1
|
Morris J, Mann R, Perera AS, Frampton R, Malipatil M, Norng S, Yen A, Smith G, Rodoni B. 'Candidatus Liberibacter brunswickensis' colonization has no effect to the early development of Solanum melongena. Sci Rep 2024; 14:17972. [PMID: 39095446 PMCID: PMC11297259 DOI: 10.1038/s41598-024-66352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
This study is the first to investigate the presence and movement of the novel Liberibacter species 'Candidatus Liberibacter brunswickensis' (CLbr) in eggplant, Solanum melongena. The psyllid, Acizzia solanicola can transmit CLbr to eggplant and CLbr can be acquired by CLbr-negative A. solanicola individuals from CLbr-positive eggplants. In planta, CLbr can replicate, move and persist. Investigation into the early development of eggplants showed that CLbr titres had increased at the inoculation site at 14 days post inoculation access period (DPIAP). CLbr had become systemic in the majority of plants tested by 28 DPIAP. The highest bacterial titres were recorded at 35 DPIAP in all samples of the inoculated leaf, the roots, stems and the midrib and petiole samples of the newest leaf (the top leaf). This finding strongly suggests that CLbr movement in planta follows the source to sink relationship as previously described for 'Ca. Liberibacter asiaticus' (CLas) and 'Ca. Liberibacter solanacearum' (CLso). No symptoms consistent with Liberibacter-associated diseases were noted for plants colonised by CLbr during this study, consistent with the hypothesis that CLbr does not cause disease of eggplant during the early stages of host colonisation. In addition, no significant differences in biomass were found between eggplant colonised with CLbr, compared to those that were exposed to CLbr-negative A. solanicola, and to control plants.
Collapse
Affiliation(s)
- Jacqueline Morris
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory, 2617, Australia.
- Applied Systems Biology, AgriBio, La Trobe University, 5 Ring Road, Bundoora, VIC, 3083, Australia.
- Agriculture Victoria Research, AgriBio, Agriculture Victoria, 5 Ring Road, Bundoora, VIC, 3083, Australia.
- Australian Animal Health Laboratories, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, VIC, 3219, Australia.
| | - Rachel Mann
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory, 2617, Australia
- Agriculture Victoria Research, AgriBio, Agriculture Victoria, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Angage Sanka Perera
- Agriculture Victoria Research, AgriBio, Agriculture Victoria, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Rebekah Frampton
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory, 2617, Australia
- The New Zealand Institute for Plant & Food Research Limited, Gerald St, Lincoln, 7608, New Zealand
| | - Mallik Malipatil
- Applied Systems Biology, AgriBio, La Trobe University, 5 Ring Road, Bundoora, VIC, 3083, Australia
- Agriculture Victoria Research, AgriBio, Agriculture Victoria, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Sorn Norng
- Agriculture Victoria Research, AgriBio, Agriculture Victoria, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Alan Yen
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory, 2617, Australia
- Applied Systems Biology, AgriBio, La Trobe University, 5 Ring Road, Bundoora, VIC, 3083, Australia
- Agriculture Victoria Research, AgriBio, Agriculture Victoria, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Grant Smith
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory, 2617, Australia
- The New Zealand Institute for Plant & Food Research Limited, Gerald St, Lincoln, 7608, New Zealand
| | - Brendan Rodoni
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory, 2617, Australia.
- Applied Systems Biology, AgriBio, La Trobe University, 5 Ring Road, Bundoora, VIC, 3083, Australia.
- Agriculture Victoria Research, AgriBio, Agriculture Victoria, 5 Ring Road, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
2
|
Zheng D, Armstrong CM, Yao W, Wu B, Luo W, Powell C, Hunter W, Luo F, Gabriel D, Duan Y. Towards the completion of Koch's postulates for the citrus huanglongbing bacterium, Candidatus Liberibacter asiaticus. HORTICULTURE RESEARCH 2024; 11:uhae011. [PMID: 39896933 PMCID: PMC11783299 DOI: 10.1093/hr/uhae011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/01/2024] [Indexed: 02/04/2025]
Abstract
Candidatus Liberibacter asiaticus (Las) is one of the causal agents of huanglongbing (HLB), the most devastating disease of citrus worldwide. Due to the intracellular lifestyle and significant genome reduction, culturing Las in vitro has proven to be extremely challenging. In this study, we optimized growth conditions and developed a semi-selective medium based on the results of nutritional and antibiotic screening assays. Using these optimized conditions, we were able to grow Las in the LG liquid medium with ca.100- to 1000-fold increase, which peaked after 4 to 6 weeks and were estimated to contain 106 to 107 cells/ml. The cultured Las bacteria remained in a dynamic state of growth for over 20 months and displayed limited growth in subcultures. The survival and growth of Las was confirmed by fluorescence in situ hybridization with Las-specific probes and expression of its metabolic genes. Growth of Las in the optimized medium relied on the presence of a helper bacterium, Stenotrophomonas maltophilia FLMAT-1 that is multi-drug resistant and dominant in the Las co-culture system. To recapitulate the disease, the co-cultured Las was inoculated back to citrus seedlings via psyllid feeding. Although the Las-positive rate of the fed psyllids and inoculated plants were relatively low, this is the first demonstration of partial fulfillment of Koch's postulates with significant growth of Las in vitro and a successful inoculation of cultured Las back to psyllids and citrus plants that resulted in HLB symptoms. These results provide new insights into Las growth in vitro and a system for improvement towards axenic culture and anti-Las compound screening.
Collapse
Affiliation(s)
- Desen Zheng
- USDA-ARS-USHRL, Fort Pierce, FL 34945, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Cheryl M Armstrong
- USDA-ARS-USHRL, Fort Pierce, FL 34945, USA
- USDA-ARS-ERRC, Wyndmoor, PA 19038, USA
| | - Wei Yao
- IRREC, University of Florida / IFAS, For Pierce, FL 34945, USA
| | - Bo Wu
- School of Computing, Clemson University, 100 McAdams Hall, Clemson, SC 29634, USA
| | - Weiqi Luo
- USDA-ARS-USHRL, Fort Pierce, FL 34945, USA
- Center for Integrated Pest Management, North Carolina State University, Raleigh, NC 27695, USA
| | - Charles Powell
- IRREC, University of Florida / IFAS, For Pierce, FL 34945, USA
| | | | - Feng Luo
- School of Computing, Clemson University, 100 McAdams Hall, Clemson, SC 29634, USA
| | - Dean Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
3
|
Fang ZQ, Liao YC, Lee S, Yang MM, Chu CC. Infection patterns of 'Candidatus Liberibacter europaeus' in Cacopsylla oluanpiensis, a psyllid pest of Pittosporum pentandrum. J Invertebr Pathol 2023; 200:107959. [PMID: 37392992 DOI: 10.1016/j.jip.2023.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
'Candidatus Liberibacter' is a genus of plant-associated bacteria that can be transmitted by insects of the superfamily Psylloidea. Since many members of this genus are putative causal agents of plant diseases, it is crucial in studying their interactions with the psyllid vectors. However, previous studies have mainly focused on few species associated with diseases of economic significance, and this may potentially hinder the development of a more comprehensive understanding of the ecology of 'Ca. Liberibacter'. The present study showed that an endemic psyllid species in Taiwan, Cacopsylla oluanpiensis, is infected with a species of 'Ca. Liberibacter'. The bacterium was present in geographically distant populations of the psyllid and was identified as 'Ca. Liberibacter europaeus' (CLeu), a species which generally does not induce plant symptoms. Analysis of CLeu infection densities in male and female C. oluanpiensis with different abdominal colors using quantitative polymerase chain reaction revealed that CLeu infection was not significantly associated with psyllid gender and body color. Instead, CLeu infection had a negative effect on the body sizes of both male and female psyllids, which is influenced by bacterial titer. Investigation on CLeu's distribution patterns in C. oluanpiensis's host plant Pittosporum pentandrum indicated that CLeu does not behave as a plant pathogen. Also, results showed that nymph-infested twigs had a greater chance of carrying high loads of CLeu, suggesting that ovipositing females and the nymphs are the main source of the bacterium in the plants. This study is not only the first to formally report the presence of CLeu in C. oluanpiensis and plants in the family Pittosporaceae, but also represents the first record of the bacterium in Taiwan. Overall, the findings in this work broaden the understanding of associations between psyllids and 'Ca. Liberibacter' in the field.
Collapse
Affiliation(s)
- Zi-Qing Fang
- Department of Plant Pathology, National Chung Hsing University, 145 Xinda Rd., Taichung, Taiwan
| | - Yi-Chang Liao
- Department of Entomology, University of California, 165 Entomology Building, Citrus Drive, Riverside, CA, USA
| | - Shin Lee
- Department of Plant Pathology, National Chung Hsing University, 145 Xinda Rd., Taichung, Taiwan
| | - Man-Miao Yang
- Department of Entomology, National Chung Hsing University, 145 Xinda Rd., Taichung, Taiwan.
| | - Chia-Ching Chu
- Department of Plant Pathology, National Chung Hsing University, 145 Xinda Rd., Taichung, Taiwan.
| |
Collapse
|
4
|
Ma T, Xue H, Piao C, Jiang N, Li Y. Phylogenomic reappraisal of the family Rhizobiaceae at the genus and species levels, including the description of Ectorhizobium quercum gen. nov., sp. nov. Front Microbiol 2023; 14:1207256. [PMID: 37601364 PMCID: PMC10434624 DOI: 10.3389/fmicb.2023.1207256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The family Rhizobiaceae contains 19 validly described genera including the rhizobia groups, many of which are important nitrogen-fixing bacteria. Early classification of Rhizobiaceae relied heavily on the poorly resolved 16S rRNA genes and resulted in several taxonomic conflicts. Although several recent studies illustrated the taxonomic status of many members in the family Rhizobiaceae, several para- and polyphyletic genera still needed to be elucidated. The rapidly increasing number of genomes in Rhizobiaceae has allowed for a revision of the taxonomic identities of members in Rhizobiaceae. In this study, we performed analyses of genome-based phylogeny and phylogenomic metrics to review the relationships of 155-type strains within the family Rhizobiaceae. The UBCG and concatenated protein phylogenetic trees, constructed based on 92 core genes and concatenated alignment of 170 single-copy orthologous proteins, demonstrated that the taxonomic inconsistencies should be assigned to eight novel genera, and 22 species should be recombined. All these reclassifications were also confirmed by pairwise cpAAI values, which separated genera within the family Rhizobiaceae with a demarcation threshold of ~86%. In addition, along with the phenotypic and chemotaxonomic analyses, a novel strain BDR2-2T belonging to a novel genus of the family Rhizobiaceae was also confirmed, for which the name Ectorhizobium quercum gen. nov., sp. nov. was proposed. The type strain is BDR2-2T (=CFCC 16492T = LMG 31717T).
Collapse
Affiliation(s)
| | | | | | | | - Yong Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
5
|
Wang XN, Wang L, He W, Yang Q, Zhang DF. Description of Flavimaribacter sediminis gen. nov., sp. nov., a New Member of the Family Rhizobiaceae Isolated from Marine Sediment. Curr Microbiol 2023; 80:301. [PMID: 37493780 DOI: 10.1007/s00284-023-03402-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023]
Abstract
A novel Gram-staining-negative, aerobic and rod-shaped bacterium, designated WL0058T, was isolated from coastal sediment sample collected in Nantong city, Jiangsu province of China (120° 51' 13″ E, 32° 6' 26″ N) in October 2020. Strain WL0058T was found to grow at 4-37 °C (optimum, 28 °C) with 1.5-4.0% NaCl (optimum, 4.0%) and displayed alkaliphilic growth with the pH range of pH 6.0-10.0 (optimum, pH 6.0). Phylogenetic trees constructed based on 16S rRNA gene sequence indicated that strain WL0058T is a member of the family Rhizobiaceae, shared the highest similarity with "Hoeflea prorocentri" CCTCC AB 2016294T (97.7%) and constituted a sub-cluster within the family with it, while the similarity with others in the family Rhizobiaceae was lower than 97.0%. The G + C content of genomic DNA was 59.5 mol%. Polar lipids profile of strain WL0058T included phosphatidylcholine (PC), phosphatidylethanolamine (PE), and glycolipid (GL), phosphatidylmonomethylethanolamine (PME) and two unidentified polar lipids (L). The major isoprenoid quinone was determined to be Q-10 and the major fatty acids were C16:0, C18:0, summed features 4 (iso-C17:1 and/or anteiso-C17:1), and summed features 8 (C18:1ω6c and/or C18:1ω7c). As inferred from the morphology, physiology, and biochemical analysis, genotypic characteristics, and the phylogenetic trees, strain WL0058T ought to be recognized as a novel genus in the family Rhizobiaceae, for which the name Flavimaribacter sediminis gen. nov., sp. nov. The type strain of Flavimaribacter sediminis gen. nov., sp. nov. is WL0058T (= MCCC 1K06063T = JCM 34659T = GDMCC 1.2448T).
