1
|
Selwyn JD, Despard BA, Vollmer MV, Trytten EC, Vollmer SV. Identification of putative coral pathogens in endangered Caribbean staghorn coral using machine learning. Environ Microbiol 2024; 26:e16700. [PMID: 39289821 DOI: 10.1111/1462-2920.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
Coral diseases contribute to the rapid decline in coral reefs worldwide, and yet coral bacterial pathogens have proved difficult to identify because 16S rRNA gene surveys typically identify tens to hundreds of disease-associate bacteria as putative pathogens. An example is white band disease (WBD), which has killed up to 95% of the now-endangered Caribbean Acropora corals since 1979, yet the pathogen is still unknown. The 16S rRNA gene surveys have identified hundreds of WBD-associated bacterial amplicon sequencing variants (ASVs) from at least nine bacterial families with little consensus across studies. We conducted a multi-year, multi-site 16S rRNA gene sequencing comparison of 269 healthy and 143 WBD-infected Acropora cervicornis and used machine learning modelling to accurately predict disease outcomes and identify the top ASVs contributing to disease. Our ensemble ML models accurately predicted disease with greater than 97% accuracy and identified 19 disease-associated ASVs and five healthy-associated ASVs that were consistently differentially abundant across sampling periods. Using a tank-based transmission experiment, we tested whether the 19 disease-associated ASVs met the assumption of a pathogen and identified two pathogenic candidate ASVs-ASV25 Cysteiniphilum litorale and ASV8 Vibrio sp. to target for future isolation, cultivation, and confirmation of Henle-Koch's postulate via transmission assays.
Collapse
Affiliation(s)
- Jason D Selwyn
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Brecia A Despard
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Miles V Vollmer
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Emily C Trytten
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Steven V Vollmer
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Kudo R, Yamano R, Yu J, Koike S, Haditomo AHC, de Freitas MAM, Tsuchiya J, Mino S, Thompson F, Romalde JL, Kasai H, Sakai Y, Sawabe T. Genome taxonomy of the genus Neptuniibacter and proposal of Neptuniibacter victor sp. nov. isolated from sea cucumber larvae. PLoS One 2023; 18:e0290060. [PMID: 37582072 PMCID: PMC10426996 DOI: 10.1371/journal.pone.0290060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
A Gram-staining-negative, oxidase-positive, strictly aerobic rod-shaped bacterium, designated strain PT1T, was isolated from the laboratory-reared larvae of the sea cucumber Apostichopus japonicus. A phylogenetic analysis based on the 16S rRNA gene nucleotide sequences revealed that PT1T was closely related to Neptuniibacter marinus ATR 1.1T (= CECT 8938T = DSM 100783T) and Neptuniibacter caesariensis MED92T (= CECT 7075T = CCUG 52065T) showing 98.2% and 98.1% sequence similarity, respectively. However, the average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH) values among these three strains were 72.0%-74.8% and 18.3%-19.5% among related Neptuniibacter species, which were below 95% and 70%, respectively, confirming the novel status of PT1T. The average amino acid identity (AAI) values of PT1T showing 74-77% among those strains indicated PT1T is a new species in the genus Neptuniibacter. Based on the genome-based taxonomic approach, Neptuniibacter victor sp. nov. is proposed for PT1T. The type strain is PT1T (JCM 35563T = LMG 32868T).
Collapse
Affiliation(s)
- Rika Kudo
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Ryota Yamano
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Juanwen Yu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Shotaro Koike
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Alfabetian Harjuno Condro Haditomo
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
- Aquaculture Department, Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Mayanne A. M. de Freitas
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jiro Tsuchiya
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Fabiano Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jesús L. Romalde
- Departamento de Microbiología y Parasitología, CRETUS & CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago, Spain
| | - Hisae Kasai
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yuichi Sakai
- Hakodate Fisheries Research, Hokkaido Research Organization, Local Independent Administrative Agency, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
3
|
Chen H, Dai J, Yu P, Wang X, Wang J, Li Y, Wang S, Li S, Qiu D. Parathalassolituus penaei gen. nov., sp. nov., a novel member of the family Oceanospirillaceae isolated from a coastal shrimp pond in Guangxi, PR China. Int J Syst Evol Microbiol 2023; 73. [PMID: 37185048 DOI: 10.1099/ijsem.0.005867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
A Gram-stain-negative, strictly aerobic, rod-shaped and motile bacterium with bipolar flagella, designated G-43T, was isolated from a surface seawater sample collected from an aquaculture in Guangxi, PR China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain G-43T was most closely related to the family Oceanospirillaceae and distantly to the most closely related genera Venatorbacter and Thalassolituus (95.52 % and 94.45-94.76 % 16S rRNA gene sequence similarity, respectively), while similarity values to other Oceanospirillaceae type strains were lower than 94.0 %. Strain G-43T was found to grow at 4-30 °C (optimum, 25-28 °C), pH 6-9.0 (optimum, pH 7.0) and with 0-4.0 % NaCl (w/v; optimum at 2 % NaCl). Chemotaxonomic analysis of strain G-43T indicated that the sole respiratory quinone was ubiquinone-8, the predominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), and the major polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, aminolipid, diphosphatidylglycerol, phospholipids and an unidentified lipid. The G+C content of the genomic DNA was 55.4 mol%. The phylogenetic, genotypic, phenotypic and chemotaxonomic data demonstrate that strain G-43T represents a novel species in a novel genus within the family Oceanospirillaceae, for which the name Parathalassolituus penaei gen. nov., sp. nov. is proposed. Strain G-43T (=KCTC 72750T= CCTCC AB 2022321T) is the type and only strain of Parathalassolituus penaei.
Collapse
Affiliation(s)
- Han Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
- Jingchu University of Technology, Jingmen, 448000, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingcheng Dai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Ping Yu
- Sinochem Zhuhai Petrochemical Terminal Co. Ltd., Zhuhai, 519050, PR China
| | - Xin Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yan Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
- China University of Geosciences (CUG), Wuhan, 430074, PR China
| | - Shanhui Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuyang Li
- Wuhan Ammunition Life-tech Co. Ltd., Wuhan, 430000, PR China
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| |
Collapse
|
4
|
Demko AM, Patin NV, Jensen PR. Microbial diversity in tropical marine sediments assessed using culture-dependent and culture-independent techniques. Environ Microbiol 2021; 23:6859-6875. [PMID: 34636122 DOI: 10.1111/1462-2920.15798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 09/28/2021] [Indexed: 01/04/2023]
Abstract
The microbial communities associated with marine sediments are critical for ecosystem function yet remain poorly characterized. While culture-independent (CI) techniques capture the broadest perspective on community composition, culture-dependent (CD) methods can select for low abundance taxa that are missed using CI approaches. This study aimed to assess microbial diversity in tropical marine sediments at five shallow-water sites in Belize using both CD and CI techniques. The CD methods captured approximately 3% of the >800 genera detected across all sites using the CI approach. Additionally, 39 genera were only detected in culture, revealing rare taxa that were missed with the CI approach. Significantly different communities were detected across sites, with rare taxa playing an important role in distinguishing among communities. This study provides important baseline data describing shallow-water sediment microbial communities, evidence that standard cultivation techniques may be more effective than previously recognized, and the first steps towards identifying new taxa that are amenable to agar plate cultivation.
Collapse
Affiliation(s)
- Alyssa M Demko
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Nastassia V Patin
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Effects of Hydraulic Retention Time and Influent Nitrate-N Concentration on Nitrogen Removal and the Microbial Community of an Aerobic Denitrification Reactor Treating Recirculating Marine Aquaculture System Effluent. WATER 2020. [DOI: 10.3390/w12030650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of hydraulic retention time (HRT) and influent nitrate-N concentration on nitrogen removal and the microbial community composition of an aerobic denitrification reactor treating recirculating marine aquaculture system effluent were evaluated. Results showed that over 98% of nitrogen was removed and ammonia-N and nitrite-N levels were below 1 mg/L when influent nitrate-N was below 150 mg/L and HRT over 5 h. The maximum nitrogen removal efficiency and nitrogen removal rate were observed at HRT of 6 or 7 h when influent nitrate-N was 150 mg/L. High-throughput DNA sequencing analysis revealed that the microbial phyla Proteobacteria and Bacteroidetes were predominant in the reactor, with an average relative total abundance above 70%. The relative abundance of denitrifying bacteria of genera Halomonas and Denitratisoma within the reactor decreased with increasing influent nitrate-N concentrations. Our results show the presence of an aerobically denitrifying microbial consortium with both expected and unexpected members, many of them relatively new to science. Our findings provide insights into the biological workings and inform the design and operation of denitrifying reactors for marine aquaculture systems.
