1
|
Rosińska A, Wanarska M, Kozłowska-Tylingo K, Jurkowski M. Diversity and enzymatic activity of Polish beehive products microbiota, and characterization of a novel β-galactosidase from Paenibacillus sp. 8. Sci Rep 2025; 15:17625. [PMID: 40399424 PMCID: PMC12095705 DOI: 10.1038/s41598-025-02561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025] Open
Abstract
Microbial enzymes are widely used in many industries, and beehive products are an abundant source of microorganisms. In this study, bacteria, yeasts, and filamentous fungi were isolated from Polish honey and bee bread samples and were investigated as enzyme producers. The best producers of glycoside hydrolases were Paenibacillus spp., whereas Micrococcus spp. showed high proteolytic and lipolytic activity. The β-galactosidase-encoding bgaP gene from Paenibacillus sp. 8 was cloned and expressed in Escherichia coli. BgaP, a hexameric protein with a molecular mass of 466 kDa, was optimally active at pH 6.6-7.0 and 40 °C, and maintained 18% of its maximum activity at 10 °C. β-Galactosidase was strongly inhibited by galactose, moderately by glucose, and slightly by fructose; therefore, it hydrolyzed lactulose much more efficiently than lactose. The efficiency of lactose digestion by BgaP was increased to almost 80% by the L-arabinose isomerase-catalyzed bioconversion of galactose to tagatose. These features make BgaP β-galactosidase a potential candidate for application in lactulose detection and in the production of health-promoting sweeteners. Furthermore, the cell-free extract of Paenibacillus sp. 8 hydrolyzed lactose in milk and synthesized galactooligosaccharides at 10 °C, indicating the presence of β-galactosidase other than BgaP in bacterial cells, justifying further research.
Collapse
Affiliation(s)
- Aleksandra Rosińska
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, 80-233, Gdansk, Poland
| | - Marta Wanarska
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, 80-233, Gdansk, Poland.
| | - Katarzyna Kozłowska-Tylingo
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233, Gdansk, Poland
| | - Michał Jurkowski
- Department of Physical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233, Gdansk, Poland
| |
Collapse
|
2
|
Kolokotronis SO, Bhattacharya C, Panja R, Quate I, Seibert M, Jorgensen E, Mason CE, Hénaff EM. Metagenomic interrogation of urban Superfund site reveals antimicrobial resistance reservoir and bioremediation potential. J Appl Microbiol 2025; 136:lxaf076. [PMID: 40233938 PMCID: PMC11999716 DOI: 10.1093/jambio/lxaf076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/03/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025]
Abstract
AIMS We investigate the bioremediation potential of the microbiome of the Gowanus Canal, a contaminated waterway in Brooklyn, NY, USA, designated a Superfund site by the US Environmental Protection Agency due to high concentrations of contaminants, including polychlorinated biphenyls, petrochemicals, and heavy metals. METHODS AND RESULTS We present a metagenomic analysis of the Gowanus Canal sediment, consisting of a longitudinal study of surface sediment and a depth-based study of sediment core samples. We demonstrate that the resident microbiome includes 455 species, including extremophiles across a range of saltwater and freshwater species, which collectively encode 64 metabolic pathways related to organic contaminant degradation and 1171 genes related to heavy metal utilization and detoxification. Furthermore, our genetic screening reveals an environmental reservoir of antimicrobial resistance markers falling within 8 different classes of resistance, as well as de-novo characterization of 2319 biosynthetic gene clusters and diverse groups of secondary metabolites with biomining potential. CONCLUSION The microbiome of the Gowanus Canal is a biotechnological resource of novel metabolic functions that could aid in efforts for bioremediation, AMR reservoir mapping, and heavy metal mitigation.
Collapse
Affiliation(s)
- Sergios-Orestis Kolokotronis
- Departments of Epidemiology and Biostatistics, Medicine, and Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY, United States
| | - Chandrima Bhattacharya
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue 0021, United States
| | - Rupobrata Panja
- Center for Computational and Integrative Biology, Rutgers University, 201 S Broadway Camden, NJ 08103, United States
| | - Ian Quate
- Fruit Studio, 352 Depot Street, Suite 250, Asheville, NC 28801, United States
| | - Matthew Seibert
- School of Architecture, University of Virginia, Campbell Hall, PO Box 400122, Charlottesville, VA 22904, United States
| | - Ellen Jorgensen
- Biotech without Borders, 43-01 21st St Suite 319, Long Island City, NY 11101, United States
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue 0021, United States
| | - Elizabeth M Hénaff
- NYU Tandon School of Engineering, Integrated Design and Media, Center for Urban Science and Progress, Chemical and Biomolecular Engineering, 370 Jay Street, Brooklyn, NY 11201, United States
| |
Collapse
|
3
|
Xu J, Zhang Y, Shi L, Wang H, Zeng M, Lu Z. Community-acquired pneumonia caused by Micrococcus antarcticus: a rare case report. BMC Infect Dis 2024; 24:1200. [PMID: 39449134 PMCID: PMC11515431 DOI: 10.1186/s12879-024-10084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Micrococcus antarcticus (M. antarcticus) is an aerobic Gram-positive spherical actinobacterium that was initially isolated from Chinese Great-Wall station in Antarctica in 2000. M. antarcticus was considered to be of low pathogenicity, no previous cases of human infection by this organism have been reported. Here we describe the first report with community-acquired pneumonia (CAP) caused by M. antarcticus. CASE PRESENTATION An 87-year-old female was presented to the Central Hospital of Wuhan in November 2023 with a chief complaint of cough, sputum production, and chest tightness for 2 weeks. Microbial culture of the patient's bronchoalveolar lavage fluid (BALF) and identification of the isolates using Matrix-assisted laser desorption ionization/time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequencing revealed M. antarcticus infection. Combined with clinical symptoms, laboratory and imaging examination, the patient was diagnosed with CAP. Then cefoperazone/sulbactam and levofloxacin was administrated, the patient's condition was improved and she was discharged after a week after admission, no abnormalities were detected during a 5-month follow-up. CONCLUSIONS This case highlights that M. antarcticus, first identified from a patient with CAP, is an extremely rare pathogenic microorganism. Clinicians should be aware of its potential as a pathogen in the diagnosis and treatment of CAP.
Collapse
Affiliation(s)
- Jia Xu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingmiao Zhang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lifeng Shi
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Zeng
- Hubei Center for Clinical Laboratory, Wuhan, China
| | - Zhongxin Lu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China.