Collapse
Affiliation(s)
- Xiang-Ning Wang
- Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Lu Wang
- Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Institute of Marine Biotechnology and Bio-resource Utilization, College of Oceanography, Hohai University, Nanjing, 201198, People's Republic of China
| | - Wei He
- Institute of Marine Biotechnology and Bio-resource Utilization, College of Oceanography, Hohai University, Nanjing, 201198, People's Republic of China
| | - Qiao Yang
- Laboratory of Marine Environment and Ecology, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Dao-Feng Zhang
- Institute of Marine Biotechnology and Bio-resource Utilization, College of Oceanography, Hohai University, Nanjing, 201198, People's Republic of China.
| |
Collapse
|
6
|
Dominguez J, Jayachandran K, Stover E, Krystel J, Shetty KG. Endophytes and Plant Extracts as Potential Antimicrobial Agents against Candidatus Liberibacter Asiaticus, Causal Agent of Huanglongbing. Microorganisms 2023; 11:1529. [PMID: 37375030 DOI: 10.3390/microorganisms11061529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Huanglongbing (HLB), also known as citrus greening, is an insidious disease in citrus and has become a threat to the sustainability of the citrus industry worldwide. In the U.S., Candidatus Liberibacter asiaticus (CLas) is the pathogen that is associated with HLB, an unculturable, phloem-limited bacteria, vectored by the Asian Citrus Psyllid (ACP, Diaphorina citri). There is no known cure nor treatment to effectively control HLB, and current control methods are primarily based on the use of insecticides and antibiotics, where effectiveness is limited and may have negative impacts on beneficial and non-target organisms. Thus, there is an urgent need for the development of effective and sustainable treatment options to reduce or eliminate CLas from infected trees. In the present study, we screened citrus-derived endophytes, their cell-free culture supernatants (CFCS), and crude plant extracts for antimicrobial activity against two culturable surrogates of CLas, Sinorhizobium meliloti and Liberibacter crescens. Candidates considered high-potential antimicrobial agents were assessed directly against CLas in vitro, using a propidium monoazide-based assay. As compared to the negative controls, statistically significant reductions of viable CLas cells were observed for each of the five bacterial CFCS. Subsequent 16S rRNA gene sequencing revealed that each of the five bacterial isolates were most closely related to Bacillus amyloliquefaciens, a species dominating the market of biological control products. As such, the aboveground endosphere of asymptomatic survivor citrus trees, grown in an organic orchard, were found to host bacterial endophytes capable of effectively disrupting CLas cell membranes. These results concur with the theory that native members of the citrus microbiome play a role in the development of HLB. Here, we identify five strains of Bacillus amyloliquefaciens demonstrating notable potential to be used as sources of novel antimicrobials for the sustainable management of HLB.
Collapse
Affiliation(s)
- Jessica Dominguez
- Department of Earth and Environment, Florida International University, Miami, FL 33199, USA
| | | | - Ed Stover
- United States Department of Agriculture/Agricultural Research Service, Ft. Pierce, FL 34945, USA
| | - Joseph Krystel
- United States Department of Agriculture/Agricultural Research Service, Ft. Pierce, FL 34945, USA
| | - Kateel G Shetty
- Department of Earth and Environment, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
7
|
Roca-Couso R, Flores-Felix JD, Igual JM, García-Fraile P, Velázquez E, Rivas R. Ferranicluibacter rubi gen. nov., sp. nov., a new member of family Rhizobiaceae isolated from stems of elmleaf blackberry ( Rubus ulmifolius Schott) in Northwest Spain. Int J Syst Evol Microbiol 2023; 73. [PMID: 37093735 DOI: 10.1099/ijsem.0.005789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Strain CRRU44T was isolated from the stems of Rubus ulmifolius plants growing in Salamanca (Spain). The phylogenetic analysis of the 16S rRNA gene sequence places this strain within the family Rhizobiaceae showing that it is equidistant to the type species of several genera from this family with similarity values ranging from 91.0 to 96.3 %. Strain CRRU44T formed a divergent lineage which clustered with Endobacterium cereale RZME27T, Neorhizobium galegae HAMBI540T and Pseudorhizobium pelagicum R1-200B4T. The phylogenomic analysis showed that strain CRRU44T was equal to or more distant from the remaining genera of the family Rhizobiaceae than other genera among them. The calculated average nucleotide identity based on blast and average amino acid identity values with respect to the type species of all genera from the family Rhizobiaceae were lower than 78.5 and 76.5 %, respectively, which are the currently cut-off values proposed to differentiate genera within this family. All these results together with those from phenotypic and chemotaxonomic analyses support that strain CRRU44T represents a novel species of a novel genus within the family Rhizobiaceae, for which the name Ferranicluibacter rubi gen. nov., sp. nov. is proposed (type strain CRRU44T=CECT 30117T=LMG 31822T).
Collapse
Affiliation(s)
- Rocio Roca-Couso
- Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
- Institute of Investigation in Agrobiotechnology (CIALE), Salamanca, Spain
| | - Jose David Flores-Felix
- Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
- Institute of Investigation in Agrobiotechnology (CIALE), Salamanca, Spain
| | - Jose M Igual
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
- Associated Unit USAL-CSIC (IRNASA), Salamanca, Spain
| | - Paula García-Fraile
- Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
- Institute of Investigation in Agrobiotechnology (CIALE), Salamanca, Spain
- Associated Unit USAL-CSIC (IRNASA), Salamanca, Spain
| | - Encarna Velázquez
- Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
- Institute of Investigation in Agrobiotechnology (CIALE), Salamanca, Spain
- Associated Unit USAL-CSIC (IRNASA), Salamanca, Spain
| | - Raúl Rivas
- Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
- Institute of Investigation in Agrobiotechnology (CIALE), Salamanca, Spain
- Associated Unit USAL-CSIC (IRNASA), Salamanca, Spain
| |
Collapse
|
8
|
de Chaves MQG, Morán F, Barbé S, Bertolini E, de la Rosa FS, Marco-Noales E. A new and accurate qPCR protocol to detect plant pathogenic bacteria of the genus 'Candidatus Liberibacter' in plants and insects. Sci Rep 2023; 13:3338. [PMID: 36849507 PMCID: PMC9971166 DOI: 10.1038/s41598-023-30345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
Four pathogenic bacterial species of the genus 'Candidatus Liberibacter', transmitted by psyllid vectors, have been associated with serious diseases affecting economically important crops of Rutaceae, Apiaceae and Solanaceae families. The most severe disease of citrus plants, huanglongbing (HLB), is associated with 'Ca. Liberibacter asiaticus' (CaLas), 'Ca. Liberibacter americanus' (CaLam) and 'Ca. Liberibacter africanus' (CaLaf), while 'Ca. Liberibacter solanacearum' (CaLsol) is associated with zebra chip disease in potatoes and vegetative disorders in apiaceous plants. Since these bacteria remain non-culturable and their symptoms are non-specific, their detection and identification are done by molecular methods, mainly based on PCR protocols. In this study, a new quantitative real-time PCR protocol based on TaqMan probe, which can also be performed in a conventional PCR version, has been developed to detect the four known phytopathogenic species of the genus Liberibacter. The new protocol has been validated according to European Plant Protection Organization (EPPO) guidelines and is able to detect CaLas, CaLam, CaLaf and CaLsol in both plants and vectors, not only using purified DNA but also using crude extracts of potato and citrus or psyllids. A comparative analysis with other previously described qPCR protocols revealed that this new one developed in this study is more specific and equally or more sensitive. Thus, other genus-specific qPCR protocols have important drawbacks regarding the lack of specificity, while with the new protocol there was no cross-reactions in 250 samples from 24 different plant and insect species from eight different geographical origins. Therefore, it can be used as a rapid and time-saving screening test, as it allows simultaneous detection of all plant pathogenic species of 'Ca. Liberibacter' in a one-step assay.
Collapse
Affiliation(s)
- María Quintana-González de Chaves
- grid.493405.f0000 0004 1793 4432Unidad de Protección Vegetal, Instituto Canario de Investigaciones Agrarias (ICIA), 38270 Tenerife, Spain
| | - Félix Morán
- grid.419276.f0000 0000 9605 0555Unidad de Bacteriología, Centro de Protección Vegetal y Biotecnología. Instituto Vaslenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain
| | - Silvia Barbé
- grid.419276.f0000 0000 9605 0555Unidad de Bacteriología, Centro de Protección Vegetal y Biotecnología. Instituto Vaslenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain
| | - Edson Bertolini
- grid.8532.c0000 0001 2200 7498Department of Plant Health, Faculty of Agronomys, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, 91540-000 Brazil
| | - Felipe Siverio de la Rosa
- grid.493405.f0000 0004 1793 4432Unidad de Protección Vegetal, Instituto Canario de Investigaciones Agrarias (ICIA), 38270 Tenerife, Spain
| | - Ester Marco-Noales
- Unidad de Bacteriología, Centro de Protección Vegetal y Biotecnología. Instituto Vaslenciano de Investigaciones Agrarias (IVIA), 46113, Valencia, Spain.
| |
Collapse
|
9
|
Garcia L, Molina MC, Padgett-Pagliai KA, Torres PS, Bruna RE, García Véscovi E, González CF, Gadea J, Marano MR. A serralysin-like protein of Candidatus Liberibacter asiaticus modulates components of the bacterial extracellular matrix. Front Microbiol 2022; 13:1006962. [DOI: 10.3389/fmicb.2022.1006962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Huanglongbing (HLB), the current major threat for Citrus species, is caused by intracellular alphaproteobacteria of the genus Candidatus Liberibacter (CaL), with CaL asiaticus (CLas) being the most prevalent species. This bacterium inhabits phloem cells and is transmitted by the psyllid Diaphorina citri. A gene encoding a putative serralysin-like metalloprotease (CLIBASIA_01345) was identified in the CLas genome. The expression levels of this gene were found to be higher in citrus leaves than in psyllids, suggesting a function for this protease in adaptation to the plant environment. Here, we study the putative role of CLas-serralysin (Las1345) as virulence factor. We first assayed whether Las1345 could be secreted by two different surrogate bacteria, Rhizobium leguminosarum bv. viciae A34 (A34) and Serratia marcescens. The protein was detected only in the cellular fraction of A34 and S. marcescens expressing Las1345, and increased protease activity of those bacteria by 2.55 and 4.25-fold, respectively. In contrast, Las1345 expressed in Nicotiana benthamiana leaves did not show protease activity nor alterations in the cell membrane, suggesting that Las1345 do not function as a protease in the plant cell. Las1345 expression negatively regulated cell motility, exopolysaccharide production, and biofilm formation in Xanthomonas campestris pv. campestris (Xcc). This bacterial phenotype was correlated with reduced growth and survival on leaf surfaces as well as reduced disease symptoms in N. benthamiana and Arabidopsis. These results support a model where Las1345 could modify extracellular components to adapt bacterial shape and appendages to the phloem environment, thus contributing to virulence.
Collapse
|
10
|
Huang Y, Zhu F, Koh J, Stanton D, Chen S, Wang N. Proteomic and bioinformatic analyses of proteins in the outer membrane and extracellular compartments and outer membrane vesicles of Candidatus Liberibacter species. Front Microbiol 2022; 13:977710. [PMID: 36225379 PMCID: PMC9548881 DOI: 10.3389/fmicb.2022.977710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Citrus Huanglongbing (HLB) is the most devastating citrus disease in the world. Candidatus Liberibacter asiaticus (Las) is the prevalent HLB pathogen, which is yet to be cultivated. A recent study demonstrates that Las does not contain pathogenicity factors that are directly responsible for HLB symptoms. Instead, Las triggers systemic and chronic immune responses, representing a pathogen-triggered immune disease. Importantly, overproduction of reactive oxygen species (ROS) causes systemic cell death of phloem tissues, thus causing HLB symptoms. Because Las resides in the phloem tissues, it is expected that phloem cell might recognize outer membrane proteins, outer membrane vesicle (OMV) proteins and extracellular proteins of Las to contribute to the immune responses. Because Las has not been cultivated, we used Liberibacter crescens (Lcr) as a surrogate to identify proteins in the OM fraction, OMV proteins and extracellular proteins by liquid chromatography with tandem mass spectrometry (LC–MS/MS). We observed OMVs of Lcr under scanning electron microscope, representing the first experimental evidence that Liberibacter can deliver proteins to the extracellular compartment. In addition, we also further analyzed LC–MS/MS data using bioinformatic tools. Our study provides valuable information regarding the biology of Ca. Liberibacter species and identifies many putative proteins that may interact with host proteins in the phloem tissues.
Collapse
Affiliation(s)
- Yixiao Huang
- Department of Plant Pathology, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Fanchao Zhu
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Daniel Stanton
- Department of Plant Pathology, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- *Correspondence: Nian Wang,
| |
Collapse
|
11
|
Divergent Host-Microbe Interaction and Pathogenesis Proteins Detected in Recently Identified Liberibacter Species. Microbiol Spectr 2022; 10:e0209122. [PMID: 35900091 PMCID: PMC9430466 DOI: 10.1128/spectrum.02091-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Candidatus (Ca.) Liberibacter taxa are economically important bacterial plant pathogens that are not culturable; however, genome-enabled insights can help us develop a deeper understanding of their host-microbe interactions and evolution. The draft genome of a recently identified Liberibacter taxa, Ca. Liberibacter capsica, was curated and annotated here with a total draft genome size of 1.1 MB with 1,036 proteins, which is comparable to other Liberibacter species with complete genomes. A total of 459 orthologous clusters were identified among Ca. L. capsica, Ca. L. asiaticus, Ca. L. psyllaurous, Ca. L. americanus, Ca. L. africanus, and L. crescens, and these genes within these clusters consisted of housekeeping and environmental response functions. We estimated the rates of molecular evolution for each of the 443 one-to-one ortholog clusters and found that all Ca. L. capsica orthologous pairs were under purifying selection when the synonymous substitutions per synonymous site (dS) were not saturated. These results suggest that these genes are largely maintaining their conserved functions. We also identified the most divergent single-copy orthologous proteins in Ca. L. capsica by analyzing the ortholog pairs that represented the highest nonsynonymous substitutions per nonsynonymous site (dN) values for each pairwise comparison. From these analyses, we found that 21 proteins which are known to be involved in pathogenesis and host-microbe interactions, including the Tad pilus complex, were consistently divergent between Ca. L. capsica and the majority of other Liberibacter species. These results further our understanding of the evolutionary genetics of Ca. L. capsica and, more broadly, the evolution of Liberibacter. IMPORTANCE“Candidatus” (Ca.) Liberibacter taxa are economically important plant pathogens vectored by insects; however, these host-dependent bacterial taxa are extremely difficult to study because they are unculturable. Recently, we identified a new Ca. Liberibacter lineage (Ca. Liberibacter capsica) from a rare insect metagenomic sample. In this current study, we report that the draft genome of Ca. Liberibacter capsica is similar in genome size and protein content compared to the other Ca. Liberibacter taxa. We provide evidence that many of their shared genes, which encode housekeeping and environmental response functions, are evolving under purifying selection, suggesting that these genes are maintaining similar functions. Our study also identifies 21 proteins that are rapidly evolving amino acid changes in Ca. Liberibacter capsica compared to the majority of other Liberibacter taxa. Many of these proteins represent key genes involved in Liberibacter-host interactions and pathogenesis and are valuable candidate genes for future studies.