Collapse
|
6
|
Doyle SM, Whitaker EA, De Pascuale V, Wade TL, Knap AH, Santschi PH, Quigg A, Sylvan JB. Rapid Formation of Microbe-Oil Aggregates and Changes in Community Composition in Coastal Surface Water Following Exposure to Oil and the Dispersant Corexit. Front Microbiol 2018; 9:689. [PMID: 29696005 PMCID: PMC5904270 DOI: 10.3389/fmicb.2018.00689] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/23/2018] [Indexed: 12/15/2022] Open
Abstract
During the Deepwater Horizon (DWH) oil spill, massive quantities of oil were deposited on the seafloor via a large-scale marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event. The role of chemical dispersants (e.g., Corexit) applied during the DWH oil spill clean-up in helping or hindering the formation of this MOSSFA event are not well-understood. Here, we present the first experiment related to the DWH oil spill to specifically investigate the relationship between microbial community structure, oil and Corexit®, and marine oil-snow in coastal surface waters. We observed the formation of micron-scale aggregates of microbial cells around droplets of oil and dispersant and found that their rate of formation was directly related to the concentration of oil within the water column. These micro-aggregates are potentially important precursors to the formation of larger marine oil-snow particles. Therefore, our observation that Corexit® significantly enhanced their formation suggests dispersant application may play a role in the development of MOSSFA events. We also observed that microbial communities in marine surface waters respond to oil and oil plus Corexit® differently and much more rapidly than previously measured, with major shifts in community composition occurring within only a few hours of experiment initiation. In the oil-amended treatments without Corexit®, this manifested as an increase in community diversity due to the outgrowth of several putative aliphatic- and aromatic-hydrocarbon degrading genera, including phytoplankton-associated taxa. In contrast, microbial community diversity was reduced in mesocosms containing chemically dispersed oil. Importantly, different consortia of hydrocarbon degrading bacteria responded to oil and chemically dispersed oil, indicating that functional redundancy in the pre-spill community likely results in hydrocarbon consumption in both undispersed and dispersed oils, but by different bacterial taxa. Taken together, these data improve our understanding of how dispersants influence the degradation and transport of oil in marine surface waters following an oil spill and provide valuable insight into the early response of complex microbial communities to oil exposure.
Collapse
Affiliation(s)
- Shawn M Doyle
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Emily A Whitaker
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Veronica De Pascuale
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Terry L Wade
- Department of Oceanography, Texas A&M University, College Station, TX, United States.,Geochemical and Environmental Research Group, Texas A&M University, College Station, TX, United States
| | - Anthony H Knap
- Department of Oceanography, Texas A&M University, College Station, TX, United States.,Geochemical and Environmental Research Group, Texas A&M University, College Station, TX, United States
| | - Peter H Santschi
- Department of Oceanography, Texas A&M University, College Station, TX, United States.,Department of Marine Science, Texas A&M University at Galveston, Galveston, TX, United States
| | - Antonietta Quigg
- Department of Oceanography, Texas A&M University, College Station, TX, United States.,Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Jason B Sylvan
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| |
Collapse
|
7
|
Hyeon JW, Kim KH, Chun BH, Jeon CO. Pontibacterium granulatum gen. nov., sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:3784-3790. [DOI: 10.1099/ijsem.0.002190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jong Woo Hyeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Byung Hee Chun
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
8
|
Okpala GN, Chen C, Fida T, Voordouw G. Effect of Thermophilic Nitrate Reduction on Sulfide Production in High Temperature Oil Reservoir Samples. Front Microbiol 2017; 8:1573. [PMID: 28900416 PMCID: PMC5581841 DOI: 10.3389/fmicb.2017.01573] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/03/2017] [Indexed: 01/25/2023] Open
Abstract
Oil fields can experience souring, the reduction of sulfate to sulfide by sulfate-reducing microorganisms. At the Terra Nova oil field near Canada's east coast, with a reservoir temperature of 95°C, souring was indicated by increased hydrogen sulfide in produced waters (PW). Microbial community analysis by 16S rRNA gene sequencing showed the hyperthermophilic sulfate-reducing archaeon Archaeoglobus in Terra Nova PWs. Growth enrichments in sulfate-containing media at 55-70°C with lactate or volatile fatty acids yielded the thermophilic sulfate-reducing bacterium (SRB) Desulfotomaculum. Enrichments at 30-45°C in nitrate-containing media indicated the presence of mesophilic nitrate-reducing bacteria (NRB), which reduce nitrate without accumulation of nitrite, likely to N2. Thermophilic NRB (tNRB) of the genera Marinobacter and Geobacillus were detected and isolated at 30-50°C and 40-65°C, respectively, and only reduced nitrate to nitrite. Added nitrite strongly inhibited the isolated thermophilic SRB (tSRB) and tNRB and SRB could not be maintained in co-culture. Inhibition of tSRB by nitrate in batch and continuous cultures required inoculation with tNRB. The results suggest that nitrate injected into Terra Nova is reduced to N2 at temperatures up to 45°C but to nitrite only in zones from 45 to 65°C. Since the hotter zones of the reservoir (65-80°C) are inhabited by thermophilic and hyperthermophilic sulfate reducers, souring at these temperatures might be prevented by nitrite production if nitrate-reducing zones of the system could be maintained at 45-65°C.
Collapse
Affiliation(s)
- Gloria N. Okpala
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, CalgaryAB, Canada
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of TechnologyHarbin, China
| | - Tekle Fida
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, CalgaryAB, Canada
| | - Gerrit Voordouw
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, CalgaryAB, Canada
| |
Collapse
|
9
|
Sidhu C, Thakur S, Sharma G, Tanuku NRS, Pinnaka AK. Oceanospirillum sanctuarii sp. nov., isolated from a sediment sample. Int J Syst Evol Microbiol 2017; 67:3428-3434. [PMID: 28829018 DOI: 10.1099/ijsem.0.002132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-staining-negative, spiral-shaped, pale-yellow, non-sporulating, motile, aerobic bacterium, designated strain AK56T, was isolated from a sediment sample collected at the Coringa Wildlife Sanctuary, India. Colonies on marine agar were circular, pale yellow, shiny, translucent, 1-2 mm in diameter, convex and had an entire margin. The major fatty acids included C16 : 1, C16 : 1ω7c/C16 : 1ω6c and C18 : 1ω7c. Polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminolipids, one unidentified phospholipid and five unidentified lipids. DNA-DNA hybridization between strain AK56T and Oceanospirillum linum LMG 5214T and 'Oceanospirillum nioense ' NIO-S6 showed relatedness values of 39.91 and 23.62 %, respectively. The DNA G+C content of strain AK56T was found to be 50.3 mol%. A sequence similarity search for the 16S rRNA gene sequence revealed that O. linum and O. nioense were the nearest phylogenetic neighbours, with a pair-wise sequence similarity of 98.9 and 98.2 %, respectively. Phylogenetic analysis also showed the formation of a cluster including strain AK56T with close relative O. linum and O. nioense. Based on the observed phenotypic, chemotaxonomic characteristics and phylogenetic analysis, strain AK56T is described in this study as a novel species in the genus Oceanospirillum, for which the name Oceanospirillum sanctuarii sp. nov. is proposed. The type strain of Oceanospirillumsanctuarii is AK56T (=MTCC 12005T=JCM 19193T=KCTC 52973T).
Collapse
Affiliation(s)
- Chandni Sidhu
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Suresh Thakur
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Gunjan Sharma
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Naga Radha Srinivas Tanuku
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam-530017, India
| | - Anil Kumar Pinnaka
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| |
Collapse
|
10
|
Trachtenberg AM, Carney JG, Linnane JD, Rheaume BA, Pitts NL, Mykles DL, MacLea KS. Draft Genome Sequence of the Salt Water Bacterium Oceanospirillum linum ATCC 11336 T. GENOME ANNOUNCEMENTS 2017; 5:e00395-17. [PMID: 28546488 PMCID: PMC5477401 DOI: 10.1128/genomea.00395-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 11/20/2022]
Abstract
Oceanospirillum linum ATCC 11336T is an aerobic, bipolar-tufted gammaproteobacterium first isolated in the Long Island Sound in the 1950s. This announcement offers a genome sequence for O. linum ATCC 11336T, which has a predicted genome size of 3,782,189 bp (49.13% G+C content) containing 3,540 genes and 3,361 coding sequences.