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Yadav A, Teware R, Bhatt A, Bhavsar Y, Maurya A, Thorat V, Vemuluri VR, Kirdat K. Ureibacillus aquaedulcis sp. nov., isolated from freshwater well and reclassification of Lysinibacillus yapensis and Lysinibacillus antri as Ureibacillus yapensis comb. nov. and Ureibacillus antri comb. Nov. Arch Microbiol 2024; 206:242. [PMID: 38698177 DOI: 10.1007/s00203-024-03970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
A Gram-stain-positive aerobic, rod-shaped, spore-producing bacterium forming colonies with convex elevation and a smooth, intact margin was isolated from a freshwater sample collected from a well situated in an agricultural field. The 16S rRNA gene sequence of the isolated strain BA0131T showed the highest sequence similarity to Lysinibacillus yapensis ylb-03T (99.25%) followed by Ureibacillus chungkukjangi 2RL3-2T (98.91%) and U. sinduriensis BLB-1T (98.65%). The strain BA0131T was oxidase and catalase positive and urease negative. It also tested positive for esculin hydrolysis and reduction of potassium nitrate, unlike its phylogenetically closest relatives. The predominant fatty acids in strain BA0131T included were anteiso-C15:0, iso-C16:0, iso-C15:0, iso-C14:0 and the major polar lipids comprised were phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. The respiratory quinones identified in strain BA0131T were MK8 (H2) (major) and MK8 (minor). The strain BA0131T shared the lowest dDDH values with L. yapensis ylb-03T (21%) followed by U. chungkukjangi 2RL3-2T (24.2%) and U. sinduriensis BLB-1T (26.4%) suggesting a closer genetic relationship U. sinduriensis BLB-1T. The ANI percentage supported the close relatedness with U. sinduriensis BLB-1T (83.61%) followed by U. chungkukjangi 2RL3-2T (82.03%) and U. yapensis ylb-03T (79.57%). The core genome-based phylogeny constructed using over 13,704 amino acid positions and 92 core genes revealed the distinct phylogenetic position of strain BA0131T among the genus Ureibacillus. The distinct physiological, biochemical characteristics and genotypic relatedness data indicate the strain BA0131T represents a novel species of the genus Ureibacillus for which the name Ureibacillus aquaedulcis sp. nov. (Type strain, BA0131T = MCC 5284 = JCM 36475) is proposed. Additionally, based on extensive genomic and phylogenetic analyses, we propose reclassification of two species, L. yapensis and L. antri, as U. yapensis comb. nov. (Type strain, ylb-03T = JCM 32871T = MCCC 1A12698T) and U. antri (Type strain, SYSU K30002T = CGMCC 1.13504T = KCTC 33955T).
Collapse
Affiliation(s)
- Amit Yadav
- National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune, 411 007, India.
| | - Ruchi Teware
- Department of Microbiology, Fergusson College, Shivajinagar, Pune, 411 004, India
| | - Agrima Bhatt
- Department of Biosciences and Technology, School of Science and Environmental Studies, Dr. Vishwanath Karad MIT World Peace University, Pune, 411 038, India
| | - Yash Bhavsar
- Department of Microbiology, Fergusson College, Shivajinagar, Pune, 411 004, India
| | - Akanksha Maurya
- Khwaja Moinuddin Chishti Language University, Sitapur Hardoi Road, Lucknow, 226 013, India
| | - Vipool Thorat
- National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune, 411 007, India
| | - Venkata Ramana Vemuluri
- Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, 160 003, India
| | - Kiran Kirdat
- National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune, 411 007, India.
| |
Collapse
|
5
|
Comparison of Atmospheric and Lithospheric Culturable Bacterial Communities from Two Dissimilar Active Volcanic Sites, Surtsey Island and Fimmvörðuháls Mountain in Iceland. Microorganisms 2023; 11:microorganisms11030665. [PMID: 36985243 PMCID: PMC10057085 DOI: 10.3390/microorganisms11030665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Surface microbes are aerosolized into the atmosphere by wind and events such as dust storms and volcanic eruptions. Before they reach their deposition site, they experience stressful atmospheric conditions which preclude the successful dispersal of a large fraction of cells. In this study, our objectives were to assess and compare the atmospheric and lithospheric bacterial cultivable diversity of two geographically different Icelandic volcanic sites: the island Surtsey and the Fimmvörðuháls mountain, to predict the origin of the culturable microbes from these sites, and to select airborne candidates for further investigation. Using a combination of MALDI Biotyper analysis and partial 16S rRNA gene sequencing, a total of 1162 strains were identified, belonging to 72 species affiliated to 40 genera with potentially 26 new species. The most prevalent phyla identified were Proteobacteria and Actinobacteria. Statistical analysis showed significant differences between atmospheric and lithospheric microbial communities, with distinct communities in Surtsey’s air. By combining the air mass back trajectories and the analysis of the closest representative species of our isolates, we concluded that 85% of our isolates came from the surrounding environments and only 15% from long distances. The taxonomic proportions of the isolates were reflected by the site’s nature and location.
Collapse
|
6
|
Joglekar A, Nimonkar Y, Bajaj A, Prakash O. Resolution of inter/intraspecies variation in Weissella group requires multigene analysis and functional characterization. J Basic Microbiol 2023; 63:140-155. [PMID: 36328735 DOI: 10.1002/jobm.202200357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022]
Abstract
Weissella confusa and Weissella cibaria strains isolated from the human- gut are considered as potential probiotics, but remain under-explored owing to their ambiguous taxonomic assignment. The present study assesses the taxonomic resolution of 11 strains belonging to W. confusa and W. cibaria species and highlights the inter- and intraspecies variations using an array of phenetic and molecular methods. Remarkable genomic variability among the strains was observed by phylogenetic analysis using concatenated housekeeping genes (pheS, gyrB, and dnaA) along with 16S rRNA gene sequence, suggesting intraspecies variations; which is also supported by the phenetic data. Analysis showed that 16S rRNA gene sequence alone could not resolve the variation, and among the tested marker genes, signals from pheS gene provide better taxonomic resolution. The biochemical and antibiotic susceptibility tests also showed considerable variations among the isolates. Additionally, 'quick' identification using mass spectroscopy-based matrix-assisted laser desorption/ionization-time of flight mass spectra was accurate up to genus only, and not species level, for the Weissella group. The study highlights need for inclusion of functional, phenetic, and multigene phylogenetic analysis in addition to 16S rRNA gene-based identification for the Weissella group, to provide better resolution in taxonomic assignments, which is often a prerequisite for the selection of potential strains with biotechnological applications.