Collapse
|
12
|
Silva Gonçalves O, Bonandi Barreiros R, Martins Tupy S, Ferreira Santana M. A reverse-ecology framework to uncover the potential metabolic interplay among 'Candidatus Liberibacter' species, Citrus hosts and psyllid vector. Gene X 2022; 837:146679. [PMID: 35752379 DOI: 10.1016/j.gene.2022.146679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022] Open
Abstract
'Candidatus Liberibacter' species have developed a dependency on essential nutrients and metabolites from the host cell, as a result of substantial genome reduction. Still, it is difficult to state which nutrients they acquire and whether or not they are metabolically reliant. We used a reverse-ecology model to investigate the potential metabolic interactions of 'Ca Liberibacter' species, Citrus, and the psyllid Diaphorina citri in the huanglongbing disease pyramid. Our findings show that hosts (citrus and psyllid) tend to support the nutritional needs of 'Ca. Liberibacter' species, implying that the pathogen's metabolism has become tightly linked to hosts, which may reflect in the parasite lifestyle of this important genus.
Collapse
Affiliation(s)
- Osiel Silva Gonçalves
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Ralph Bonandi Barreiros
- Departmento de Fitotecnia, Laboratório de Biotecnologia de Plantas Horticulas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Brazil
| | - Sumaya Martins Tupy
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Mateus Ferreira Santana
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Nakabachi A, Inoue H, Hirose Y. Microbiome analyses of 12 psyllid species of the family Psyllidae identified various bacteria including Fukatsuia and Serratia symbiotica, known as secondary symbionts of aphids. BMC Microbiol 2022; 22:15. [PMID: 34996376 PMCID: PMC8740488 DOI: 10.1186/s12866-021-02429-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 01/04/2023] Open
Abstract
Background Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. Results The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to “endosymbionts3”, which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and “endosymbionts2”, which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. Conclusions The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02429-2.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan. .,Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan.
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization, Higashihiroshima, Hiroshima, 739-2494, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan
| |
Collapse
|
14
|
Merfa MV, Fischer ER, de Souza E Silva M, Francisco CS, Della Coletta-Filho H, de Souza AA. Probing the Application of OmpA-Derived Peptides to Disrupt the Acquisition of ' Candidatus Liberibacter asiaticus' by Diaphorina citri. PHYTOPATHOLOGY 2022; 112:163-172. [PMID: 34818904 DOI: 10.1094/phyto-06-21-0252-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Huanglongbing (HLB) is currently the most devastating disease of citrus worldwide. Both bacteria 'Candidatus Liberibacter asiaticus' (CLas) and 'Candidatus Liberibacter americanus' (CLam) are associated with HLB in Brazil but with a strong prevalence of CLas over CLam. Conventionally, HLB management focuses on controlling the insect vector population (Diaphorina citri; also known as Asian citrus psyllid [ACP]) by spraying insecticides, an approach demonstrated to be mostly ineffective. Thus, development of novel, more efficient HLB control strategies is required. The multifunctional bacterial outer membrane protein OmpA is involved in several molecular processes between bacteria and their hosts and has been suggested as a target for bacterial control. Curiously, OmpA is absent in CLam in comparison with CLas, suggesting a possible role in host interaction. Therefore, in the current study, we have treated ACPs with different OmpA-derived peptides, aiming to evaluate acquisition of CLas by the insect vector. Treatment of psyllids with 5 µM of Pep1, Pep3, Pep5, and Pep6 in artificial diet significantly reduced the acquisition of CLas, whereas increasing the concentration of Pep5 and Pep6 to 50 µM abolished this process. In addition, in planta treatment with 50 µM of Pep6 also significantly decreased the acquisition of CLas, and sweet orange plants stably absorbed and maintained this peptide for as long as 3 months post the final application. Together, our results demonstrate the promising use of OmpA-derived peptides as a novel biotechnological tool to control CLas.
Collapse
Affiliation(s)
- Marcus Vinícius Merfa
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico-IAC, Cordeirópolis, SP 13490-970, Brazil
| | - Eduarda Regina Fischer
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico-IAC, Cordeirópolis, SP 13490-970, Brazil
| | - Mariana de Souza E Silva
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico-IAC, Cordeirópolis, SP 13490-970, Brazil
| | | | | | - Alessandra Alves de Souza
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico-IAC, Cordeirópolis, SP 13490-970, Brazil
| |
Collapse
|
15
|
Merfa MV, Naranjo E, Shantharaj D, De La Fuente L. Growth of ' Candidatus Liberibacter asiaticus' in Commercial Grapefruit Juice-Based Media Formulations Reveals Common Cell Density-Dependent Transient Behaviors. PHYTOPATHOLOGY 2022; 112:131-144. [PMID: 34340531 DOI: 10.1094/phyto-06-21-0228-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The phloem-restricted, insect-transmitted bacterium 'Candidatus Liberibacter asiaticus' (CLas) is associated with huanglongbing (HLB), the most devastating disease of citrus worldwide. The inability to culture CLas impairs the understanding of its virulence mechanisms and the development of effective management strategies to control this incurable disease. Previously, our research group used commercial grapefruit juice (GJ) to prolong the viability of CLas in vitro. In the present study, GJ was amended with a wide range of compounds and incubated under different conditions to optimize CLas growth. Remarkably, results showed that CLas growth ratios were inversely proportional to the initial inoculum concentration. This correlation is probably regulated by a cell density-dependent mechanism, because diluting samples between subcultures allowed CLas to resume growth. Moreover, strategies to reduce the cell density of CLas, such as subculturing at short intervals and incubating samples under flow conditions, allowed this bacterium to multiply and reach maximum growth as early as 3 days after inoculation, although no sustained exponential growth was observed under any tested condition. Unfortunately, cultures were only transient, because CLas lost viability over time; nevertheless, we obtained populations of about 105 genome equivalents/ml repeatedly. Finally, we established an ex vivo system to grow CLas within periwinkle calli that could be used to propagate bacterial inoculum in the lab. In this study we determined the influence of a comprehensive set of conditions and compounds on CLas growth in culture. We hope our results will help guide future efforts toward the long-sought goal of culturing CLas axenically.
Collapse
Affiliation(s)
- Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Deepak Shantharaj
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | | |
Collapse
|
16
|
Oren A. Nomenclature of prokaryotic ' Candidatus' taxa: establishing order in the current chaos. New Microbes New Infect 2021; 44:100932. [PMID: 34631108 PMCID: PMC8487987 DOI: 10.1016/j.nmni.2021.100932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
In the mid-1990s, the category 'Candidatus' was established for putative taxa of as yet uncultivated prokaryotes. The status of 'Candidatus' is not formally included in the rules of the International Code of Nomenclature of Prokaryotes. Thus, 'Candidatus' names do not have standing in the nomenclature. Curated annotated lists of 'Candidatus' names (not including phyla) have been published since 2020. By April 2021, about 2700 names of 'Candidatus' taxa had been published. The International Committee on Systematics of Prokaryotes recently rejected proposals to allow gene sequence data as nomenclatural types. An alternative code for naming uncultivated microorganisms (the 'SeqCode') is now being developed for naming the majority of prokaryotes that are as yet uncultivated. In the opinion of the author, there is no need for such a code, as the existing system, with nomenclature quality control also for 'Candidatus' names, fulfills the needs. Computer programs such as GAN which generates large numbers of correctly formed names from the short lists of Latin and Greek word elements and Protologger that produce descriptions directly from genome sequences will become important in the future for automated naming and description of large numbers of 'Candidatus' taxa from metagenomic and single cell genome data. However, the formation of interesting and meaningful names is encouraged whenever possible.
Collapse
Affiliation(s)
- A. Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| |
Collapse
|
17
|
Tan Y, Wang C, Schneider T, Li H, de Souza RF, Tang X, Swisher Grimm KD, Hsieh TF, Wang X, Li X, Zhang D. Comparative Phylogenomic Analysis Reveals Evolutionary Genomic Changes and Novel Toxin Families in Endophytic Liberibacter Pathogens. Microbiol Spectr 2021; 9:e0050921. [PMID: 34523996 PMCID: PMC8557891 DOI: 10.1128/spectrum.00509-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/10/2021] [Indexed: 01/02/2023] Open
Abstract
Liberibacter pathogens are the causative agents of several severe crop diseases worldwide, including citrus Huanglongbing and potato zebra chip. These bacteria are endophytic and nonculturable, which makes experimental approaches challenging and highlights the need for bioinformatic analysis in advancing our understanding about Liberibacter pathogenesis. Here, we performed an in-depth comparative phylogenomic analysis of the Liberibacter pathogens and their free-living, nonpathogenic, ancestral species, aiming to identify major genomic changes and determinants associated with their evolutionary transitions in living habitats and pathogenicity. Using gene neighborhood analysis and phylogenetic classification, we systematically uncovered, annotated, and classified all prophage loci into four types, including one previously unrecognized group. We showed that these prophages originated through independent gene transfers at different evolutionary stages of Liberibacter and only the SC-type prophage was associated with the emergence of the pathogens. Using ortholog clustering, we vigorously identified two additional sets of genomic genes, which were either lost or gained in the ancestor of the pathogens. Consistent with the habitat change, the lost genes were enriched for biosynthesis of cellular building blocks. Importantly, among the gained genes, we uncovered several previously unrecognized toxins, including new toxins homologous to the EspG/VirA effectors, a YdjM phospholipase toxin, and a secreted endonuclease/exonuclease/phosphatase (EEP) protein. Our results substantially extend the knowledge of the evolutionary events and potential determinants leading to the emergence of endophytic, pathogenic Liberibacter species, which will facilitate the design of functional experiments and the development of new methods for detection and blockage of these pathogens. IMPORTANCELiberibacter pathogens are associated with several severe crop diseases, including citrus Huanglongbing, the most destructive disease to the citrus industry. Currently, no effective cure or treatments are available, and no resistant citrus variety has been found. The fact that these obligate endophytic pathogens are not culturable has made it extremely challenging to experimentally uncover the genes/proteins important to Liberibacter pathogenesis. Further, earlier bioinformatics studies failed to identify key genomic determinants, such as toxins and effector proteins, that underlie the pathogenicity of the bacteria. In this study, an in-depth comparative genomic analysis of Liberibacter pathogens along with their ancestral nonpathogenic species identified the prophage loci and several novel toxins that are evolutionarily associated with the emergence of the pathogens. These results shed new light on the disease mechanism of Liberibacter pathogens and will facilitate the development of new detection and blockage methods targeting the toxins.
Collapse
Affiliation(s)
- Yongjun Tan
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, Missouri, USA
| | - Cindy Wang
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, Missouri, USA
| | - Theresa Schneider
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, Missouri, USA
| | - Huan Li
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, Missouri, USA
| | - Robson Francisco de Souza
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Xueming Tang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kylie D. Swisher Grimm
- United States Department of Agriculture—Agricultural Research Service, Temperate Tree Fruit and Vegetable Research Unit, Prosser, Washington, USA
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
- Alabama Agricultural Experiment Station, Auburn University, Auburn, Alabama, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Xu Li
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Dapeng Zhang
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, Missouri, USA
- Bioinformatics and Computational Biology Program, College of Arts & Sciences, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
18
|
Loaiza CD, Duhan N, Kaundal R. GreeningDB: A Database of Host-Pathogen Protein-Protein Interactions and Annotation Features of the Bacteria Causing Huanglongbing HLB Disease. Int J Mol Sci 2021; 22:ijms221910897. [PMID: 34639237 PMCID: PMC8509195 DOI: 10.3390/ijms221910897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The Citrus genus comprises some of the most important and commonly cultivated fruit plants. Within the last decade, citrus greening disease (also known as huanglongbing or HLB) has emerged as the biggest threat for the citrus industry. This disease does not have a cure yet and, thus, many efforts have been made to find a solution to this devastating condition. There are challenges in the generation of high-yield resistant cultivars, in part due to the limited and sparse knowledge about the mechanisms that are used by the Liberibacter bacteria to proliferate the infection in Citrus plants. Here, we present GreeningDB, a database implemented to provide the annotation of Liberibacter proteomes, as well as the host–pathogen comparactomics tool, a novel platform to compare the predicted interactomes of two HLB host–pathogen systems. GreeningDB is built to deliver a user-friendly interface, including network visualization and links to other resources. We hope that by providing these characteristics, GreeningDB can become a central resource to retrieve HLB-related protein annotations, and thus, aid the community that is pursuing the development of molecular-based strategies to mitigate this disease’s impact. The database is freely available at http://bioinfo.usu.edu/GreeningDB/ (accessed on 11 August 2021).
Collapse
Affiliation(s)
- Cristian D. Loaiza
- Department of Plants, Soils and Climate, Utah State University, Logan, UT 84322, USA; (C.D.L.); (N.D.)
| | - Naveen Duhan
- Department of Plants, Soils and Climate, Utah State University, Logan, UT 84322, USA; (C.D.L.); (N.D.)
| | - Rakesh Kaundal
- Department of Plants, Soils and Climate, Utah State University, Logan, UT 84322, USA; (C.D.L.); (N.D.)