Collapse
Affiliation(s)
| | - Joshua G Carney
- Biology Program, University of New Hampshire, Manchester, New Hampshire, USA
| | - Joshua D Linnane
- Biology Program, University of New Hampshire, Manchester, New Hampshire, USA
| | - Bruce A Rheaume
- Biology Program, University of New Hampshire, Manchester, New Hampshire, USA
| | - Natalie L Pitts
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Kyle S MacLea
- Biology Program, University of New Hampshire, Manchester, New Hampshire, USA
- Biotechnology Program, University of New Hampshire, Manchester, New Hampshire, USA
- Department of Life Sciences, University of New Hampshire, Manchester, New Hampshire, USA
| |
Collapse
|
11
|
Muthusamy S, Lundin D, Mamede Branca RM, Baltar F, González JM, Lehtiö J, Pinhassi J. Comparative proteomics reveals signature metabolisms of exponentially growing and stationary phase marine bacteria. Environ Microbiol 2017; 19:2301-2319. [PMID: 28371138 DOI: 10.1111/1462-2920.13725] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/05/2017] [Indexed: 11/30/2022]
Abstract
Much of the phenotype of a microorganism consists of its repertoire of metabolisms and how and when its proteins are deployed under different growth conditions. Hence, analyses of protein expression could provide important understanding of how bacteria adapt to different environmental settings. To characterize the flexibility of proteomes of marine bacteria, we investigated protein profiles of three important marine bacterial lineages - Oceanospirillaceae (Neptuniibacter caesariensis strain MED92), Roseobacter (Phaeobacter sp. MED193) and Flavobacteria (Dokdonia sp. MED134) - during transition from exponential to stationary phase. As much as 59-80% of each species' total proteome was expressed. Moreover, all three bacteria profoundly altered their expressed proteomes during growth phase transition, from a dominance of proteins involved in translation to more diverse proteomes, with a striking appearance of enzymes involved in different nutrient-scavenging metabolisms. Whereas the three bacteria shared several overarching metabolic strategies, they differed in important details, including distinct expression patterns of membrane transporters and proteins in carbon and phosphorous metabolism and storage compounds. These differences can be seen as signature metabolisms - metabolisms specific for lineages. These findings suggest that quantitative proteomics can inform about the divergent ecological strategies of marine bacteria in adapting to changes in environmental conditions.
Collapse
Affiliation(s)
- Saraladevi Muthusamy
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Rui Miguel Mamede Branca
- Department of Oncology-Pathology, Science for Life Laboratory and Karolinska Institute, Clinical Proteomics Mass Spectrometry, Stockholm, Sweden
| | - Federico Baltar
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden.,Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - José M González
- Department of Microbiology, University of La Laguna, La Laguna, ES-38200, Spain
| | - Janne Lehtiö
- Department of Oncology-Pathology, Science for Life Laboratory and Karolinska Institute, Clinical Proteomics Mass Spectrometry, Stockholm, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden
| |
Collapse
|
12
|
Draft Genome Sequences of
Neptuniibacter
sp. Strains LFT 1.8 and ATR 1.1. GENOME ANNOUNCEMENTS 2017; 5:5/5/e01541-16. [PMID: 28153896 PMCID: PMC5289682 DOI: 10.1128/genomea.01541-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
We present the draft genomes of two strains previously identified as
Neptuniibacter
sp. LFT 1.8 (= CECT 8936 = DSM 100781) and ATR 1.1 (= CECT 8938 = DSM 100783) isolated from larvae of great scallops (
Pecten maximus
) and seawater, respectively. Both strains surely constitute two novel species in this genus, with putative applications for aromatic compound degradation.
Collapse
|
13
|
Neptuniibacter pectenicola sp. nov. and Neptuniibacter marinus sp. nov., two novel species isolated from a Great scallop (Pecten maximus) hatchery in Norway and emended description of the genus Neptuniibacter. Syst Appl Microbiol 2016; 40:80-85. [PMID: 28040300 DOI: 10.1016/j.syapm.2016.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 11/24/2022]
Abstract
Nine isolates obtained from a great scallop hatchery in Norway were characterized using a polyphasic approach. Strains were Gram-negative, aerobic and motile rods with oxidative metabolism. Phylogenetic analysis based on the sequences of 16S rRNA and rpoB genes showed that these strains formed two different groups associated with members of the genus Neptuniibacter. DNA-DNA hybridization (DDH) and Average Nucleotide Identity (ANI) demonstrated that the isolates constituted two novel species of this genus, which can be phenotypically differentiated from their closest relatives. The names Neptuniibacter marinus sp. nov. and Neptuniibacter pectenicola sp. nov are proposed, with ATR 1.1T (=CECT 8938T=DSM 100783T) and LFT 1.8T (=CECT 8936T=DSM 100781T) as respective type strains.
Collapse
|
14
|
Arahal DR, Lucena T, Macián MC, Ruvira MA, González JM, Lekumberri I, Pinhassi J, Pujalte MJ. Marinomonas blandensis sp. nov., a novel marine gammaproteobacterium. Int J Syst Evol Microbiol 2016; 66:5544-5549. [PMID: 27902199 DOI: 10.1099/ijsem.0.001554] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-staining-negative, chemoorganotrophic, moderately halophilic, strictly aerobic bacterium, strain MED121T, was isolated from a seawater sample collected at the Blanes Bay Microbial Observatory in the north-western Mediterranean Sea. Analysis of its 16S rRNA gene sequence, retrieved from the whole-genome sequence, showed that this bacterium was most closely related to Marinomonas dokdonensis and other Marinomonas species (96.3 and 93.3-95.7 % sequence similarities, respectively), within the family Oceanospirillaceae. Strain MED121T was included into a whole-genome sequencing study and, subsequently, it was characterized using a polyphasic taxonomic approach. It was found to be oxidase and catalase positive, its cells are cocci to short rods, it does not ferment carbohydrates and does not reduce nitrate to nitrite or gas and it requires at least 2.5 % (w/v) marine salts and tolerates up to 7 % (w/v) salts. Its major cellular fatty acids in order of abundance are C16 : 1ω7c/C16 : 1ω6c, C18 : 1ω7c, C16 : 0 and C10 : 0 3-OH. Its genome had an approximate length of 5.1 million bases and a DNA G+C content equal to 40.9 mol%. Analysis of the annotated genes reveals the capacity for the synthesis of ubiquinone 8 (Q8) and the polar lipids phosphatidylglycerol and phosphatidylethanolamine, in agreement with other members of the genus. All the data collected supported the creation of a novel species to accommodate this bacterium, for which the name Marinomonas blandensis sp. nov. is proposed. The type strain is MED121T (=CECT 7076T=LMG 29722T).
