1
|
Ruiz-Ramírez S, Jiménez-Flores R. Isolation and characterization of a β-galactosidase from Lactobacillus helveticus for industrial processing. JDS COMMUNICATIONS 2025; 6:19-23. [PMID: 39877184 PMCID: PMC11770318 DOI: 10.3168/jdsc.2024-0563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/18/2024] [Indexed: 01/31/2025]
Abstract
In this study, a thermostable β-galactosidase from Lactobacillus helveticus OSU-PECh-4A has been isolated through diafiltration and size-exclusion chromatography. The enzyme consists of a heterodimer with a molecular mass of 110 kDa, with a small and large subunit of 36 and 74 kDa, respectively. The Michaelis constant (Km) and maximum velocity (Vmax) values for lactose and o-nitrophenyl-β-d-galactopyranoside (oNPG) hydrolysis were, respectively, 29.87 ± 1.05 mM, 1.88 ± 0.02 μmol d-glucose released per min per mg of protein, and 0.067 ± 0.003 mM, 1.70 ± 0.05 μmol o-nitrophenol (oNP) released per min per mg of protein. This β-galactosidase is significantly activated by Mg+2 (2-10 mM) and slightly inhibited by d-glucose. The enzyme can also hydrolyze 57 ± 3% of lactose after 12 h of reaction at 45°C and under a high concentration of lactose. We propose that this enzyme provides an important advantage from a practical and consumer point of view due to its origins as a probiotic source and improved features for important industrial applications, such as lactose hydrolysis and the potential to produce galacto-oligosaccharides.
Collapse
Affiliation(s)
- Silvette Ruiz-Ramírez
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210
| | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
2
|
Ranjan A, Arora J, Chauhan A, Basniwal RK, Kumari A, Rajput VD, Prazdnova EV, Ghosh A, Mukerjee N, Mandzhieva SS, Sushkova S, Minkina T, Jindal T. Advances in characterization of probiotics and challenges in industrial application. Biotechnol Genet Eng Rev 2024; 40:3226-3269. [PMID: 36200338 DOI: 10.1080/02648725.2022.2122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
An unbalanced diet and poor lifestyle are common reasons for numerous health complications in humans. Probiotics are known to provide substantial benefits to human health by producing several bioactive compounds, vitamins, short-chain fatty acids and short peptides. Diets that contain probiotics are limited to curd, yoghurt, kefir, kimchi, etc. However, exploring the identification of more potential probiotics and enhancing their commercial application to improve the nutritional quality would be a significant step to utilizing the maximum benefits. The complex evolution patterns among the probiotics are the hurdles in their characterization and adequate application in the industries and dairy products. This article has mainly discussed the molecular methods of characterization that are based on the analysis of ribosomal RNA, whole genome, and protein markers and profiles. It also has critically emphasized the emerging challenges in industrial applications of probiotics.
Collapse
Affiliation(s)
- Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Jayati Arora
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| | - Rupesh Kumar Basniwal
- Amity Institute of Advanced Research and Studies (M&D), Amity University, Noida, India
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Evgeniya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, New South Wales, Australia
| | - Saglara S Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| |
Collapse
|
3
|
Yao B, Wang FH, Han XN, Yang J, Xue P, Qi Q, Wei GY, Xing JY. Esmolol increases the fecal abundance of Lactobacillus in a rat model of sepsis. Intensive Care Med Exp 2024; 12:22. [PMID: 38433148 PMCID: PMC10909807 DOI: 10.1186/s40635-023-00589-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/21/2023] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Disorders of the gut microbiome could be responsible for the progression of multiple organ dysfunction syndrome. In this study, we examined the effect of esmolol on the gut microbiome in a rat model of sepsis induced by cecal ligation and puncture (CLP). METHODS The animals (n = 32) were randomly divided into 3 groups: Sham group (sham operation + normal saline treatment, n = 8), CLP group (cecal ligation and puncture + normal saline treatment, n = 12), and CLP + ESM group (cecal ligation and puncture + esmolol treatment, n = 12). After 24 h, feces in the colon were collected for 16S rRNA gene sequencing and nitric oxide analysis. In addition, colon was removed for immunohistochemical staining of inducible nitric oxide synthase (iNOS). RESULTS Four rats in the CLP group and two rats in the CLP + ESM group died. The abundance of Lactobacillus in the CLP + ESM group was higher than CLP group (P = 0.048). In the linear discriminant analysis effect size analysis, Norank f Muribaculaceae, Escherichia-Shigella and Lactobacillus were the predominant bacteria in the Sham group, CLP group and CLP + ESM group, respectively. The iNOS expression in colonocytes stained by brown in the CLP group were much more than Sham group (P = 0.001). Compared to CLP group, the iNOS expression in colonocytes reduced after esmolol treatment (P = 0.013). The concentration of nitric oxide in colon feces was different in Sham group, CLP group and CLP + ESM group (1.31 ± 0.15μmmol/l vs. 1.98 ± 0.27μmmol/l vs. 1.51 ± 0.14μmmol/l, P = 0.001). In addition, the concentration of nitric oxide in CLP group was higher than Sham group (P = 0.001) or CLP + ESM group (P = 0.001). CONCLUSIONS Esmolol increased the fecal abundance of Lactobacillus in a rat model of sepsis. Moreover, esmolol reduced the iNOS expression of colonocytes and the nitric oxide concentration of colon feces.
Collapse
Affiliation(s)
- Bo Yao
- The Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 26600, China.
| | - Fu-Hua Wang
- The Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 26600, China
| | - Xiao-Ning Han
- The Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 26600, China
| | - Jun Yang
- The Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 26600, China
| | - Ping Xue
- The Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 26600, China
| | - Qi Qi
- The Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 26600, China
| | - Guang-Yao Wei
- The Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 26600, China
| | - Jin-Yan Xing
- The Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 26600, China.
| |
Collapse
|
4
|
Wlaź P, Wiater A, Majewska M, Wyska E, Grąz M, Śliwa-Dominiak J, Gapińska N, Socała K. Effect of dietary supplementation with Lactobacillus helveticus R0052 on seizure thresholds and antiseizure potency of sodium valproate in mice. Psychopharmacology (Berl) 2024; 241:327-340. [PMID: 37966492 PMCID: PMC10805985 DOI: 10.1007/s00213-023-06489-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVE Both animal and human studies, though limited, showed that multi-strain probiotic supplementation may reduce the number of seizures and/or seizure severity. Here, we evaluated the effect of a single strain probiotic supplementation on seizure susceptibility, antiseizure efficacy of sodium valproate, and several behavioral parameters in mice. METHODS Lactobacillus helveticus R0052 was given orally for 28 days. Its influence on seizure thresholds was evaluated in the ivPTZ- and electrically-induced seizure tests. The effect on the antiseizure potency of valproate was assessed in the scPTZ test. We also investigated the effects of probiotic supplementation on anxiety-related behavior (in the elevated plus maze and light/dark box tests), motor coordination (in the accelerating rotarod test), neuromuscular strength (in the grip-strength test), and spontaneous locomotor activity. Serum and brain concentrations of valproate as well as cecal contents of SCFAs and lactate were determined using HPLC method. RESULTS L. helveticus R0052 significantly increased the threshold for the 6 Hz-induced psychomotor seizure. There was also a slight increase in the threshold for myoclonic and clonic seizure in the ivPTZ test. L. helveticus R0052 did not affect the threshold for tonic seizures both in the maximal electroshock- and ivPTZ-induced seizure tests. No changes in the antiseizure potency of valproate against the PTZ-induced seizures were reported. Interestingly, L. helveticus R0052 increased valproate concentration in serum, but not in the brain. Moreover, L. helveticus R0052 did not produce any significant effects on anxiety-related behavior, motor coordination, neuromuscular strength, and locomotor activity. L. helveticus R0052 supplementation resulted in increased concentrations of total SCFAs, acetate, and butyrate. CONCLUSIONS Altogether, this study shows that a single-strain probiotic - L. helveticus R0052 may decrease seizure susceptibility and this effect can be mediated, at least in part, by increased production of SCFAs. In addition, L. helveticus R0052 may affect bioavailability of valproate, which warrants further investigations.
