104). A total of 38 ARGs were predicted, and 109 negative and 165 positive correlations were detected between them. Some potential pathogens (Escherichia/Shigella and Burkholderia) and nonpathogenic bacteria (Meiothermus and Sphingopyxis) were identified as the possible hosts of ARGs. This study is helpful for a comprehensive understanding of the biofilm microbial community and ARGs, and provides a reference for the management and biosafety guarantee of newly-built DHWS.
Collapse
Affiliation(s)
- Na Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Hui-Jin Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiao-Yan Fan
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yuan-Kun Liu
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
11
|
Bünger W, Jiang X, Müller J, Hurek T, Reinhold-Hurek B. Novel cultivated endophytic Verrucomicrobia reveal deep-rooting traits of bacteria to associate with plants. Sci Rep 2020; 10:8692. [PMID: 32457320 PMCID: PMC7251102 DOI: 10.1038/s41598-020-65277-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/30/2020] [Indexed: 02/01/2023] Open
Abstract
Despite the relevance of complex root microbial communities for plant health, growth and productivity, the molecular basis of these plant-microbe interactions is not well understood. Verrucomicrobia are cosmopolitans in the rhizosphere, nevertheless their adaptations and functions are enigmatic since the proportion of cultured members is low. Here we report four cultivated Verrucomicrobia isolated from rice, putatively representing four novel species, and a novel subdivision. The aerobic strains were isolated from roots or rhizomes of Oryza sativa and O. longistaminata. Two of them are the first cultivated endophytes of Verrucomicrobia, as validated by confocal laser scanning microscopy inside rice roots after re-infection under sterile conditions. This extended known verrucomicrobial niche spaces. Two strains were promoting root growth of rice. Discovery of root compartment-specific Verrucomicrobia permitted an across-phylum comparison of the genomic conformance to life in soil, rhizoplane or inside roots. Genome-wide protein domain comparison with niche-specific reference bacteria from distant phyla revealed signature protein domains which differentiated lifestyles in these microhabitats. Our study enabled us to shed light into the dark microbial matter of root Verrucomicrobia, to define genetic drivers for niche adaptation of bacteria to plant roots, and provides cultured strains for revealing causal relationships in plant-microbe interactions by reductionist approaches.
Collapse
Affiliation(s)
- Wiebke Bünger
- Department of Microbe-Plant Interactions, University of Bremen, Bremen, Germany
| | - Xun Jiang
- Department of Microbe-Plant Interactions, University of Bremen, Bremen, Germany
| | - Jana Müller
- Department of Microbe-Plant Interactions, University of Bremen, Bremen, Germany.,Department of Botany, University of Bremen, Bremen, Germany
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, University of Bremen, Bremen, Germany
| | | |
Collapse
|
12
|
Zambrano MC, Pawlak JJ, Daystar J, Ankeny M, Goller CC, Venditti RA. Aerobic biodegradation in freshwater and marine environments of textile microfibers generated in clothes laundering: Effects of cellulose and polyester-based microfibers on the microbiome. MARINE POLLUTION BULLETIN 2020; 151:110826. [PMID: 32056618 DOI: 10.1016/j.marpolbul.2019.110826] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The aerobic biodegradation of common textiles that shed microfibers during laundering was evaluated under the action of microbes found in the environment, such as lake and seawater, and activated sludge at a low concentration from a wastewater treatment plant (WWTP). Under these conditions, the biodegradation potential was the same in all the experiments: Microcrystalline Cellulose (MCC) > Cotton > Rayon > Polyester/Cotton ≫ Polyester. Nevertheless, for cotton and rayon yarns, >70% biodegradation was achieved with activated sludge at low concentration and lake water, whereas in seawater, about 50% degradation was reached. Polyester did not appreciably degrade. The biodegradation results herein indicate potential not absolutes in nature. The bacterial diversity analyses in the different biodegradation inoculums show that there are distinct bacterial communities related to the assimilation and mineralization of complex carbohydrates that were promoted with the cellulosic MCC, cotton, and rayon samples different than the polyester sample.