- Bioinformatics Facility, Center for Integrated BioSystems, Utah State University, Logan, UT 84322, USA
- Department of Computer Science, Utah State University, Logan, UT 84322, USA
- Correspondence: ; Tel.: +1-(435)-797-4117; Fax: +1-(435)-797-2766
| |
Collapse
|
19
|
Pan L, Gardner CL, Beliakoff R, da Silva D, Zuo R, Pagliai FA, Padgett-Pagliai KA, Merli ML, Bahadiroglu E, Gonzalez CF, Lorca GL. PrbP modulates biofilm formation in Liberibacter crescens. Environ Microbiol 2021; 23:7121-7138. [PMID: 34431209 DOI: 10.1111/1462-2920.15740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/31/2022]
Abstract
In Liberibacter asiaticus, PrbP is a transcriptional regulatory protein involved in survival and persistence during host infection. Tolfenamic acid was previously found to inhibit interactions between PrbP and the promotor region of rplK, resulting in reduced survival of L. asiaticus in the citrus host. In this study, we performed transcriptome analyses to elucidate the PrbP regulon in L. crescens, as it is phylogenetically the closest related species to L. asiaticus that can be grown in laboratory conditions. Chemical inhibition of PrbP with tolfenamic acid revealed that PrbP is involved in the regulation of diverse cellular processes, including stress response, cell motility, cell cycle and biofilm formation. In vitro DNA binding and bacterial two-hybrid assays also suggested that PrbP is a global regulator of multiple transcription factors (RpoH, VisN, PleD, MucR, MocR and CtrA) at both transcriptional and/or post-transcriptional levels. Sub-lethal concentrations of tolfenamic acid significantly reduced the attachment of L. crescens during biofilm formation and decreased long-term persistence in biofilm structures. Overall, our findings show the importance of PrbP in regulating diverse biological processes through direct and indirect interactions with other transcriptional regulators in L. crescens.
Collapse
Affiliation(s)
- Lei Pan
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Christopher L Gardner
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Reagan Beliakoff
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Danilo da Silva
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Ran Zuo
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Fernando A Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Kaylie A Padgett-Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Marcelo L Merli
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Erol Bahadiroglu
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Claudio F Gonzalez
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Graciela L Lorca
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Wang X, Chen J, Liu N, Fu ZQ. Dual Functions of a Stable Peptide against Citrus Huanglongbing Disease. TRENDS IN PLANT SCIENCE 2021; 26:668-670. [PMID: 33985900 DOI: 10.1016/j.tplants.2021.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 05/26/2023]
Abstract
The most prominent problem in the current citrus industry worldwide is the epidemic of citrus Huanglongbing (HLB), also known as greening disease. Huang et al. identified a stable peptide, which has antimicrobial activities and induces systemic immune response against HLB, from Australian finger lime. This peptide effectively suppresses disease symptoms in citrus and protects healthy trees against this disease.
Collapse
Affiliation(s)
- Xu Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Na Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
21
|
Li J, Kolbasov VG, Lee D, Pang Z, Huang Y, Collins N, Wang N. Residue Dynamics of Streptomycin in Citrus Delivered by Foliar Spray and Trunk Injection and Effect on ' Candidatus Liberibacter asiaticus' Titer. PHYTOPATHOLOGY 2021; 111:1095-1103. [PMID: 33267628 DOI: 10.1094/phyto-09-20-0427-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Streptomycin (STR) has been used to control citrus huanglongbing (HLB) caused by 'Candidatus Liberibacter asiaticus' (CLas) via foliar spray. Here, we studied the residue dynamics of STR and its effect on CLas titers in planta applied by foliar spray and trunk injection of 3-year-old citrus trees that were naturally infected by CLas in the field. After foliar spray, STR levels in leaves peaked at 2 to 7 days postapplication (dpa) and gradually declined thereafter. The STR spray did not significantly affect CLas titers in leaves of treated plants as determined by quantitative PCR. After trunk injection, peak levels of STR were observed 7 to 14 dpa in the leaf and root tissues, and near-peak levels were sustained for another 14 days before significantly declining. At 12 months after injection, moderate to low or undetectable levels of STR were observed in the leaf, root, and fruit, depending on the doses of STR injected, with a residue level of 0.28 µg/g in harvested fruit at the highest injection concentration of 2.0 µg/tree. CLas titers in leaves were significantly reduced by trunk injection of STR at 1.0 or 2.0 g/tree, starting from 7 dpa and throughout the experimental period. The reduction of CLas titers was positively correlated with STR residue levels in leaves. The in planta minimum effective concentration of STR needed to suppress the CLas titer to an undetectable level (cycle threshold ≥36.0) was 1.92 µg/g fresh weight. Determination of the in planta minimum effective concentration of STR against CLas and its spatiotemporal residue levels in planta provides the guidance to use STR for HLB management.
Collapse
Affiliation(s)
- Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Vladimir G Kolbasov
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Donghwan Lee
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Zhiqian Pang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Yixiao Huang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Nicole Collins
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
22
|
Alves MN, Cifuentes-Arenas JC, Raiol-Junior LL, Ferro JA, Peña L. Early Population Dynamics of " Candidatus Liberibacter asiaticus" in Susceptible and Resistant Genotypes After Inoculation With Infected Diaphorina citri Feeding on Young Shoots. Front Microbiol 2021; 12:683923. [PMID: 34177870 PMCID: PMC8219961 DOI: 10.3389/fmicb.2021.683923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/29/2021] [Indexed: 11/14/2022] Open
Abstract
Huanglongbing is a highly destructive citrus disease associated with "Candidatus Liberibacter asiaticus" (Las), a phloem-limited and non-culturable bacterium, naturally transmitted by the psyllid Diaphorina citri. Although diverse approaches have been used to understand the molecular mechanisms involved in the pathogen-host interaction, such approaches have focused on already infected and/or symptomatic plants, missing early events in the initial days post-inoculation. This study aimed to identify the time course of Las multiplication and whole-plant colonization immediately following inoculation by infected psyllids feeding for 2 days. Thus, the experimental approach was to track Las titers after psyllid inoculation in new shoots (NS) of Citrus × sinensis (susceptible), Murraya paniculata (partially resistant), and Bergera koenigii (fully resistant). Soon after psyllid removal, Las titers dropped until the 10-12th days in all three species. Following this, Las titers increased exponentially only in C. × sinensis and M. paniculata, indicating active bacterial multiplication. In C. × sinensis, Las reached a stationary phase at ∼5 log Las cells/g of tissue from the 40th day onward, while in M. paniculata, Las increased at a lower rate of up to ∼3 log Las cells/g of tissue between the 40th and 60th days, decreasing gradually thereafter and becoming undetectable from the 160th day onward. In B. koenigii, Las titers decreased from the start and remained undetectable. In C. × sinensis, an average of 2.6 log of Las cells/g of tissue was necessary for Las to move out of 50% of the NS in 23.6 days and to colonize the rest of the plant, causing a successful infection. Conversely, the probability of Las moving out of the NS remained below 50% in M. paniculata and zero in B. koenigii. To our knowledge, this is the first study on Las dynamics and whole-plant colonization during the earliest stages of infection. Identification of critical time-points for either successful multiplication or Las resistance may help to elucidate initial events of Las-host interactions that may be missed due to longer sampling intervals and at later stages of infection.
Collapse
Affiliation(s)
- Mônica Neli Alves
- Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, Brazil
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
| | | | | | - Jesus Aparecido Ferro
- Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, Brazil
| | - Leandro Peña
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| |
Collapse
|
23
|
Huang CY, Araujo K, Sánchez JN, Kund G, Trumble J, Roper C, Godfrey KE, Jin H. A stable antimicrobial peptide with dual functions of treating and preventing citrus Huanglongbing. Proc Natl Acad Sci U S A 2021; 118:e2019628118. [PMID: 33526689 PMCID: PMC8017978 DOI: 10.1073/pnas.2019628118] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Citrus Huanglongbing (HLB), caused by a vector-transmitted phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas), is the most devastating citrus disease worldwide. Currently, there are no effective strategies to prevent infection or to cure HLB-positive trees. Here, using comparative analysis between HLB-sensitive citrus cultivars and HLB-tolerant citrus hybrids and relatives, we identified a novel class of stable antimicrobial peptides (SAMPs). The SAMP from Microcitrusaustraliasica can rapidly kill Liberibacter crescens (Lcr), a culturable Liberibacter strain, and inhibit infections of CLas and CL. solanacearum in plants. In controlled greenhouse trials, SAMP not only effectively reduced CLas titer and disease symptoms in HLB-positive trees but also induced innate immunity to prevent and inhibit infections. Importantly, unlike antibiotics, SAMP is heat stable, making it better suited for field applications. Spray-applied SAMP was taken up by citrus leaves, stayed stable inside the plants for at least a week, and moved systemically through the vascular system where CLas is located. We further demonstrate that SAMP is most effective on α-proteobacteria and causes rapid cytosol leakage and cell lysis. The α-helix-2 domain of SAMP is sufficient to kill Lcr Future field trials will help determine the efficacy of SAMP in controlling HLB and the ideal mode of application.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Karla Araujo
- Contained Research Facility, University of California, Davis, CA 95616
| | - Jonatan Niño Sánchez
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Gregory Kund
- Department of Entomology, University of California, Riverside, CA 92521
| | - John Trumble
- Department of Entomology, University of California, Riverside, CA 92521
| | - Caroline Roper
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
| | | | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521;
| |
Collapse
|
24
|
Zuñiga C, Peacock B, Liang B, McCollum G, Irigoyen SC, Tec-Campos D, Marotz C, Weng NC, Zepeda A, Vidalakis G, Mandadi KK, Borneman J, Zengler K. Linking metabolic phenotypes to pathogenic traits among "Candidatus Liberibacter asiaticus" and its hosts. NPJ Syst Biol Appl 2020; 6:24. [PMID: 32753656 PMCID: PMC7403731 DOI: 10.1038/s41540-020-00142-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
Candidatus Liberibacter asiaticus (CLas) has been associated with Huanglongbing, a lethal vector-borne disease affecting citrus crops worldwide. While comparative genomics has provided preliminary insights into the metabolic capabilities of this uncultured microorganism, a comprehensive functional characterization is currently lacking. Here, we reconstructed and manually curated genome-scale metabolic models for the six CLas strains A4, FL17, gxpsy, Ishi-1, psy62, and YCPsy, in addition to a model of the closest related culturable microorganism, L. crescens BT-1. Predictions about nutrient requirements and changes in growth phenotypes of CLas were confirmed using in vitro hairy root-based assays, while the L. crescens BT-1 model was validated using cultivation assays. Host-dependent metabolic phenotypes were revealed using expression data obtained from CLas-infected citrus trees and from the CLas-harboring psyllid Diaphorina citri Kuwayama. These results identified conserved and unique metabolic traits, as well as strain-specific interactions between CLas and its hosts, laying the foundation for the development of model-driven Huanglongbing management strategies.
Collapse
Affiliation(s)
- Cristal Zuñiga
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Beth Peacock
- Department of Microbiology and Plant Pathology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Bo Liang
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Greg McCollum
- USDA, ARS, US Horticultural Research Laboratory, 2001 S. Rock Road, Fort Pierce, FL, 34945, USA
| | - Sonia C Irigoyen
- Texas A&M AgriLife Research and Extension Center, Texas A&M University System, Weslaco, TX, USA
| | - Diego Tec-Campos
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Campus de Ciencias Exactas e Ingenierías, Mérida, 97203, Yucatán, México
| | - Clarisse Marotz
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Nien-Chen Weng
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Alejandro Zepeda
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Campus de Ciencias Exactas e Ingenierías, Mérida, 97203, Yucatán, México
| | - Georgios Vidalakis
- Department of Microbiology and Plant Pathology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, Texas A&M University System, Weslaco, TX, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA.
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA.
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0403, USA.
| |
Collapse
|
25
|
Naranjo E, Merfa MV, Santra S, Ozcan A, Johnson E, Cobine PA, De La Fuente L. Zinkicide Is a ZnO-Based Nanoformulation with Bactericidal Activity against Liberibacter crescens in Batch Cultures and in Microfluidic Chambers Simulating Plant Vascular Systems. Appl Environ Microbiol 2020; 86:e00788-20. [PMID: 32561578 PMCID: PMC7414956 DOI: 10.1128/aem.00788-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/12/2020] [Indexed: 01/09/2023] Open
Abstract
Phloem-limited bacterial "Candidatus Liberibacter" species are associated with incurable plant diseases worldwide. Antimicrobial treatments for these pathogens are challenging due to the difficulty of reaching the vascular tissue they occupy at bactericidal concentrations. Here, in vitro antimicrobial mechanisms of Zinkicide TMN110 (ZnK), a nonphytotoxic zinc oxide (ZnO)-based nanoformulation, were compared to those of bulk ZnO (b-ZnO) using as a model the only culturable species of the genus, Liberibacter crescens Minimum bactericidal concentration (MBC) determination and time-kill assays showed that ZnK has a bactericidal effect against L. crescens, whereas b-ZnO is bacteriostatic. When ZnK was used at the MBC (150 ppm), its antimicrobial mechanisms included an increase in Zn solubility, generation of intracellular reactive oxygen species, lipid peroxidation, and cell membrane disruption; all of these were of greater intensity than those of b-ZnO. Inhibition of biofilms, which are important during insect vector colonization, was stronger by ZnK than by b-ZnO at concentrations between 2.5 and 10 ppm in batch cultures; however, neither ZnK nor b-ZnO removed L. crescens preformed biofilms when applied between 100 and 400 ppm. In microfluidic chambers simulating source-to-sink phloem movement, ZnK significantly outperformed b-ZnO in Zn mobilization and bactericidal activity against L. crescens planktonic cells in sink reservoirs. In microfluidic chamber assays assessing antibiofilm activity, ZnK displayed a significantly enhanced bactericidal activity against L. crescens individual attached cells as well as preformed biofilms compared to that of b-ZnO. The superior mobility and antimicrobial activity of ZnK in microenvironments make this formulation a promising product to control plant diseases caused by "Candidatus Liberibacter" species and other plant vascular pathogens.IMPORTANCE "Candidatus Liberibacter" species are associated with incurable plant diseases that have caused billions of dollars of losses for United States and world agriculture. Chemical control of these pathogens is complicated, because their life cycle combines intracellular vascular stages in plant hosts with transmission by highly mobile insect vectors. To date, "Candidatus Liberibacter" species are mostly unculturable, except for Liberibacter crescens, a member of the genus that has been used as a model for in vitro assays. Here, we evaluated the potential of Zinkicide (ZnK) as an antimicrobial against "Candidatus Liberibacter" species in batch cultures and under flow conditions, using L. crescens as a biological model. ZnK displayed bactericidal activity against L. crescens in batch cultures and showed increased mobility and bactericidal activity in microfluidic devices resembling "Candidatus Liberibacter" species natural habitats. ZnK performance observed here against L. crescens makes this compound a promising candidate to control plant diseases caused by vascular pathogens.