Collapse
Affiliation(s)
- Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Małgorzata Majewska
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Joanna Śliwa-Dominiak
- R&D and Scientific Department, Sanprobi Sp. z o.o Sp.k., Quality Control and Microbiology Laboratory, Kurza Stopka 5/C, PL 70-535, Szczecin, Poland
| | - Nikola Gapińska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland.
| |
Collapse
|
5
|
Multiplex SYBR Green real-time PCR for Lactobacillus acidophilus group species targeting biomarker genes revealed by a pangenome approach. Microbiol Res 2022; 259:127013. [DOI: 10.1016/j.micres.2022.127013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/16/2022] [Accepted: 03/16/2022] [Indexed: 11/19/2022]
|
6
|
Tremblay A, Xu X, Colee J, Tompkins TA. Efficacy of a Multi-Strain Probiotic Formulation in Pediatric Populations: A Comprehensive Review of Clinical Studies. Nutrients 2021; 13:nu13061908. [PMID: 34206098 PMCID: PMC8226750 DOI: 10.3390/nu13061908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
A probiotic formulation combining Lactobacillus helveticus Rosell®-52, Bifidobacterium infantis Rosell®-33, and Bifidobacterium bifidum Rosell®-71 with fructooligosaccharides, first commercialized in China, has been sold in over 28 countries since 2002. Clinical studies with this blend of strains were conducted mainly in pediatric populations, and most were published in non-English journals. This comprehensive review summarizes the clinical studies in infants and children to evaluate the efficacy of this probiotic for pediatric indications. Literature searches for pediatric studies on Biostime® or Probiokid® (non-commercial name) in 6 international and Chinese databases identified 28 studies, which were classified by indications. Twelve studies show that the probiotic significantly increases the efficacy of standard diarrhea treatment regardless of etiology, reducing the risk of unresolved diarrhea (RR 0.31 [0.23; 0.42]; p < 0.0001) by 69%. In eight studies, the probiotic enhanced immune defenses, assessed by levels of various immune competence and mucosal immunity markers (six studies), and reduced the incidence of common infections (two studies). The probiotic improved iron deficiency anemia treatment efficacy (three studies), reducing the risk of unresolved anemia by 49% (RR 0.51 [0.28; 0.92]; p = 0.0263) and significantly reducing treatment side effects by 47% (RR 0.53 [0.37; 0.77]; p = 0.0009). Other studies support further investigation into this probiotic for oral candidiasis, eczema, feeding intolerance in premature babies, or hyperbilirubinemia in newborns.
Collapse
Affiliation(s)
- Annie Tremblay
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions Inc., 6100 Royalmount Avenue, Montreal, QC H4P2R2, Canada; (A.T.); (X.X.)
| | - Xiaoyu Xu
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions Inc., 6100 Royalmount Avenue, Montreal, QC H4P2R2, Canada; (A.T.); (X.X.)
| | - James Colee
- IFAS Statistical Consulting Unit, University of Florida, P.O. Box 110500, Gainesville, FL 32611-0500, USA;
| | - Thomas A. Tompkins
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions Inc., 6100 Royalmount Avenue, Montreal, QC H4P2R2, Canada; (A.T.); (X.X.)
- Correspondence:
| |
Collapse
|
7
|
Kido Y, Maeno S, Tanno H, Kichise Y, Shiwa Y, Endo A. Niche-specific adaptation of Lactobacillus helveticus strains isolated from malt whisky and dairy fermentations. Microb Genom 2021; 7:000560. [PMID: 33900907 PMCID: PMC8208680 DOI: 10.1099/mgen.0.000560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/15/2021] [Indexed: 01/24/2023] Open
Abstract
Lactobacillus helveticus is a well characterized lactobacillus for dairy fermentations that is also found in malt whisky fermentations. The two environments contain considerable differences related to microbial growth, including the presence of different growth inhibitors and nutrients. The present study characterized L. helveticus strains originating from dairy fermentations (called milk strains hereafter) and malt whisky fermentations (called whisky strains hereafter) by in vitro phenotypic tests and comparative genomics. The whisky strains can tolerate ethanol more than the milk strains, whereas the milk strains can tolerate lysozyme and lactoferrin more than the whisky strains. Several plant-origin carbohydrates, including cellobiose, maltose, sucrose, fructooligosaccharide and salicin, were generally metabolized only by the whisky strains, whereas milk-derived carbohydrates, i.e. lactose and galactose, were metabolized only by the milk strains. Milk fermentation properties also distinguished the two groups. The general genomic characteristics, including genomic size, number of coding sequences and average nucleotide identity values, differentiated the two groups. The observed differences in carbohydrate metabolic properties between the two groups correlated with the presence of intact specific enzymes in glycoside hydrolase (GH) families GH1, GH4, GH13, GH32 and GH65. Several GHs in the milk strains were inactive due to the presence of stop codon(s) in genes encoding the GHs, and the inactivation patterns of the genes encoding specific enzymes assigned to GH1 in the milk strains suggested a possible diversification manner of L. helveticus strains. The present study has demonstrated how L. helveticus strains have adapted to their habitats.
Collapse
Affiliation(s)
- Yoshihiko Kido
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Hokkaido 099-2493, Japan
| | - Shintaro Maeno
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Hokkaido 099-2493, Japan
| | - Hiroki Tanno
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Hokkaido 099-2493, Japan
| | - Yuko Kichise
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yuh Shiwa
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Hokkaido 099-2493, Japan
| |
Collapse
|
8
|
Schuster JA, Vogel RF, Ehrmann MA. Biodiversity of Lactobacillus helveticus isolates from dairy and cereal fermentations reveals habitat-adapted biotypes. FEMS Microbiol Lett 2021; 367:5817842. [PMID: 32267927 DOI: 10.1093/femsle/fnaa058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
For the present study, we collected 22 Lactobacillus helveticus strains from different dairy (n = 10) and cereal (n = 12) fermentations to investigate their biodiversity and to uncover habitat-specific traits. Biodiversity was assessed by comparison of genetic fingerprints, low-molecular-weight subproteomes, metabolic and enzymatic activities, growth characteristics and acidification kinetics in food matrices. A clear distinction between the dairy and cereal strains was observed in almost all examined features suggesting that the different habitats are domiciled by different L. helveticus biotypes that are adapted to the specific environmental conditions. Analysis of the low-molecular-weight subproteome divided the cereal isolates into two clusters, while the dairy isolates formed a separate homogeneous cluster. Differences regarding carbohydrate utilization were observed for lactose, galactose, sucrose and cellobiose as well as for plant-derived glucosides. Enzymatic differences were observed mainly for ß-galactosidase and ß-glucosidase activities. Further, growth temperature was optimal in the range from 33 to 37°C for the cereal strains, whereas the dairy strains showed optimal growth at 40°C. Taken together, adaptation of the various biotypes results in a growth benefit in the particular environment. Acidification and growth tests using either sterile skim milk or a wheat flour extract confirmed these results. Differentiation of these biotypes and their physiological characteristics enables knowledge-based starter culture development for cereal versus dairy products within one species.
Collapse
Affiliation(s)
- Julian A Schuster
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Matthias A Ehrmann
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| |
Collapse
|
9
|
Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O'Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70:2782-2858. [PMID: 32293557 DOI: 10.1099/ijsem.0.004107] [Citation(s) in RCA: 1730] [Impact Index Per Article: 346.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and genotypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade-specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host-adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacillus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa, Liquorilactobacillus, Ligilactobacillus, Lactiplantibacillus, Furfurilactobacillus, Paucilactobacillus, Limosilactobacillus, Fructilactobacillus, Acetilactobacillus, Apilactobacillus, Levilactobacillus, Secundilactobacillus and Lentilactobacillus are proposed. We also propose to emend the description of the family Lactobacillaceae to include all genera that were previously included in families Lactobacillaceae and Leuconostocaceae. The generic term 'lactobacilli' will remain useful to designate all organisms that were classified as Lactobacillaceae until 2020. This reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties, as exemplified for the emended genus Lactobacillus encompassing species adapted to vertebrates (such as Lactobacillus delbrueckii, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensensii, Lactobacillus johnsonii and Lactobacillus acidophilus) or invertebrates (such as Lactobacillus apis and Lactobacillus bombicola).