Collapse
Affiliation(s)
- Marielis C Zambrano
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695-8005, United States
| | - Joel J Pawlak
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695-8005, United States
| | - Jesse Daystar
- Cotton Incorporated, Cary, NC 27513, United States; Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Mary Ankeny
- Cotton Incorporated, Cary, NC 27513, United States
| | - Carlos C Goller
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, United States
| | - Richard A Venditti
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695-8005, United States.
| |
Collapse
|
13
|
Genome-Resolved Metagenomics Extends the Environmental Distribution of the Verrucomicrobia Phylum to the Deep Terrestrial Subsurface. mSphere 2019; 4:4/6/e00613-19. [PMID: 31852806 PMCID: PMC6920513 DOI: 10.1128/msphere.00613-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Verrucomicrobia phylum of bacteria is widespread in many different ecosystems; however, its role in microbial communities remains poorly understood. Verrucomicrobia are often low-abundance community members, yet previous research suggests they play a major role in organic carbon degradation. While Verrucomicrobia remain poorly represented in culture collections, numerous genomes have been reconstructed from metagenomic data sets in recent years. The study of genomes from across the phylum allows for an extensive assessment of their potential ecosystem roles. The significance of this work is (i) the recovery of a novel genus of Verrucomicrobia from 2.3 km in the subsurface with the ability to withstand the extreme conditions that characterize this environment, and (ii) the most extensive assessment of ecophysiological traits encoded by Verrucomicrobia genomes to date. We show that members of this phylum are specialist organic polymer degraders that can withstand a wider range of environmental conditions than previously thought. Bacteria of the phylum Verrucomicrobia are prevalent and are particularly common in soil and freshwater environments. Their cosmopolitan distribution and reported capacity for polysaccharide degradation suggests members of Verrucomicrobia are important contributors to carbon cycling across Earth’s ecosystems. Despite their prevalence, the Verrucomicrobia are underrepresented in isolate collections and genome databases; consequently, their ecophysiological roles may not be fully realized. Here, we expand genomic sampling of the Verrucomicrobia phylum by describing a novel genus, “Candidatus Marcellius,” belonging to the order Opitutales. “Ca. Marcellius” was recovered from a shale-derived produced fluid metagenome collected 313 days after hydraulic fracturing, the deepest environment from which a member of the Verrucomicrobia has been recovered to date. We uncover genomic attributes that may explain the capacity of this organism to inhabit a shale gas well, including the potential for utilization of organic polymers common in hydraulic fracturing fluids, nitrogen fixation, adaptation to high salinities, and adaptive immunity via CRISPR-Cas. To illuminate the phylogenetic and environmental distribution of these metabolic and adaptive traits across the Verrucomicrobia phylum, we performed a comparative genomic analysis of 31 publicly available, nearly complete Verrucomicrobia genomes. Our genomic findings extend the environmental distribution of the Verrucomicrobia 2.3 kilometers into the terrestrial subsurface. Moreover, we reveal traits widely encoded across members of the Verrucomicrobia, including the capacity to degrade hemicellulose and to adapt to physical and biological environmental perturbations, thereby contributing to the expansive habitat range reported for this phylum. IMPORTANCE The Verrucomicrobia phylum of bacteria is widespread in many different ecosystems; however, its role in microbial communities remains poorly understood. Verrucomicrobia are often low-abundance community members, yet previous research suggests they play a major role in organic carbon degradation. While Verrucomicrobia remain poorly represented in culture collections, numerous genomes have been reconstructed from metagenomic data sets in recent years. The study of genomes from across the phylum allows for an extensive assessment of their potential ecosystem roles. The significance of this work is (i) the recovery of a novel genus of Verrucomicrobia from 2.3 km in the subsurface with the ability to withstand the extreme conditions that characterize this environment, and (ii) the most extensive assessment of ecophysiological traits encoded by Verrucomicrobia genomes to date. We show that members of this phylum are specialist organic polymer degraders that can withstand a wider range of environmental conditions than previously thought.
Collapse
|
14
|
Li K, Wu H, Wei J, Qiu G, Wei C, Cheng D, Zhong L. Simultaneous decarburization, nitrification and denitrification (SDCND) in coking wastewater treatment using an integrated fluidized-bed reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 252:109661. [PMID: 31634728 DOI: 10.1016/j.jenvman.2019.109661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/14/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
There are two problems in biological treatment of coking wastewater (CWW): incapability of pre-anaerobic treatment to eliminate the toxicity in wastewater, and the lack of carbon source for subsequent denitrification in pre-aerobic treatment. To achieve simultaneous decarburization, nitrification and denitrification (SDCND) in CWW treatment, biological carrier materials was used to build an integrated fluidized-bed reactor (Reactor B, RB). A conventional fluidized-bed reactor (Reactor A, RA) was used as a control reactor under the same condition. The results showed that RB was more advantageous since its removal efficiencies of COD and TN were 90% and 87%, respectively, which were significantly higher than these in RA (82% and 45%), at a hydraulic retention time (HRT) of 60 h. Microelectrode measurement indicated that oxygen transfer was limited inside the carrier where the formation of a dissolved oxygen (DO) concentration gradient was observed. Microbial community analysis showed that the aerobic and anoxic microenvironments in RB promoted the co-existence of a wider variety of bacteria, thus achieving SDCND. These results indicated the integrated fluidized-bed reactor exhibited promising feasibility for simultaneous carbon and nitrogen removal in CWW treatment under the same aeration driven conditions. The SDCND process realized by fluidized-bed reactor provided a reference for the treatment of toxic industrial wastewater with high carbon to nitrogen ratio.
