1
|
Chaudhari MA, Wankhede PR, Dalal KS, Kale AD, Dalal DS, Chaudhari BL. Lentilactobacillus farraginis FSI (3): a whole cell biocatalyst for the synthesis of kojic acid derivative under aquatic condition. Biotechnol Lett 2024; 46:1107-1120. [PMID: 39162862 DOI: 10.1007/s10529-024-03514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/05/2024] [Accepted: 07/21/2024] [Indexed: 08/21/2024]
Abstract
Kojic acid derivatives are useful in the cosmetics and pharmaceutical industries. The current investigation focuses on the search for a safe and environmentally friendly newer whole-cell biocatalyst for the synthesis of kojic acid derivative especially 2-amino-6-(hydroxymethyl)-8-oxo-4-phenyl-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile (APhCN). In this context, a total of six cultures were isolated from fecal samples of infants and subjected to probiotic characterization followed by screening as whole cell biocatalyst (WCB). In this multicomponent reaction, benzaldehyde, malononitrile, and kojic acid were used to synthesize APhCN at room temperature under aqueous conditions. The screening of potent whole cell biocatalyst (WCB) from isolated cultures was done by comparing reaction time and percent yield. The potent WCB gave a good yield of 95% within 15 h of time and hence further characterized biochemically and identified as Lentilactobacillus farraginis by using 16S rRNA gene sequencing. Lactobacilli having GRAS (generally regarded as safe) status and being able to carry out this transformation under moderate reaction conditions with easy recovery of both product and biocatalyst, it has the potential to replace some of the chemical catalytic methods.
Collapse
Affiliation(s)
- Mangal A Chaudhari
- School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, MS, 425 001, India
| | - Pratiksha R Wankhede
- School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, MS, 425 001, India
| | - Kiran S Dalal
- School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, MS, 425 001, India
| | - Arun D Kale
- School of Chemical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, MS, 425 001, India
| | - Dipak S Dalal
- School of Chemical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, MS, 425 001, India
| | - Bhushan L Chaudhari
- School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, MS, 425 001, India.
| |
Collapse
|
2
|
Zhu LX, Wang H, Han PJ, Lan YB. Identification of dominant functional microbes that contribute to the characteristic aroma of Msalais, traditional wine fermented from boiled local grape juice in China. Food Chem X 2023; 19:100778. [PMID: 37780303 PMCID: PMC10534102 DOI: 10.1016/j.fochx.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/10/2023] [Accepted: 06/28/2023] [Indexed: 10/03/2023] Open
Abstract
Msalais is a traditional wine produced from naturally fermented boiled local grape juice in China. It has characteristic dried fruit and caramel odors, mainly attributed to aromatic compounds, such as furaneol and 5-methylfurfural. However, it is unclear how microbes involved in the natural fermentation of Msalais contribute to this characteristic aroma. Here, we analyzed the Msalais-fermenting microbes and aromatic compounds formed during natural Msalais fermentation by using high-throughput sequencing and gas chromatography-mass spectrometry, respectively. The analysis revealed that Saccharomyces cerevisiae, Kazachstania humilis, Lactobacillus plantarum, and Lactobacillus farraginis are the dominant and key functional species that produce high amounts of furaneol and 5-methylfurfural during Msalais fermentation. Of these, K. humilis and L. farraginis are rarely detected during regular wine fermentation. The identified functional species could be used to control typical aromatic characteristics of Msalais.