Collapse
Affiliation(s)
- Jinshui Zheng
- Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, PR China
| | - Stijn Wittouck
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Elisa Salvetti
- Dept. of Biotechnology, University of Verona, Verona, Italy
| | - Charles M A P Franz
- Max Rubner-Institut, Department of Microbiology and Biotechnology, Kiel, Germany
| | - Hugh M B Harris
- School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - Paola Mattarelli
- University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy
| | - Paul W O'Toole
- School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - Bruno Pot
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Jens Walter
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Koichi Watanabe
- Food Industry Research and Development Institute, Bioresource Collection and Research Center, Hsinchu, Taiwan, ROC.,National Taiwan University, Dept. of Animal Science and Technology, Taipei, Taiwan, ROC
| | - Sander Wuyts
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | | | - Michael G Gänzle
- Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, PR China.,Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Sarah Lebeer
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Lactobacillus helveticus R0052 alleviates liver injury by modulating gut microbiome and metabolome in D-galactosamine-treated rats. Appl Microbiol Biotechnol 2019; 103:9673-9686. [PMID: 31713675 DOI: 10.1007/s00253-019-10211-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/14/2019] [Accepted: 10/20/2019] [Indexed: 02/07/2023]
Abstract
The liver is an important digestive gland, and acute liver failure results in high mortality. Probiotics are considered potential adjuvant therapies for liver disease. This study aimed to investigate the beneficial effects of Lactobacillus helveticus R0052 on acute liver injury and the underlying mechanisms. Sprague-Dawley rats were gavaged with L. helveticus R0052 suspensions (3 × 109 CFU) for 1 week. Subsequently, acute liver injury was induced by intraperitoneal D-galactosamine injection on the eighth day. After 24 h, samples (blood, liver, ileum, faeces) were collected and assessed for histological injury, inflammation, intestinal barrier, gut microbiome and metabolome. L. helveticus R0052 alleviated aminotransferase, bilirubin and total bile acid elevation and histological hepatic injuries. Additionally, L. helveticus R0052 exhibited anti-inflammatory properties by downregulating Toll-like receptors, tumour necrosis factor-α and nuclear factor-κb transcription in liver samples and decreasing proinflammatory cytokine plasma concentrations. Additionally, L. helveticus R0052 ameliorated intestinal abnormalities and regulated Toll-like receptors, claudin2 and mucin3 gene transcription in the intestine. These effects were associated with gut microbiome and metabolome modulation by L. helveticus R0052. Probiotic pretreatment enriched Lactobacillus and Bacteroides and depleted Flavonifractor and Acetatifactor in the gut microbiome. Meanwhile, L. helveticus R0052 improved carbohydrate and fatty acid metabolism and reduced lithocholic acid levels. These results indicate that L. helveticus R0052 is promising for alleviating acute liver injury and provide new insights regarding the correlations among the microbiome, the metabolome, the intestinal barrier and liver disease.
Collapse
|
11
|
Fontana A, Falasconi I, Molinari P, Treu L, Basile A, Vezzi A, Campanaro S, Morelli L. Genomic Comparison of Lactobacillus helveticus Strains Highlights Probiotic Potential. Front Microbiol 2019; 10:1380. [PMID: 31293536 PMCID: PMC6606699 DOI: 10.3389/fmicb.2019.01380] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Lactobacillus helveticus belongs to the large group of lactic acid bacteria (LAB), which are the major players in the fermentation of a wide range of foods. LAB are also present in the human gut, which has often been exploited as a reservoir of potential novel probiotic strains, but several parameters need to be assessed before establishing their safety and potential use for human consumption. In the present study, six L. helveticus strains isolated from natural whey cultures were analyzed for their phenotype and genotype in exopolysaccharide (EPS) production, low pH and bile salt tolerance, bile salt hydrolase (BSH) activity, and antibiotic resistance profile. In addition, a comparative genomic investigation was performed between the six newly sequenced strains and the 51 publicly available genomes of L. helveticus to define the pangenome structure. The results indicate that the newly sequenced strain UC1267 and the deposited strain DSM 20075 can be considered good candidates for gut-adapted strains due to their ability to survive in the presence of 0.2% glycocholic acid (GCA) and 1% taurocholic and taurodeoxycholic acid (TDCA). Moreover, these strains had the highest bile salt deconjugation activity among the tested L. helveticus strains. Considering the safety profile, none of these strains presented antibiotic resistance phenotypically and/or at the genome level. The pangenome analysis revealed genes specific to the new isolates, such as enzymes related to folate biosynthesis in strains UC1266 and UC1267 and an integrated phage in strain UC1035. Finally, the presence of maltose-degrading enzymes and multiple copies of 6-phospho-β-glucosidase genes in our strains indicates the capability to metabolize sugars other than lactose, which is related solely to dairy niches.
Collapse
Affiliation(s)
- Alessandra Fontana
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Irene Falasconi
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paola Molinari
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Laura Treu
- Department of Biology, University of Padua, Padua, Italy
| | - Arianna Basile
- Department of Biology, University of Padua, Padua, Italy
| | | | - Stefano Campanaro
- Department of Biology, University of Padua, Padua, Italy.,CRIBI Biotechnology Center, University of Padua, Padua, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
12
|
de la Haba RR, Corral P, Sánchez-Porro C, Infante-Domínguez C, Makkay AM, Amoozegar MA, Ventosa A, Papke RT. Genotypic and Lipid Analyses of Strains From the Archaeal Genus Halorubrum Reveal Insights Into Their Taxonomy, Divergence, and Population Structure. Front Microbiol 2018; 9:512. [PMID: 29662474 PMCID: PMC5890160 DOI: 10.3389/fmicb.2018.00512] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
To gain a better understanding of how divergence occurs, and how taxonomy can benefit from studying natural populations, we isolated and examined 25 closely related Halorubrum strains obtained from different hypersaline communities and compared them to validly named species and other reference strains using five taxonomic study approaches: phylogenetic analysis using the 16S rRNA gene and multilocus sequencing analysis (MLSA), polar lipid profiles (PLP), average nucleotide identity (ANI) and DNA-DNA hybridization (DDH). 16S rRNA gene sequence could not differentiate the newly isolated strains from described species, while MLSA grouped strains into three major clusters. Two of those MLSA clusters distinguished candidates for new species. The third cluster with concatenated sequence identity equal to or greater than 97.5% was comprised of strains from Aran-Bidgol Lake (Iran) and solar salterns in Namibia and Spain, and two previously described species isolated from Mexico and Algeria. PLP and DDH analyses showed that Aran-Bidgol strains formed uniform populations, and that strains isolated from other geographic locations were heterogeneous and divergent, indicating that they may constitute different species. Therefore, applying only sequencing approaches and similarity cutoffs for circumscribing species may be too conservative, lumping concealed diversity into a single taxon. Further, our data support the interpretation that local populations experience unique evolutionary homogenization pressures, and once relieved of insular constraints (e.g., through migration) are free to diverge.
Collapse
Affiliation(s)
- Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Paulina Corral
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Carmen Infante-Domínguez
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Andrea M. Makkay
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Mohammad A. Amoozegar
- Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - R. Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
13
|
Lupien-Meilleur J, Roy D, Lagacé L. Viability of probiotic bacteria in a maple sap beverage during refrigerated storage. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.07.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Voronina OL, Kunda MS, Ryzhova NN, Aksenova EI, Semenov AN, Lasareva AV, Amelina EL, Chuchalin AG, Lunin VG, Gintsburg AL. The Variability of the Order Burkholderiales Representatives in the Healthcare Units. BIOMED RESEARCH INTERNATIONAL 2015; 2015:680210. [PMID: 26114111 PMCID: PMC4465658 DOI: 10.1155/2015/680210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM The order Burkholderiales became more abundant in the healthcare units since the late 1970s; it is especially dangerous for intensive care unit patients and patients with chronic lung diseases. The goal of this investigation was to reveal the real variability of the order Burkholderiales representatives and to estimate their phylogenetic relationships. METHODS 16S rDNA and genes of the Burkholderia cenocepacia complex (Bcc) Multi Locus Sequence Typing (MLST) scheme were used for the bacteria detection. RESULTS . A huge diversity of genome size and organization was revealed in the order Burkholderiales that may prove the adaptability of this taxon's representatives. The following variability of the Burkholderiales in Russian healthcare units has been revealed: Burkholderiaceae (Burkholderia, Pandoraea, and Lautropia), Alcaligenaceae (Achromobacter), and Comamonadaceae (Variovorax). The Burkholderia genus was the most diverse and was represented by 5 species and 16 sequence types (ST). ST709 and 728 were transmissible and often encountered in cystic fibrosis patients and in hospitals. A. xylosoxidans was estimated by 15 genotypes. The strains of first and second ones were the most numerous. CONCLUSIONS Phylogenetic position of the genus Lautropia with smaller genome is ambiguous. The Bcc MLST scheme is applicable for all Burkholderiales representatives for resolving the epidemiological problems.