Collapse
Affiliation(s)
- Amruta Joglekar
- National Centre for Cell Science, National Centre for Microbial Resource, Pune, Maharashtra, India
| | - Yogesh Nimonkar
- National Centre for Cell Science, National Centre for Microbial Resource, Pune, Maharashtra, India
| | - Abhay Bajaj
- National Centre for Cell Science, National Centre for Microbial Resource, Pune, Maharashtra, India.,CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Om Prakash
- National Centre for Cell Science, National Centre for Microbial Resource, Pune, Maharashtra, India.,Symbiosis Centre for Climate Change and Sustainability, Pune, Maharashtra, India
| |
Collapse
|
7
|
Lee AY, Chen CH, Liou JS, Lin YC, Hamada M, Wang YT, Peng LL, Chang SC, Chen CC, Lin CF, Huang L, Huang CH. Micrococcus porci sp. nov., Isolated from Feces of Black Pig ( Sus scrofa). Life (Basel) 2022; 12:1749. [PMID: 36362904 PMCID: PMC9697426 DOI: 10.3390/life12111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
An aerobic bacterium, designated as strain KD337-16T, was isolated from the fecal samples of a black pig. It exhibited spherical, non-motile and non−spore-forming, Gram-positive cells. KD337-16T was identified as a member of the genus Micrococcus through 16S rRNA gene sequencing, and its closest relatives were found to be Micrococcus endophyticus YIM 56238T (99.5% similarity), Micrococcus luteus NCTC 2665T (99.1%), Micrococcus yunnanensis YIM 65004T (99.1%), Micrococcus aloeverae AE-6T (99.1%), Micrococcus antarcticus T2T (98.9%), and Micrococcus flavus LW4T (98.7%). Phylogenomic trees were constructed, and strain KD337-16T was found to form its own cluster as an independent lineage of M. flavus LW4T. Between KD337-16T and its close relatives, the average nucleotide identity, average amino acid identity, and digital DNA−DNA hybridization were below the respective species delineation thresholds at 82.1−86.6%, 78.1−86.1%, and 24.4−34.9%. The major cellular fatty acids and polar lipids were anteiso-C15:0 and iso-C15:0, and DPG and PG, respectively. The predominant menaquinone was MK-8(H2). Taken together, the results indicate that strain KD337-16T is a novel species of the genus Micrococcus, for which the name Micrococcus porci sp. nov. is proposed. The type strain is KD337-16T (=BCRC 81318T = NBRC 115578T).
Collapse
Affiliation(s)
- Ai-Yun Lee
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| | - Chia-Hsuan Chen
- Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan 71246, Taiwan
| | - Jong-Shian Liou
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| | - Yu-Chun Lin
- Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan 71246, Taiwan
| | - Moriyuki Hamada
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yu-Ting Wang
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei 11561, Taiwan
| | - Lin-Liang Peng
- Kaohsiung Animal Propagation Station, COA-LRI, Pingtung 91247, Taiwan
| | - Shen-Chang Chang
- Kaohsiung Animal Propagation Station, COA-LRI, Pingtung 91247, Taiwan
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Lina Huang
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| | - Chien-Hsun Huang
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| |
Collapse
|
8
|
Akter Y, Barua R, Nasir Uddin M, Muhammad Sanaullah AF, Marzan LW. Bioactive potentiality of secondary metabolites from endophytic bacteria against SARS-COV-2: An in-silico approach. PLoS One 2022; 17:e0269962. [PMID: 35925905 PMCID: PMC9352062 DOI: 10.1371/journal.pone.0269962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022] Open
Abstract
Five endophytic bacterial isolates were studied to identify morphologically and biochemically, according to established protocols and further confirmed by 16S rDNA Sanger sequencing, as Priestia megaterium, Staphylococcus caprae, Neobacillus drentensis, Micrococcus yunnanensis, and Sphingomonas paucimobiliz, which were then tested for phytohormone, ammonia, and hydrolytic enzyme production. Antioxidant compounds total phenolic content (TPC), and total flavonoid content (TFC) were assessed by using bacterial crude extracts obtained from 24-hour shake-flask culture. Phylogenetic tree analysis of those identified isolates shared sequence similarities with the members of Bacillus, Micrococcus, Staphylococcus, and Pseudomonas species, and after GenBank submission, accession numbers for the nucleotide sequences were found to be MW494406, MW494408, MW494401, MW494402, and MZ021340, respectively. In silico analysis was performed to identify their bioactive genes and compounds in the context of bioactive secondary metabolite production with medicinal value, where nine significant bioactive compounds according to six different types of bioactive secondary metabolites were identified, and their structures, gene associations, and protein-protein networks were analyzed by different computational tools and servers, which were reported earlier with their antimicrobial, anti-infective, antioxidant, and anti-cancer capabilities. These compounds were then docked to the 3-chymotrypsin-like protease (3CLpro) of the novel SARS-COV-2. Docking scores were then compared with 3CLpro reference inhibitor (lopinavir), and docked compounds were further subjected to ADMET and drug-likeness analyses. Ligand-protein interactions showed that two compounds (microansamycin and aureusimine) interacted favorably with coronavirus 3CLpro. Besides, in silico analysis, we also performed NMR for metabolite detection whereas three metabolites (microansamycin, aureusimine, and stenothricin) were confirmed from the 1H NMR profiles. As a consequence, the metabolites found from NMR data aligned with our in-silico analysis that carries a significant outcome of this research. Finally, Endophytic bacteria collected from medicinal plants can provide new leading bioactive compounds against target proteins of SARS-COV-2, which could be an effective approach to accelerate drug innovation and development.
Collapse
Affiliation(s)
- Yasmin Akter
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Rocktim Barua
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Nasir Uddin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | | | - Lolo Wal Marzan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
9
|
Singh D, Thapa S, Mahawar H, Kumar D, Geat N, Singh SK. Prospecting potential of endophytes for modulation of biosynthesis of therapeutic bioactive secondary metabolites and plant growth promotion of medicinal and aromatic plants. Antonie van Leeuwenhoek 2022; 115:699-730. [PMID: 35460457 DOI: 10.1007/s10482-022-01736-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/26/2022] [Indexed: 01/13/2023]
Abstract
Medicinal and aromatic plants possess pharmacological properties (antidiabetes, anticancer, antihypertension, anticardiovascular, antileprosy, etc.) because of their potential to synthesize a wide range of therapeutic bioactive secondary metabolites. The concentration of bioactive secondry metabolites depends on plant species, local environment, soil type and internal microbiome. The internal microbiome of medicinal plants plays the crucial role in the production of bioactive secondary metabolites, namely alkaloids, steroids, terpenoids, peptides, polyketones, flavonoids, quinols and phenols. In this review, the host specific secondry metabolites produced by endophytes, their therapeutic properties and host-endophytes interaction in relation to production of bioactive secondry metaboloites and the role of endophytes in enhancing the production of bioactive secondry metabolites is discussed. How biological nitrogen fixation, phosphorus solubilization, micronutrient uptake, phytohormone production, disease suppression, etc. can play a vital role in enhacing the plant growth and development.The role of endophytes in enhancing the plant growth and content of bioactive secondary metabolites in medicinal and aromatic plants in a sustainable mode is highlighted.