Collapse
Affiliation(s)
- Li-Xia Zhu
- Production and Construction Group, Key Laboratory of High-Quality Agricultural Product Extensive Processing in Southern Xinjiang, Tarim University, Alar, Xinjiang 843300, PR China
| | - Hui Wang
- Production and Construction Group, Key Laboratory of High-Quality Agricultural Product Extensive Processing in Southern Xinjiang, Tarim University, Alar, Xinjiang 843300, PR China
| | - Pei-jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yi-Bin Lan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| |
Collapse
|
3
|
Li P, Ju N, Zhang S, Wang Y, Luo Y. Evaluation of microbial diversity of Jiangshui from the Ningxia Hui autonomous region in China. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2022.2054818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Puyu Li
- College of Food and Wine, Ningxia University, Yinchuan, P. R, China
| | - Ning Ju
- College of Food and Wine, Ningxia University, Yinchuan, P. R, China
| | - Shengzhuo Zhang
- College of Food and Wine, Ningxia University, Yinchuan, P. R, China
| | - Yuanyuan Wang
- College of Food and Wine, Ningxia University, Yinchuan, P. R, China
| | - Yulong Luo
- College of Food and Wine, Ningxia University, Yinchuan, P. R, China
| |
Collapse
|
4
|
Bocatti CR, Ferreira E, Ribeiro RA, de Oliveira Chueire LM, Delamuta JRM, Kobayashi RKT, Hungria M, Nogueira MA. Microbiological quality analysis of inoculants based on Bradyrhizobium spp. and Azospirillum brasilense produced "on farm" reveals high contamination with non-target microorganisms. Braz J Microbiol 2022; 53:267-280. [PMID: 34984661 PMCID: PMC8882540 DOI: 10.1007/s42770-021-00649-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
The use of inoculants carrying diazotrophic and other plant growth-promoting bacteria plays an essential role in the Brazilian agriculture, with a growing use of microorganism-based bioproducts. However, in the last few years, some farmers have multiplied microorganisms in the farm, known as "on farm" production, including inoculants of Bradyrhizobium spp. for soybean (Glycine max L. Merrill.) and Azospirillum brasilense for corn (Zea mays L.) or co-inoculation in soybean. The objective was to assess the microbiological quality of such inoculants concerning the target microorganisms and contaminants. In the laboratory, 18 samples taken in five states were serial diluted and spread on culture media for obtaining pure and morphologically distinct colonies of bacteria, totaling 85 isolates. Molecular analysis based on partial sequencing of the 16S rRNA gene revealed 25 genera of which 44% harbor species potentially pathogenic to humans; only one of the isolates was identified as Azospirillum brasilense, whereas no isolate was identified as Bradyrhizobium. Among 34 isolates belonging to genera harboring species potentially pathogenic to humans, 12 had no resistance to antibiotics, six presented intrinsic resistance, and 18 presented non-intrinsic resistance to at least one antibiotic. One of the samples analyzed with a shotgun-based metagenomics approach to check for the microbial diversity showed several genera of microorganisms, mainly Acetobacter (~ 32% of sequences) but not the target microorganism. The samples of inoculants produced on farm were highly contaminated with non-target microorganisms, some of them carrying multiple resistances to antibiotics.
Collapse
Affiliation(s)
- Camila Rafaeli Bocatti
- Department of Microbiology, Universidade Estadual de Londrina, C. Postal 10.011, Londrina, PR, 86057-970, Brazil
| | - Eduara Ferreira
- Embrapa Soja, C. Postal 4006, Londrina, PR, 86081-981, Brazil
| | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, DF, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Duran FE, Özdemir N, Güneşer O, Kök-Taş T. Prominent strains of kefir grains in the formation of volatile compound profile in milk medium; the role of Lactobacillus kefiranofaciens subsp. kefiranofaciens, Lentilactobacillus kefiri and Lentilactobacillus parakefiri. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03936-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Tohno M, Tanizawa Y, Kojima Y, Sakamoto M, Ohkuma M, Kobayashi H. Lentilactobacillus fungorum sp. nov., isolated from spent mushroom substrates. Int J Syst Evol Microbiol 2021; 71. [PMID: 34913426 DOI: 10.1099/ijsem.0.005184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Japan, during a screening of lactic acid bacteria in spent mushroom substrates, an unknown bacterium was isolated and could not be assigned to any known species. Strain YK48GT is Gram-stain-positive, rod-shaped, non-motile, non-spore-forming and catalase-negative. The isolate grew in 0-4 % (w/v) NaCl, at 15-37 °C (optimum, 30 °C) and at pH 4.0-8.0 (optimum, pH 6.0). The genomic DNA G+C content of strain YK48GT was 42.5 mol%. Based on its 16S rRNA gene sequence, strain YK48GT represented a member of the genus Lentilactobacillus and showed the highest pairwise similarity to Lentilactobacillus rapi DSM 19907T (97.86 %). Phylogenetic analyses based on amino acid sequences of 466 shared protein-encoding genes also revealed that the strain was phylogenetically positioned in the genus Lentilactobacillus but did not suggest an affiliation with previously described species. The average nucleotide identity and digital DNA-DNA hybridization values between strain YK48GT and the type strains of phylogenetically related species were 72.2-76.6% and 19.0-21.2 %, respectively, indicating that strain YK48GT represents a novel species within the genus Lentilactobacillus. Phenotypic data further confirmed the differentiation of strain YK48GT from other members of the genus Lentilactobacillus. According to the results of the polyphasic characterization presented in this study, strain YK48GT represents a novel species of the genus Lentilactobacillus, for which the name Lentilactobacillus fungorum sp. nov. is proposed. The type strain is YK48GT (=JCM 32598T=DSM 107968T).