Collapse
Affiliation(s)
- Olga L. Voronina
- N.F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, 123098 Moscow, Russia
| | - Marina S. Kunda
- N.F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, 123098 Moscow, Russia
| | - Natalia N. Ryzhova
- N.F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, 123098 Moscow, Russia
| | - Ekaterina I. Aksenova
- N.F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, 123098 Moscow, Russia
| | - Andrey N. Semenov
- N.F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, 123098 Moscow, Russia
| | - Anna V. Lasareva
- Federal State Budgetary Institution “Scientific Centre of Children Health” RAMS, 119991 Moscow, Russia
| | - Elena L. Amelina
- Research Institute of Pulmonology FMBA of Russia, 105077 Moscow, Russia
| | | | - Vladimir G. Lunin
- N.F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, 123098 Moscow, Russia
| | - Alexandr L. Gintsburg
- N.F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, 123098 Moscow, Russia
| |
Collapse
|
15
|
Waśko A, Polak-Berecka M, Kuzdraliński A, Skrzypek T. Variability of S-layer proteins in Lactobacillus helveticus strains. Anaerobe 2013; 25:53-60. [PMID: 24269654 DOI: 10.1016/j.anaerobe.2013.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 09/06/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
Abstract
The presence of S-layer proteins in the cell envelope of Lactobacillus helveticus may be technologically important. S-layer proteins are the adhesion site for cell envelope proteinase, which forms the proteolytic pathway in bacteria. Eleven strains of L. helveticus were examined for the presence of S-layer proteins and slpH genes. S-layer proteins from six strains were identified and sequenced. Multiple alignments of the deduced amino acid sequences demonstrated a strong sequence conservation of all Slp studied. Transmission Electron Microscopy analysis of the cells revealed the typical cell wall architecture of the S-layer. This is the first report on characterisation of glycosylated S-layer proteins from different strains of L. helveticus. The amino acid composition, the secondary structure, and the physical properties of these proteins were found to be quite similar to those of S-layer proteins from other lactobacilli. However, PCR analysis revealed that five of the examined strains of L. helveticus did not have slpH genes. This finding suggests that S-layer protein genes cannot be considered as housekeeping genes and cannot be used as molecular markers for L. helveticus.
Collapse
Affiliation(s)
- Adam Waśko
- Department of Biotechnology, Human Nutrition and Science of Food Commodities, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Magdalena Polak-Berecka
- Department of Biotechnology, Human Nutrition and Science of Food Commodities, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland.
| | - Adam Kuzdraliński
- Department of Biotechnology, Human Nutrition and Science of Food Commodities, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Tomasz Skrzypek
- Department of Zoology and Ecology of Invertebrates, Institute of Environmental Protection, John Paul II Catholic University of Lublin, Kraśnicka Ave 102, 20-718 Lublin, Poland
| |
Collapse
|
16
|
Nyanzi R, Jooste PJ, Cameron M, Witthuhn C. Comparison ofrpoAandpheSGene Sequencing to 16S rRNA Gene Sequencing in Identification and Phylogenetic Analysis of LAB from Probiotic Food Products and Supplements. FOOD BIOTECHNOL 2013. [DOI: 10.1080/08905436.2013.838783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Quigley L, O'Sullivan O, Stanton C, Beresford TP, Ross RP, Fitzgerald GF, Cotter PD. The complex microbiota of raw milk. FEMS Microbiol Rev 2013; 37:664-98. [PMID: 23808865 DOI: 10.1111/1574-6976.12030] [Citation(s) in RCA: 504] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 12/15/2022] Open
Abstract
Here, we review what is known about the microorganisms present in raw milk, including milk from cows, sheep, goats and humans. Milk, due to its high nutritional content, can support a rich microbiota. These microorganisms enter milk from a variety of sources and, once in milk, can play a number of roles, such as facilitating dairy fermentations (e.g. Lactococcus, Lactobacillus, Streptococcus, Propionibacterium and fungal populations), causing spoilage (e.g. Pseudomonas, Clostridium, Bacillus and other spore-forming or thermoduric microorganisms), promoting health (e.g. lactobacilli and bifidobacteria) or causing disease (e.g. Listeria, Salmonella, Escherichia coli, Campylobacter and mycotoxin-producing fungi). There is also concern that the presence of antibiotic residues in milk leads to the development of resistance, particularly among pathogenic bacteria. Here, we comprehensively review these topics, while comparing the approaches, both culture-dependent and culture-independent, which can be taken to investigate the microbial composition of milk.
Collapse
Affiliation(s)
- Lisa Quigley
- Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
18
|
Hynönen U, Palva A. Lactobacillus surface layer proteins: structure, function and applications. Appl Microbiol Biotechnol 2013; 97:5225-43. [PMID: 23677442 PMCID: PMC3666127 DOI: 10.1007/s00253-013-4962-2] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 12/26/2022]
Abstract
Bacterial surface (S) layers are the outermost proteinaceous cell envelope structures found on members of nearly all taxonomic groups of bacteria and Archaea. They are composed of numerous identical subunits forming a symmetric, porous, lattice-like layer that completely covers the cell surface. The subunits are held together and attached to cell wall carbohydrates by non-covalent interactions, and they spontaneously reassemble in vitro by an entropy-driven process. Due to the low amino acid sequence similarity among S-layer proteins in general, verification of the presence of an S-layer on the bacterial cell surface usually requires electron microscopy. In lactobacilli, S-layer proteins have been detected on many but not all species. Lactobacillus S-layer proteins differ from those of other bacteria in their smaller size and high predicted pI. The positive charge in Lactobacillus S-layer proteins is concentrated in the more conserved cell wall binding domain, which can be either N- or C-terminal depending on the species. The more variable domain is responsible for the self-assembly of the monomers to a periodic structure. The biological functions of Lactobacillus S-layer proteins are poorly understood, but in some species S-layer proteins mediate bacterial adherence to host cells or extracellular matrix proteins or have protective or enzymatic functions. Lactobacillus S-layer proteins show potential for use as antigen carriers in live oral vaccine design because of their adhesive and immunomodulatory properties and the general non-pathogenicity of the species.
Collapse
Affiliation(s)
- Ulla Hynönen
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| |
Collapse
|
19
|
Voronina OL, Chernukha MY, Shaginyan IA, Kunda MS, Avetisyan LR, Orlova AA, Lunin VG, Avakyan LV, Kapranov NI, Amelina EL, Chuchalin AG, Gintsburg AL. Characterization of genotypes for Burkholderia cepacia complex strains isolated from patients in hospitals of the Russian federation. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2013. [DOI: 10.3103/s0891416813020079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Complete genome sequence of Lactobacillus helveticus R0052, a commercial probiotic strain. J Bacteriol 2013; 194:6349. [PMID: 23105080 DOI: 10.1128/jb.01638-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus helveticus R0052 is a commercially available strain that is widely used in probiotic preparations. The genome sequence consisted of 2,129,425 bases. Comparative analysis showed that it was unique among L. helveticus strains in that it contained genes encoding mucus-binding proteins similar to those found in Lactobacillus acidophilus.