Collapse
Affiliation(s)
- Kui Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| | - Jingyue Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; River Basin Research Center, Gifu University, Gifu, 501-1193, Japan
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Dangyu Cheng
- Huaxin Environmental Technology Company, Shaoguan, 512122, PR China
| | - Lianwen Zhong
- Huaxin Environmental Technology Company, Shaoguan, 512122, PR China
| |
Collapse
|
15
|
Xing J, Li X, Sun Y, Zhao J, Miao S, Xiong Q, Zhang Y, Zhang G. Comparative genomic and functional analysis of Akkermansia muciniphila and closely related species. Genes Genomics 2019; 41:1253-1264. [PMID: 31399846 PMCID: PMC6828834 DOI: 10.1007/s13258-019-00855-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Akkermansia muciniphila is an important bacterium that resides on the mucus layer of the intestinal tract. Akkermansia muciniphila has a high abundance in human feces and plays an important role in human health. OBJECTIVE In this article, 23 whole genome sequences of the Akkermansia genus were comparatively studied. METHODS Phylogenetic trees were constructed with three methods: All amino acid sequences of each strain were used to construct the first phylogenetic tree using the web server of Composition Vector Tree Version 3. The matrix of Genome-to-Genome Distances which were obtained from GGDC 2.0 was used to construct the second phylogenetic tree using FastME. The concatenated single-copy core gene-based phylogenetic tree was generated through MEGA. The single-copy genes were obtained using OrthoMCL. Population structure was assessed by STRUCTURE 2.3.4 using the SNPs in core genes. PROKKA and Roary were used to do pan-genome analyses. The biosynthetic gene clusters were predicted using antiSMASH 4.0. IalandViewer 4 was used to detect the genomic islands. RESULTS The results of comparative genomic analysis revealed that: (1) The 23 Akkermansia strains formed 4 clades in phylogenetic trees. The A. muciniphila strains isolated from different geographic regions and ecological niches, formed a closely related clade. (2) The 23 Akkermansia strains were divided into 4 species based on digital DNA-DNA hybridization (dDDH) values. (3) Pan-genome of A. muciniphila is in an open state and increases with addition of new sequenced genomes. (4) SNPs were not evenly distributed throughout the A. muciniphila genomes. The genes in regions with high SNP density are related to metabolism and cell wall/membrane envelope biogenesis. (5) The thermostable outer-membrane protein, Amuc_1100, was conserved in the Akkermansia genus, except for Akkermansia glycaniphila PytT. CONCLUSION Overall, applying comparative genomic and pan-genomic analyses, we classified and illuminated the phylogenetic relationship of the 23 Akkermansia strains. Insights of the evolutionary, population structure, gene clusters and genome islands of Akkermansia provided more information about the possible physiological and probiotic mechanisms of the Akkermansia strains, and gave some instructions for the in-depth researches about the use of Akkermansia as a gut probiotic in the future.