Collapse
Affiliation(s)
- Masanori Tohno
- Institute of Livestock and Grassland Science, NARO, Nasushiobara, Tochigi 329-2793, Japan.,Research Center of Genetic Resources, Core Technology Research Headquarters, NARO, Tsukuba, Ibaraki, 305-8632, Japan
| | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yoichiro Kojima
- Central Region Agricultural Research Center, NARO, Nasushiobara, Tochigi 329-2793, Japan
| | - Mitsuo Sakamoto
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Hisami Kobayashi
- Institute of Livestock and Grassland Science, NARO, Nasushiobara, Tochigi 329-2793, Japan
| |
Collapse
|
7
|
Sun Y, Yang J, Sun T, Liu W. Evaluation of lactic acid bacterial communities in spontaneously-fermented dairy products from Tajikistan, Kyrgyzstan and Uzbekistan using culture-dependent and culture-independent methods. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Chiou TY, Suda W, Oshima K, Hattori M, Matsuzaki C, Yamamoto K, Takahashi T. Lentilactobacillus kosonis sp. nov., isolated from kôso, a Japanese sugar-vegetable fermented beverage. Int J Syst Evol Microbiol 2021; 71. [PMID: 34779759 DOI: 10.1099/ijsem.0.005128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel lactic acid-producing, Gram-stain-positive, catalase-negative and rod-shaped strain, designated as strain C06_No.73T, was isolated from a traditional Japanese fermented beverage called kôso. According to the results of phylogenetic analysis based on 16S rRNA gene sequences, strain C06_No.73T belongs to the genus Lentilactobacillus. The closest type strain was Lentilactobacillus curieae CCTCC M 2011381T, with a sequence identity of 98.1 %. The identity values with other strains were all below 97 %. The isolate propagated under the conditions of 18-39 °C (optimum, 27 °C for 48 h incubation) and pH 4.0-7.0 (optimum, pH 6.5). The G+C content of its genomic DNA was determined to be 37.9 mol%. The main fatty acids were C16 : 0, C18 : 1 ω7c, C18 : 1 ω9c and C19 : 0 cyclopropane 11,12. The major polar lipid was identified as phosphatidylglycerol. No isoprenoid quinone was detected. The predominant cell-wall amino acids were lysine, alanine, glutamic acid and aspartic acid. Neither meso-diaminopimelic acid nor ornithine were detected. On the basis of this polyphasic taxonomic study, the isolate is concluded to represent a novel species, for which the name Lentilactobacillus kosonis sp. nov. is proposed. The type strain is C06_No.73T (=NBRC 111893T=BCRC 81282T).