Collapse
|
21
|
Viiard E, Mihhalevski A, Rühka T, Paalme T, Sarand I. Evaluation of the microbial community in industrial rye sourdough upon continuous back-slopping propagation revealed Lactobacillus helveticus
as the dominant species. J Appl Microbiol 2012; 114:404-12. [DOI: 10.1111/jam.12045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/05/2012] [Accepted: 10/10/2012] [Indexed: 11/26/2022]
Affiliation(s)
- E. Viiard
- Competence Center of Food and Fermentation Technologies; Tallinn Estonia
- Department of Food Processing; Tallinn University of Technology; Tallinn Estonia
| | - A. Mihhalevski
- Competence Center of Food and Fermentation Technologies; Tallinn Estonia
- Department of Food Processing; Tallinn University of Technology; Tallinn Estonia
| | | | - T. Paalme
- Competence Center of Food and Fermentation Technologies; Tallinn Estonia
- Department of Food Processing; Tallinn University of Technology; Tallinn Estonia
| | - I. Sarand
- Competence Center of Food and Fermentation Technologies; Tallinn Estonia
- Department of Food Processing; Tallinn University of Technology; Tallinn Estonia
- Department of Gene Technology; Tallinn University of Technology; Tallinn Estonia
| |
Collapse
|
22
|
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to a combination of Lactobacillus helveticus CNCM I-1722 and Bifidobacterium longum subsp. longum CNCM I-3470 and alleviation of psychological stress (ID 938) and “maintains the balance of. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
23
|
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to a combination of Lactobacillus rhamnosus CNCM I-1720, Lactobacillus helveticus CNCM I-1722, Bifidobacterium longum subsp. longum CNCM I-3470 and Saccharomyces cerevisiae var. boulardii C. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
24
|
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of a health claim related to a combination of Lactobacillus helveticus CNCM I-1722, Bifidobacterium longum subsp. infantis CNCM I-3424, Bifidobacterium bifidum CNCM I 3426 and fructo oligosaccharides from sucrose a. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
25
|
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to a combination of Lactobacillus rhamnosus CNCM I‐1720 and Lactobacillus helveticus CNCM I‐1722 and defence against pathogenic gastro‐intestinal microorganisms (ID 939, further assessment) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
26
|
Broadbent J, Cai H, Larsen R, Hughes J, Welker D, De Carvalho V, Tompkins T, Ardö Y, Vogensen F, De Lorentiis A, Gatti M, Neviani E, Steele J. Genetic diversity in proteolytic enzymes and amino acid metabolism among Lactobacillus helveticus strains. J Dairy Sci 2011; 94:4313-28. [DOI: 10.3168/jds.2010-4068] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 04/23/2011] [Indexed: 01/17/2023]
|
27
|
Cazzola M, Tompkins TA, Matera MG. Immunomodulatory impact of a synbiotic in T(h)1 and T(h)2 models of infection. Ther Adv Respir Dis 2011; 4:259-70. [PMID: 20929951 DOI: 10.1177/1753465810379009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND METHODS The immunomodulatory activity of a synbiotic combination containing three bacterial strains (Lactobacillus helveticus R0052, Bifidobacterium longum subsp. infantis R0033 and Bifidobacterium bifidum R0071) and short-chain fructooligosaccharide was examined in two distinct infectious rat models. In the T(h)1 model, Wistar rats were administered the synbiotic combination for 2 weeks prior to challenge with a single oral dose of enterotoxigenic Escherichia coli or vehicle. In the T(h)2 model, pretreated rats were challenged with a single subcutaneous dose of hook worm, Nippostrongylus brasiliensis. Blood samples were collected 3 hours or 4 days postchallenge and serum levels of pro- and anti-inflammatory cytokines were measured. RESULTS Significant reductions in pro-inflammatory cytokines interleukin (IL)-1α, IL-1β, IL-6, and tumour necrosis factor (TNF)-α were observed in both models suggesting a single, unifying mode of action on an upstream regulator. The N. brasiliensis study also compared the effect of the individual strains to synbiotic. For most of cytokines the combination appeared to average the effect of the individual strains with the exception of IL-4 and IL-10 where there was apparent synergy for the combination. Furthermore, the cytokine response varied by strain. CONCLUSIONS It was concluded that this synbiotic combination of these three microbes could be beneficial in both T(h)1 and T(h)2 diseases.
Collapse
Affiliation(s)
- Mario Cazzola
- Dipartimento di Medicina Interna, Università di Roma Tor Vergata, Via Montpellier 1, Rome, Italy.
| | | | | |
Collapse
|
28
|
Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 2010; 105:755-64. [PMID: 20974015 DOI: 10.1017/s0007114510004319] [Citation(s) in RCA: 924] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In a previous clinical study, a probiotic formulation (PF) consisting of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 (PF) decreased stress-induced gastrointestinal discomfort. Emerging evidence of a role for gut microbiota on central nervous system functions therefore suggests that oral intake of probiotics may have beneficial consequences on mood and psychological distress. The aim of the present study was to investigate the anxiolytic-like activity of PF in rats, and its possible effects on anxiety, depression, stress and coping strategies in healthy human volunteers. In the preclinical study, rats were daily administered PF for 2 weeks and subsequently tested in the conditioned defensive burying test, a screening model for anti-anxiety agents. In the clinical trial, volunteers participated in a double-blind, placebo-controlled, randomised parallel group study with PF administered for 30 d and assessed with the Hopkins Symptom Checklist (HSCL-90), the Hospital Anxiety and Depression Scale (HADS), the Perceived Stress Scale, the Coping Checklist (CCL) and 24 h urinary free cortisol (UFC). Daily subchronic administration of PF significantly reduced anxiety-like behaviour in rats (P < 0·05) and alleviated psychological distress in volunteers, as measured particularly by the HSCL-90 scale (global severity index, P < 0·05; somatisation, P < 0·05; depression, P < 0·05; and anger-hostility, P < 0·05), the HADS (HADS global score, P < 0·05; and HADS-anxiety, P < 0·06), and by the CCL (problem solving, P < 0·05) and the UFC level (P < 0·05). L. helveticus R0052 and B. longum R0175 taken in combination display anxiolytic-like activity in rats and beneficial psychological effects in healthy human volunteers.
Collapse
|
29
|
Slattery L, O’Callaghan J, Fitzgerald G, Beresford T, Ross R. Invited review: Lactobacillus helveticus—A thermophilic dairy starter related to gut bacteria. J Dairy Sci 2010; 93:4435-54. [DOI: 10.3168/jds.2010-3327] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 05/22/2010] [Indexed: 11/19/2022]
|
30
|
Cazzola M, Pham-Thi N, Kerihuel JC, Durand H, Bohbot S. Efficacy of a synbiotic supplementation in the prevention of common winter diseases in children: a randomized, double-blind, placebo-controlled pilot study. Ther Adv Respir Dis 2010; 4:271-278. [DOI: 10.1177/1753465810379010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Background and aims: The purpose of this study was to investigate the efficacy of a synbiotic supplementation in reducing common winter diseases in children. Methods: A randomized, double-blind, placebo-controlled, multicentre study was conducted in young school-age children (3—7 years old) during a winter period. Participants were otherwise healthy children who suffered from at least three episodes of ear, nose and throat (ENT), respiratory tract or gastrointestinal illness during the previous winter. They were supplemented daily with either a synbiotic preparation (Lactobacillus helveticus R0052, Bifidobacterium infantis R0033, Bifidobacterium bifidum R0071, and fructooligosaccharide) or a matched placebo for 3 months. Over this period, all emergent health episodes of any type were recorded by parents in a diary. They were checked by investigators at regular monthly visits. The main study outcome was the percentage of children free of any episode during the study course. Results: We randomized 135 children (mean age: 4.1±1.0 years) to the synbiotic group ( n = 62) or placebo ( n = 73) group. At least one illness episode was reported in 32 children in the synbiotic group and 50 in the placebo group (51.6% versus 68.5%). This corresponded to a significant 25% relative risk reduction (95% CI 0.6—44.3%; p = 0.045). This difference was due to a decrease in the number of children who suffered from at least one ENT, respiratory tract or gastrointestinal disorder (50.0% with synbiotic versus 67.1% with placebo; p = 0.044). At least one sickness school day loss was noted in 25.8% of children with the synbiotic as compared with 42.5% with placebo ( p = 0.043). No treatment related side effects were detected in either group. Conclusions: This study suggests that a 3-month supplementation with this synbiotic preparation can decrease the risk of occurrence of common infectious diseases in children and limits the risk of school day loss.