Collapse
Affiliation(s)
- Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Ali Ozcan
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Evan Johnson
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
26
|
Nakabachi A, Malenovský I, Gjonov I, Hirose Y. 16S rRNA Sequencing Detected Profftella, Liberibacter, Wolbachia, and Diplorickettsia from Relatives of the Asian Citrus Psyllid. MICROBIAL ECOLOGY 2020; 80:410-422. [PMID: 32052099 DOI: 10.1007/s00248-020-01491-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
The Asian citrus psyllid Diaphorina citri (Hemiptera: Psylloidea) is a serious pest of citrus species worldwide because it transmits Candidatus Liberibacter spp. (Alphaproteobacteria: Rhizobiales), the causative agents of the incurable citrus disease, huanglongbing or greening disease. Diaphorina citri possesses a specialized organ called a bacteriome, which harbors vertically transmitted intracellular mutualists, Ca. Carsonella ruddii (Gammaproteobacteria: Oceanospirillales) and Ca. Profftella armatura (Gammaproteobacteria: Betaproteobacteriales). Whereas Carsonella is a typical nutritional symbiont, Profftella is an unprecedented type of toxin-producing defensive symbiont, unusually sharing organelle-like features with nutritional symbionts. Additionally, many D. citri strains are infected with Wolbachia, which manipulate reproduction in various arthropod hosts. In the present study, in an effort to obtain insights into the evolution of symbioses between Diaphorina and bacteria, microbiomes of psyllids closely related to D. citri were investigated. Bacterial populations of Diaphorina cf. continua and Diaphorina lycii were analyzed using Illumina sequencing of 16S rRNA gene amplicons and compared with data obtained from D. citri. The analysis revealed that all three Diaphorina spp. harbor Profftella as well as Carsonella lineages, implying that Profftella is widespread within the genus Diaphorina. Moreover, the analysis identified Ca. Liberibacter europaeus and Diplorickettsia sp. (Gammaproteobacteria: Diplorickettsiales) in D. cf. continua, and a total of four Wolbachia (Alphaproteobacteria: Rickettsiales) lineages in the three psyllid species. These results provide deeper insights into the interactions among insects, bacteria, and plants, which would eventually help to better manage horticulture.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan.
- Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan.
| | - Igor Malenovský
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic
| | - Ilia Gjonov
- Department of Zoology and Anthropology, Faculty of Biology, Sofia University, Dragan Tzankov 8, 1164, Sofia, Bulgaria
| | - Yuu Hirose
- Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan
| |
Collapse
|
27
|
Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2020; 70:3956-4042. [DOI: 10.1099/ijsem.0.003789] [Citation(s) in RCA: 782] [Impact Index Per Article: 156.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, proposed between the mid-1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evolutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current proposals to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M. Garrity
- NamesforLife, LLC, PO Box 769, Okemos MI 48805-0769, USA
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| | | | - Maria Chuvochina
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia QLD 4072, Brisbane, Australia
| | - Martha E. Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007, Salamanca, Spain
| |
Collapse
|
28
|
Tal O, Selvaraj G, Medina S, Ofaim S, Freilich S. NetMet: A Network-Based Tool for Predicting Metabolic Capacities of Microbial Species and their Interactions. Microorganisms 2020; 8:microorganisms8060840. [PMID: 32503277 PMCID: PMC7356744 DOI: 10.3390/microorganisms8060840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022] Open
Abstract
Metabolic conversions allow organisms to produce a set of essential metabolites from the available nutrients in an environment, frequently requiring metabolic exchanges among co-inhabiting organisms. Genomic-based metabolic simulations are being increasingly applied for exploring metabolic capacities, considering different environments and different combinations of microorganisms. NetMet is a web-based tool and a software package for predicting the metabolic performances of microorganisms and their corresponding combinations in user-defined environments. The algorithm takes, as input, lists of (i) species-specific enzymatic reactions (EC numbers), and (ii) relevant metabolic environments. The algorithm generates, as output, lists of (i) compounds that individual species can produce in each given environment, and (ii) compounds that are predicted to be produced through complementary interactions. The tool is demonstrated in two case studies. First, we compared the metabolic capacities of different haplotypes of the obligatory fruit and vegetable pathogen Candidatus Liberibacter solanacearum to those of their culturable taxonomic relative Liberibacter crescens. Second, we demonstrated the potential production of complementary metabolites by pairwise combinations of co-occurring endosymbionts of the plant phloem-feeding whitefly Bemisia tabaci.
Collapse
|
29
|
Attaran E, Berim A, Killiny N, Beyenal H, Gang DR, Omsland A. Controlled replication of 'Candidatus Liberibacter asiaticus' DNA in citrus leaf discs. Microb Biotechnol 2020; 13:747-759. [PMID: 31958876 PMCID: PMC7111093 DOI: 10.1111/1751-7915.13531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/13/2022] Open
Abstract
'Candidatus Liberibacter asiaticus' is a fastidious bacterium and a putative agent of citrus greening disease (a.k.a., huanglongbing, HLB), a significant agricultural disease that affects citrus fruit quality and tree health. In citrus, 'Ca. L. asiaticus' is phloem limited. Lack of culture tools to study 'Ca. L. asiaticus' complicates analysis of this important organism. To improve understanding of 'Ca. L. asiaticus'-host interactions including parameters that affect 'Ca. L. asiaticus' replication, methods suitable for screening pathogen responses to physicochemical and nutritional variables are needed. We describe a leaf disc-based culture assay that allows highly selective measurement of changes in 'Ca. L. asiaticus' DNA within plant tissue incubated under specific physicochemical and nutritional conditions. qPCR analysis targeting the hypothetical gene CD16-00155 (strain A4) allowed selective quantification of 'Ca. L. asiaticus' DNA content within infected tissue. 'Ca. L. asiaticus' DNA replication was observed in response to glucose exclusively under microaerobic conditions, and the antibiotic amikacin further enhanced 'Ca. L. asiaticus' DNA replication. Metabolite profiling revealed a moderate impact of 'Ca. L. asiaticus' on the ability of leaf tissue to metabolize and respond to glucose.
Collapse
Affiliation(s)
- Elham Attaran
- Paul G. Allen School for Global Animal HealthWashington State UniversityPullmanWAUSA
| | - Anna Berim
- Institute of Biological ChemistryWashington State UniversityPullmanWAUSA
| | - Nabil Killiny
- Plant Pathology DepartmentCitrus Research and Education CenterUniversity of FloridaLake AlfredFLUSA
| | - Haluk Beyenal
- Gene and Linda Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanWAUSA
| | - David R. Gang
- Institute of Biological ChemistryWashington State UniversityPullmanWAUSA
| | - Anders Omsland
- Paul G. Allen School for Global Animal HealthWashington State UniversityPullmanWAUSA
| |
Collapse
|
30
|
Blacutt A, Ginnan N, Dang T, Bodaghi S, Vidalakis G, Ruegger P, Peacock B, Viravathana P, Vieira FC, Drozd C, Jablonska B, Borneman J, McCollum G, Cordoza J, Meloch J, Berry V, Salazar LL, Maloney KN, Rolshausen PE, Roper MC. An In Vitro Pipeline for Screening and Selection of Citrus-Associated Microbiota with Potential Anti-" Candidatus Liberibacter asiaticus" Properties. Appl Environ Microbiol 2020; 86:e02883-19. [PMID: 32086307 PMCID: PMC7117939 DOI: 10.1128/aem.02883-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Huanglongbing (HLB) is a destructive citrus disease that is lethal to all commercial citrus plants, making it the most serious citrus disease and one of the most serious plant diseases. Because of the severity of HLB and the paucity of effective control measures, we structured this study to encompass the entirety of the citrus microbiome and the chemistries associated with that microbial community. We describe the spatial niche diversity of bacteria and fungi associated with citrus roots, stems, and leaves using traditional microbial culturing integrated with culture-independent methods. Using the culturable sector of the citrus microbiome, we created a microbial repository using a high-throughput bulk culturing and microbial identification pipeline. We integrated an in vitro agar diffusion inhibition bioassay into our culturing pipeline that queried the repository for antimicrobial activity against Liberibacter crescens, a culturable surrogate for the nonculturable "Candidatus Liberibacter asiaticus" bacterium associated with HLB. We identified microbes with robust inhibitory activity against L. crescens that include the fungi Cladosporium cladosporioides and Epicoccum nigrum and bacterial species of Pantoea, Bacillus, and Curtobacterium Purified bioactive natural products with anti-"Ca. Liberibacter asiaticus" activity were identified from the fungus C. cladosporioides Bioassay-guided fractionation of an organic extract of C. cladosporioides yielded the natural products cladosporols A, C, and D as the active agents against L. crescens This work serves as a foundation for unraveling the complex chemistries associated with the citrus microbiome to begin to understand the functional roles of members of the microbiome, with the long-term goal of developing anti-"Ca Liberibacter asiaticus" bioinoculants that thrive in the citrus holosystem.IMPORTANCE Globally, citrus is threatened by huanglongbing (HLB), and the lack of effective control measures is a major concern of farmers, markets, and consumers. There is compelling evidence that plant health is a function of the activities of the plant's associated microbiome. Using Liberibacter crescens, a culturable surrogate for the unculturable HLB-associated bacterium "Candidatus Liberibacter asiaticus," we tested the hypothesis that members of the citrus microbiome produce potential anti-"Ca Liberibacter asiaticus" natural products with potential anti-"Ca Liberibacter asiaticus" activity. A subset of isolates obtained from the microbiome inhibited L. crescens growth in an agar diffusion inhibition assay. Further fractionation experiments linked the inhibitory activity of the fungus Cladosporium cladosporioides to the fungus-produced natural products cladosporols A, C, and D, demonstrating dose-dependent antagonism to L. crescens.
Collapse
Affiliation(s)
- Alex Blacutt
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Nichole Ginnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Tyler Dang
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Sohrab Bodaghi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Georgios Vidalakis
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Paul Ruegger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Beth Peacock
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Polrit Viravathana
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Flavia Campos Vieira
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Christopher Drozd
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Barbara Jablonska
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Greg McCollum
- U.S. Department of Agriculture, Agricultural Research Service, Fort Pierce, Florida, USA
| | | | | | - Victoria Berry
- Point Loma Nazarene University, San Diego, California, USA
| | | | | | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California, USA
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
31
|
Chen Y, Bendix C, Lewis JD. Comparative Genomics Screen Identifies Microbe-Associated Molecular Patterns from ' Candidatus Liberibacter' spp. That Elicit Immune Responses in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:539-552. [PMID: 31790346 DOI: 10.1094/mpmi-11-19-0309-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Citrus huanglongbing (HLB), caused by phloem-limited 'Candidatus Liberibacter' bacteria, is a destructive disease threatening the worldwide citrus industry. The mechanisms of pathogenesis are poorly understood and no efficient strategy is available to control HLB. Here, we used a comparative genomics screen to identify candidate microbe-associated molecular patterns (MAMPs) from 'Ca. Liberibacter' spp. We identified the core genome from multiple 'Ca. Liberibacter' pathogens, and searched for core genes with signatures of positive selection. We hypothesized that genes encoding putative MAMPs would evolve to reduce recognition by the plant immune system, while retaining their essential functions. To efficiently screen candidate MAMP peptides, we established a high-throughput microtiter plate-based screening assay, particularly for citrus, that measured reactive oxygen species (ROS) production, which is a common immune response in plants. We found that two peptides could elicit ROS production in Arabidopsis and Nicotiana benthamiana. One of these peptides elicited ROS production and defense gene expression in HLB-tolerant citrus genotypes, and induced MAMP-triggered immunity against the bacterial pathogen Pseudomonas syringae. Our findings identify MAMPs that boost immunity in citrus and could help prevent or reduce HLB infection.