Collapse
Affiliation(s)
- Tai-Ying Chiou
- Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences,1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Kenshiro Oshima
- School of Pharmacy, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, Japan
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences,1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Chiaki Matsuzaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Japan
| | - Kenji Yamamoto
- Center for Innovative and Joint Research, Wakayama University, Sakaedani 930, Wakayama, Wakayama, Japan
| | - Tomoya Takahashi
- ARSOA Research & Development Center, ARSOA Keioh Group Corporation, 2961 Kobuchisawa-cho, Hokuto, Yamanashi, Japan
| |
Collapse
|
9
|
Gustaw K, Koper P, Polak-Berecka M, Rachwał K, Skrzypczak K, Waśko A. Genome and Pangenome Analysis of Lactobacillus hilgardii FLUB-A New Strain Isolated from Mead. Int J Mol Sci 2021; 22:ijms22073780. [PMID: 33917427 PMCID: PMC8038741 DOI: 10.3390/ijms22073780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022] Open
Abstract
The production of mead holds great value for the Polish liquor industry, which is why the bacterium that spoils mead has become an object of concern and scientific interest. This article describes, for the first time, Lactobacillus hilgardii FLUB newly isolated from mead, as a mead spoilage bacteria. Whole genome sequencing of L. hilgardii FLUB revealed a 3 Mbp chromosome and five plasmids, which is the largest reported genome of this species. An extensive phylogenetic analysis and digital DNA-DNA hybridization confirmed the membership of the strain in the L. hilgardii species. The genome of L. hilgardii FLUB encodes 3043 genes, 2871 of which are protein coding sequences, 79 code for RNA, and 93 are pseudogenes. L. hilgardii FLUB possesses three clustered regularly interspaced short palindromic repeats (CRISPR), eight genomic islands (44,155 bp to 6345 bp), and three (two intact and one incomplete) prophage regions. For the first time, the characteristics of the genome of this species were described and a pangenomic analysis was performed. The concept of the pangenome was used not only to establish the genetic repertoire of this species, but primarily to highlight the unique characteristics of L. hilgardii FLUB. The core of the genome of L. hilgardii is centered around genes related to the storage and processing of genetic information, as well as to carbohydrate and amino acid metabolism. Strains with such a genetic constitution can effectively adapt to environmental changes. L. hilgardii FLUB is distinguished by an extensive cluster of metabolic genes, arsenic detoxification genes, and unique surface layer proteins. Variants of MRS broth with ethanol (10-20%), glucose (2-25%), and fructose (2-24%) were prepared to test the strain's growth preferences using Bioscreen C and the PYTHON script. L. hilgardii FLUB was found to be more resistant than a reference strain to high concentrations of alcohol (18%) and sugars (25%). It exhibited greater preference for fructose than glucose, which suggests it has a fructophilic nature. Comparative genomic analysis supported by experimental research imitating the conditions of alcoholic beverages confirmed the niche specialization of L. hilgardii FLUB to the mead environment.
Collapse
Affiliation(s)
- Klaudia Gustaw
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.P.-B.); (K.R.); (A.W.)
- Correspondence: (K.G.); (P.K.)
| | - Piotr Koper
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
- Correspondence: (K.G.); (P.K.)
| | - Magdalena Polak-Berecka
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.P.-B.); (K.R.); (A.W.)
| | - Kamila Rachwał
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.P.-B.); (K.R.); (A.W.)
| | - Katarzyna Skrzypczak
- Department of Fruits, Vegetables and Mushrooms Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.P.-B.); (K.R.); (A.W.)
| |
Collapse
|
10
|
Co-Occurrence of Regulated and Emerging Mycotoxins in Corn Silage: Relationships with Fermentation Quality and Bacterial Communities. Toxins (Basel) 2021; 13:toxins13030232. [PMID: 33806727 PMCID: PMC8004697 DOI: 10.3390/toxins13030232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022] Open
Abstract
Sixty-four corn silages were characterized for chemicals, bacterial community, and concentrations of several fungal metabolites. Silages were grouped in five clusters, based on detected mycotoxins, and they were characterized for being contaminated by (1) low levels of Aspergillus- and Penicillium-mycotoxins; (2) low levels of fumonisins and other Fusarium-mycotoxins; (3) high levels of Aspergillus-mycotoxins; (4) high levels of non-regulated Fusarium-mycotoxins; (5) high levels of fumonisins and their metabolites. Altersetin was detected in clusters 1, 3, and 5. Rugulusovin or brevianamide F were detected in several samples, with the highest concentration in cluster 3. Emodin was detected in more than 50.0% of samples of clusters 1, 3 and 5, respectively. Kojic acid occurred mainly in clusters 1 and 2 at very low concentrations. Regarding Fusarium mycotoxins, high occurrences were observed for FB3, FB4, FA1, whereas the average concentrations of FB6 and FA2 were lower than 12.4 µg/kg dry matter. Emerging Fusarium-produced mycotoxins, such as siccanol, moniliformin, equisetin, epiequisetin and bikaverin were detected in the majority of analyzed corn silages. Pestalotin, oxaline, phenopirrozin and questiomycin A were detected at high incidences. Concluding, this work highlighted that corn silages could be contaminated by a high number of regulated and emerging mycotoxins.