Collapse
Affiliation(s)
- David R Arahal
- Departamento de Microbiología y Ecología, Universitat de València, 46100 Burjassot (València), Spain.,Colección Española de Cultivos Tipo (CECT), Universitat de València, 46980 Paterna (València), Spain
| | - Teresa Lucena
- Colección Española de Cultivos Tipo (CECT), Universitat de València, 46980 Paterna (València), Spain
| | - M Carmen Macián
- Colección Española de Cultivos Tipo (CECT), Universitat de València, 46980 Paterna (València), Spain
| | - María A Ruvira
- Colección Española de Cultivos Tipo (CECT), Universitat de València, 46980 Paterna (València), Spain
| | - José M González
- Departament of Microbiology, University of La Laguna, La Laguna ES-38200, Spain
| | - Itziar Lekumberri
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial model Systems (EEMiS), Linnaeus University, Kalmar SE-39182, Sweden
| | - María J Pujalte
- Departamento de Microbiología y Ecología, Universitat de València, 46100 Burjassot (València), Spain.,Colección Española de Cultivos Tipo (CECT), Universitat de València, 46980 Paterna (València), Spain
| |
Collapse
|
15
|
Parages ML, Gutiérrez-Barranquero JA, Reen FJ, Dobson ADW, O'Gara F. Integrated (Meta) Genomic and Synthetic Biology Approaches to Develop New Biocatalysts. Mar Drugs 2016; 14:E62. [PMID: 27007381 PMCID: PMC4810074 DOI: 10.3390/md14030062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 02/18/2016] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
In recent years, the marine environment has been the subject of increasing attention from biotechnological and pharmaceutical industries as a valuable and promising source of novel bioactive compounds. Marine biodiscovery programmes have begun to reveal the extent of novel compounds encoded within the enormous bacterial richness and diversity of the marine ecosystem. A combination of unique physicochemical properties and spatial niche-specific substrates, in wide-ranging and extreme habitats, underscores the potential of the marine environment to deliver on functionally novel biocatalytic activities. With the growing need for green alternatives to industrial processes, and the unique transformations which nature is capable of performing, marine biocatalysts have the potential to markedly improve current industrial pipelines. Furthermore, biocatalysts are known to possess chiral selectivity and specificity, a key focus of pharmaceutical drug design. In this review, we discuss how the explosion in genomics based sequence analysis, allied with parallel developments in synthetic and molecular biology, have the potential to fast-track the discovery and subsequent improvement of a new generation of marine biocatalysts.
Collapse
Affiliation(s)
- María L Parages
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - José A Gutiérrez-Barranquero
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
| |
Collapse
|
16
|
Zepeda VK, Busse HJ, Golke J, Saw JHW, Alam M, Donachie SP. Terasakiispira papahanaumokuakeensis gen. nov., sp. nov., a gammaproteobacterium from Pearl and Hermes Atoll, Northwestern Hawaiian Islands. Int J Syst Evol Microbiol 2015; 65:3609-3617. [PMID: 26297573 DOI: 10.1099/ijsem.0.000438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, helical bacterium designated PH27AT was cultivated from an anchialine pool on Pearl and Hermes Atoll, Northwestern Hawaiian Islands. The obligately halophilic strain was motile by bipolar tufts of flagella and grew optimally at pH 7, and microaerobically or aerobically. Closest neighbours based on 16S rRNA gene nucleotide sequence identity are Marinospirillum celere v1c_Sn-redT (93.31 %) and M. alkaliphilum Z4T (92.10 %) in the family Oceanospirillaceae, class Gammaproteobacteria. PH27AT is distinguished phenotypically from members of the genus Marinospirillum by its hydrolysis of gelatin, the absence of growth in media containing ≤ 1 % (w/v) NaCl and the ranges of temperature (12–40 °C) and pH (5–8) for growth. The major compound ubiquinone Q-9 distinguishes the quinone system of strain PH27AT from those in members of the genus Marinospirillum and other members of the Oceanospirillaceae, in which the major quinone is Q-8. Major polar lipids in PH27AT were phosphatidylethanolamine and phosphatidylglycerol, with moderate amounts of diphosphatidylglycerol and phosphatidylserine. Spermidine and cadaverine dominated the polyamine pattern; large proportions of cadaverine have not been reported in members of the genus Marinospirillum. Genotypic and chemotaxonomic data show that PH27AT does not belong in the genus Marinospirillum or other genera of the family Oceanospirillaceae or the Halomonadaceae. We propose a new genus, Terasakiispira gen. nov., be created to accommodate Terasakiispira papahanaumokuakeensis gen. nov., sp. nov. as the type species, with PH27AT ( = ATCC BAA-995T = DSM 16455T = DSM 23961T) as the type strain.
Collapse
Affiliation(s)
- Vanessa K Zepeda
- Department of Microbiology, University of Hawai'i at Ma¯noa, Snyder Hall, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria
| | - Jan Golke
- Institut für Mikrobiologie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria
| | - Jimmy H W Saw
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Maqsudul Alam
- Department of Microbiology, University of Hawai'i at Ma¯noa, Snyder Hall, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Stuart P Donachie
- Department of Microbiology, University of Hawai'i at Ma¯noa, Snyder Hall, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| |
Collapse
|
17
|
Diéguez AL, Jacobsen A, Magnesen T, Romalde JL. Sinobacterium norvegicum sp. nov., isolated from great scallop (Pecten maximus) broodstock and emended description of Sinobacterium caligoides. Antonie van Leeuwenhoek 2015; 108:983-91. [PMID: 26267335 DOI: 10.1007/s10482-015-0551-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
Abstract
Six isolates were recovered from great scallop (Pecten maximus) broodstock in a hatchery in Bergen, Norway. The strains were thoroughly characterized by a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that these strains are related to the genus Sinobacterium, showing sequence similarities between 96.97 and 97.63 % with the only species of the genus, Sinobacterium caligoides. Phenotypic characterization showed that the strains are typical marine halophiles, Gram negative, aerobic chemoorganotrophs, and allowed their differentiation from the closely related taxa. The G+C content of the novel strains was 52.2 ± 1 mol% and the predominant fatty acids were C16:0, C16:1 ω7c/C16:1 ω6c and C18:1 ω7c. The value for DNA-DNA relatedness between strain 3CM4(T) and the S. caligoides type strain LMG 25705(T) was 46 %. Hybridization values between strain 3CM4(T) and the other scallop isolates ranged from 82 to 93.6 %. Based on all data collected, the six scallop strains represent a novel species of the genus Sinobacterium, for which the name Sinobacterium norvegicum sp. nov., is proposed with strain 3CM4(T) (=CECT 8267(T); =CAIM 1884(T)) as type strain.
Collapse
Affiliation(s)
- Ana L Diéguez
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidad de Santiago, 15782, Santiago de Compostela, Spain,
| | | | | | | |
Collapse
|
18
|
Lee H, Yoshizawa S, Kogure K, Kim HS, Yoon J. Pelagitalea pacifica gen. nov., sp. nov., a New Marine Bacterium Isolated from Seawater. Curr Microbiol 2014; 70:514-9. [DOI: 10.1007/s00284-014-0750-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/30/2014] [Indexed: 11/24/2022]
|
19
|
Discovery of bacterial polyhydroxyalkanoate synthase (PhaC)-encoding genes from seasonal Baltic Sea ice and cold estuarine waters. Extremophiles 2014; 19:197-206. [DOI: 10.1007/s00792-014-0699-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/20/2014] [Indexed: 10/24/2022]
|
20
|
Motiliproteus sediminis gen. nov., sp. nov., isolated from coastal sediment. Antonie van Leeuwenhoek 2014; 106:615-21. [PMID: 25038887 DOI: 10.1007/s10482-014-0232-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/04/2014] [Indexed: 11/27/2022]
Abstract
A novel Gram-stain-negative, rod-to-spiral-shaped, oxidase- and catalase- positive and facultatively aerobic bacterium, designated HS6(T), was isolated from marine sediment of Yellow Sea, China. It can reduce nitrate to nitrite and grow well in marine broth 2216 (MB, Hope Biol-Technology Co., Ltd) with an optimal temperature for growth of 30-33 °C (range 12-45 °C) and in the presence of 2-3% (w/v) NaCl (range 0.5-7%, w/v). The pH range for growth was pH 6.2-9.0, with an optimum at 6.5-7.0. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that the novel isolate was 93.3% similar to the type strain of Neptunomonas antarctica, 93.2% to Neptunomonas japonicum and 93.1% to Marinobacterium rhizophilum, the closest cultivated relatives. The polar lipid profile of the novel strain consisted of phosphatidylethanolamine, phosphatidylglycerol and some other unknown lipids. Major cellular fatty acids were summed feature 3 (C(16:1) ω7c/iso-C15:0 2-OH), C(18:1) ω7c and C(16:0) and the main respiratory quinone was Q-8. The DNA G+C content of strain HS6(T) was 61.2 mol%. Based on the phylogenetic, physiological and biochemical characteristics, strain HS6(T) represents a novel genus and species and the name Motiliproteus sediminis gen. nov., sp. nov., is proposed. The type strain is HS6(T) (=ATCC BAA-2613(T)=CICC 10858(T)).