Collapse
Affiliation(s)
- Devendra Singh
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India.
| | - Shobit Thapa
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau Nath Bhanjan, Uttar Pradesh, 275103, India
| | - Himanshu Mahawar
- ICAR-Directorate of Weed Research (DWR), Maharajpur, Jabalpur, Madhya Pradesh, 482004, India
| | - Dharmendra Kumar
- ICAR- Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Neelam Geat
- Agricultural Research Station, Agriculture University, Jodhpur, Rajasthan, 342304, India
| | - S K Singh
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India
| |
Collapse
|
10
|
Actinobacteria in the Algerian Sahara: Diversity, adaptation mechanism and special unexploited biotopes for the isolation of novel rare taxa. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Yadav G, Meena M. Bioprospecting of endophytes in medicinal plants of Thar Desert: An attractive resource for biopharmaceuticals. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 30:e00629. [PMID: 34136363 PMCID: PMC8182382 DOI: 10.1016/j.btre.2021.e00629] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/28/2021] [Accepted: 05/09/2021] [Indexed: 12/20/2022]
Abstract
Endophytes live asymptomatically within the healthy tissues of plant parts of the host, has grabbed the attention of ecologists, chemists, and researchers to have a broad spectral of biotechnological potential. It has been proven that almost all plants harbor endophytes within themselves. Numerous studies indicated that endophytes act as chemical synthesizers of the secondary metabolites of their host plant. Various medicinal plants of the Thar Desert have been used by the local folks of the Rajasthan to treat several diseases ailments for time immemorial. On the basis of their prior knowledge of ethnopharmacological usage of medicinally important plants of Thar Desert, several researchers directed their studies in search of endophytic microflora of such medicinally important plants for the discovery of novel bioactive molecules of pharmaceutical importance, for instance, taxol producing endophytic fungus Phoma sp. isolated from Calotropis gigantea as well as Aspergillus fumigatus, an endophytic fungus reported from Moringa oleifera demonstrated an effective antibiofilm, antimicrobial and antiproliferative activity. This review sheds light on the endophytic microflora of the ethnomedicinal plants of the Thar Desert and their biopotential as a promising source of pharmaceutically important naturally derived compounds.
Collapse
Affiliation(s)
- Garima Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| |
Collapse
|
12
|
Patil R, Arvindekar A. Glycation of gut proteins initiates microbial dysbiosis and can promote establishment of diabetes in experimental animals. Microb Pathog 2020; 152:104589. [PMID: 33171259 DOI: 10.1016/j.micpath.2020.104589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Diabetes and obesity is associated with change in the gut microbiota, however, the reason for such transition is still unknown. The secondary complications in diabetes mainly stem from protein glycation, oxidative stress and inflammatory response. It is intended to study the correlation between gut proteins glycation and microbial dysbiosis and thereby progression to diabetes. The study was carried out through feeding high fructose to male Wistar rats and evaluating their gut microbiota. The rate of gut flora excretion via faecal matter was found to decrease on fructose feed for 7 days. Intestinal flora was drastically reduced and pathogenic succession observed. Intestinal fluorescence studies confirmed that there is heavy glycation of gut proteins. Microbes obtained from fructose fed animals could grow on glycated BSA. There was significant increase in level of TNF-α and IFN-γ providing evidence of inflammation. Though microbial dysbiosis was observed in diabetes, the cause for this remained elusive. In the present study we prove that high fructose feed and glycation of the gut proteins probably prevent adherence/survival of the gut microflora in control animals and promotes transition to a changed microflora which is capable of adhering/utilizing glycated proteins as well as high fructose. The changed microbiota, enhanced protein glycation and inflammation help in establishing insulin resistance.
Collapse
Affiliation(s)
- Rahul Patil
- Department of Biochemistry, Shivaji University, Kolhapur, 416 004, M.S, India
| | - Akalpita Arvindekar
- Department of Biochemistry, Shivaji University, Kolhapur, 416 004, M.S, India.
| |
Collapse
|
13
|
Sharma AR, Harunari E, Oku N, Matsuura N, Trianto A, Igarashi Y. Two antibacterial and PPARα/γ-agonistic unsaturated keto fatty acids from a coral-associated actinomycete of the genus Micrococcus. Beilstein J Org Chem 2020; 16:297-304. [PMID: 32256847 PMCID: PMC7082699 DOI: 10.3762/bjoc.16.29] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/14/2020] [Indexed: 01/01/2023] Open
Abstract
A pair of geometrically isomeric unsaturated keto fatty acids, (6E,8Z)- and (6E,8E)-5-oxo-6,8-tetradecadienoic acids (1 and 2), were isolated from the culture broth of an actinomycete of the genus Micrococcus, which was associated with a stony coral, Catalaphyllia sp. Their chemical structures were elucidated by spectroscopic analysis including NMR and MS, with special assistance of spin system simulation studies for the assignment of an E geometry at C8 in 2. As metabolites of microbes, compounds 1 and 2 are unprecedented in terms of bearing a 2,4-dienone system. Both 1 and 2 showed antibacterial activity against the plant pathogen Rhizobium radiobacter and the fish pathogen Tenacibaculum maritimum, with a contrasting preference that 1 is more effective to the former strain while 2 is so to the latter. In addition, compounds 1 and 2 displayed agonistic activity against peroxisome proliferator-activated receptors (PPARs) with an isoform specificity towards PPARα and PPARγ.
Collapse
Affiliation(s)
- Amit Raj Sharma
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Naoya Oku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Nobuyasu Matsuura
- Okayama University of Science, 1-1 Ridaicho, Okayama 700-0005, Japan
| | - Agus Trianto
- Faculty of Fisheries and Marine Sciences, Diponegoro University, Tembalang Campus, St. Prof. Soedarto SH., Semarang 50275, Central Java, Indonesia
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
14
|
Ahmad E, Sharma SK, Sharma PK. Deciphering operation of tryptophan-independent pathway in high indole-3-acetic acid (IAA) producing Micrococcus aloeverae DCB-20. FEMS Microbiol Lett 2020; 367:5986612. [PMID: 33201985 DOI: 10.1093/femsle/fnaa190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/14/2020] [Indexed: 11/14/2022] Open
Abstract
Genus Micrococcus is considered a high IAA producer. However, interestingly, there is no report on the tryptophan- independent pathway operation in this genus. Consequently, the present study was undertaken to evaluate high IAA production by Micrococcus aloeverae DCB-20 and generate reasonable evidence for the occurrence of the tryptophan-independent pathway. Strain DCB-20 produced a high quantity of 880.51 µM or 154.3 µg/mL IAA in LB broth supplemented with L-tryptophan. The tryptophan-independent pathway operation was supported by IAA production in Tris-minimal broth (TM broth) medium supplemented with acid hydrolyzed casein hydrolysate (casein acid hydolysate), which lacks tryptophan. The HPLC analysis showed the absence of tryptophan either from exogenous or endogenous sources in TM broth in the presence of casein acid hydrolysate inoculated with M. aloeverae DCB-20. The absence of tryptophan was further confirmed by the appearance of non-pigmented colonies of Chromobacterium violaceum strain TRFM-24 on Tris-minimal agar (TM agar) containing acid-hydrolyzed casein. This is probably the first report on IAA biosynthesis by M. aloeverae DCB-20 employing tryptophan-independent pathway. This simple technique can also be adapted to detect operation of the tryptophan-independent pathway in other bacteria.