Collapse
|
11
|
EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Bampidis V, Azimonti G, Bastos MDL, Christensen H, Dusemund B, Kos Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Cocconcelli PS, Glandorf B, Prieto Maradona M, Saarela M, Galobart J, Gregoretti L, Innocenti M, López‐Gálvez G, Pettenati E, Sofianidis K, Vettori MV, Brozzi R. Safety and efficacy of Lactobacillus parafarraginis DSM 32962 as a silage additive for all animal species. EFSA J 2020; 18:e06201. [PMID: 32704317 PMCID: PMC7372482 DOI: 10.2903/j.efsa.2020.6201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Following a request from the European Commission, the Panel on Additives and Products or Substances used in Animal Feed was asked to deliver a scientific opinion on the safety and efficacy of Lactobacillus parafarraginis DSM 32962 when used as a technological additive intended to improve the production of silage at a proposed application rate of 1 × 108 colony forming units (CFU)/kg fresh material. The bacterial species L. parafarraginis is considered by EFSA to be suitable for the qualified presumption of safety approach to safety assessment. As the identity of the strain has been clearly established and no acquired antimicrobial resistance determinants of concern were detected, the use of the strain as a silage additive is considered safe for livestock species, for consumers of products from animals fed the treated silage and for the environment. The additive is not an eye or dermal irritant but should be considered a potential respiratory sensitiser. No conclusions can be drawn on the skin sensitisation potential of the additive. Three studies with laboratory-scale silos were made using samples of easy and moderately difficult to ensile forage. In each case, replicate silos containing untreated forage were compared with identical silos containing the same forage to which Lactobacillus parafarraginis DSM 32962 was added to reach an intended concentration of 1 × 108 CFU/kg fresh matter. The results showed that the addition of the additive improves significantly the aerobic stability of the silage tested.
Collapse
|
12
|
Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O'Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70:2782-2858. [PMID: 32293557 DOI: 10.1099/ijsem.0.004107] [Citation(s) in RCA: 1739] [Impact Index Per Article: 347.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and genotypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade-specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host-adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacillus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa, Liquorilactobacillus, Ligilactobacillus, Lactiplantibacillus, Furfurilactobacillus, Paucilactobacillus, Limosilactobacillus, Fructilactobacillus, Acetilactobacillus, Apilactobacillus, Levilactobacillus, Secundilactobacillus and Lentilactobacillus are proposed. We also propose to emend the description of the family Lactobacillaceae to include all genera that were previously included in families Lactobacillaceae and Leuconostocaceae. The generic term 'lactobacilli' will remain useful to designate all organisms that were classified as Lactobacillaceae until 2020. This reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties, as exemplified for the emended genus Lactobacillus encompassing species adapted to vertebrates (such as Lactobacillus delbrueckii, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensensii, Lactobacillus johnsonii and Lactobacillus acidophilus) or invertebrates (such as Lactobacillus apis and Lactobacillus bombicola).
Collapse
Affiliation(s)
- Jinshui Zheng
- Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, PR China
| | - Stijn Wittouck
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Elisa Salvetti
- Dept. of Biotechnology, University of Verona, Verona, Italy
| | - Charles M A P Franz
- Max Rubner-Institut, Department of Microbiology and Biotechnology, Kiel, Germany
| | - Hugh M B Harris
- School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - Paola Mattarelli
- University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy
| | - Paul W O'Toole
- School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - Bruno Pot
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Jens Walter
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Koichi Watanabe
- Food Industry Research and Development Institute, Bioresource Collection and Research Center, Hsinchu, Taiwan, ROC.,National Taiwan University, Dept. of Animal Science and Technology, Taipei, Taiwan, ROC
| | - Sander Wuyts
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | | | - Michael G Gänzle
- Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, PR China.,Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Sarah Lebeer
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
13
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cocconcelli PS, Fernández Escámez PS, Maradona MP, Querol A, Suarez JE, Sundh I, Vlak J, Barizzone F, Correia S, Herman L. Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA (2017-2019). EFSA J 2020; 18:e05966. [PMID: 32874212 PMCID: PMC7448045 DOI: 10.2903/j.efsa.2020.5966] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The qualified presumption of safety (QPS) was developed to provide a safety pre-assessment within EFSA for microorganisms. Strains belonging to QPS taxonomic units (TUs) still require an assessment based on a specific data package, but QPS status facilitates fast track evaluation. QPS TUs are unambiguously defined biological agents assessed for the body of knowledge, their safety and their end use. Safety concerns are, where possible, to be confirmed at strain or product level, and reflected as 'qualifications'. Qualifications need to be evaluated at strain level by the respective EFSA units. The lowest QPS TU is the species level for bacteria, yeasts and protists/algae, and the family for viruses. The QPS concept is also applicable to genetically modified microorganisms used for production purposes if the recipient strain qualifies for the QPS status, and if the genetic modification does not indicate a concern. Based on the actual body of knowledge and/or an ambiguous taxonomic position, the following TUs were excluded from the QPS assessment: filamentous fungi, oomycetes, streptomycetes, Enterococcus faecium, Escherichia coli and bacteriophages. The list of QPS-recommended biological agents was reviewed and updated in the current opinion and therefore now becomes the valid list. For this update, reports on the safety of previously assessed microorganisms, including bacteria, yeasts and viruses (the latter only when used for plant protection purposes) were reviewed, following an Extensive Literature Search strategy. All TUs previously recommended for 2016 QPS list had their status reconfirmed as well as their qualifications. The TUs related to the new notifications received since the 2016 QPS opinion was periodically evaluated for QPS status in the Statements of the BIOHAZ Panel, and the QPS list was also periodically updated. In total, 14 new TUs received a QPS status between 2017 and 2019: three yeasts, eight bacteria and three algae/protists.