Collapse
|
21
|
Beier S, Rivers AR, Moran MA, Obernosterer I. The transcriptional response of prokaryotes to phytoplankton-derived dissolved organic matter in seawater. Environ Microbiol 2014; 17:3466-80. [DOI: 10.1111/1462-2920.12434] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 02/14/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Sara Beier
- UPMC University Paris 06; UMR 7621, LOMIC, UMS 2348, Observatoire Océanologique, Banyuls/mer F-66650 France
- CNRS; UMR 7621, LOMIC, Observatoire Océanologique Banyuls/mer F-66650 France
| | - Adam R. Rivers
- Department of Marine Sciences; University of Georgia; Athens GA 30602 USA
| | - Mary Ann Moran
- Department of Marine Sciences; University of Georgia; Athens GA 30602 USA
| | - Ingrid Obernosterer
- UPMC University Paris 06; UMR 7621, LOMIC, UMS 2348, Observatoire Océanologique, Banyuls/mer F-66650 France
- CNRS; UMR 7621, LOMIC, Observatoire Océanologique Banyuls/mer F-66650 France
| |
Collapse
|
22
|
Genomic versatility and functional variation between two dominant heterotrophic symbionts of deep-sea Osedax worms. ISME JOURNAL 2013; 8:908-24. [PMID: 24225886 DOI: 10.1038/ismej.2013.201] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 09/21/2013] [Accepted: 10/08/2013] [Indexed: 12/18/2022]
Abstract
An unusual symbiosis, first observed at ~3000 m depth in the Monterey Submarine Canyon, involves gutless marine polychaetes of the genus Osedax and intracellular endosymbionts belonging to the order Oceanospirillales. Ecologically, these worms and their microbial symbionts have a substantial role in the cycling of carbon from deep-sea whale fall carcasses. Microheterogeneity exists among the Osedax symbionts examined so far, and in the present study the genomes of the two dominant symbionts, Rs1 and Rs2, were sequenced. The genomes revealed heterotrophic versatility in carbon, phosphate and iron uptake, strategies for intracellular survival, evidence for an independent existence, and numerous potential virulence capabilities. The presence of specific permeases and peptidases (of glycine, proline and hydroxyproline), and numerous peptide transporters, suggests the use of degraded proteins, likely originating from collagenous bone matter, by the Osedax symbionts. (13)C tracer experiments confirmed the assimilation of glycine/proline, as well as monosaccharides, by Osedax. The Rs1 and Rs2 symbionts are genomically distinct in carbon and sulfur metabolism, respiration, and cell wall composition, among others. Differences between Rs1 and Rs2 and phylogenetic analysis of chemotaxis-related genes within individuals of symbiont Rs1 revealed the influence of the relative age of the whale fall environment and support possible local niche adaptation of 'free-living' lifestages. Future genomic examinations of other horizontally-propogated intracellular symbionts will likely enhance our understanding of the contribution of intraspecific symbiont diversity to the ecological diversification of the intact association, as well as the maintenance of host diversity.
Collapse
|
23
|
Su J, Zhou Y, Lai Q, Li X, Dong P, Yang X, Zhang B, Zhang J, Zheng X, Tian Y, Zheng T. Sinobacterium caligoides gen. nov., sp. nov., a new member of the family
Oceanospirillaceae
isolated from the South China Sea, and emended description of
Amphritea japonica. Int J Syst Evol Microbiol 2013; 63:2095-2100. [DOI: 10.1099/ijs.0.030965-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A taxonomic study was carried out on strain SCSWE24T, isolated from a seawater sample collected from the South China Sea. Cells of strain SCSWE24T were Gram-negative, rod-shaped, non-motile, moderately halophilic and capable of reducing nitrate to nitrite. Growth was observed at salinities from 1.5 to 4.5 % and at 4–37 °C; it was unable to degrade gelatin. The dominant fatty acids (>15 %) were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 50.4 %) and C16 : 0 (21.1 %). The G+C content of the chromosomal DNA was 58.8 mol%. 16S rRNA gene sequence comparisons showed that strain SCSWE24T was most closely related to an uncultured bacterium clone Tun3b.F5 (98 %; GenBank accession no. FJ169216), and showed 92 % similarity to an endosymbiont bacterium from the bone-eating worm Osedax mucofloris (clone Omu 9 c4791; FN773233). Levels of similarity between strain SCSWE24T and type strains of recognized species in the family
Oceanospirillaceae
were less than 93 %; the highest similarity was 92 %, to both
Amphritea japonica
JAMM 1866T and ‘Oceanicoccus sagamiensis’ PZ-5. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain SCSWE24T formed a distinct evolutionary lineage within the family
Oceanospirillaceae
. Strain SCSWE24T was distinguishable from members of phylogenetically related genera by differences in several phenotypic properties. On the basis of the phenotypic and phylogenetic data, strain SCSWE24T represents a novel species of a new genus, for which the name Sinobacterium caligoides gen. nov., sp. nov. is proposed. The type strain of Sinobacterium caligoides is SCSWE24T ( = CCTCC AB 209289T = LMG 25705T = MCCC 1F01088T). An emended description of
Amphritea japonica
is also provided.
Collapse
Affiliation(s)
- Jianqiang Su
- The Institute of Urban Environment (IUE), Chinese Academy of Sciences, Xiamen 361005, PR China
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Yanyan Zhou
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Xinyi Li
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Peiyan Dong
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Xiaoru Yang
- The Institute of Urban Environment (IUE), Chinese Academy of Sciences, Xiamen 361005, PR China
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Bangzhou Zhang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Jinlong Zhang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Xiaowei Zheng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Yun Tian
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Tianling Zheng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
24
|
Wilkins D, Yau S, Williams TJ, Allen MA, Brown MV, DeMaere MZ, Lauro FM, Cavicchioli R. Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol Rev 2013; 37:303-35. [DOI: 10.1111/1574-6976.12007] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/11/2012] [Accepted: 10/01/2012] [Indexed: 11/27/2022] Open
|
25
|
Chen MH, Sheu SY, Chen CA, Wang JT, Chen WM. Corallomonas stylophorae gen. nov., sp. nov., a halophilic bacterium isolated from the reef-building coral Stylophora pistillata. Int J Syst Evol Microbiol 2013; 63:982-988. [DOI: 10.1099/ijs.0.043208-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A heterotrophic marine bacterium, designated strain KTSW-6T, was isolated from the reef-building coral Stylophora pistillata in Kenting, Taiwan. Cells of strain KTSW-6T were Gram-stain-negative, facultatively anaerobic, halophilic, non-motile rods surrounded by a thick glycocalyx-like coat and forming creamy white colonies. Growth occurred at 15–37 °C (optimum, 25–30 °C), at pH 7.0–9.0 (optimum, pH 7.5–8.0) and with 0.5–7 % NaCl (optimum, 3–4 %). Polar lipids comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an uncharacterized aminophospholipid and three uncharacterized phospholipids (PL1–PL3). The respiratory quinones of strain KTSW-6T were Q-8 (62 %) and Q-7 (38 %). Major cellular fatty acids were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c, 29.6 %), C18 : 1ω7c (27.6 %) and C16 : 0 (19.5 %). The major cellular hydroxy fatty acid was C10 : 0 3-OH. The DNA G+C content of strain KTSW-6T was 48.6 mol%. 16S rRNA gene sequence analysis indicated that strain KTSW-6T belongs to the family
Oceanospirillaceae
of the order
Oceanospirillales
, class
Gammaproteobacteria
. Strain KTSW-6T shared 92.7 % 16S rRNA gene sequence similarity with
Neptuniibacter caesariensis
MED92T and 92.0 % with
Neptunomonas naphthovorans
NAG-2N-126T. On the basis of the genotypic and phenotypic data, strain KTSW-6T represents a novel species of a new genus of the
Oceanospirillaceae
, for which the name Corallomonas stylophorae gen. nov., sp. nov. is proposed. The type strain of Corallomonas stylophorae is KTSW-6T ( = BCRC 80176T = LMG 25553T).