Collapse
Affiliation(s)
- Mario Cazzola
- Dipartimento di Medicina Interna, Università di Roma “Tor Vergata ”, Via Montpellier 1 00133 Rome, Italy
| | - Nhân Pham-Thi
- Department of Pediatric Pneumology and Allergology, Necker Enfants Malades Hospital, Faculté René Descartes Paris V, Paris, France
| | | | | | - Serge Bohbot
- URGO Laboratories, Clinical Research Development, Chenôve, France
| |
Collapse
|
31
|
Anderson RC, Cookson AL, McNabb WC, Kelly WJ, Roy NC. Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiol Lett 2010; 309:184-92. [PMID: 20618863 DOI: 10.1111/j.1574-6968.2010.02038.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The aim of this research was to identify bacterial isolates having the potential to improve intestinal barrier function. Lactobacillus plantarum strains and human oral isolates were screened for their ability to enhance tight junction integrity as measured by the transepithelial electrical resistance (TEER) assay. Eight commercially used probiotics were compared to determine which had the greatest positive effect on TEER, and the best-performing probiotic strain, Lactobacillus rhamnosus HN001, was used as a benchmark to evaluate the isolates. One isolate, L. plantarum DSM 2648, was selected for further study because it increased TEER 135% more than L. rhamnosus HN001. The ability of L. plantarum DSM 2648 to tolerate gastrointestinal conditions and adhere to intestinal cells was determined, and L. plantarum DSM 2648 performed better than L. rhamnosus HN001 in all the assays. Lactobacillus plantarum DSM 2648 was able to reduce the negative effect of Escherichia coli [enteropathogenic E. coli (EPEC)] O127:H6 (E2348/69) on TEER and adherence by as much as 98.75% and 80.18%, respectively, during simultaneous or prior coculture compared with EPEC incubation alone. As yet, the precise mechanism associated with the positive effects exerted by L. plantarum DSM 2648 are unknown, and may influence its use to improve human health and wellness.
Collapse
Affiliation(s)
- Rachel C Anderson
- Food, Metabolism and Microbiology Section, AgResearch Grasslands, Palmerston North, New Zealand.
| | | | | | | | | |
Collapse
|
32
|
Macouzet M, Robert N, Lee BH. Genetic and functional aspects of linoleate isomerase in Lactobacillus acidophilus. Appl Microbiol Biotechnol 2010; 87:1737-42. [DOI: 10.1007/s00253-010-2634-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/14/2010] [Accepted: 04/17/2010] [Indexed: 12/25/2022]
|
33
|
Song TS, Kim JY, Kim KH, Jung BM, Yun SS, Yoon SS. In vitro evaluation of probiotic lactic acid bacteria isolated from dairy and non-dairy environments. Food Sci Biotechnol 2010. [DOI: 10.1007/s10068-010-0003-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
34
|
|
35
|
Pascual J, Macián MC, Arahal DR, Garay E, Pujalte MJ. Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. Int J Syst Evol Microbiol 2009; 60:154-165. [PMID: 19648344 DOI: 10.1099/ijs.0.010702-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The central clade of the genus Vibrio, also called the Vibrio core group, comprises six species that are tightly related (DNA-DNA reassociation values are very close to 70 % for most species pairs). Identification of novel strains to the species level within this group is troublesome and results are quite often dependent on the methodology employed. Therefore, this group represents an excellent framework to test the robustness of multilocus sequence analysis (MLSA) not only for inferring phylogeny but also as an identification tool without the need for DNA-DNA hybridization assays. The genes selected, 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR, were amplified by direct PCR from 44 Vibrio core-group strains. Subsequent analysis allowed us to recognize toxR and rpoD as the most resolving individual genes and showed that concatenated sequences of rpoD, rctB and toxR were more useful than concatenated sequences of all seven genes. To validate our conclusions, MLSA similarities have been correlated with DNA-DNA relatedness values obtained in this study and values taken from the literature. Although the seven concatenated genes gave the best correlation, the concatenated sequences of rpoD, rctB and toxR have the practical advantage of showing a considerable gap between the maximal interspecies similarity and the minimal intraspecies similarity recorded, meaning that they can be used quite conveniently for species identification of vibrios.
Collapse
Affiliation(s)
- Javier Pascual
- Departamento de Microbiología y Ecología, Universidad de Valencia, Spain.,Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBiBE), Universidad de Valencia, Spain
| | - M Carmen Macián
- Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Spain.,Departamento de Microbiología y Ecología, Universidad de Valencia, Spain
| | - David R Arahal
- Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Spain.,Departamento de Microbiología y Ecología, Universidad de Valencia, Spain
| | - Esperanza Garay
- Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Spain.,Departamento de Microbiología y Ecología, Universidad de Valencia, Spain
| | - María J Pujalte
- Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Spain.,Departamento de Microbiología y Ecología, Universidad de Valencia, Spain
| |
Collapse
|
36
|
Jandu N, Zeng ZJ, Johnson-Henry KC, Sherman PM. Probiotics prevent enterohaemorrhagic Escherichia coli O157:H7-mediated inhibition of interferon-gamma-induced tyrosine phosphorylation of STAT-1. MICROBIOLOGY-SGM 2009; 155:531-540. [PMID: 19202101 DOI: 10.1099/mic.0.021931-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 inhibits interferon (IFN)-gamma-stimulated tyrosine phosphorylation of signal transducer and activator of transcription (STAT)-1 in epithelial cells. We determined the effects of probiotics on EHEC-mediated disruption of IFN-gamma-stimulated STAT-1 activation in epithelial cell lines. Confluent Intestine 407, HEp-2 and Caco-2 epithelial cells were pre-treated (3 h) with either probiotics or surface-layer proteins derived from Lactobacillus helveticus R0052 prior to infection with EHEC O157:H7 strain CL56 (m.o.i. 100:1, 6 h, 37 degrees C in 5% CO2). Subsequently, cells were washed and stimulated with human recombinant IFN-gamma (50 ng ml(-1), 0.5 h, 37 degrees C) followed by whole-cell protein extraction and immunoblotting for tyrosine-phosphorylated STAT-1. Relative to uninfected cells, STAT-1-activation was reduced after EHEC O157:H7 infection. Pre-incubation with the probiotic L. helveticus R0052 followed by EHEC infection abrogated pathogen-mediated disruption of IFN-gamma-STAT-1 signalling. As determined using Transwell inserts, probiotic-mediated protection was independent of epithelial cell contact. In contrast, pre-incubation with boiled L. helveticus R0052, an equal concentration of viable Lactobacillus rhamnosus R0011, or surface-layer proteins (0.14 mg ml(-1)) did not restore STAT-1 signalling in EHEC-infected cells. The viable probiotic agent L. helveticus R0052 prevented EHEC O157:H7-mediated subversion of epithelial cell signal transduction responses.
Collapse
Affiliation(s)
- Narveen Jandu
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Zoë Jingjing Zeng
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | - Philip M Sherman
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
|
38
|
Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K, Cleenwerck I, Vancanneyt M, Swings J. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2008; 57:2777-2789. [PMID: 18048724 DOI: 10.1099/ijs.0.64711-0] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to evaluate the use of the phenylalanyl-tRNA synthase alpha subunit (pheS) and the RNA polymerase alpha subunit (rpoA) partial gene sequences for species identification of members of the genus Lactobacillus. Two hundred and one strains representing the 98 species and 17 subspecies were examined. The pheS gene sequence analysis provided an interspecies gap, which in most cases exceeded 10 % divergence, and an intraspecies variation of up to 3 %. The rpoA gene sequences revealed a somewhat lower resolution, with an interspecies gap normally exceeding 5 % and an intraspecies variation of up to 2 %. The combined use of pheS and rpoA gene sequences offers a reliable identification system for nearly all species of the genus Lactobacillus. The pheS and rpoA gene sequences provide a powerful tool for the detection of potential novel Lactobacillus species and synonymous taxa. In conclusion, the pheS and rpoA gene sequences can be used as alternative genomic markers to 16S rRNA gene sequences and have a higher discriminatory power for reliable identification of species of the genus Lactobacillus.