Collapse
|
14
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cocconcelli PS, Fernández Escámez PS, Maradona MP, Querol A, Suarez JE, Sundh I, Vlak J, Barizzone F, Correia S, Herman L. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 11: suitability of taxonomic units notified to EFSA until September 2019. EFSA J 2020; 18:e05965. [PMID: 32874211 PMCID: PMC7448003 DOI: 10.2903/j.efsa.2020.5965] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Qualified presumption of safety (QPS) was developed to provide a generic safety evaluation for biological agents to support EFSA's Scientific Panels. The taxonomic identity, body of knowledge, safety concerns and antimicrobial resistance are assessed. Safety concerns identified for a taxonomic unit (TU) are where possible to be confirmed at strain or product level, reflected by 'qualifications'. No new information was found that would change the previously recommended QPS TUs and their qualifications. The list of microorganisms notified to EFSA was updated with 54 biological agents, received between April and September 2019; 23 already had QPS status, 14 were excluded from the QPS exercise (7 filamentous fungi, 6 Escherichia coli, Sphingomonas paucimobilis which was already evaluated). Seventeen, corresponding to 16 TUs, were evaluated for possible QPS status, fourteen of these for the first time, and Protaminobacter rubrum, evaluated previously, was excluded because it is not a valid species. Eight TUs are recommended for QPS status. Lactobacillus parafarraginis and Zygosaccharomyces rouxii are recommended to be included in the QPS list. Parageobacillus thermoglucosidasius and Paenibacillus illinoisensis can be recommended for the QPS list with the qualification 'for production purposes only' and absence of toxigenic potential. Bacillus velezensis can be recommended for the QPS list with the qualification 'absence of toxigenic potential and the absence of aminoglycoside production ability'. Cupriavidus necator, Aurantiochytrium limacinum and Tetraselmis chuii can be recommended for the QPS list with the qualification 'production purposes only'. Pantoea ananatis is not recommended for the QPS list due to lack of body of knowledge in relation to its pathogenicity potential for plants. Corynebacterium stationis, Hamamotoa singularis, Rhodococcus aetherivorans and Rhodococcus ruber cannot be recommended for the QPS list due to lack of body of knowledge. Kodamaea ohmeri cannot be recommended for the QPS list due to safety concerns.
Collapse
|
15
|
Nicaise B, Maaloum M, Lo CI, Armstrong N, Bretelle F, Fournier PÉ, Diop K, Fenollar F. Taxono-genomics description of 'Lactobacillus raoultii sp. nov.', strain Marseille-P4006 T, a new Lactobacillus species isolated from the female genital tract of a patient with bacterial vaginosis. New Microbes New Infect 2019; 29:100534. [PMID: 31011428 PMCID: PMC6462780 DOI: 10.1016/j.nmni.2019.100534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/14/2019] [Indexed: 12/31/2022] Open
Abstract
Strain Marseille-P4006T, a Gram-stain-positive, rod-shaped, non-sporulating, facultatively anaerobic bacterium, was isolated from the vaginal swab of a 45-year-old woman with recurrent bacterial vaginosis. We studied its phenotypic characteristics and sequenced its whole genome. The major fatty acids were C16:0 (48%), C19:1n9 (14%) and C18:0 (11%). The 3 070 142-bp-long genome contains 2855 protein-coding genes and 68 RNAs. Strain Marseille-P4006T exhibited 98.1% 16S rRNA similarity with Lactobacillus farraginis, the closest species phylogenetically. Thus, strain Marseille-P4006 is distinct enough to represent a new species for which we propose the name Lactobacillus raoultii sp. nov. The type strain is Marseille-P4006T.