Collapse
Affiliation(s)
- Ees Ahmad
- National Agriculturally Important Microbial Culture Collection (NAIMCC), ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, 275 103, Uttar Pradesh, India
| | - Sushil K Sharma
- National Agriculturally Important Microbial Culture Collection (NAIMCC), ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, 275 103, Uttar Pradesh, India
| | - Pawan K Sharma
- National Agriculturally Important Microbial Culture Collection (NAIMCC), ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, 275 103, Uttar Pradesh, India
| |
Collapse
|
15
|
Hira P, Singh P, Pinnaka AK, Korpole S, Lal R. Taxonomically Characterized and Validated Bacterial Species Based on 16S rRNA Gene Sequences from India During the Last Decade. Indian J Microbiol 2019; 60:54-61. [PMID: 32089574 DOI: 10.1007/s12088-019-00845-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/27/2019] [Indexed: 12/26/2022] Open
Abstract
Microbial taxonomy dealing with identification and characterization of prokaryotes like bacteria and archaea has always been a major area of research all over the world. Exploring diversity of microbes and description of novel species with different genes and secondary compounds is of utmost importance for better future and sustenance of life. India having an enormous range of ecosystems and diverse species inhabiting these niches is considered to be one of the richest biodiversity regions of the world. During the last decade, with newer methodologies and better technology, the prokaryotic taxonomy from India has extended our inventory of microbial communities in specific niches. However, there still exist some limitations in classifying the microbes from India as compared to that is done world-over. This review enlists the taxonomic description of novel taxa of prokaryotes from India in the past decade. A total of 378 new bacterial species have been classified from different habitats in India in the last ten years and no descriptions of archaeal species is documented till date.
Collapse
Affiliation(s)
- Princy Hira
- 1Department of Zoology, Maitreyi College (University of Delhi), Chanakyapuri, New Delhi 110021 India
| | - Priya Singh
- 2Department of Zoology, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019 India
| | - Anil Kumar Pinnaka
- 3CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Suresh Korpole
- 3CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Rup Lal
- The Energy and Resource Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003 India
| |
Collapse
|
16
|
Rungsirivanich P, Inta A, Tragoolpua Y, Thongwai N. Partial rpoB Gene Sequencing Identification and Probiotic Potential of Floricoccus penangensis ML061-4 Isolated from Assam Tea (Camellia sinensis var. assamica). Sci Rep 2019; 9:16561. [PMID: 31719601 PMCID: PMC6851367 DOI: 10.1038/s41598-019-52979-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/27/2019] [Indexed: 12/22/2022] Open
Abstract
Assam tea or Miang is a local name of Camellia sinensis var. assamica in northern Thailand. By the local wisdom, Assam tea leaves are used as the raw material in tea fermentation to produce “Fermented Miang” consumed by people in northern Thailand and the countries nearby. In this study, twenty-eight bacterial isolates were obtained from Assam tea leaf samples collected from Nan province, Thailand. Bacterial isolates were identified within 6 genera including Bacillus, Floricoccus, Kocuria, Lysinibacillus, Micrococcus and Staphylococcus. Among these, the strain ML061-4 shared 100.0 and 99.4% similarity of 16S rRNA and rpoB gene sequence with F. penangensis JCM 31735T, respectively. This is the first discovery of F. penangensis in Thailand. F. penangensis ML061-4 exhibited probiotic characteristics including lactic acid production (9.19 ± 0.10 mg/ml), antibacterial activities (Escherichia coli ATCC 25922 and E. coli O157:H7 DMST 12743), acid and bile salt tolerance (71.1 and 54.9%, respectively), autoaggregation (97.0%), coaggregation (66.0% with E. coli O157:H7), cell surface hydrophobicity (90.0%), bacterial adhesion (82.9% with Lactobacillus plantarum FM03-1), competitive inhibition (17.8% with E. coli O157:H7) and competitive exclusion (34.9% with E. coli O157:H7). Overall, the data suggested that F. penangensis ML061-4 had a great potential to be a probiotic.
Collapse
Affiliation(s)
- Patthanasak Rungsirivanich
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.,Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Narumol Thongwai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
17
|
Huang CH, Wang CL, Liou JS, Lee AY, Blom J, Huang L, Watanabe K. Reclassification of Micrococcus aloeverae and Micrococcus yunnanensis as later heterotypic synonyms of Micrococcus luteus. Int J Syst Evol Microbiol 2019; 69:3512-3518. [DOI: 10.1099/ijsem.0.003654] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Chien-Hsun Huang
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
| | - Chun-Lin Wang
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
| | - Jong-Shian Liou
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
| | - Ai-Yun Lee
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, 35392, Germany
| | - Lina Huang
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
| | - Koichi Watanabe
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
- Department of Animal Science and Technology, College of Bioresources and Agriculture, National Taiwan University, No. 50, Ln. 155, Sec. 3, Keelung Rd., Taipei 10673, Taiwan, ROC
| |
Collapse
|
18
|
Jani K, Bandal J, Rale V, Shouche Y, Sharma A. Antimicrobial resistance pattern of microorganisms isolated and identified from Godavari River across the mass gathering event. J Biosci 2019. [DOI: 10.1007/s12038-019-9941-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Shaik SP, Thomas P. In Vitro Activation of Seed-Transmitted Cultivation-Recalcitrant Endophytic Bacteria in Tomato and Host⁻Endophyte Mutualism. Microorganisms 2019; 7:microorganisms7050132. [PMID: 31091826 PMCID: PMC6560416 DOI: 10.3390/microorganisms7050132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
This study was aimed at exploring seed transmission of endophytic bacteria in tomato utilizing aseptic in vitro conditions. Cultivation-based studies were undertaken on two tomato cultivars “Arka Vikas” and “Arka Abha” employing surface sterilized seeds, aseptically germinated seeds and in vitro grown seedlings at different stages. Bacillus sp. appeared primarily as seed externally-associated bacteria. Tissue homogenate from extensively surface-sterilized seeds, day-3 germinating seeds, or 10-day in vitro seedlings did not show any cultivable bacteria on two bacteriological media. Indexing of 4-week old healthy seedlings with seed-coat removal following seed germination showed bacterial association in 50–75% seedlings yielding 106–107 cfu g−1 tissues. Four endophytic bacteria appeared common to both cultivars (Kosakonia, Ralstonia, Sphingomonas, Sphingobium spp.) with three additional species in “Arka Abha”. The bacterial strains showed a manifold increase in growth with host-tissue-extract supplementation. Seed inoculations with single-isolates stimulated germination or enhanced the seedling growth coupled with the activation of additional endophytic bacteria. In vitro seedlings upon recurrent medium-indexing over eight weeks showed gradual emergence of endophytic bacteria. The study reveals the seed internal colonization by different bacterial endophytes in a cultivation-recalcitrant form, their activation to cultivable state during seedling growth and transmission to seedlings with mutualistic effects.