Collapse
Affiliation(s)
- Ming-Hui Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Shih-Yi Sheu
- Department of Marine Biotechnology, National Kaohsiung Marine University, Kaohsiung, Taiwan, ROC
| | - Chaolun Allen Chen
- Research Center for Biodiversity, Academia Sinica, Nangang 115, Taipei, Taiwan, ROC
| | - Jih-Terng Wang
- Institute of Biotechnology, Tajen University, Yanpu, Pingtung 907, Taiwan, ROC
| | - Wen-Ming Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| |
Collapse
|
26
|
Litoribacillus peritrichatus gen. nov. sp. nov., isolated from coastal sediment of an amphioxus breeding zone in Qingdao, China. Antonie van Leeuwenhoek 2012; 103:357-66. [DOI: 10.1007/s10482-012-9815-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
|
27
|
Steczkiewicz K, Muszewska A, Knizewski L, Rychlewski L, Ginalski K. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Nucleic Acids Res 2012; 40:7016-45. [PMID: 22638584 PMCID: PMC3424549 DOI: 10.1093/nar/gks382] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Proteins belonging to PD-(D/E)XK phosphodiesterases constitute a functionally diverse superfamily with representatives involved in replication, restriction, DNA repair and tRNA-intron splicing. Their malfunction in humans triggers severe diseases, such as Fanconi anemia and Xeroderma pigmentosum. To date there have been several attempts to identify and classify new PD-(D/E)KK phosphodiesterases using remote homology detection methods. Such efforts are complicated, because the superfamily exhibits extreme sequence and structural divergence. Using advanced homology detection methods supported with superfamily-wide domain architecture and horizontal gene transfer analyses, we provide a comprehensive reclassification of proteins containing a PD-(D/E)XK domain. The PD-(D/E)XK phosphodiesterases span over 21,900 proteins, which can be classified into 121 groups of various families. Eleven of them, including DUF4420, DUF3883, DUF4263, COG5482, COG1395, Tsp45I, HaeII, Eco47II, ScaI, HpaII and Replic_Relax, are newly assigned to the PD-(D/E)XK superfamily. Some groups of PD-(D/E)XK proteins are present in all domains of life, whereas others occur within small numbers of organisms. We observed multiple horizontal gene transfers even between human pathogenic bacteria or from Prokaryota to Eukaryota. Uncommon domain arrangements greatly elaborate the PD-(D/E)XK world. These include domain architectures suggesting regulatory roles in Eukaryotes, like stress sensing and cell-cycle regulation. Our results may inspire further experimental studies aimed at identification of exact biological functions, specific substrates and molecular mechanisms of reactions performed by these highly diverse proteins.
Collapse
Affiliation(s)
- Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, CENT, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | | | | | | |
Collapse
|
28
|
Oleispira lenta sp. nov., a novel marine bacterium isolated from Yellow sea coastal seawater in Qingdao, China. Antonie van Leeuwenhoek 2012; 101:787-94. [PMID: 22228140 DOI: 10.1007/s10482-011-9693-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/21/2011] [Indexed: 10/14/2022]
Abstract
The taxonomic position of strain DFH11(T), which was isolated from coastal seawater off Qingdao, People's Republic of China in 2007, was determined. Strain DFH11(T) comprised Gram-negative, motile, strictly aerobic spirilli that did not produce catalase. Comparative 16S rRNA gene sequence analysis revealed that strain DFH11(T) shared ~97.2, 93.3, 91.8, 91.7 and 91.5% sequence similarities with Oleispira antarctica, Spongiispira norvegica, Bermanella marisrubri, Oceaniserpentilla haliotis and Reinekea aestuarii, respectively. DNA-DNA hybridization experiments indicated that the strain was distinct from its closest phylogenetic neighbour, O. antarctica. The strain grew optimally in 2-3% (w/v) NaCl, at pH 5.0-10.0 (optimally at pH 7.0) and between 0 and 30°C (optimum growth temperature 28°C). The strain exhibited a restricted substrate profile, with a preference for aliphatic hydrocarbons, that is consistent with its closest phylogenetic neighbour O. antarctica. Growth of the isolate at different temperatures affected the cellular fatty acid profile. 28°C cultured cells contained C(16:1)ω7c and/or iso-C(15:0) 2-OH (50.4%) and C(16:0) (19.2%) as the major fatty acids. However, the major fatty acids of the cells cultured at 4°C were C(16:1)ω7c and/or C(16:1)ω6c (40.2%), C(16:0) (17.2%) and C(17:1)ω8c (10.1%). The G+C content of the genomic DNA was 42.7 mol%. Phylogeny based on 16S rRNA gene sequences together with data from DNA-DNA hybridization, phenotypic and chemotaxonomic characterization revealed that DFH11(T) should be classified as a novel species of the genus Oleispira, for which the name Oleispira lenta sp. nov. is proposed, with the type strain DFH11(T) (=NCIMB 14529(T) = LMG 24829(T)).
Collapse
|
29
|
Chen MH, Sheu SY, Chiu TF, Chen WM. Neptuniibacter halophilus sp. nov., isolated from a salt pan, and emended description of the genus Neptuniibacter. Int J Syst Evol Microbiol 2011; 62:1104-1109. [PMID: 21705446 DOI: 10.1099/ijs.0.030379-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain designated antisso-13(T) was isolated from a salt pan in southern Taiwan and characterized using a polyphasic taxonomic approach. Strain antisso-13(T) was gram-negative, aerobic, creamy white in colour, rod-shaped and motile by single monopolar flagellum. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain antisso-13(T) belonged to the genus Neptuniibacter and its closest neighbour was Neptuniibacter caesariensis MED92(T), with 96.7 % sequence similarity. Phylogenetic analyses based on rpoB and recA gene sequences and deduced amino acid sequences also revealed that the novel strain and N. caesariensis MED92(T) formed a distinct phylogenetic cluster. Strain antisso-13(T) exhibited optimal growth at 25-30 °C, with 2.0-4.0 % NaCl and at pH 7.0. Cellular fatty acids were C(16 : 1)ω7c (39.8 %), C(18 : 1)ω7c (29.4 %), C(16 : 0) (15.5 %), C(10 : 0) 3-OH (7.5 %), anteiso-C(11 : 0) (1.8 %), C(18 : 0) (1.8 %), C(11 : 0) 2-OH (1.6 %), iso-C(10 : 0) (1.2 %) and C(14 : 0) (1.1 %). The major respiratory quinone was ubiquinone Q-8. The polar lipid profile consisted of a mixture of phosphatidylglycerol, phosphatidylethanolamine and several uncharacterized polar lipids and the DNA G+C content was 54.2 mol%. The results of physiological and biochemical tests allowed clear phenotypic differentiation of this isolate from previously described members of the genus Neptuniibacter. It is evident from the genotypic and phenotypic data that strain antisso-13(T) should be classified as a representative of a novel species in the genus Neptuniibacter. The name proposed for this taxon is Neptuniibacter halophilus sp. nov.; the type strain is antisso-13(T) ( = LMG 25378(T) = BCRC 80079(T)). An emended description of the genus Neptuniibacter is provided.
Collapse
Affiliation(s)
- Ming-Hui Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd., Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Shih-Yi Sheu
- Department of Marine Biotechnology, National Kaohsiung Marine University, Kaohsiung, Taiwan, ROC
| | - Tzu-Fang Chiu
- Department of Marine Biotechnology, National Kaohsiung Marine University, Kaohsiung, Taiwan, ROC
| | - Wen-Ming Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd., Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| |
Collapse
|
30
|
Yuasa HJ, Ushigoe A, Ball HJ. Molecular evolution of bacterial indoleamine 2,3-dioxygenase. Gene 2011; 485:22-31. [PMID: 21689736 DOI: 10.1016/j.gene.2011.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/30/2011] [Accepted: 06/03/2011] [Indexed: 12/31/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that catalyze the first step in L-Trp catabolism via the kynurenine pathway. In mammals, TDO is mainly expressed in the liver and primarily supplies nicotinamide adenine dinucleotide (NAD(+)). TDO is widely distributed from mammals to bacteria. Active IDO enzymes have been reported only in vertebrates and fungi. In mammals, IDO activity plays a significant role in the immune system while in fungal species, IDO is constitutively expressed and supplies NAD(+), like mammalian TDO. A search of genomic databases reveals that some bacterial species also have a putative IDO gene. A phylogenetic analysis clustered bacterial IDOs into two groups, group I or group II bacterial IDOs. The catalytic efficiencies of group I bacterial IDOs were very low and they are suspected not to contribute significantly to L-Trp metabolism. The bacterial species bearing the group I bacterial IDO are scattered across a few phyla and no phylogenetically close relationship is observed between them. This suggests that the group I bacterial IDOs might be acquired by horizontal gene transmission that occurred in each lineage independently. In contrast, group II bacterial IDOs showed rather high catalytic efficiency. Particularly, the enzymatic characteristics (K(m), V(max) and inhibitor selectivity) of the Gemmatimonas aurantiaca IDO are comparable to those of mammalian IDO1, although comparison of the IDO sequences does not suggest a close evolutionary relationship. In several bacteria, TDO and the kynureninase gene (kynU) are clustered on their chromosome suggesting that these genes could be transcribed in an operon. Interestingly, G. aurantiaca has no TDO, and the IDO is clustered with kynU on its chromosome. Although the G. aurantiaca also has NadA and NadB to synthesize a quinolinic acid (a precursor of NAD(+)) via the aspartate pathway, the high activity of the G. aurantiaca IDO flanking the kynU gene suggests its IDO has a function similar to eukaryotic enzymes.