Collapse
Affiliation(s)
- Sabri M Naser
- Department of Biology and Biotechnology, Faculty of Sciences, An-Najah National University, Nablus, Palestine
| | - Peter Dawyndt
- Department of Applied Mathematics, Biometrics and Process Control, Ghent University, Coupure links 653, Ghent 9000, Belgium.,Laboratory of Microbiology, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
| | - Bart Hoste
- BCCMTM/LMG Bacteria Collection, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
| | - Dirk Gevers
- Bioinformatics and Evolutionary Genomics, Ghent University/VIB, Technologiepark 927, Ghent 9052, Belgium.,Laboratory of Microbiology, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
| | | | - Ilse Cleenwerck
- BCCMTM/LMG Bacteria Collection, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
| | - Marc Vancanneyt
- BCCMTM/LMG Bacteria Collection, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
| | - Jean Swings
- BCCMTM/LMG Bacteria Collection, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium.,Laboratory of Microbiology, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
| |
Collapse
|
39
|
Wang LT, Lee FL, Tai CJ, Kuo HP. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int J Syst Evol Microbiol 2008; 58:671-5. [DOI: 10.1099/ijs.0.65191-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Jeon SR, Song TS, Kim JY, Shin WC, Her SW, Yoon SS. Identification and Characterization of Lactic Acid Bacteria Starters Isolated from the Commercial Drink-Yogurt Products. Korean J Food Sci Anim Resour 2007. [DOI: 10.5851/kosfa.2007.27.4.509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
41
|
Endo A, Okada S. Lactobacillus farraginis sp. nov. and Lactobacillus parafarraginis sp. nov., heterofermentative lactobacilli isolated from a compost of distilled shochu residue. Int J Syst Evol Microbiol 2007; 57:708-712. [PMID: 17392191 DOI: 10.1099/ijs.0.64618-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Five strains of lactic acid bacteria were isolated from a compost of distilled shochu residue in Japan. The isolates were separated into two groups on the basis of 16S rRNA gene sequence similarity, and two subclusters were formed that comprised micro-organisms closely related to Lactobacillus buchneri, L. diolivorans, L. hilgardii, L. kefiri, L. parabuchneri and L. parakefiri. DNA-DNA relatedness results revealed that the isolates could be separated into two groups, and these groups correlated well with the subclusters generated using the phylogenetic analysis. Moreover, the levels of DNA-DNA relatedness showed clear separation of the two groups from their phylogenetic relatives. Therefore, the two groups represent two novel species, for which the names Lactobacillus farraginis sp. nov. (type strain NRIC 0676(T)=JCM 14108(T)=DSM 18382(T)) and Lactobacillus parafarraginis sp. nov. (type strain NRIC 0677(T)=JCM 14109(T)=DSM 18390(T)) are proposed.
Collapse
Affiliation(s)
- Akihito Endo
- NODAI Culture Collection Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Sanae Okada
- NODAI Culture Collection Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| |
Collapse
|
42
|
Wang LT, Lee FL, Tai CJ, Yokota A, Kuo HP. Reclassification of Bacillus axarquiensis Ruiz-García et al. 2005 and Bacillus malacitensis Ruiz-García et al. 2005 as later heterotypic synonyms of Bacillus mojavensis Roberts et al. 1994. Int J Syst Evol Microbiol 2007; 57:1663-1667. [PMID: 17625213 DOI: 10.1099/ijs.0.64808-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Bacillus subtilis group encompasses the taxa Bacillus subtilis subsp. subtilis, B. licheniformis, B. amyloliquefaciens, B. atrophaeus, B. mojavensis, B. vallismortis, B. subtilis subsp. spizizenii, B. sonorensis, B. velezensis, B. axarquiensis and B. malacitensis. In this study, the taxonomic relatedness between the species B. axarquiensis, B. malacitensis and B. mojavensis was investigated. Sequence analysis of the 16S rRNA gene and the gene for DNA gyrase subunit B (gyrB) confirmed the very high similarities between these three type strains and a reference strain of B. mojavensis (>99 and >97 %, respectively). DNA–DNA hybridization experiments revealed high relatedness values between the type strains of B. axarquiensis, B. malacitensis and B. mojavensis and between these strains and a reference strain of B. mojavensis (83–98 %). Based on these molecular taxonomic data and the lack of phenotypic distinctive characteristics, Bacillus axarquiensis and Bacillus malacitensis should be reclassified as later heterotypic synonyms of Bacillus mojavensis.
Collapse
MESH Headings
- Bacillus/classification
- Bacillus/genetics
- DNA Gyrase/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Genes, rRNA
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Li-Ting Wang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, PO Box 246, Hsinchu 30099, Taiwan
| | - Fwu-Ling Lee
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, PO Box 246, Hsinchu 30099, Taiwan
| | - Chun-Ju Tai
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, PO Box 246, Hsinchu 30099, Taiwan
| | - Akira Yokota
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-Ku, Tokyo 113-0032, Japan
| | - Hsiao-Ping Kuo
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, PO Box 246, Hsinchu 30099, Taiwan
| |
Collapse
|
43
|
Berger B, Pridmore RD, Barretto C, Delmas-Julien F, Schreiber K, Arigoni F, Brüssow H. Similarity and differences in the Lactobacillus acidophilus group identified by polyphasic analysis and comparative genomics. J Bacteriol 2006; 189:1311-21. [PMID: 17142402 PMCID: PMC1797336 DOI: 10.1128/jb.01393-06] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A set of lactobacilli were investigated by polyphasic analysis. Multilocus sequence analysis, DNA typing, microarray analysis, and in silico whole-genome alignments provided a remarkably consistent pattern of similarity within the Lactobacillus acidophilus complex. On microarray analysis, 17 and 5% of the genes from Lactobacillus johnsonii strain NCC533 represented variable and strain-specific genes, respectively, when tested against four independent isolates of L. johnsonii. When projected on the NCC533 genome map, about 10 large clusters of variable genes were identified, and they were enriched around the terminus of replication. A quarter of the variable genes and two-thirds of the strain-specific genes were associated with mobile DNA. Signatures for horizontal gene transfer and modular evolution were found in prophages and in DNA from the exopolysaccharide biosynthesis cluster. On microarray hybridizations, Lactobacillus gasseri strains showed a shift to significantly lower fluorescence intensities than the L. johnsonii test strains, and only genes encoding very conserved cellular functions from L. acidophilus hybridized to the L. johnsonii array. In-silico comparative genomics showed extensive protein sequence similarity and genome synteny of L. johnsonii with L. gasseri, L. acidophilus, and Lactobacillus delbrueckii; moderate synteny with Lactobacillus casei; and scattered X-type sharing of protein sequence identity with the other sequenced lactobacilli. The observation of a stepwise decrease in similarity between the members of the L. acidophilus group suggests a strong element of vertical evolution in a natural phylogenetic group. Modern whole-genome-based techniques are thus a useful adjunct to the clarification of taxonomical relationships in problematic bacterial groups.
Collapse
Affiliation(s)
- Bernard Berger
- Nestlé Research Center, CH-1000 Lausanne 26, Vers-chez-les-Blanc, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
44
|
Huys G, Vancanneyt M, D'Haene K, Vankerckhoven V, Goossens H, Swings J. Accuracy of species identity of commercial bacterial cultures intended for probiotic or nutritional use. Res Microbiol 2006; 157:803-10. [PMID: 16919915 DOI: 10.1016/j.resmic.2006.06.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 06/13/2006] [Accepted: 06/19/2006] [Indexed: 10/24/2022]
Abstract
Independent studies have indicated that the microbiological composition of several commercial probiotic products does not correspond to the product label information. The present study set out to investigate to what extent these problems may be due to the use of misidentified cultures at the onset of production. For this purpose, 213 cultures of lactic acid bacteria (LAB) and propionibacteria intended for probiotic or nutritional use were collected from 26 manufacturers of probiotic products, three international culture collections and one research institute. The accuracy of the taxonomic identity provided by the strain depositor was assessed through a polyphasic approach based on validated and standardized identification methods including fluorescent amplified fragment length polymorphism (FAFLP) and repetitive DNA element (rep)-PCR fingerprinting, protein profiling and partial 16S rDNA sequencing. The majority of the cultures were received as members of the genera Lactobacillus (57%) and Bifidobacterium (22%); however, propionibacteria, enterococci, Lactococcus lactis (subsp. lactis), Streptococcus thermophilus and pediococci were also obtained. Upon reidentification, 46 cases of misidentification at the genus level (n=19) or species level (n=27) were recorded, including 34 commercial probiotic cultures deposited by 10 different companies. The finding that more than 28% of the commercial cultures intended for human and/or animal probiotic use were misidentified at the genus or species level suggests that many cases of probiotic product mislabeling originate from the incorporation of incorrectly identified strains. A large number of these discrepancies could be related to the use of methods with limited taxonomic resolution (e.g., API strips) or that are unsuitable for reliable identification up to species level (e.g., pulsed-field gel electrophoresis and randomly amplified polymorphic DNA analysis). The current study has again highlighted that reliable identification of LAB and propionibacteria requires molecular methods with a high taxonomic resolution that are linked to up-to-date identification libraries.