Collapse
Affiliation(s)
- Sadiq Pasha Shaik
- Division of Biotechnology, Endophytic and Molecular Microbiology Laboratory, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake, Bengaluru 560089, India.
| | - Pious Thomas
- Division of Biotechnology, Endophytic and Molecular Microbiology Laboratory, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake, Bengaluru 560089, India.
| |
Collapse
|
20
|
Song SH, Choi HS, Ma SK, Kim SW, Shin JH, Bae EH. Micrococcus aloeverae - A Rare Cause of Peritoneal Dialysis-Related Peritonitis Confirmed by 16S rRNA Gene Sequencing. J NIPPON MED SCH 2019; 86:55-57. [PMID: 30918158 DOI: 10.1272/jnms.jnms.2019_86-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The number of patients receiving peritoneal dialysis has increased worldwide. Herein, we report the first case to our knowledge of continuous ambulatory peritoneal dialysis (CAPD) peritonitis caused by Micrococcus aloeverae, which was initially reported to be caused by Micrococcus luteus in the dialysate culture report but later identified by 16S ribosomal ribonucleic acid (rRNA) gene sequencing as M. aloeverae. A 59-year-old woman visited the emergency room due to abdominal pain. She was hospitalized with CAPD peritonitis. The patient initially responded to empirical antibiotic treatment comprising intraperitoneal cefazolin (15 mg/kg/day) and ceftazidime (1 g/day); however, the leukocyte count of dialysate effluent increased again. M. luteus was isolated four times from peritoneal dialysate cultures. We treated the patient with intraperitoneal administration of vancomycin (2 g loading, followed by 1 g every 7 days) but needed to switch from CAPD to temporary hemodialysis. We analyzed the 16S rRNA sequence to confirm the exact causative organism, and the results revealed that the organism was M. aloeverae. Because M. aloeverae and M. luteus have sequence similarity, 16S rRNA sequencing is a useful method to distingush them.
Collapse
Affiliation(s)
- Su Hyun Song
- Department of Internal Medicine, Chonnam National University Medical School
| | - Hong Sang Choi
- Department of Internal Medicine, Chonnam National University Medical School
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School
| | - Jong-Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School
| |
Collapse
|
21
|
Aktypis A, Christodoulou ED, Manolopoulou E, Georgala A, Daferera D, Polysiou M. Fresh ovine cheese supplemented with saffron (Crocus sativus L.): Impact on microbiological, physicochemical, antioxidant, color and sensory characteristics during storage. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Haastrup MK, Johansen P, Malskær AH, Castro-Mejía JL, Kot W, Krych L, Arneborg N, Jespersen L. Cheese brines from Danish dairies reveal a complex microbiota comprising several halotolerant bacteria and yeasts. Int J Food Microbiol 2018; 285:173-187. [PMID: 30176565 DOI: 10.1016/j.ijfoodmicro.2018.08.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/06/2018] [Accepted: 08/15/2018] [Indexed: 11/19/2022]
Abstract
The Danish Danbo cheese is a surface ripened semi-hard cheese, which before ripening is submerged in brine for up to 24 h. The brining is required in order to obtain the structural and organoleptic properties of the cheeses. Likewise, the content of NaCl in the cheese will influence especially the surface microbiota being of significant importance for flavour development and prevention of microbial spoilage. Even though the microbiota on cheese surfaces have been studied extensively, limited knowledge is available on the occurrence of microorganisms in cheese brine. The aim of the present study was to investigate by both culture-dependent and -independent techniques the brine microbiota in four Danish dairies producing Danbo cheese. The pH of the brines varied from 5.1 to 5.6 with a dry matter content from 20 to 27% (w/w). The content of lactate varied from 4.1 to 10.8 g/L and free amino acids from 65 to 224 mg/L. Bacteria were isolated on five different media with NaCl contents of 0.85-23.0% (w/v) NaCl. The highest count of 6.3 log CFU/mL was obtained on TSA added 4% (w/v) NaCl. For yeasts, the highest count was 3.7 log CFU/mL on MYGP added 8% (w/v) NaCl. A total of 31 bacterial and eight eukaryotic species were isolated including several halotolerant and/or halophilic species. Among bacteria, counts of ≥6.0 log CFU/mL were obtained for Tetragenococcus muriaticus and Psychrobacter celer, while counts between ≥4.5 and < 6.0 log CFU/mL were obtained for Lactococcus lactis, Staphylococcus equorum, Staphylococcus hominis, Chromohalobacter beijerinckii, Chromohalobacter japonicus and Microbacterium maritypicum. Among yeasts, counts of ≥3.5 log CFU/mL were only obtained for Debaryomyces hansenii. By amplicon-based high-throughput sequencing of 16S rRNA gene and ITS2 regions for bacteria and eukaryotes respectively, brines from the same dairy clustered together indicating the uniqueness of the dairy brine microbiota. To a great extent the results obtained by amplicon sequencing fitted with the culture-dependent technique though each of the two methodologies identified unique genera/species. Dairy brine handling procedures as e.g. microfiltration were found to influence the brine microbiota. The current study proves the occurrence of a specific dairy brine microbiota including several halotolerant and/or halophilic species most likely of sea salt origin. The importance of these species during especially the initial stages of cheese ripening and their influence on cheese quality and safety need to be investigated. Likewise, optimised brine handling procedures and microbial cultures are required to ensure an optimal brine microbiota.
Collapse
Affiliation(s)
- Martin Kragelund Haastrup
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Pernille Johansen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Agnete Harboe Malskær
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Josué L Castro-Mejía
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Witold Kot
- Environmental Microbiology and Biotechnology, University of Aarhus, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Nils Arneborg
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Lene Jespersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark.
| |
Collapse
|
23
|
Singh R, Dubey AK. Diversity and Applications of Endophytic Actinobacteria of Plants in Special and Other Ecological Niches. Front Microbiol 2018; 9:1767. [PMID: 30135681 PMCID: PMC6092505 DOI: 10.3389/fmicb.2018.01767] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
Actinobacteria are wide spread in nature and represent the largest taxonomic group within the domain Bacteria. They are abundant in soil and have been extensively explored for their therapeutic applications. This versatile group of bacteria has adapted to diverse ecological habitats, which has drawn considerable attention of the scientific community in recent times as it has opened up new possibilities for novel metabolites that may help in solving some of the most challenging problems of the day, for example, novel drugs for drug-resistant human pathogens, affordable means to maintain ecological balance in various habitats, and alternative practices for sustainable agriculture. Traditionally, free dwelling soil actinobacteria have been the subject of intensive research. Of late, symbiotic actinobacteria residing as endophytes within the plant tissues have generated immense interest as potential source of novel compounds, which may find applications in medicine, agriculture, and environment. In the light of these possibilities, this review focuses on the diversity of endophytic actinobacteria isolated from the plants of extreme habitats and specific ecological niches. Furthermore, an attempt has been made to assign chemical class to the compounds obtained from endophytic actinobacteria. Potential therapeutic applications of these compounds and the utility of endophytic actinobacteria in agriculture and environment are discussed.