Collapse
Affiliation(s)
- Hajime J Yuasa
- Laboratory of Biochemistry, Department of Applied Science, National University Corporation Kochi University, Japan.
| | | | | |
Collapse
|
31
|
Barz M, Beimgraben C, Staller T, Germer F, Opitz F, Marquardt C, Schwarz C, Gutekunst K, Vanselow KH, Schmitz R, LaRoche J, Schulz R, Appel J. Distribution analysis of hydrogenases in surface waters of marine and freshwater environments. PLoS One 2010; 5:e13846. [PMID: 21079771 PMCID: PMC2974642 DOI: 10.1371/journal.pone.0013846] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 09/17/2010] [Indexed: 12/31/2022] Open
Abstract
Background Surface waters of aquatic environments have been shown to both evolve and consume hydrogen and the ocean is estimated to be the principal natural source. In some marine habitats, H2 evolution and uptake are clearly due to biological activity, while contributions of abiotic sources must be considered in others. Until now the only known biological process involved in H2 metabolism in marine environments is nitrogen fixation. Principal Findings We analyzed marine and freshwater environments for the presence and distribution of genes of all known hydrogenases, the enzymes involved in biological hydrogen turnover. The total genomes and the available marine metagenome datasets were searched for hydrogenase sequences. Furthermore, we isolated DNA from samples from the North Atlantic, Mediterranean Sea, North Sea, Baltic Sea, and two fresh water lakes and amplified and sequenced part of the gene encoding the bidirectional NAD(P)-linked hydrogenase. In 21% of all marine heterotrophic bacterial genomes from surface waters, one or several hydrogenase genes were found, with the membrane-bound H2 uptake hydrogenase being the most widespread. A clear bias of hydrogenases to environments with terrestrial influence was found. This is exemplified by the cyanobacterial bidirectional NAD(P)-linked hydrogenase that was found in freshwater and coastal areas but not in the open ocean. Significance This study shows that hydrogenases are surprisingly abundant in marine environments. Due to its ecological distribution the primary function of the bidirectional NAD(P)-linked hydrogenase seems to be fermentative hydrogen evolution. Moreover, our data suggests that marine surface waters could be an interesting source of oxygen-resistant uptake hydrogenases. The respective genes occur in coastal as well as open ocean habitats and we presume that they are used as additional energy scavenging devices in otherwise nutrient limited environments. The membrane-bound H2-evolving hydrogenases might be useful as marker for bacteria living inside of marine snow particles.
Collapse
Affiliation(s)
- Martin Barz
- Botanisches Institut, Christian-Albrechts-Universität, Kiel, Germany
| | | | - Torsten Staller
- Forschungs- und Technologiezentrum Westküste (FTZ) der Christian-Albrechts-Universität, Büsum, Germany
| | - Frauke Germer
- Botanisches Institut, Christian-Albrechts-Universität, Kiel, Germany
| | - Friederike Opitz
- Botanisches Institut, Christian-Albrechts-Universität, Kiel, Germany
| | - Claudia Marquardt
- Botanisches Institut, Christian-Albrechts-Universität, Kiel, Germany
| | - Christoph Schwarz
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Kirstin Gutekunst
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Klaus Heinrich Vanselow
- Forschungs- und Technologiezentrum Westküste (FTZ) der Christian-Albrechts-Universität, Büsum, Germany
| | - Ruth Schmitz
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität, Kiel, Germany
| | - Julie LaRoche
- Leibniz-Institute of Marine Sciences, IFM-GEOMAR, Kiel, Germany
| | - Rüdiger Schulz
- Botanisches Institut, Christian-Albrechts-Universität, Kiel, Germany
| | - Jens Appel
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
32
|
Peptidoglycan crosslinking relaxation promotes Helicobacter pylori's helical shape and stomach colonization. Cell 2010; 141:822-33. [PMID: 20510929 DOI: 10.1016/j.cell.2010.03.046] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/29/2010] [Accepted: 03/19/2010] [Indexed: 02/07/2023]
Abstract
The mechanisms by which bacterial cells generate helical cell shape and its functional role are poorly understood. Helical shape of the human pathogen Helicobacter pylori may facilitate penetration of the thick gastric mucus where it replicates. We identified four genes required for helical shape: three LytM peptidoglycan endopeptidase homologs (csd1-3) and a ccmA homolog. Surrounding the cytoplasmic membrane of most bacteria, the peptidoglycan (murein) sacculus is a meshwork of glycan strands joined by peptide crosslinks. Intact cells and isolated sacculi from mutants lacking any single csd gene or ccmA formed curved rods and showed increased peptidoglycan crosslinking. Quantitative morphological analyses of multiple-gene deletion mutants revealed each protein uniquely contributes to a shape-generating pathway. This pathway is required for robust colonization of the stomach in spite of normal directional motility. Our findings suggest that the coordinated action of multiple proteins relaxes peptidoglycan crosslinking, enabling helical cell curvature and twist.
Collapse
|
33
|
Homotaurine metabolized to 3-sulfopropanoate in Cupriavidus necator H16: enzymes and genes in a patchwork pathway. J Bacteriol 2009; 191:6052-8. [PMID: 19648235 DOI: 10.1128/jb.00678-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homotaurine (3-aminopropanesulfonate), a natural product and an analogue of GABA (4-aminobutyrate), was found to be a sole source of nitrogen for Cupriavidus necator (Ralstonia eutropha) H16, whose genome sequence is known. Homotaurine nitrogen was assimilated into cell material, and the quantitative fate of the organosulfonate was sulfopropanoate, which was recovered in the growth medium. The first scalar reaction was shown to be inducible homotaurine:2-oxoglutarate aminotransferase, which released 3-sulfopropanal from homotaurine. This aminotransferase was purified to homogeneity and characterized. Peptide mass fingerprinting yielded locus tag H16_B0981, which was annotated gabT, for GABA transaminase (EC 2.6.1.19). Inducible, NAD(P)(+)-coupled 3-sulfopropanal dehydrogenase, which yielded 3-sulfopropanoate from 3-sulfopropanal, was also purified and characterized. Peptide mass fingerprinting yielded locus tag H16_B0982, which was annotated gabD1, for succinate-semialdehyde dehydrogenase (EC 1.2.1.16). GabT and GabD1 were each induced during growth with GABA, and cotranscription of gabTD was observed. In other organisms, regulator GabC or GabR is encoded contiguous with gabTD: candidate GabR' was found in strain H16 and in many other organisms. An orthologue of the GABA permease (GabP), established in Escherichia coli, is present at H16_B1890, and it was transcribed constitutively. We presume that GabR'PTD are responsible for the inducible metabolism of homotaurine to intracellular 3-sulfopropanoate. The nature of the exporter of this highly charged compound was unclear until we realized from the sodium dodecyl sulfate-polyacrylamide gel electrophoresis data that sulfoacetaldehyde acetyltransferase (EC 2.3.3.15; H16_B1872) was strongly induced during growth with homotaurine and inferred that the sulfite exporter encoded at the end of the gene cluster (H16_B1874) has a broad substrate range that includes 3-sulfopropanoate.