Collapse
Affiliation(s)
- Juyuan Xing
- Wuhan University of Technology, Wuhan, Hubei People’s Republic of China
| | - Xiaobo Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Yingjiao Sun
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 People’s Republic of China
| | - Juanjuan Zhao
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 People’s Republic of China
| | - Shaohua Miao
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 People’s Republic of China
| | - Qin Xiong
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 People’s Republic of China
| | - Yonggang Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 19 Keyuan Road, Jinan, 250014 Shandong People’s Republic of China
| | - Guishan Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 People’s Republic of China
| |
Collapse
|
16
|
García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T, Kyrpides NC, Hahnke RL, Göker M. Analysis of 1,000 Type-Strain Genomes Improves Taxonomic Classification of Bacteroidetes. Front Microbiol 2019; 10:2083. [PMID: 31608019 PMCID: PMC6767994 DOI: 10.3389/fmicb.2019.02083] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
Abstract
Although considerable progress has been made in recent years regarding the classification of bacteria assigned to the phylum Bacteroidetes, there remains a need to further clarify taxonomic relationships within a diverse assemblage that includes organisms of clinical, piscicultural, and ecological importance. Bacteroidetes classification has proved to be difficult, not least when taxonomic decisions rested heavily on interpretation of poorly resolved 16S rRNA gene trees and a limited number of phenotypic features. Here, draft genome sequences of a greatly enlarged collection of genomes of more than 1,000 Bacteroidetes and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa proposed long ago such as Bacteroides, Cytophaga, and Flavobacterium but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which can be considered valuable taxonomic markers. We detected many incongruities when comparing the results of the present study with existing classifications, which appear to be caused by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. The few significant incongruities found between 16S rRNA gene and whole genome trees underline the pitfalls inherent in phylogenies based upon single gene sequences and the impediment in using ordinary bootstrapping in phylogenomic studies, particularly when combined with too narrow gene selections. While a significant degree of phylogenetic conservation was detected in all phenotypic characters investigated, the overall fit to the tree varied considerably, which is one of the probable causes of misclassifications in the past, much like the use of plesiomorphic character states as diagnostic features.
Collapse
Affiliation(s)
- Marina García-López
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jan P. Meier-Kolthoff
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Richard L. Hahnke
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Markus Göker
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
17
|
Cavalca L, Zecchin S, Zaccheo P, Abbas B, Rotiroti M, Bonomi T, Muyzer G. Exploring Biodiversity and Arsenic Metabolism of Microbiota Inhabiting Arsenic-Rich Groundwaters in Northern Italy. Front Microbiol 2019; 10:1480. [PMID: 31312188 PMCID: PMC6614289 DOI: 10.3389/fmicb.2019.01480] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/13/2019] [Indexed: 11/13/2022] Open
Abstract
Arsenic contamination of groundwater aquifers is an issue of global concern. Among the affected sites, in several Italian groundwater aquifers arsenic levels above the WHO limits for drinking water are present, with consequent issues of public concern. In this study, for the first time, the role of microbial communities in metalloid cycling in groundwater samples from Northern Italy lying on Pleistocene sediments deriving from Alps mountains has been investigated combining environmental genomics and cultivation approaches. 16S rRNA gene libraries revealed a high number of yet uncultured species, which in some of the study sites accounted for more of the 50% of the total community. Sequences related to arsenic-resistant bacteria (arsenate-reducing and arsenite-oxidizing) were abundant in most of the sites, while arsenate-respiring bacteria were negligible. In some of the sites, sulfur-oxidizing bacteria of the genus Sulfuricurvum accounted for more than 50% of the microbial community, whereas iron-cycling bacteria were less represented. In some aquifers, arsenotrophy, growth coupled to autotrophic arsenite oxidation, was suggested by detection of arsenite monooxygenase (aioA) and 1,5-ribulose bisphosphate carboxylase (RuBisCO) cbbL genes of microorganisms belonging to Rhizobiales and Burkholderiales. Enrichment cultures established from sampled groundwaters in laboratory conditions with 1.5 mmol L-1 of arsenite as sole electron donor were able to oxidize up to 100% of arsenite, suggesting that this metabolism is active in groundwaters. The presence of heterotrophic arsenic resistant bacteria was confirmed by enrichment cultures in most of the sites. The overall results provided a first overview of the microorganisms inhabiting arsenic-contaminated aquifers in Northern Italy and suggested the importance of sulfur-cycling bacteria in the biogeochemistry of arsenic in these ecosystems. The presence of active arsenite-oxidizing bacteria indicates that biological oxidation of arsenite, in combination with arsenate-adsorbing materials, could be employed for metalloid removal.