Collapse
Affiliation(s)
| | - Ashok K. Dubey
- Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, New Delhi, India
| |
Collapse
|
24
|
Deepthi KG, Jayasudha R, Girish RN, Manikandan P, Ram R, Narendran V, Prabagaran SR. Polybacterial community analysis in human conjunctiva through 16S rRNA gene libraries. Exp Eye Res 2018; 174:1-12. [PMID: 29772229 DOI: 10.1016/j.exer.2018.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/18/2018] [Accepted: 05/10/2018] [Indexed: 10/16/2022]
Abstract
The conjunctival sac of healthy human harbours a variety of microorganisms. When the eye is compromised, an occasional inadvertent spread happens to the adjacent tissue, resulting in bacterial ocular infections. Microbiological investigation of the conjunctival swab is one of the broadly used modality to study the aetiological agent of conjunctiva. However, most of the time such methods yield unsatisfactory results. Hence, the present study intends to identify the bacterial community in human conjunctiva of pre-operative subjects through 16S rRNA gene libraries. Out of 45 samples collected from preoperative patients undergoing cataract surgery, 36 libraries were constructed with bacterial nested-PCR-positive samples. The representative clones with unique restriction pattern were generated through Amplified Ribosomal DNA Restriction Analysis (ARDRA) which were sequenced for phylogenetic affiliation. A total of 211 representative clones were obtained which were distributed in phyla Actinobacteria, Firmicutes, α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Bacteroidetes, and Deinococcus-Thermus. Findings revealed the presence of polybacterial community, especially in some cases even though no bacterium or a single bacterium alone was identified through cultivable method. Remarkably, we identified 17 species which have never been reported in any ocular infections. The sequencing data reported 6 unidentified bacteria suggesting the possibility of novel organisms in the sample. Since, polybacterial community has been identified consisting of both gram positive and gram negative bacteria, a broad spectrum antibiotic therapy is advisable to the patients who are undergoing cataract surgery. Consolidated effort would significantly improve a clear understanding of the nature of microbial community in the human conjunctiva which will promote administration of appropriate antibiotic regimen and also help in the development of oligonucleotide probes to screen the predominant pathogens for early predisposition.
Collapse
Affiliation(s)
| | | | - Rameshan Nair Girish
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Palanisamy Manikandan
- Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Coimbatore, Tamil Nadu, India
| | - Rammohan Ram
- Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Coimbatore, Tamil Nadu, India
| | - Venkatapathy Narendran
- Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Coimbatore, Tamil Nadu, India
| | | |
Collapse
|
25
|
Jani K, Khare K, Senik S, Karodi P, Vemuluri VR, Bandal J, Shouche Y, Rale V, Sharma A. Corynebacterium godavarianum sp. nov., isolated from the Godavari river, India. Int J Syst Evol Microbiol 2017; 68:241-247. [PMID: 29148360 DOI: 10.1099/ijsem.0.002491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, rod-shaped, non-motile bacterium, strain PRD07T, was isolated from Godavari river, India during the world's largest spiritual and religious mass bathing event 'Kumbh Mela'. Molecular analysis using 16S rRNA gene sequencing and phylogenetic analysis reveals the distinct phylogenetic positioning of strain PRD07T within the genus Corynebacterium. The strain demonstrated highest sequence similarity to Corynebacterium imitans DSM 44264T (97.9 %), Corynebacterium appendicis DSM 44531T (97.1 %) and <96.7 % with all other members of the genus Corynebacterium. The G+C content of PRD07T was 68.5 mol% (Tm) and the DNA-DNA hybridization depicts 61.09 % genomic relatedness with C. imitans DSM 44264T. Chemotaxonomic assessment of strain PRD07T suggested presence of C16 : 0 (31.6 %), C18 : 0 (3.5 %) and C18 : 1ω9c (58.6 %) as the major cellular fatty acids. The major polar lipids of strain PRD07T were phosphatidylglycerol, diphosphatidylglycerol and glycophospholipid. Differentiating molecular, phylogenetic and chemotaxonomic characteristics of strain PRD07T with its closest relatives necessitated the description of strain PRD07T as a novel species of genus Corynebacterium for which the name Corynebacteriumgodavarianum sp. nov., has been proposed. The type strain is PRD07T (=MCC 3388T=KCTC 39803T=LMG 29598T).
Collapse
Affiliation(s)
- Kunal Jani
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411007, India.,Symbiosis School of Biological Sciences, Symbiosis International University, Pune, Maharashtra 412115, India
| | - Kaustubh Khare
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Svetlana Senik
- Komarov Botanical Institute RAS, Saint-Petersburg 197376, Russia
| | - Prachi Karodi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Venkata Ramana Vemuluri
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Jayashree Bandal
- Department of Microbiology, KTHM College, Nashik, Maharashtra, India
| | - Yogesh Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Vinay Rale
- Symbiosis School of Biological Sciences, Symbiosis International University, Pune, Maharashtra 412115, India
| | - Avinash Sharma
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411007, India
| |
Collapse
|
26
|
Prakash O, Nimonkar Y, Chavadar MS, Bharti N, Pawar S, Sharma A, Shouche YS. Optimization of Nutrients and Culture Conditions for Alkaline Protease Production Using Two Endophytic Micrococci: Micrococcus aloeverae and Micrococcus yunnanensis. Indian J Microbiol 2017; 57:218-225. [PMID: 28611500 DOI: 10.1007/s12088-017-0638-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/17/2017] [Indexed: 11/29/2022] Open
Abstract
An endophytic species of Micrococcus was isolated from Aloe vera leaf (syn. Aloe barbadensis) and screened for protease production with five other species of Micrococcus. Data indicated that endophytic Micrococcus aloeverae AE-6 MCC 2184T and Micrococcus yunnanensis DSM 21948T showed efficient protease production potential and secreted active protease at high salt (10%), temperature (40 °C) and in wide range of pH 8-10. Unlike M. yunnanensis DSM 21948T, protease production by M. aloeverae AE-6 MCC 2184T was stringently controlled by pH. Protease induction study using different group of peptides, peptide carbohydrates and peptide macronutrient combinations showed variable response with both the organisms. Result indicated that the amount of protease was not directly related to cell biomass but it depends on nature of inducible peptides. In this study we also developed a modified agar-well assay for semi-quantitative data from large number of replicates.