Collapse
Affiliation(s)
- B Nicaise
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - M Maaloum
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Faculty of Sciences Ben M'Sik, Laboratory of Biology and Health, Hassan II University, Casablanca, Morocco
| | - C I Lo
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - N Armstrong
- IHU-Méditerranée Infection, Marseille, France.,Aix-Marseille University, IRD, AP-HM, MEPHI, Marseille, France
| | - F Bretelle
- IHU-Méditerranée Infection, Marseille, France.,Aix-Marseille University, IRD, AP-HM, MEPHI, Marseille, France.,Department of Gynaecology and Obstetrics, Gynépole, Hôpital Nord, AP-HM, Marseille, France
| | - P-É Fournier
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - K Diop
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - F Fenollar
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
16
|
Culture-dependent and -independent analysis of bacterial community structure in Jiangshui, a traditional Chinese fermented vegetable food. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.05.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Nicaise B, Bilen M, Cadoret F, Bretelle F, Fenollar F. 'Lactobacillus raoultii' sp. nov., a new bacterium isolated from the vaginal flora of a woman with bacterial vaginosis. New Microbes New Infect 2018; 21:20-22. [PMID: 29204281 PMCID: PMC5709347 DOI: 10.1016/j.nmni.2017.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/06/2017] [Accepted: 10/10/2017] [Indexed: 11/29/2022] Open
Abstract
We report the isolation of a new bacterium species, 'Lactobacillus raoultii' strain Marseille P4006 (CSUR P4006), isolated from a vaginal sample of a 45-year-old woman with bacterial vaginosis.
Collapse
Affiliation(s)
- B. Nicaise
- Aix-Marseille Univ, URMITE, UM63, CNRS7278, IRD198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, France
| | - M. Bilen
- Aix-Marseille Univ, URMITE, UM63, CNRS7278, IRD198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, France
- Clinical Microbiology Laboratory, Saint George University Hospital, Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - F. Cadoret
- Aix-Marseille Univ, URMITE, UM63, CNRS7278, IRD198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, France
| | - F. Bretelle
- Department of Gynaecology and Obstetrics, Gynépole, Marseille, Pr Boubli, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, AMU, Aix-Marseille Univ, Marseille, France
| | - F. Fenollar
- Aix-Marseille Univ, URMITE, UM63, CNRS7278, IRD198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, France
| |
Collapse
|
18
|
Effects of inoculants Lactobacillus brevis and Lactobacillus parafarraginis on the fermentation characteristics and microbial communities of corn stover silage. Sci Rep 2017; 7:13614. [PMID: 29051616 PMCID: PMC5648770 DOI: 10.1038/s41598-017-14052-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/03/2017] [Indexed: 11/08/2022] Open
Abstract
To improve silage quality of crop forages, bacterial inoculants are often employed. In this study, Lactobacillus brevis SDMCC050297 and Lactobacillus parafarraginis SDMCC050300 were used as inoculants to corn stover in lab silos for ensiling. At the initial stage of ensiling, the pH value of the inoculated silages reduced more drastically, and the inoculated silages had higher lactic acid and acetic acid contents. After 20 days of ensiling, a reduction in lactic acid content coupled with an increase in acetic acid and 1,2-propanediol contents was observed in inoculated silages. Furthermore, both the amount of lactic acid bacteria and the abundance of order Lactobacillales in inoculated silages were higher than those of controls in the whole process. Meanwhile, Lb. brevis predominated before day 20 and then the dominance was shifted to Lb. parafarraginis until the late stage of ensiling. In contrast, the epiphytic Lactococcus lactic and Lb. plantarum played major roles at the beginning of naturally fermented silages and then Lb. plantarum and Lb. brevis were the most abundant at the later stage. In conclusion, these two selected strains had capability of improving the silage quality and providing the reproducible ensiling process, thus having the potential as silage inoculants.