Collapse
Affiliation(s)
- Yuan Chen
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service and Department of Plant and Microbial Biology, University of California-Berkeley, 800 Buchanan Street, Albany, CA 94710, U.S.A
| | - Claire Bendix
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service and Department of Plant and Microbial Biology, University of California-Berkeley, 800 Buchanan Street, Albany, CA 94710, U.S.A
| | - Jennifer D Lewis
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service and Department of Plant and Microbial Biology, University of California-Berkeley, 800 Buchanan Street, Albany, CA 94710, U.S.A
| |
Collapse
|
32
|
Growth Dynamics and Survival of Liberibacter crescens BT-1, an Important Model Organism for the Citrus Huanglongbing Pathogen " Candidatus Liberibacter asiaticus". Appl Environ Microbiol 2019; 85:AEM.01656-19. [PMID: 31420343 PMCID: PMC6803310 DOI: 10.1128/aem.01656-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/12/2019] [Indexed: 11/20/2022] Open
Abstract
Liberibacter crescens is a bacterium that is closely related to plant pathogens that have caused billions of dollars in crop losses in recent years. Particularly devastating are citrus losses due to citrus greening disease, also known as Huanglongbing, which is caused by “Candidatus Liberibacter asiaticus” and carried by the Asian citrus psyllid. L. crescens is the only close relative of “Ca. Liberibacter asiaticus” that can currently be grown in culture, and it therefore serves as an important model organism for the growth, genetic manipulation, and biological control of the pathogenic species. Here, we show that one of the greatest limitations to L. crescens growth is the sharp increase in alkaline conditions it produces as a consequence of consumption of its preferred nutrient source. In addition to new information about L. crescens growth and metabolism, we provide new guidelines for culture conditions that improve the survival and yield of L. crescens. Liberibacter crescens is the only cultured member of its genus, which includes the devastating plant pathogen “Candidatus Liberibacter asiaticus,” associated with citrus greening/Huanglongbing (HLB). L. crescens has a larger genome and greater metabolic flexibility than “Ca. Liberibacter asiaticus” and the other uncultured plant-pathogenic Liberibacter species, and it is currently the best model organism available for these pathogens. L. crescens grows slowly and dies rapidly under current culture protocols and this extreme fastidiousness makes it challenging to study. We have determined that a major cause of rapid death of L. crescens in batch culture is its alkalinization of the medium (to pH 8.5 by the end of logarithmic phase). The majority of this alkalinization is due to consumption of alpha-ketoglutaric acid as its primary carbon source, with a smaller proportion of the pH rise due to NH3 production. Controlling the pH rise with higher buffering capacity and lower starting pH improved recoverability of cells from 10-day cultures by >1,000-fold. We have also performed a detailed analysis of L. crescens growth with total cell numbers calibrated to the optical density and the percentage of live and recoverable bacteria determined over 10-day time courses. We modified L. crescens culture conditions to greatly enhance survival and increase maximum culture density. The similarities between L. crescens and the pathogenic liberibacters make this work relevant to efforts to culture the latter organisms. Our results also suggest that growth-dependent pH alteration that overcomes medium buffering should always be considered when growing fastidious bacteria. IMPORTANCELiberibacter crescens is a bacterium that is closely related to plant pathogens that have caused billions of dollars in crop losses in recent years. Particularly devastating are citrus losses due to citrus greening disease, also known as Huanglongbing, which is caused by “Candidatus Liberibacter asiaticus” and carried by the Asian citrus psyllid. L. crescens is the only close relative of “Ca. Liberibacter asiaticus” that can currently be grown in culture, and it therefore serves as an important model organism for the growth, genetic manipulation, and biological control of the pathogenic species. Here, we show that one of the greatest limitations to L. crescens growth is the sharp increase in alkaline conditions it produces as a consequence of consumption of its preferred nutrient source. In addition to new information about L. crescens growth and metabolism, we provide new guidelines for culture conditions that improve the survival and yield of L. crescens.
Collapse
|
33
|
Cruz-Munoz M, Munoz-Beristain A, Petrone JR, Robinson MA, Triplett EW. Growth parameters of Liberibacter crescens suggest ammonium and phosphate as essential molecules in the Liberibacter-plant host interface. BMC Microbiol 2019; 19:222. [PMID: 31606047 PMCID: PMC6790036 DOI: 10.1186/s12866-019-1599-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 09/20/2019] [Indexed: 12/25/2022] Open
Abstract
Background Liberibacter crescens is the closest cultured relative of four important uncultured crop pathogens. Candidatus. L. asiaticus, L. americanus, L. africanus cause citrus greening disease, while Ca. L. solanacearum causes potato Zebra chip disease. None of the pathogens grows in axenic culture. L. crescens grows in three media: a BM-7, a serum-free Hi® Grace’s Insect Medium (Hi-GI), and a chemically-defined medium called M15. To date, no optimal growth parameters of the model species L. crescens have been reported. Studying the main growth parameters of L. crescens in axenic culture will give us insights into the lifestyle of the Ca. Liberibacter pathogens. Results The evaluation of the growth parameters—pH, aeration, temperature, and buffering capacity—reflects the optimal living conditions of L. crescens. These variables revealed that L. crescens is an aerobic, neutrophilic bacterium, that grows optimally in broth in a pH range of 5.8 to 6.8, in a fully oxygenated environment (250 rpm), at 28 °C, and with monosodium phosphate (10 mM or 11.69 mM) as the preferred buffer for growth. The increase of pH in the external media likely results from the deamination activity within the cell, with the concomitant over-production of ammonium in the external medium. Conclusion L. crescens and the Ca. Liberibacter pathogens are metabolically similar and grow in similar environments—the phloem and the gut of their insect vectors. The evaluation of the growth parameters of L. crescens reveals the lifestyle of Liberibacter, elucidating ammonium and phosphate as essential molecules for colonization within the hosts. Ammonium is the main driver of pH modulation by active deamination of amino acids in the L. crescens amino acid rich media. In plants, excess ammonium induces ionic imbalances, oxidative stress, and pH disturbances across cell membranes, causing stunted root and shoot growth and chlorosis—the common symptoms of HLB-disease. Phosphate, which is also present in Ca. L. asiaticus hosts, is the preferred buffer for the growth of L. crescens. The interplay between ammonium, sucrose, potassium (K+), phosphate, nitrate (NO3−), light and other photosynthates might lead to develop better strategies for disease management.
Collapse
Affiliation(s)
- Maritsa Cruz-Munoz
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Alam Munoz-Beristain
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Joseph R Petrone
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Matthew A Robinson
- Biostatistics Department, College of Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Eric W Triplett
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
34
|
Lessons from One Fastidious Bacterium to Another: What Can We Learn about Liberibacter Species from Xylella fastidiosa. INSECTS 2019; 10:insects10090300. [PMID: 31527458 PMCID: PMC6780969 DOI: 10.3390/insects10090300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Huanglongbing is causing economic devastation to the citrus industry in Florida, and threatens the industry everywhere the bacterial pathogens in the Candidatus Liberibacter genus and their insect vectors are found. Bacteria in the genus cannot be cultured and no durable strategy is available for growers to control plant infection or pathogen transmission. However, scientists and grape growers were once in a comparable situation after the emergence of Pierce’s disease, which is caused by Xylella fastidiosa and spread by its hemipteran insect vector. Proactive quarantine and vector control measures coupled with interdisciplinary data-driven science established control of this devastating disease and pushed the frontiers of knowledge in the plant pathology and vector biology fields. Our review highlights the successful strategies used to understand and control X. fastidiosa and their potential applicability to the liberibacters associated with citrus greening, with a focus on the interactions between bacterial pathogen and insect vector. By placing the study of Candidatus Liberibacter spp. within the current and historical context of another fastidious emergent plant pathogen, future basic and applied research to develop control strategies can be prioritized.
Collapse
|
35
|
Gilkes JM, Sheen CR, Frampton RA, Smith GR, Dobson RCJ. The First Purification of Functional Proteins from the Unculturable, Genome-Reduced, Bottlenecked α-Proteobacterium ' Candidatus Liberibacter solanacearum'. PHYTOPATHOLOGY 2019; 109:1141-1148. [PMID: 30887888 DOI: 10.1094/phyto-12-18-0486-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
'Candidatus Liberibacter solanacearum' is an unculturable α-proteobacterium that is the causal agent of zebra chip disease of potato-a major problem in potato-growing areas, because it affects growth and yield. Developing effective treatments for 'Ca. L. solanacearum' has been hampered by the difficulty in functionally characterizing the proteins of this organism, largely because they are not easily expressed and purified in standard expression systems. 'Ca. L. solanacearum' has a reduced genome and its proteins are predicted to be prone to instability and aggregation. Among intracellular-dwelling bacteria, chaperone proteins are conserved and overexpressed to buffer against problems in protein folding. We mimicked this approach for expressing and purifying 'Ca. L. solanacearum' proteins in Escherichia coli by coexpressing them with chaperones. Neither of the representative 'Ca. L. solanacearum' enzymes, dihydrodipicolinate synthase (key in lysine biosynthesis) and pyruvate kinase (involved in glycolysis), were overexpressed in standard E. coli expression plasmids or strains. However, soluble dihydrodipicolinate synthase was successfully coexpressed with GroEL/GroES, while soluble pyruvate kinase was successfully coexpressed with either GroEL/GroES, dnaK/dnaJ/grpE, or a trigger factor. Both enzymes, believed to be key proteins for the organism, were purified by a combination of affinity chromatography and size-exclusion chromatography. Additionally, both 'Ca. L. solanacearum' enzymes are active and have the canonical tetrameric oligomeric structure in solution, consistent with other bacterial orthologs. This is the first study to successfully isolate and functionally characterize proteins from 'Ca. L. solanacearum'. Thus, we provide a general strategy for characterizing its proteins, enabling new research and drug discovery programs to study and manage the pathogenicity of the organism.
Collapse
Affiliation(s)
- Jenna M Gilkes
- 1 Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- 2 The New Zealand Institute for Plant & Food Research Limited, Lincoln 7608, New Zealand
| | - Campbell R Sheen
- 3 Callaghan Innovation, University of Canterbury, Christchurch 8041, New Zealand; and
| | - Rebekah A Frampton
- 2 The New Zealand Institute for Plant & Food Research Limited, Lincoln 7608, New Zealand
| | - Grant R Smith
- 2 The New Zealand Institute for Plant & Food Research Limited, Lincoln 7608, New Zealand
| | - Renwick C J Dobson
- 1 Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- 4 Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
36
|
Merfa MV, Pérez-López E, Naranjo E, Jain M, Gabriel DW, De La Fuente L. Progress and Obstacles in Culturing ' Candidatus Liberibacter asiaticus', the Bacterium Associated with Huanglongbing. PHYTOPATHOLOGY 2019; 109:1092-1101. [PMID: 30998129 DOI: 10.1094/phyto-02-19-0051-rvw] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In recent decades, 'Candidatus Liberibacter spp.' have emerged as a versatile group of psyllid-vectored plant pathogens and endophytes capable of infecting a wide range of economically important plant hosts. The most notable example is 'Candidatus Liberibacter asiaticus' (CLas) associated with Huanglongbing (HLB) in several major citrus-producing areas of the world. CLas is a phloem-limited α-proteobacterium that is primarily vectored and transmitted among citrus species by the Asian citrus psyllid (ACP) Diaphorina citri. HLB was first detected in North America in Florida (USA) in 2005, following introduction of the ACP to the State in 1998. HLB rapidly spread to all citrus growing regions of Florida within three years, with severe economic consequences to growers and considerable expense to taxpayers of the state and nation. Inability to establish CLas in culture (except transiently) remains a significant scientific challenge toward effective HLB management. Lack of axenic cultures has restricted functional genomic analyses, transfer of CLas to either insect or plant hosts for fulfillment of Koch's postulates, characterization of host-pathogen interactions and effective screening of antibacterial compounds. In the last decade, substantial progress has been made toward CLas culturing: (i) three reports of transient CLas cultures were published, (ii) a new species of Liberibacter was identified and axenically cultured from diseased mountain papaya (Liberibacter crescens strain BT-1), (iii) psyllid hemolymph and citrus phloem sap were biochemically characterized, (iv) CLas phages were identified and lytic genes possibly affecting CLas growth were described, and (v) genomic sequences of 15 CLas strains were made available. In addition, development of L. crescens as a surrogate host for functional analyses of CLas genes, has provided valuable insights into CLas pathogenesis and its physiological dependence on the host cell. In this review we summarize the conclusions from these important studies.
Collapse
Affiliation(s)
- Marcus V Merfa
- 1 Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Edel Pérez-López
- 1 Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Eber Naranjo
- 1 Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Mukesh Jain
- 2 Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Dean W Gabriel
- 2 Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Leonardo De La Fuente
- 1 Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| |
Collapse
|
37
|
Naranjo E, Merfa MV, Ferreira V, Jain M, Davis MJ, Bahar O, Gabriel DW, De La Fuente L. Liberibacter crescens biofilm formation in vitro: establishment of a model system for pathogenic 'Candidatus Liberibacter spp.'. Sci Rep 2019; 9:5150. [PMID: 30914689 PMCID: PMC6435755 DOI: 10.1038/s41598-019-41495-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/11/2019] [Indexed: 11/23/2022] Open
Abstract
The Liberibacter genus comprises insect endosymbiont bacterial species that cause destructive plant diseases, including Huanglongbing in citrus and zebra chip in potato. To date, pathogenic 'Candidatus Liberibacter spp.' (CLs) remain uncultured, therefore the plant-associated Liberibacter crescens (Lcr), only cultured species of the genus, has been used as a biological model for in vitro studies. Biofilm formation by CLs has been observed on the outer midgut surface of insect vectors, but not in planta. However, the role of biofilm formation in the life cycle of these pathogens remains unclear. Here, a model system for studying CLs biofilms was developed using Lcr. By culture media modifications, bovine serum albumin (BSA) was identified as blocking initial cell-surface adhesion. Removal of BSA allowed for the first time observation of Lcr biofilms. After media optimization for biofilm formation, we demonstrated that Lcr attaches to surfaces, and form cell aggregates embedded in a polysaccharide matrix both in batch cultures and under flow conditions in microfluidic chambers. Biofilm structures may represent excellent adaptive advantages for CLs during insect vector colonization helping with host retention, immune system evasion, and transmission. Future studies using the Lcr model established here will help in the understanding of the biology of CLs.