Collapse
Affiliation(s)
- Lucia Cavalca
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Sarah Zecchin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Patrizia Zaccheo
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Milan, Italy
| | - Ben Abbas
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Marco Rotiroti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Tullia Bonomi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Liu R, Zheng X, Li M, Han L, Liu X, Zhang F, Hou X. A three chamber bioelectrochemical system appropriate for in-situ remediation of nitrate-contaminated groundwater and its reaction mechanisms. WATER RESEARCH 2019; 158:401-410. [PMID: 31059934 DOI: 10.1016/j.watres.2019.04.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
A novel laboratory experiment of three chamber bioelectrochemical (surface water-sediment-groundwater, SSG) system was established in this study, which combined a sediment microbial fuel cell (SMFC) reactor and biofilm electrode reactor (BER) and was self-driven. Simulated groundwater was firstly used to explore the reaction mechanisms of this system. The simulated groundwater conditions were static and the surface water and the groundwater systems were isolated. The results showed that the SMFC continuously supplied a stable voltage of 622 mV ± 20 mV, driving the BER and the related nitrate removal process. Compared to the control systems, the SSG system had higher nitrate removal with a denitrification rate of 3.87 mg N/(L·h). In addition, the sediment organic matter in the SMFC reactor decreased by 66.2%. Based on the electrochemical analysis and microbial community analysis, the SMFC reactor and BER worked synergistically to enhance the performance of both reactors in this system. The presence of microorganisms accelerated the electron transfer efficiency throughout the system, and the microcurrent helped a more fixed community structure to develop and stimulated the growth of denitrifying bacteria. The dominant genera detected in the mature biofilm samples were all microorganisms common in soil and groundwater, indicating that this system may be environmentally friendly. The nitrate removal efficiency for actual groundwater was higher than that for the simulated groundwater, indicating that the elements in the actual groundwater promote the nitrate removal efficiency. These results indicate that the SSG system has the potential for in-situ nitrate bioremediation, with minimal maintenance and health risk.
Collapse
Affiliation(s)
- Rui Liu
- School of Environment, Tsinghua University, Beijing, 10084, China
| | - Xiye Zheng
- School of Environment, Tsinghua University, Beijing, 10084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing, 10084, China.
| | - Limei Han
- School of Environment, Tsinghua University, Beijing, 10084, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing, 10084, China
| | - Fang Zhang
- School of Environment, Tsinghua University, Beijing, 10084, China
| | - Xiaoshu Hou
- School of Environment, Tsinghua University, Beijing, 10084, China.
| |
Collapse
|
19
|
Song M, Wang Y, Jiang L, Peng K, Wei Z, Zhang D, Li Y, Zhang G, Luo C. The complex interactions between novel DEHP-metabolising bacteria and the microbes in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:733-740. [PMID: 30743959 DOI: 10.1016/j.scitotenv.2019.01.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
The indigenous microorganisms with the ability of metabolising di-(2-ethylhexyl) phthalate (DEHP) in agricultural soils and their interactions with non-degrading microbes were revealed by DNA-based stable isotope probing coupled with molecular ecological network. Aside from the previously reported DEHP degraders (family Planococcaceae and genus Sphingobacterium), five OTUs representing bacteria affiliated with genus Brevundimona, class Spartobacteria, genus Singulisphaera, genus Dyella and class Ktedonobacteria were linked with DEHP biodegradation. The analysis of the constructed ecological network based on soil microbial communities demonstrated the negative relationships between DEHP degraders and the dominant family Oxalobacteraceae in soils. Additionally, two cultivable bacteria isolated from the same soils, Rhizobium-1 and Ensifer-1, had strong capabilities in degrading DEHP but their involvement in in situ DEHP degradation was questioned, as their DNA was not labelled with 13C from DEHP. These findings provide deeper understanding on the indigenous DEHP-degrading communities and will benefit the remediation of phthalate esters contaminated soils.