Collapse
Affiliation(s)
- Geert Huys
- Laboratory of Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
45
|
Naser SM, Vancanneyt M, Snauwaert C, Vrancken G, Hoste B, De Vuyst L, Swings J. Reclassification of Lactobacillus amylophilus LMG 11400 and NRRL B-4435 as Lactobacillus amylotrophicus sp. nov. Int J Syst Evol Microbiol 2006; 56:2523-2527. [PMID: 17082384 DOI: 10.1099/ijs.0.64463-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic position of six Lactobacillus amylophilus strains isolated from swine waste-corn fermentations was reinvestigated. All strains were included in a multilocus sequence analysis (MLSA) study for species identification of Lactobacillus using the genes encoding the phenylalanyl-tRNA synthase alpha subunit (pheS) and RNA polymerase alpha subunit (rpoA). Partial pheS and rpoA gene sequences showed that strains LMG 11400 and NRRL B-4435 represent a separate lineage that is distantly related to the type strain of L. amylophilus, LMG 6900T, and to three other strains of the species. The MLSA data showed that the two strains LMG 11400 and NRRL B-4435 constituted a distinct cluster, sharing 100 % pheS and rpoA gene sequence similarity. The other reference strains clustered together with the type strain of L. amylophilus, LMG 6900T, and were clearly differentiated from strains LMG 11400 and NRRL B-4435 (80 and 89 % pheS and rpoA gene sequence similarity, respectively). The 16S rRNA gene sequences of the latter two strains are 100 % identical, with the nearest phylogenetic neighbour L. amylophilus LMG 6900T showing only 97.2 % 16S rRNA gene sequence similarity. Further polyphasic taxonomic study based on whole-cell protein fingerprinting, DNA–DNA hybridization and biochemical features demonstrated that the two strains represent a single, novel Lactobacillus species, for which the name Lactobacillus amylotrophicus sp. nov. is proposed. The type strain is LMG 11400T (=NRRL B-4436T=DSM 20534T).
Collapse
MESH Headings
- Animal Husbandry
- Bacterial Proteins/genetics
- Bacterial Typing Techniques
- Carbohydrate Metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA-Directed RNA Polymerases/genetics
- Electrophoresis, Polyacrylamide Gel
- Genes, rRNA
- Industrial Waste
- Lactobacillus/classification
- Lactobacillus/cytology
- Lactobacillus/isolation & purification
- Lactobacillus/physiology
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Phenylalanine-tRNA Ligase/genetics
- Phylogeny
- Protein Subunits/genetics
- Proteome/analysis
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Sabri M Naser
- BCCM™/LMG Bacteria Collection, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
- Laboratory of Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Marc Vancanneyt
- BCCM™/LMG Bacteria Collection, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Cindy Snauwaert
- BCCM™/LMG Bacteria Collection, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Gino Vrancken
- Research Group of Industrial Microbiology and Food Biotechnology, Department of Applied Biological Sciences and Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Bart Hoste
- BCCM™/LMG Bacteria Collection, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Department of Applied Biological Sciences and Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jean Swings
- BCCM™/LMG Bacteria Collection, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
- Laboratory of Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
46
|
Naser SM, Vancanneyt M, Hoste B, Snauwaert C, Swings J. Lactobacillus cypricasei Lawson et al. 2001 is a later heterotypic synonym of Lactobacillus acidipiscis Tanasupawat et al. 2000. Int J Syst Evol Microbiol 2006; 56:1681-1683. [PMID: 16825650 DOI: 10.1099/ijs.0.64229-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The applicability of a multilocus sequence analysis (MLSA)-based identification system for lactobacilli was evaluated. Two housekeeping genes that code for the phenylalanyl-tRNA synthase alpha-subunit (pheS) and RNA polymerase alpha-subunit (rpoA) were sequenced and analysed for members of the Lactobacillus salivarius species group. The type strains of Lactobacillus acidipiscis and Lactobacillus cypricasei were investigated further using a third gene that encodes the alpha-subunit of ATP synthase (atpA). The MLSA data revealed close relatedness between L. acidipiscis and L. cypricasei, with 99.8-100 % pheS, rpoA and atpA gene sequence similarities. Comparison of the 16S rRNA gene sequences of the type strains of the two species confirmed the close relatedness (99.8 % gene sequence similarity) between the two taxa. Similar phenotypes and high DNA-DNA binding values in the range of 84 to 97.5 % confirmed that L. acidipiscis and L. cypricasei are synonymous species. On the basis of the present study, it is proposed that Lactobacillus cypricasei is a later heterotypic synonym of Lactobacillus acidipiscis.
Collapse
Affiliation(s)
- Sabri M Naser
- BCCMTM/LMG Bacteria Collection, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
- Laboratory of Microbiology, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
| | - Marc Vancanneyt
- BCCMTM/LMG Bacteria Collection, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
| | - Bart Hoste
- BCCMTM/LMG Bacteria Collection, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
| | - Cindy Snauwaert
- BCCMTM/LMG Bacteria Collection, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
| | - Jean Swings
- BCCMTM/LMG Bacteria Collection, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
- Laboratory of Microbiology, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
| |
Collapse
|
47
|
Abstract
This review deals with recent developments on the biodiversity of sourdough lactic acid bacteria (LAB) and the recent description of new sourdough LAB species. One of the outcomes of biodiversity studies of particular sourdough ecosystems throughout Europe is the description of new taxa of LAB. During the last 3 years, several new LAB species have been isolated from traditional sourdoughs: Lactobacillus mindensis, Lactobacillus spicheri, Lactobacillus rossiae, Lactobacillus zymae, Lactobacillus acidifarinae, Lactobacillus hammesii, and Lactobacillus nantensis. Some of these species have been described on one single isolate only. Isolation of novel taxa mainly depends on the cultivation approach used, i.e. (selective) incubation media and conditions. The distribution of the taxa of LAB is highly variable from one sourdough ecosystem to another. Therefore, it is difficult to define correlations between population composition and both the type of sourdough or the geographic location. Identification of isolated strains needs a polyphasic approach, including a combination of phenotypic and genotypic methods, the latter often based on the polymerase chain reaction (PCR) and encompassing 16S rRNA sequencing and DNA-DNA hybridizations. A main obstacle in current identification approaches of LAB strains is the lack of a robust and exchangeable identification system for all LAB species. Recent studies based on complete genomes have provided the basis for establishing sets of genes useful for multi-locus sequence analysis (MLSA). Monitoring the population dynamics of sourdough ecosystems can be performed by both culture-dependent (plating and incubation) and culture-independent (e.g. PCR-Denaturing Gradient Gel Electrophoresis) methods. Although highly valuable for community fingerprinting, culture-independent methods do not always yield precise quantitative information.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Department of Biological Sciences and Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | | |
Collapse
|
48
|
Johnson-Henry KC, Hagen KE, Gordonpour M, Tompkins TA, Sherman PM. Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:H7 adhesion to epithelial cells. Cell Microbiol 2006; 9:356-67. [PMID: 16925785 DOI: 10.1111/j.1462-5822.2006.00791.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Adherence of intestinal pathogens, including Escherichia coli O157:H7, to human intestinal epithelial cells is a key step in pathogenesis. Probiotic bacteria, including Lactobacillus helveticus R0052 inhibit the adhesion of E. coli O157:H7 to epithelial cells, a process which may be related to specific components of the bacterial surface. Surface-layer proteins (Slps) are located in a paracrystalline layer outside the bacterial cell wall and are thought to play a role in tissue adherence. However, the ability of S-layer protein extract derived from probiotic bacteria to block adherence of enteric pathogens has not been investigated. Human epithelial (HEp-2 and T84) cells were treated with S-layer protein extract alone, infected with E. coli O157:H7, or pretreated with S-layer protein extract prior to infection to determine their importance in the inhibition of pathogen adherence. The effects of S-layer protein extracts were characterized by phase-contrast and immunofluorescence microscopy and measurement of the transepithelial electrical resistance of polarized monolayers. Pre-treatment of host epithelial cells with S-layer protein extracts prior to E. coli O157:H7 infection decreased pathogen adherence and attaching-effacing lesions in addition to preserving the barrier function of monolayers. These in vitro studies indicate that a non-viable constituent derived from a probiotic strain may prove effective in interrupting the infectious process of an intestinal pathogen.
Collapse
|