Collapse
Affiliation(s)
- Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, USA
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, USA
| | - Virginia Ferreira
- Bioscience Department, College of Chemistry, University of the Republic, Montevideo, Uruguay
| | - Mukesh Jain
- Department of Plant Pathology, University of Florida, Gainesville, USA
| | - Michael J Davis
- Citrus Research and Education Center, University of Florida, Gainesville, USA
| | - Ofir Bahar
- Department of Plant Pathology and Weed Research, ARO - Volcani Center, Bet-Dagan, Israel
| | - Dean W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, USA
| | | |
Collapse
|
38
|
The Ferredoxin-Like Protein FerR Regulates PrbP Activity in Liberibacter asiaticus. Appl Environ Microbiol 2019; 85:AEM.02605-18. [PMID: 30552192 DOI: 10.1128/aem.02605-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/08/2018] [Indexed: 12/26/2022] Open
Abstract
In Liberibacter asiaticus, PrbP is an important transcriptional accessory protein that regulates gene expression through interactions with the RNA polymerase β-subunit and a specific sequence on the promoter region. The constitutive expression of prbP observed upon chemical inactivation of PrbP-DNA interactions in vivo indicated that the expression of prbP was not autoregulated at the level of transcription. This observation suggested that a modulatory mechanism via protein-protein interactions may be involved. In silico genome association analysis identified FerR (CLIBASIA_01505), a putative ferredoxin-like protein, as a PrbP-interacting protein. Using a bacterial two-hybrid system and immunoprecipitation assays, interactions between PrbP and FerR were confirmed. In vitro transcription assays were used to show that FerR can increase the activity of PrbP by 16-fold when present in the PrbP-RNA polymerase reaction mixture. The FerR protein-protein interaction surface was predicted by structural modeling and followed by site-directed mutagenesis. Amino acids V20, V23, and C40 were identified as the most important residues in FerR involved in the modulation of PrbP activity in vitro The regulatory mechanism of FerR abundance was examined at the transcription level. In contrast to prbP of L. asiaticus (prbP Las), mRNA levels of ferR of L. asiaticus (ferR Las) are induced by an increase in osmotic pressure. The results of this study revealed that the activity of the transcriptional activator PrbPLas is modulated via interactions with FerRLas The induction of ferR Las expression by osmolarity provides insight into the mechanisms of adjusting gene expression in response to host environmental signals in L. asiaticus IMPORTANCE The rapid spread and aggressive progression of huanglongbing (HLB) in the major citrus-producing areas have raised global recognition of and vigilance to this disease. As a result, the causative agent, Liberibacter asiaticus, has been investigated from various perspectives. However, gene expression regulatory mechanisms that are important for the survival and persistence of this intracellular pathogen remain largely unexplored. PrbP is a transcriptional accessory protein important for L. asiaticus survival in the plant host. In this study, we investigated the interactions between PrbP in L. asiaticus (PrbPLas) and a ferredoxin-like protein (FerR) in L. asiaticus, FerRLas We show that the presence of FerR stabilizes and augments the activity of PrbPLas In addition, we demonstrate that the expression of ferR is induced by increases in osmolarity in Liberibacter crescens Altogether, these results suggest that FerRLas and PrbPLas may play important roles in the regulation of gene expression in response to changing environmental signals during L. asiaticus infection in the citrus host.
Collapse
|
39
|
Krystel J, Shi Q, Shaw J, Gupta G, Hall D, Stover E. An in vitro protocol for rapidly assessing the effects of antimicrobial compounds on the unculturable bacterial plant pathogen, Candidatus Liberibacter asiaticus. PLANT METHODS 2019; 15:85. [PMID: 31384290 PMCID: PMC6668101 DOI: 10.1186/s13007-019-0465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/16/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Most bacteria are not culturable, but can be identified through molecular methods such as metagenomics studies. Due to specific metabolic requirements and symbiotic relationships, these bacteria cannot survive on typical laboratory media. Many economically and medically important bacteria are unculturable; including phloem-limited plant pathogens like Candidatus Liberibacter asiaticus (CLas). CLas is the most impactful pathogen on citrus production, is vectored by the Asian citrus psyllid (ACP, Diaphorina citri), and lacks an effective treatment or resistant cultivars. Research into CLas pathogenicity and therapy has been hindered by the lack of persistent pure cultures. Work to date has been mostly limited to in planta studies that are time and resource intensive. RESULTS We developed and optimized an in vitro protocol to quickly test the effectiveness of potential therapeutic agents against CLas. The assay uses intact bacterial cells contained in homogenized tissue from CLas-infected ACP and a propidium monoazide (PMA) assay to measure antimicrobial activity. The applicability of PMA was evaluated; with the ability to differentiate between intact and disrupted CLas cells confirmed using multiple bactericidal treatments. We identified light activation conditions to prevent PCR interference and identified a suitable positive control for nearly complete CLas disruption (0.1% Triton-X 100). Isolation buffer components were optimized with 72 mM salt mixture, 1 mM phosphate buffer and 1% glycerol serving to minimize unwanted interactions with treatment and PMA chemistries and to maximize recovery of intact CLas cells. The mature protocol was used to compare a panel of peptides already under study for potential CLas targeting bactericidal activity and identify which were most effective. CONCLUSION This psyllid homogenate assay allows for a quick assessment of potential CLas-disrupting peptides. Comparison within a uniform isolate largely eliminates experimental error arising from variation in CLas titer between and within individual host organisms. Use of an intact vs. disrupted assay permits direct assessment of potential therapeutic compounds without generating pure cultures or conducting extensive in planta or field studies.
Collapse
Affiliation(s)
- Joseph Krystel
- Subtropical Insect and Horticulture Research Unit, US Horticultural Research Laboratory, 2001 S. Rock Rd, Ft. Pierce, FL 34945 USA
| | - Qingchun Shi
- Subtropical Insect and Horticulture Research Unit, US Horticultural Research Laboratory, 2001 S. Rock Rd, Ft. Pierce, FL 34945 USA
| | - Jefferson Shaw
- Subtropical Insect and Horticulture Research Unit, US Horticultural Research Laboratory, 2001 S. Rock Rd, Ft. Pierce, FL 34945 USA
| | - Goutam Gupta
- New Mexico Consortium, 100 Entrada Dr, Los Alamos, NM USA
| | - David Hall
- Subtropical Insect and Horticulture Research Unit, US Horticultural Research Laboratory, 2001 S. Rock Rd, Ft. Pierce, FL 34945 USA
| | - Ed Stover
- Subtropical Insect and Horticulture Research Unit, US Horticultural Research Laboratory, 2001 S. Rock Rd, Ft. Pierce, FL 34945 USA
| |
Collapse
|
40
|
Katsir L, Zhepu R, Santos Garcia D, Piasezky A, Jiang J, Sela N, Freilich S, Bahar O. Genome Analysis of Haplotype D of Candidatus Liberibacter Solanacearum. Front Microbiol 2018; 9:2933. [PMID: 30619106 PMCID: PMC6295461 DOI: 10.3389/fmicb.2018.02933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/14/2018] [Indexed: 11/20/2022] Open
Abstract
Candidatus Liberibacter solanacearum (Lso) haplotype D (LsoD) is a suspected bacterial pathogen, spread by the phloem-feeding psyllid Bactericera trigonica Hodkinson and found to infect carrot plants throughout the Mediterranean. Haplotype D is one of six haplotypes of Lso that each have specific and overlapping host preferences, disease symptoms, and psyllid vectors. Genotyping of rRNA genes has allowed for tracking the haplotype diversity of Lso and genome sequencing of several haplotypes has been performed to advance a comprehensive understanding of Lso diseases and of the phylogenetic relationships among the haplotypes. To further pursue that aim we have sequenced the genome of LsoD from its psyllid vector and report here its draft genome. Genome-based single nucleotide polymorphism analysis indicates LsoD is most closely related to the A haplotype. Genomic features and the metabolic potential of LsoD are assessed in relation to Lso haplotypes A, B, and C, as well as the facultative strain Liberibacter crescens. We identify genes unique to haplotype D as well as putative secreted effectors that may play a role in disease characteristics specific to this haplotype of Lso.
Collapse
Affiliation(s)
- Leron Katsir
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Ruan Zhepu
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Diego Santos Garcia
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Piasezky
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Noa Sela
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Shiri Freilich
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Ofir Bahar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
41
|
Where are we going with genomics in plant pathogenic bacteria? Genomics 2018; 111:729-736. [PMID: 29678682 DOI: 10.1016/j.ygeno.2018.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
Genome sequencing is commonly used in research laboratories right now thanks to the rise of high-throughput sequencing with higher speed and output-to-cost ratios. Here, we summarized the application of genomics in different aspects of plant bacterial pathosystems. Genomics has been used in studying the mechanisms of plant-bacteria interactions, and host specificity. It also helps with taxonomy, study of non-cultured bacteria, identification of causal agent, single cell sequencing, population genetics, and meta-transcriptomic. Overall, genomics has significantly improved our understanding of plant-microbe interaction.
Collapse
|
42
|
Cruz-Munoz M, Petrone JR, Cohn AR, Munoz-Beristain A, Killiny N, Drew JC, Triplett EW. Development of Chemically Defined Media Reveals Citrate as Preferred Carbon Source for Liberibacter Growth. Front Microbiol 2018; 9:668. [PMID: 29675013 PMCID: PMC5895721 DOI: 10.3389/fmicb.2018.00668] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
Liberibacter crescens is the closest cultured relative of four important uncultured crop pathogens. Candidatus L. asiaticus, L. americanus, and L. africanus are causal agents of citrus greening disease, otherwise known as huanglongling (HLB). Candidatus L. solanacearum is responsible for potato Zebra chip disease. Cultures of L. crescens grow slowly on BM-7 complex medium, while attempts to culture the Ca. Liberibacter pathogens in BM-7 have failed. Developing a defined medium for the growth of L. crescens will be useful in the study of Liberibacter metabolism and will improve the prospects for culturing the Ca. Liberibacter pathogens. Here, M15 medium is presented and described as the first chemically defined medium for the growth of L. crescens cultures that approaches the growth rates obtained with BM-7. The development of M15 was a four step process including: (1) the identification of Hi-Graces Insect medium (Hi-GI) as an essential, yet undefined component in BM-7, for the growth of L. crescens, (2) metabolomic reconstruction of Hi-GI to create a defined medium for the growth of L. crescens cultures, and (3) the discovery of citrate as the preferred carbon and energy source for L. crescens growth. The composition of M15 medium includes inorganic salts as in the Hi-GI formula, amino acids derived from the metabolomic analyses of Hi-GI, and a 10-fold increase in vitamins compared to the Hi-GI formula, with exception choline chloride, which was increased 5000-fold in M15. Since genome comparisons of L. crescens and the Ca. Liberibacter pathogens show that they are very similar metabolically. Thus, these results imply citrate and other TCA cycle intermediates are main energy sources for these pathogens in their insect and plant hosts. Thus, strategies to reduce citrate levels in the habitats of these pathogens may be effective in reducing Ca. Liberibacter pathogen populations thereby reducing symptoms in the plant host.
Collapse
Affiliation(s)
- Maritsa Cruz-Munoz
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Joseph R Petrone
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Alexa R Cohn
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Alam Munoz-Beristain
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Nabil Killiny
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Jennifer C Drew
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Eric W Triplett
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
43
|
Killiny N, Jones SE. Metabolic alterations in the nymphal instars of Diaphorina citri induced by Candidatus Liberibacter asiaticus, the putative pathogen of huanglongbing. PLoS One 2018; 13:e0191871. [PMID: 29370262 PMCID: PMC5785020 DOI: 10.1371/journal.pone.0191871] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/12/2018] [Indexed: 11/24/2022] Open
Abstract
Currently, huanglongbing is the most damaging disease of citrus causing huge economic losses. The disease is caused by the Gram-negative bacterium Candidatus Liberibacter asiaticus (CLas). The pathogen is transmitted in a persistent propagative circulative manner within its vector, the Asian citrus psyllid, Diaphorina citri. Exploring the metabolic alteration in the vector may lead to a better understanding of the nutritional needs of CLas and to designing an artificial medium for culturing the pathogen. It has been shown that the nymphal stages have a greater role in transmission mainly because they feed on plants more actively than adults. In this study, we carried out an untargeted comparative metabolomic analysis for healthy and CLas-infected 4th / 5th instar nymphs. The metabolic analysis was performed using trimethylsilylation and methyl chloroformate derivatization followed by Gas Chromatography-Mass Spectrometry (GC-MS). Overall, the changes in the nymph metabolism due to the infection with CLas were more pronounced than in adults, as we previously published. Nymphs reared on CLas-infected Valencia sweet orange were higher in many metabolites, mainly those of the TCA cycle, C16 and C18 fatty acids, glucose, sucrose, L-proline, L-serine, pyroglutamic acid, saccharic acid, threonic acid and myo-inositol than those reared on healthy plants. In contrast, CLas-infected nymphs were lower in putrescine, glycine, L -phenylalanine, L -tyrosine, L -valine, and chiro-inositol. The information provided from this study may contribute in acceleration of the availability of CLas in culture and consequent screening of antibacterial compounds to discover a definitive solution for huanglongbing.