Collapse
Affiliation(s)
- Mengke Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Longfei Jiang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ke Peng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zikai Wei
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yongtao Li
- Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
20
|
He S, Stevens SLR, Chan LK, Bertilsson S, Glavina del Rio T, Tringe SG, Malmstrom RR, McMahon KD. Ecophysiology of Freshwater Verrucomicrobia Inferred from Metagenome-Assembled Genomes. mSphere 2017; 2:e00277-17. [PMID: 28959738 PMCID: PMC5615132 DOI: 10.1128/msphere.00277-17] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/05/2017] [Indexed: 11/20/2022] Open
Abstract
Microbes are critical in carbon and nutrient cycling in freshwater ecosystems. Members of the Verrucomicrobia are ubiquitous in such systems, and yet their roles and ecophysiology are not well understood. In this study, we recovered 19 Verrucomicrobia draft genomes by sequencing 184 time-series metagenomes from a eutrophic lake and a humic bog that differ in carbon source and nutrient availabilities. These genomes span four of the seven previously defined Verrucomicrobia subdivisions and greatly expand knowledge of the genomic diversity of freshwater Verrucomicrobia. Genome analysis revealed their potential role as (poly)saccharide degraders in freshwater, uncovered interesting genomic features for this lifestyle, and suggested their adaptation to nutrient availabilities in their environments. Verrucomicrobia populations differ significantly between the two lakes in glycoside hydrolase gene abundance and functional profiles, reflecting the autochthonous and terrestrially derived allochthonous carbon sources of the two ecosystems, respectively. Interestingly, a number of genomes recovered from the bog contained gene clusters that potentially encode a novel porin-multiheme cytochrome c complex and might be involved in extracellular electron transfer in the anoxic humus-rich environment. Notably, most epilimnion genomes have large numbers of so-called "Planctomycete-specific" cytochrome c-encoding genes, which exhibited distribution patterns nearly opposite to those seen with glycoside hydrolase genes, probably associated with the different levels of environmental oxygen availability and carbohydrate complexity between lakes/layers. Overall, the recovered genomes represent a major step toward understanding the role, ecophysiology, and distribution of Verrucomicrobia in freshwater. IMPORTANCE Freshwater Verrucomicrobia spp. are cosmopolitan in lakes and rivers, and yet their roles and ecophysiology are not well understood, as cultured freshwater Verrucomicrobia spp. are restricted to one subdivision of this phylum. Here, we greatly expanded the known genomic diversity of this freshwater lineage by recovering 19 Verrucomicrobia draft genomes from 184 metagenomes collected from a eutrophic lake and a humic bog across multiple years. Most of these genomes represent the first freshwater representatives of several Verrucomicrobia subdivisions. Genomic analysis revealed Verrucomicrobia to be potential (poly)saccharide degraders and suggested their adaptation to carbon sources of different origins in the two contrasting ecosystems. We identified putative extracellular electron transfer genes and so-called "Planctomycete-specific" cytochrome c-encoding genes and identified their distinct distribution patterns between the lakes/layers. Overall, our analysis greatly advances the understanding of the function, ecophysiology, and distribution of freshwater Verrucomicrobia, while highlighting their potential role in freshwater carbon cycling.
Collapse
Affiliation(s)
- Shaomei He
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Geoscience, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Sarah L. R. Stevens
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | | | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | - Katherine D. McMahon
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
21
|
Draft Genome Sequence of Terrimicrobium sacchariphilum NM-5 T, a Facultative Anaerobic Soil Bacterium of the Class Spartobacteria. GENOME ANNOUNCEMENTS 2017; 5:5/30/e00666-17. [PMID: 28751395 PMCID: PMC5532833 DOI: 10.1128/genomea.00666-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here a high-quality draft genome sequence of Terrimicrobium sacchariphilum strain NM-5T, a facultative anaerobic, mesophilic, fermentative bacterium belonging to the class Spartobacteria of the phylum Verrucomicrobia The genome comprises 4,751,807 bp in three contigs and has a G+C content of 60.19%. Annotation predicted 4,175 protein-coding sequences and 54 RNAs.
Collapse
|
22
|
Distinct Anaerobic Bacterial Consumers of Cellobiose-Derived Carbon in Boreal Fens with Different CO2/CH4 Production Ratios. Appl Environ Microbiol 2017; 83:AEM.02533-16. [PMID: 27913414 DOI: 10.1128/aem.02533-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022] Open
Abstract
Northern peatlands in general have high methane (CH4) emissions, but individual peatlands show considerable variation as CH4 sources. Particularly in nutrient-poor peatlands, CH4 production can be low and exceeded by carbon dioxide (CO2) production from unresolved anaerobic processes. To clarify the role anaerobic bacterial degraders play in this variation, we compared consumers of cellobiose-derived carbon in two fens differing in nutrient status and the ratio of CO2 to CH4 produced. After [13C]cellobiose amendment, the mesotrophic fen produced equal amounts of CH4 and CO2 The oligotrophic fen had lower CH4 production but produced 3 to 59 times more CO2 than CH4 RNA stable-isotope probing revealed that in the mesotrophic fen with higher CH4 production, cellobiose-derived carbon was mainly assimilated by various recognized fermenters of Firmicutes and by Proteobacteria The oligotrophic peat with excess CO2 production revealed a wider variety of cellobiose-C consumers, including Firmicutes and Proteobacteria, but also more unconventional degraders, such as Telmatobacter-related Acidobacteria and subphylum 3 of Verrucomicrobia Prominent and potentially fermentative Planctomycetes and Chloroflexi did not appear to process cellobiose-C. Our results show that anaerobic degradation resulting in different levels of CH4 production can involve distinct sets of bacterial degraders. By distinguishing cellobiose degraders from the total community, this study contributes to defining anaerobic bacteria that process cellulose-derived carbon in peat. Several of the identified degraders, particularly fermenters and potential Fe(III) or humic substance reducers in the oligotrophic peat, represent promising candidates for resolving the origin of excess CO2 production in peatlands. IMPORTANCE Peatlands are major sources of the greenhouse gas methane (CH4), yet in many peatlands, CO2 production from unresolved anaerobic processes exceeds CH4 production. Anaerobic degradation produces the precursors of CH4 production but also represents competing processes. We show that anaerobic degradation leading to high or low CH4 production involved distinct sets of bacteria. Well-known fermenters dominated in a peatland with high CH4 production, while novel and unconventional degraders could be identified in a site where CO2 production greatly exceeds CH4 production. Our results help identify and assign functions to uncharacterized bacteria that promote or inhibit CH4 production and reveal bacteria potentially producing the excess CO2 in acidic peat. This study contributes to understanding the microbiological basis for different levels of CH4 emission from peatlands.