Collapse
|
34
|
Pinhassi J, Nedashkovskaya OI, Hagström A, Vancanneyt M. Winogradskyella rapida sp. nov., isolated from protein-enriched seawater. Int J Syst Evol Microbiol 2009; 59:2180-4. [PMID: 19605730 DOI: 10.1099/ijs.0.008334-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flavobacteria are emerging as an important group of organisms associated with the degradation of complex organic matter in aquatic environments. A novel Gram-reaction-negative, heterotrophic, rod-shaped, aerobic, yellow-pigmented and gliding bacterium, strain SCB36T, was isolated from a protein-enriched seawater sample, collected at Scripps Pier, Southern California Bight (Eastern Pacific). Analysis of the 16S rRNA gene sequence showed that the bacterium was related to members of the genus Winogradskyella within the family Flavobacteriaceae, phylum Bacteroidetes. 16S rRNA gene sequence similarity to the other Winogradskyella species was 94.5-97.1%. DNA-DNA relatedness between strain SCB36T and Winogradskyella thalassocola KMM 3907T, its closest relative in terms of 16S rRNA gene sequence similarity, was 20%. On the basis of the phylogenetic and phenotypic data, strain SCB36T represents a novel species of the genus Winogradskyella, for which the name Winogradskyella rapida sp. nov. is proposed. The type strain is SCB36T (=CECT 7392T=CCUG 56098T).
Collapse
Affiliation(s)
- Jarone Pinhassi
- Marine Microbiology, Department of Pure and Applied Natural Sciences, University of Kalmar, SE-39182 Kalmar, Sweden.
| | | | | | | |
Collapse
|
35
|
Pinhassi J, Pujalte MJ, Pascual J, González JM, Lekunberri I, Pedrós-Alió C, Arahal DR. Bermanella marisrubri gen. nov., sp. nov., a genome-sequenced gammaproteobacterium from the Red Sea. Int J Syst Evol Microbiol 2009; 59:373-7. [PMID: 19196781 DOI: 10.1099/ijs.0.002113-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel heterotrophic, marine, strictly aerobic, motile bacterium was isolated from the Red Sea at a depth of 1 m. Analysis of its 16S rRNA gene sequence, retrieved from the whole-genome sequence, showed that this bacterium was most closely related to the genera Oleispira, Oceanobacter and Thalassolituus, each of which contains a single species, within the class Gammaproteobacteria. Phenotypic, genotypic and phylogenetic analyses supported the creation of a novel genus and species to accommodate this bacterium, for which the name Bermanella marisrubri gen. nov., sp. nov. is proposed. The type strain of Bermanella marisrubri is RED65(T) (=CECT 7074(T) =CCUG 52064(T)).
Collapse
Affiliation(s)
- Jarone Pinhassi
- Marine Microbiology, Department of Biology and Environmental Sciences, University of Kalmar, SE-39182 Kalmar, Sweden
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative of the Chromatiaceae), and many are well characterized also on a molecular genetic level. Complete genome sequence data are currently available for 10 strains of GSB and for one strain of PSB. We present here a genome-based survey of the distribution and phylogenies of genes involved in oxidation of sulfur compounds in these strains. It is evident from biochemical and genetic analyses that the dissimilatory sulfur metabolism of these organisms is very complex and incompletely understood. This metabolism is modular in the sense that individual steps in the metabolism may be performed by different enzymes in different organisms. Despite the distant evolutionary relationship between GSB and PSB, their photosynthetic nature and their dependency on oxidation of sulfur compounds resulted in similar ecological roles in the sulfur cycle as important anaerobic oxidizers of sulfur compounds.
Collapse
|
37
|
Krejcík Z, Denger K, Weinitschke S, Hollemeyer K, Paces V, Cook AM, Smits THM. Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase. Arch Microbiol 2008; 190:159-68. [PMID: 18506422 DOI: 10.1007/s00203-008-0386-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/28/2008] [Accepted: 05/05/2008] [Indexed: 11/25/2022]
Abstract
Taurine (2-aminoethanesulfonate) is a widespread natural product whose nitrogen moiety was recently shown to be assimilated by bacteria, usually with excretion of an organosulfonate via undefined novel pathways; other data involve transcriptional regulator TauR in taurine metabolism. A screen of genome sequences for TauR with the BLAST algorithm allowed the hypothesis that the marine gammaproteobacterium Neptuniibacter caesariensis MED92 would inducibly assimilate taurine-nitrogen and excrete sulfoacetate. The pathway involved an ABC transporter (TauABC), taurine:pyruvate aminotransferase (Tpa), a novel sulfoacetaldehyde dehydrogenase (SafD) and exporter(s) of sulfoacetate (SafE) (DUF81). Ten candidate genes in two clusters involved three sets of paralogues (for TauR, Tpa and SafE). Inducible Tpa and SafD were detected in cell extracts. SafD was purified 600-fold to homogeneity in two steps. The monomer had a molecular mass of 50 kDa (SDS-PAGE); data from gel filtration chromatography indicated a tetrameric native protein. SafD was specific for sulfoacetaldehyde with a K (m)-value of 0.12 mM. The N-terminal amino acid sequence of SafD confirmed the identity of the safD gene. The eight pathway genes were transcribed inducibly, which indicated expression of the whole hypothetical pathway. We presume that this pathway is one source of sulfoacetate in nature, where this compound is dissimilated by many bacteria.
Collapse
Affiliation(s)
- Zdenĕk Krejcík
- Department of Biology, The University, 78457, Constance, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Miyazaki M, Nogi Y, Fujiwara Y, Kawato M, Kubokawa K, Horikoshi K. Neptunomonas japonica sp. nov., an Osedax japonicus symbiont-like bacterium isolated from sediment adjacent to sperm whale carcasses off Kagoshima, Japan. Int J Syst Evol Microbiol 2008; 58:866-71. [DOI: 10.1099/ijs.0.65509-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Pinhassi J, Pujalte MJ, Macián MC, Lekunberri I, González JM, Pedrós-Alió C, Arahal DR. Reinekea blandensis sp. nov., a marine, genome-sequenced gammaproteobacterium. Int J Syst Evol Microbiol 2007; 57:2370-2375. [PMID: 17911313 DOI: 10.1099/ijs.0.65091-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel heterotrophic, moderately halophilic, strictly aerobic, motile bacterium was isolated from a seawater sample collected at the Blanes Bay Microbial Observatory in the north-western Mediterranean Sea. Analysis of its 16S rRNA gene sequence, retrieved from the whole-genome sequence, showed that this bacterium was most closely related to the single-species genera Reinekea and Saccharospirillum (95 and 94 % sequence similarity, respectively) within the class Gammaproteobacteria. The data from phenotypic, genotypic, chemotaxonomic and phylogenetic analyses supported the creation of a novel species of the genus Reinekea to accommodate this bacterium, for which the name Reinekea blandensis sp. nov. is proposed. The type strain is MED297T (=CECT 7120T =CCUG 52066T).
Collapse
MESH Headings
- Aerobiosis/physiology
- Bacterial Typing Techniques
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Gammaproteobacteria/classification
- Gammaproteobacteria/genetics
- Gammaproteobacteria/isolation & purification
- Gammaproteobacteria/physiology
- Genes, rRNA
- Locomotion/physiology
- Mediterranean Sea
- Molecular Sequence Data
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Seawater/microbiology
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Sodium Chloride/metabolism
Collapse
Affiliation(s)
- Jarone Pinhassi
- Marine Microbiology, Department of Biology and Environmental Sciences, University of Kalmar, SE-39182 Kalmar, Sweden
| | - María J Pujalte
- Departamento de Microbiología y Ecología, Universitat de València, Campus de Burjassot, 46100 València, Spain
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Campus de Burjassot, 46100 València, Spain
| | - M Carmen Macián
- Colección Española de Cultivos Tipo (CECT), Universitat de València, Campus de Burjassot, 46100 València, Spain
- Departamento de Microbiología y Ecología, Universitat de València, Campus de Burjassot, 46100 València, Spain
| | - Itziar Lekunberri
- Institut de Ciències del Mar-CMIMA (CSIC), Passeig Marítim de la Barceloneta 37-49, ES-08003 Barcelona, Catalunya, Spain
| | - José M González
- Departamento de Microbiología y Biología Celular, Facultad de Farmacia, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Carlos Pedrós-Alió
- Institut de Ciències del Mar-CMIMA (CSIC), Passeig Marítim de la Barceloneta 37-49, ES-08003 Barcelona, Catalunya, Spain
| | - David R Arahal
- Colección Española de Cultivos Tipo (CECT), Universitat de València, Campus de Burjassot, 46100 València, Spain
- Departamento de Microbiología y Ecología, Universitat de València, Campus de Burjassot, 46100 València, Spain
| |
Collapse
|