Collapse
Affiliation(s)
- Nabil Killiny
- Citrus Research and Education Center, Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Shelley E Jones
- Citrus Research and Education Center, Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| |
Collapse
|
44
|
Hao G, Zhang S, Stover E. Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus. PLoS One 2017; 12:e0186810. [PMID: 29049366 PMCID: PMC5648250 DOI: 10.1371/journal.pone.0186810] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/06/2017] [Indexed: 11/18/2022] Open
Abstract
Citrus Huanglongbing (HLB) associated with 'Candidatus Liberibacter asiaticus' (Las) and citrus canker disease incited by Xanthomonas citri are the most devastating citrus diseases worldwide. To control citrus HLB and canker disease, we previously screened over forty antimicrobial peptides (AMPs) in vitro for their potential application in genetic engineering. D2A21 was one of the most active AMPs against X. citri, Agrobacterium tumefaciens and Sinorhizobium meliloti with low hemolysis activity. Therefore, we conducted this work to assess transgenic expression of D2A21 peptide to achieve citrus resistant to canker and HLB. We generated a construct expressing D2A21 and initially transformed tobacco as a model plant. Transgenic tobacco expressing D2A21 was obtained by Agrobacterium-mediated transformation. Successful transformation and D2A21 expression was confirmed by molecular analysis. We evaluated disease development incited by Pseudomonas syringae pv. tabaci in transgenic tobacco. Transgenic tobacco plants expressing D2A21 showed remarkable disease resistance compared to control plants. Therefore, we performed citrus transformations with the same construct and obtained transgenic Carrizo citrange. Gene integration and gene expression in transgenic plants were determined by PCR and RT-qPCR. Transgenic Carrizo expressing D2A21 showed significant canker resistance while the control plants showed clear canker symptoms following both leaf infiltration and spray inoculation with X. citri 3213. Transgenic Carrizo plants were challenged for HLB evaluation by grafting with Las infected rough lemon buds. Las titer was determined by qPCR in the leaves and roots of transgenic and control plants. However, our results showed that transgenic plants expressing D2A21 did not significantly reduce Las titer compared to control plants. We demonstrated that transgenic expression of D2A21 conferred resistance to diseases incited by P. syringae pv. tabaci and X. citri but not Las. Our results underscore the difficulty in controlling HLB compared to other bacterial diseases.
Collapse
Affiliation(s)
- Guixia Hao
- U. S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, United States of America
| | - Shujian Zhang
- U. S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, United States of America
| | - Ed Stover
- U. S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, United States of America
| |
Collapse
|
45
|
Oren A. A plea for linguistic accuracy - also for Candidatus taxa. Int J Syst Evol Microbiol 2017; 67:1085-1094. [PMID: 27926819 DOI: 10.1099/ijsem.0.001715] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
While all names of new taxa submitted to the International Journal of Systematic and Evolutionary Microbiology, either in direct submissions or in validation requests for names effectively published elsewhere, are subject to nomenclatural review to ensure that they are acceptable based on the rules of the International Code of Nomenclature of Prokaryotes, the names of Candidatus taxa have not been subjected to such a review. Formally, this was not necessary because the rank of Candidatus is not covered by the Code, and the names lack the priority afforded validly published names. However, many Candidatus taxa of different ranks are widely discussed in the scientific literature, and a proposal to incorporate the nomenclature of uncultured prokaryotes under the provisions of the Code is currently pending. Therefore, an evaluation of the names of Candidatus taxa published thus far is very timely. Out of the ~400 Candidatus names found in the literature, 120 contradict the current rules of the Code or are otherwise problematic. A list of those names of Candidatus taxa that need correction is presented here and alternative names that agree with the provisions of the Code are proposed.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 91904 Jerusalem, Israel
| |
Collapse
|
46
|
Loto F, Coyle JF, Padgett KA, Pagliai FA, Gardner CL, Lorca GL, Gonzalez CF. Functional characterization of LotP from Liberibacter asiaticus. Microb Biotechnol 2017; 10:642-656. [PMID: 28378385 PMCID: PMC5404198 DOI: 10.1111/1751-7915.12706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 01/08/2023] Open
Abstract
Liberibacter asiaticus is an unculturable parasitic bacterium of the alphaproteobacteria group hosted by both citrus plants and a psyllid insect vector (Diaphorina citri). In the citrus tree, the bacteria thrive only inside the phloem, causing a systemically incurable and deadly plant disease named citrus greening or Huanglongbing. Currently, all commercial citrus cultivars in production are susceptible to L. asiaticus, representing a serious threat to the citrus industry worldwide. The technical inability to isolate and culture L. asiaticus has hindered progress in understanding the biology of this bacterium directly. Consequently, a deep understanding of the biological pathways involved in the regulation of host–pathogen interactions becomes critical to rationally design future and necessary strategies of control. In this work, we used surrogate strains to evaluate the biochemical characteristics and biological significance of CLIBASIA_03135. This gene, highly induced during early stages of plant infection, encodes a 23 kDa protein and was renamed in this work as LotP. This protein belongs to an uncharacterized family of proteins with an overall structure resembling the LON protease N‐terminus. Co‐immunoprecipitation assays allowed us to identify the Liberibacter chaperonin GroEL as the main LotP‐interacting protein. The specific interaction between LotP and GroEL was reconstructed and confirmed using a two‐hybrid system in Escherichia coli. Furthermore, it was demonstrated that LotP has a native molecular weight of 44 kDa, corresponding to a dimer in solution with ATPase activity in vitro. In Liberibacter crescens, LotP is strongly induced in response to conditions with high osmolarity but repressed at high temperatures. Electrophoretic mobility shift assay (EMSA) results suggest that LotP is a member of the LdtR regulon and could play an important role in tolerance to osmotic stress.
Collapse
Affiliation(s)
- Flavia Loto
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA.,PROIMI Planta Piloto de Procesos Industriales Microbiológicos, CONICET, Tucumán, Argentina
| | - Janelle F Coyle
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Kaylie A Padgett
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA.,Department of Microbiology and Cell Science, Undergraduate Research Program, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Fernando A Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Christopher L Gardner
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| |
Collapse
|
47
|
Cicero JM, Fisher TW, Qureshi JA, Stansly PA, Brown JK. Colonization and Intrusive Invasion of Potato Psyllid by 'Candidatus Liberibacter solanacearum'. PHYTOPATHOLOGY 2017; 107:36-49. [PMID: 27482628 DOI: 10.1094/phyto-03-16-0149-r] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Previous studies have shown that the fastidious bacterial plant pathogen 'Candidatus Liberibacter solanacearum' (CLso) is transmitted circulatively and propagatively by the potato psyllid (PoP) Bactericera cockerelli. In this study, the temporal and spatial interrelationships between CLso PoP were investigated by scanning electron microscopy of the digestive system of PoP immature and adult instars and salivary glands of adults post CLso ingestion. CLso biofilms were not detectable on the outer midgut surface of the first and second instars; however, for third to fifth instars and teneral and mature adults, biofilms were observed in increasing numbers in each successive developmental stage. In adult PoP midguts, CLso cells were observed between the basal lamina and basal epithelial cell membranes; in basal laminar perforations, on the outer basal laminar surface, and in the ventricular lumen, epithelial cytosol, and filter chamber periventricular space. CLso were also abundantly visible in the salivary gland pericellular spaces and in the epidermal cell cytosol of the head. Collectively, these results point to an intrusive, systemic invasion of PoP by CLso that employs an endo/exocytosis-like mechanism, in the context of a propagative, circulative mode of transmission.
Collapse
Affiliation(s)
- Joseph M Cicero
- First, second, and fifth authors: School of Plant Sciences, 303 Forbes Bld., University of Arizona, Tucson 85721; and third and fourth authors: Southwest Florida Research & Education Center, University of Florida IFAS, 2685 State Road 29 North, Immokalee 34142
| | - Tonja W Fisher
- First, second, and fifth authors: School of Plant Sciences, 303 Forbes Bld., University of Arizona, Tucson 85721; and third and fourth authors: Southwest Florida Research & Education Center, University of Florida IFAS, 2685 State Road 29 North, Immokalee 34142
| | - Jawwad A Qureshi
- First, second, and fifth authors: School of Plant Sciences, 303 Forbes Bld., University of Arizona, Tucson 85721; and third and fourth authors: Southwest Florida Research & Education Center, University of Florida IFAS, 2685 State Road 29 North, Immokalee 34142
| | - Philip A Stansly
- First, second, and fifth authors: School of Plant Sciences, 303 Forbes Bld., University of Arizona, Tucson 85721; and third and fourth authors: Southwest Florida Research & Education Center, University of Florida IFAS, 2685 State Road 29 North, Immokalee 34142
| | - Judith K Brown
- First, second, and fifth authors: School of Plant Sciences, 303 Forbes Bld., University of Arizona, Tucson 85721; and third and fourth authors: Southwest Florida Research & Education Center, University of Florida IFAS, 2685 State Road 29 North, Immokalee 34142
| |
Collapse
|
48
|
Prasad S, Xu J, Zhang Y, Wang N. SEC-Translocon Dependent Extracytoplasmic Proteins of Candidatus Liberibacter asiaticus. Front Microbiol 2016; 7:1989. [PMID: 28066334 PMCID: PMC5167687 DOI: 10.3389/fmicb.2016.01989] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/28/2016] [Indexed: 11/30/2022] Open
Abstract
Citrus Huanglongbing (HLB) is the most destructive citrus disease worldwide. HLB is associated with three species of the phloem-limited, gram-negative, fastidious α-proteobacteria: Candidatus Liberibacter asiaticus (Las), Ca. L. americanus (Lam), and Ca. L. africanus (Laf) with Las being the most widespread species. Las has not been cultured in artificial media, which has greatly hampered our efforts to understand its virulence mechanisms. Las contains a complete Sec-translocon, which has been suggested to transport Las proteins including virulence factors into the extracytoplasmic milieu. In this study, we characterized the Sec-translocon dependent, signal peptide containing extracytoplasmic proteins of Las. A total of 166 proteins of Las-psy62 strain were predicted to contain signal peptides targeting them out of the cell cytoplasm via the Sec-translocon using LipoP, SigalP 3.0, SignalP 4.1, and Phobius. We also predicated SP containing extracytoplasmic proteins for Las-gxpsy and Las-Ishi-1, Lam, Laf, Ca. L. solanacearum (Lso), and L. crescens (Lcr). For experimental validation of the predicted extracytoplasmic proteins, Escherichia coli based alkaline phosphatase (PhoA) gene fusion assays were conducted. A total of 86 out of the 166 predicted Las proteins were experimentally validated to contain signal peptides. Additionally, Las-psy62 lepB (CLIBASIA_04190), the gene encodes signal peptidase I, was able to partially complement the amber mutant of lepB of E. coli. This work will contribute to the identification of Sec-translocon dependent effector proteins of Las, which might be involved in virulence of Las.
Collapse
Affiliation(s)
| | | | | | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake AlfredFL, USA
| |
Collapse
|
49
|
Killiny N. Generous hosts: What makes Madagascar periwinkle (Catharanthus roseus) the perfect experimental host plant for fastidious bacteria? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:28-35. [PMID: 27620272 DOI: 10.1016/j.plaphy.2016.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/23/2016] [Accepted: 09/01/2016] [Indexed: 05/03/2023]
Abstract
Although much attention has been paid to the metabolism and biosynthesis of monoterpene alkaloids in Catharanthus roseus, its value as an experimental host for a variety of agriculturally and economically important phytopathogenic bacteria warrants further study. In the present study, we evaluated the chemical composition of the phloem and xylem saps of C. roseus to infer the nutritional requirements of phloem- and xylem-limited phytopathogens. Periwinkle phloem sap consisted of a rich mixture of sugars, organic acids, amino acids, amines, fatty acids, sugar acids and sugar alcohols while xylem contained similar compounds in lesser concentrations. Plant sap analysis may lead to a better understanding of the biology of fastidious Mollicutes and their complex nutritional requirements, and to successful culture of phytoplasmas and other uncultured phloem-restricted bacteria such as Candidatus Liberibacter asiaticus, the causal agent of huanglongbing in citrus.
Collapse
Affiliation(s)
- Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA.
| |
Collapse
|
50
|
Roberts R, Pietersen G. A novel subspecies of 'Candidatus Liberibacter africanus' found on native Teclea gerrardii (Family: Rutaceae) from South Africa. Antonie van Leeuwenhoek 2016; 110:437-444. [PMID: 27830472 DOI: 10.1007/s10482-016-0799-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/01/2016] [Indexed: 01/18/2023]
Abstract
The phloem limited bacterium 'Candidatus Liberibacter africanus' is associated with citrus greening disease in South Africa. This bacterium has been identified solely from commercial citrus in Africa and the Mascarene islands, and its origin may lie within an indigenous rutaceous host from Africa. Recently, in determining whether alternative hosts of Laf exist amongst the indigenous rutaceous hosts of its triozid vector, Trioza erytreae, three novel subspecies of Laf were identified i.e. 'Candidatus Liberibacter africanus subsp. clausenae', 'Candidatus Liberibacter africanus subsp. vepridis' and 'Candidatus Liberibacter africanus subsp. zanthoxyli' in addition to the formerly identified 'Candidatus Liberibacter africanus subsp. capensis'. The current study expands upon the range of indigenous rutaceous tree species tested for liberibacters closely related to Laf and its subspecies. A collection of 121 samples of Teclea and Oricia species were sampled from Oribi Gorge and Umtamvunu nature reserves in KwaZulu Natal. Total DNA was extracted and the presence of liberibacters from these samples determined using a generic liberibacter TaqMan real-time PCR assay. Liberibacters from positive samples were further characterised through amplification and sequencing of the 16S rRNA, outer-membrane protein (omp) and 50S ribosomal protein L10 (rplJ) genes. A single Teclea gerrardii specimen tested positive for a liberibacter and, through phylogenetic analyses of the three genes sequenced, was shown to be unique, albeit closely related to 'Ca. L. africanus' and 'Ca. L. africanus subsp. zanthoxyli'. We propose that this newly identified liberibacter be named 'Candidatus Liberibacter africanus subsp. tecleae'.
Collapse
Affiliation(s)
- Ronel Roberts
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.,Plant Microbiology Division, Agricultural Research Council-Plant Protection Research, Private Bag X134, Pretoria, 0001, South Africa
| | - Gerhard Pietersen
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa. .,Plant Microbiology Division, Agricultural Research Council-Plant Protection Research, Private Bag X134, Pretoria, 0001, South Africa.
| |
Collapse
|