Collapse
|
23
|
Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M, Ivanova NN, Woyke T, Kyrpides NC, Klenk HP, Göker M. Genome-Based Taxonomic Classification of Bacteroidetes. Front Microbiol 2016; 7:2003. [PMID: 28066339 PMCID: PMC5167729 DOI: 10.3389/fmicb.2016.02003] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/30/2016] [Indexed: 01/15/2023] Open
Abstract
The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for assessing their taxonomy based on the principles of phylogenetic classification and trees inferred from genome-scale data. No significant conflict between 16S rRNA gene and whole-genome phylogenetic analysis is found, whereas many but not all of the involved taxa are supported as monophyletic groups, particularly in the genome-scale trees. Phenotypic and phylogenomic features support the separation of Balneolaceae as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new class Saprospiria from Chitinophagia. Epilithonimonas is nested within the older genus Chryseobacterium and without significant phenotypic differences; thus merging the two genera is proposed. Similarly, Vitellibacter is proposed to be included in Aequorivita. Flexibacter is confirmed as being heterogeneous and dissected, yielding six distinct genera. Hallella seregens is a later heterotypic synonym of Prevotella dentalis. Compared to values directly calculated from genome sequences, the G+C content mentioned in many species descriptions is too imprecise; moreover, corrected G+C content values have a significantly better fit to the phylogeny. Corresponding emendations of species descriptions are provided where necessary. Whereas most observed conflict with the current classification of Bacteroidetes is already visible in 16S rRNA gene trees, as expected whole-genome phylogenies are much better resolved.
Collapse
Affiliation(s)
- Richard L. Hahnke
- Department of Microorganisms, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Jan P. Meier-Kolthoff
- Department of Microorganisms, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Marina García-López
- Department of Microorganisms, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Supratim Mukherjee
- Department of Energy Joint Genome Institute (DOE JGI)Walnut Creek, CA, USA
| | - Marcel Huntemann
- Department of Energy Joint Genome Institute (DOE JGI)Walnut Creek, CA, USA
| | - Natalia N. Ivanova
- Department of Energy Joint Genome Institute (DOE JGI)Walnut Creek, CA, USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute (DOE JGI)Walnut Creek, CA, USA
| | - Nikos C. Kyrpides
- Department of Energy Joint Genome Institute (DOE JGI)Walnut Creek, CA, USA
- Department of Biological Sciences, Faculty of Science, King Abdulaziz UniversityJeddah, Saudi Arabia
| | | | - Markus Göker
- Department of Microorganisms, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| |
Collapse
|
24
|
Denikina NN, Dzyuba EV, Bel’kova NL, Khanaev IV, Feranchuk SI, Makarov MM, Granin NG, Belikov SI. The first case of disease of the sponge Lubomirskia baicalensis: Investigation of its microbiome. BIOL BULL+ 2016; 43:263-270. [DOI: 10.1134/s106235901603002x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
|
25
|
Zhang J, Guo RB, Qiu YL, Qiao JT, Yuan XZ, Shi XS, Wang CS. Bioaugmentation with an acetate-type fermentation bacterium Acetobacteroides hydrogenigenes improves methane production from corn straw. BIORESOURCE TECHNOLOGY 2015; 179:306-313. [PMID: 25549904 DOI: 10.1016/j.biortech.2014.12.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/06/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
The effect of bioaugmentation with an acetate-type fermentation bacterium in the phylum Bacteroidetes on the anaerobic digestion of corn straw was evaluated by batch experiments. Acetobacteroides hydrogenigenes is a promising strain for bioaugmentation with relatively high growth rate, hydrogen yields and acetate tolerance, which ferments a broad spectrum of pentoses, hexoses and polyoses mainly into acetate and hydrogen. During corn straw digestion, bioaugmentation with A. hydrogenigenes led to 19-23% increase of the methane yield, with maximum of 258.1 mL/g-corn straw achieved by 10% inoculation (control, 209.3 mL/g-corn straw). Analysis of lignocellulosic composition indicated that A. hydrogenigenes could increase removal rates of cellulose and hemicelluloses in corn straw residue by 12% and 5%, respectively. Further experiment verified that the addition of A. hydrogenigenes could improve the methane yields of methyl cellulose and xylan (models for cellulose and hemicelluloses, respectively) by 16.8% and 7.0%.