Collapse
Affiliation(s)
- Om Prakash
- Microbial Culture Collection, National Centre for Cell Science (NCCS), Ganeshkhind, Pune, MH 411007 India
| | - Yogesh Nimonkar
- Microbial Culture Collection, National Centre for Cell Science (NCCS), Ganeshkhind, Pune, MH 411007 India
| | - Mahesh S Chavadar
- Microbial Culture Collection, National Centre for Cell Science (NCCS), Ganeshkhind, Pune, MH 411007 India
| | - Nidhi Bharti
- Department of Botany, Savitribai Phule Pune University, Pune, 411007 India
| | - Shrikant Pawar
- Microbial Culture Collection, National Centre for Cell Science (NCCS), Ganeshkhind, Pune, MH 411007 India
| | - Ashutosh Sharma
- Kamla Nehru Institute of Physical and Social Science, Sultanpur, 228001 India
| | - Yogesh S Shouche
- Microbial Culture Collection, National Centre for Cell Science (NCCS), Ganeshkhind, Pune, MH 411007 India
| |
Collapse
|
27
|
Prakash O, Muduli S, Kumar R, Kumari C, Nimonkar Y, Shouche YS, Sharma R. Description of Auricoccus indicus gen. nov., sp. nov., isolated from skin of human ear. Int J Syst Evol Microbiol 2017; 67:1212-1218. [DOI: 10.1099/ijsem.0.001787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Om Prakash
- Microbial Culture Collection, National Centre for Cell Science, Pune 411007, Maharashtra, India
| | - Suchismita Muduli
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), New Delhi 110020, India
| | - Rohit Kumar
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), New Delhi 110020, India
| | - Chanchal Kumari
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), New Delhi 110020, India
| | - Yogesh Nimonkar
- Microbial Culture Collection, National Centre for Cell Science, Pune 411007, Maharashtra, India
| | - Yogesh S Shouche
- Microbial Culture Collection, National Centre for Cell Science, Pune 411007, Maharashtra, India
| | - Rakesh Sharma
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), New Delhi 110020, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| |
Collapse
|
28
|
Proposal for creation of a new genus Neomicrococcus gen. nov. to accommodate Zhihengliuella aestuarii
Baik et al. 2011
and Micrococcus lactis
Chittpurna et al. 2011
as Neomicrococcus aestuarii comb. nov. and Neomicrococcus lactis comb. nov. Int J Syst Evol Microbiol 2015; 65:3771-3776. [DOI: 10.1099/ijsem.0.000490] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Micrococcus lactis and Zhihengliuella aestuarii were described independently in 2011. Their type strains showed high levels of 16S rRNA gene sequence similarity (99.3 %). Phylogenetic analysis revealed that M. lactis MCC 2278T and Z. aestuarii JCM 16166T formed a monophyletic group and showed distant relationships to other members of closely related genera such as Micrococcus, Zhihengliuella, Arthrobacter and Citricoccus. The presence of large proportions of iso-C14 : 0 and iso-C16 : 0 with small amounts of iso-C15 : 0 distinguished M. lactis MCC 2278T and Z. aestuarii JCM 16166T from other members of the genera Micrococcus and Zhihengliuella. Unlike other members of the genera Zhihengliuella and Micrococcus, M. lactis MCC 2278T and Z. aestuarii JCM 16166T showed growth at low concentrations of NaCl. Thus, based on distinctive phylogenetic, chemotaxonomic and physiological features of these two organisms in comparison with other members of the genera Micrococcus and Zhihengliuella, it is clear that they do not fit within the existing classification and deserve separate status. DNA–DNA hybridization between the two type strains was 63 %, indicating that they represent separate species. In this study, we propose the creation of a novel genus, Neomicrococcus gen. nov., to accommodate the two species with Neomicrococcus aestuarii gen. nov., comb. nov. (type strain JCM 16166T = KCTC 19557T) as the type species. Neomicrococcus lactis comb. nov. (type strain MCC 2278T = DSM 23694T) is also proposed.
Collapse
|
29
|
Prakash O, Nimonkar Y, Vaishampayan A, Mishra M, Kumbhare S, Josef N, Shouche YS. Pantoea intestinalis sp. nov., isolated from the human gut. Int J Syst Evol Microbiol 2015; 65:3352-3358. [DOI: 10.1099/ijsem.0.000419] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel bacterial strain, 29Y89BT, was isolated from a faecal sample of a healthy human subject. Cells were Gram-stain-negative, motile, non-spore-forming and rod-shaped. Strain 29Y89BT formed cream-coloured colonies 2 mm in diameter on trypticase soy agar and showed optimum growth at 35 °C. Strain 29Y89BT showed highest 16S rRNA gene sequence similarity to Pantoea gaviniae A18/07T (98.4 %) followed by Pantoea calida 1400/07T (97.2 %). Multi-locus sequence analysis using atpD (ATP synthase β subunit), gyrB (DNA gyrase), infB (initiation translation factor 2) and rpoB (RNA polymerase β subunit) genes also supported the result of 16S rRNA gene sequence based phylogeny. Strain 29Y89BT showed 62 and 40.7 % DNA–DNA relatedness with P. calida DSM 22759T and P. gaviniae DSM 22758T. Strain 29Y89BT contained C17
: 0 cyclo, C19
: 0 cyclo ω8c, C16 : 0, C14 : 0 and C12 : 0 as predominant fatty acids. In addition, strain 29Y89BT showed physiological and phenotypic differences from its closest relatives P. gaviniae DSM 22758T and P. calida DSM 22759T. The polar lipid profile mainly comprised phospholipids. The DNA G+C content was 59.1 mol%. Thus, based on the findings of the current study, strain 29Y89BT showed clear delineations from its closest relatives P. gaviniae DSM 22758T and P. calida DSM 22759T, and is thus considered to represent a novel species of the genus Pantoea, for which the name Pantoea intestinalis sp. nov. is proposed. The type strain is 29Y89BT ( = DSM 28113T = MCC 2554T).
Collapse
Affiliation(s)
- Om Prakash
- Microbial Culture Collection, National Centre for Cell Science, Pune, Maharastra 411007, India
| | - Yogesh Nimonkar
- Microbial Culture Collection, National Centre for Cell Science, Pune, Maharastra 411007, India
| | - Ankita Vaishampayan
- Microbial Culture Collection, National Centre for Cell Science, Pune, Maharastra 411007, India
| | - Mrinal Mishra
- Microbial Culture Collection, National Centre for Cell Science, Pune, Maharastra 411007, India
| | - Shreyas Kumbhare
- Microbial Culture Collection, National Centre for Cell Science, Pune, Maharastra 411007, India
| | - Neetha Josef
- Microbial Culture Collection, National Centre for Cell Science, Pune, Maharastra 411007, India
| | - Yogesh S. Shouche
- Microbial Culture Collection, National Centre for Cell Science, Pune, Maharastra 411007, India
| |
Collapse
|
30
|
Masand M, Jose PA, Menghani E, Jebakumar SRD. Continuing hunt for endophytic actinomycetes as a source of novel biologically active metabolites. World J Microbiol Biotechnol 2015; 31:1863-75. [PMID: 26410426 DOI: 10.1007/s11274-015-1950-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022]
Abstract
Drug-resistant pathogens and persistent agrochemicals mount the detrimental threats against human health and welfare. Exploitation of beneficial microorganisms and their metabolic inventions is most promising way to tackle these two problems. Since the successive discoveries of penicillin and streptomycin in 1940s, numerous biologically active metabolites have been discovered from different microorganisms, especially actinomycetes. In recent years, actinomycetes that inhabit unexplored environments have received significant attention due to their broad diversity and distinctive metabolic potential with medical, agricultural and industrial importance. In this scenario, endophytic actinomycetes that inhabit living tissues of plants are emerging as a potential source of novel bioactive compounds for the discovery of drug leads. Also, endophytic actinomycetes are considered as bio-inoculants to improve crop performance through organic farming practices. Further efforts on exploring the endophytic actinomycetes associated with the plants warrant the likelihood of discovering new taxa and their metabolites with novel chemical structures and biotechnological importance. This mini-review highlights the recent achievements in isolation of endophytic actinomycetes and an assortment of bioactive compounds.
Collapse
Affiliation(s)
- Meeta Masand
- School of Life sciences, Suresh Gyan Vihar University, Jaipur, India
| | - Polpass Arul Jose
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India. .,Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India.
| | - Ekta Menghani
- Department of Biotechnology, School of Science, JECRC University, Jaipur, India
| | | |
Collapse
|
31
|
Response of cellular fatty acids to environmental stresses in endophytic Micrococcus spp. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1061-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
32
|
Barman D, Dkhar MS. Amylolytic activity and its parametric optimization of an endophytic bacterium Bacillus subtilis with an ethno-medicinal origin. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|