Collapse
Affiliation(s)
- Jie Zhang
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rong-Bo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, PR China
| | - Yan-Ling Qiu
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, PR China.
| | - Jiang-Tao Qiao
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, PR China
| | - Xian-Zheng Yuan
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, PR China
| | - Xiao-Shuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, PR China
| | - Chuan-Shui Wang
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, PR China
| |
Collapse
|
26
|
Su XL, Tian Q, Zhang J, Yuan XZ, Shi XS, Guo RB, Qiu YL. Acetobacteroides hydrogenigenes gen. nov., sp. nov., an anaerobic hydrogen-producing bacterium in the family Rikenellaceae isolated from a reed swamp. Int J Syst Evol Microbiol 2014; 64:2986-2991. [PMID: 24899658 DOI: 10.1099/ijs.0.063917-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A strictly anaerobic, mesophilic, carbohydrate-fermenting, hydrogen-producing bacterium, designated strain RL-C(T), was isolated from a reed swamp in China. Cells were Gram-stain-negative, catalase-negative, non-spore-forming, non-motile rods measuring 0.7-1.0 µm in width and 3.0-8.0 µm in length. The optimum temperature for growth of strain RL-C(T) was 37 °C (range 25-40 °C) and pH 7.0-7.5 (range pH 5.7-8.0). The strain could grow fermentatively on yeast extract, tryptone, arabinose, glucose, galactose, mannose, maltose, lactose, glycogen, pectin and starch. The main end products of glucose fermentation were acetate, H2 and CO2. Organic acids, alcohols and amino acids were not utilized for growth. Yeast extract was not required for growth; however, it stimulated growth slightly. Nitrate, sulfate, sulfite, thiosulfate, elemental sulfur and Fe(III) nitrilotriacetate were not reduced as terminal electron acceptors. Aesculin was hydrolysed but not gelatin. Indole and H2S were produced from yeast extract. The G+C content of the genomic DNA was 51.2 mol%. The major cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and C16 : 0. The most abundant polar lipid of strain RL-C(T) was phosphatidylethanolamine. 16S rRNA gene sequence analysis revealed that the isolate belongs to the uncultured Blvii28 wastewater-sludge group (http://www.arb-silva.de/) in the family Rikenellaceae of the phylum Bacteroidetes, and shared low sequence similarities with the related species Alistipes shahii WAL 8301(T) (81.8 %), Rikenella microfusus ATCC 29728(T) (81.7 %) and Anaerocella delicata WN081(T) (80.9 %). On the basis of these data, a novel species in a new genus of the family Rikenellaceae is proposed, Acetobacteroides hydrogenigenes gen. nov., sp. nov. The type strain of the type species is RL-C(T) ( = JCM 17603(T) = DSM 24657(T) = CGMCC 1.5173(T)).
Collapse
Affiliation(s)
- Xiao-Li Su
- University of Chinese Academy of Sciences, Beijing 100049, PR China.,Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Qi Tian
- Ocean University of China, Qingdao, 266101, PR China.,Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Jie Zhang
- University of Chinese Academy of Sciences, Beijing 100049, PR China.,Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Xian-Zheng Yuan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Xiao-Shuang Shi
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Rong-Bo Guo
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Yan-Ling Qiu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| |
Collapse
|