Collapse
|
19
|
Malamud M, Carasi P, Bronsoms S, Trejo SA, Serradell MDLA. Lactobacillus kefiri shows inter-strain variations in the amino acid sequence of the S-layer proteins. Antonie Van Leeuwenhoek 2016; 110:515-530. [PMID: 28004217 DOI: 10.1007/s10482-016-0820-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
Abstract
The S-layer is a proteinaceous envelope constituted by subunits that self-assemble to form a two-dimensional lattice that covers the surface of different species of Bacteria and Archaea, and it could be involved in cell recognition of microbes among other several distinct functions. In this work, both proteomic and genomic approaches were used to gain knowledge about the sequences of the S-layer protein (SLPs) encoding genes expressed by six aggregative and sixteen non-aggregative strains of potentially probiotic Lactobacillus kefiri. Peptide mass fingerprint (PMF) analysis confirmed the identity of SLPs extracted from L. kefiri, and based on the homology with phylogenetically related species, primers located outside and inside the SLP-genes were employed to amplify genomic DNA. The O-glycosylation site SASSAS was found in all L. kefiri SLPs. Ten strains were selected for sequencing of the complete genes. The total length of the mature proteins varies from 492 to 576 amino acids, and all SLPs have a calculated pI between 9.37 and 9.60. The N-terminal region is relatively conserved and shows a high percentage of positively charged amino acids. Major differences among strains are found in the C-terminal region. Different groups could be distinguished regarding the mature SLPs and the similarities observed in the PMF spectra. Interestingly, SLPs of the aggregative strains are 100% homologous, although these strains were isolated from different kefir grains. This knowledge provides relevant data for better understanding of the mechanisms involved in SLPs functionality and could contribute to the development of products of biotechnological interest from potentially probiotic bacteria.
Collapse
Affiliation(s)
- Mariano Malamud
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, CP 1900, La Plata, Argentina.,CCT-La Plata, CONICET, Buenos Aires, Argentina
| | - Paula Carasi
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, CP 1900, La Plata, Argentina.,CCT-La Plata, CONICET, Buenos Aires, Argentina
| | - Sílvia Bronsoms
- Unidad de Proteómica del Servicio de Proteómica y Biología Estructural (SePBioEs), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Sebastián A Trejo
- CCT-La Plata, CONICET, Buenos Aires, Argentina.,Unidad de Proteómica del Servicio de Proteómica y Biología Estructural (SePBioEs), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Instituto Multidisciplinario de Biología Celular (IMBICE), CONICET, La Plata, Argentina
| | - María de Los Angeles Serradell
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, CP 1900, La Plata, Argentina. .,CCT-La Plata, CONICET, Buenos Aires, Argentina. .,Instituto de Ciencias de la Salud, Universidad Arturo Jauretche (UNAJ), Florencio Varela, Argentina.
| |
Collapse
|
20
|
Rossi M, Martínez-Martínez D, Amaretti A, Ulrici A, Raimondi S, Moya A. Mining metagenomic whole genome sequences revealed subdominant but constant Lactobacillus population in the human gut microbiota. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:399-406. [PMID: 27043715 DOI: 10.1111/1758-2229.12405] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/08/2016] [Indexed: 02/05/2023]
Abstract
The genus Lactobacillus includes over 215 species that colonize plants, foods, sewage and the gastrointestinal tract (GIT) of humans and animals. In the GIT, Lactobacillus population can be made by true inhabitants or by bacteria occasionally ingested with fermented or spoiled foods, or with probiotics. This study longitudinally surveyed Lactobacillus species and strains in the feces of a healthy subject through whole genome sequencing (WGS) data-mining, in order to identify members of the permanent or transient populations. In three time-points (0, 670 and 700 d), 58 different species were identified, 16 of them being retrieved for the first time in human feces. L. rhamnosus, L. ruminis, L. delbrueckii, L. plantarum, L. casei and L. acidophilus were the most represented, with estimated amounts ranging between 6 and 8 Log (cells g(-1) ), while the other were detected at 4 or 5 Log (cells g(-1) ). 86 Lactobacillus strains belonging to 52 species were identified. 43 seemingly occupied the GIT as true residents, since were detected in a time span of almost 2 years in all the three samples or in 2 samples separated by 670 or 700 d. As a whole, a stable community of lactobacilli was disclosed, with wide and understudied biodiversity.
Collapse
Affiliation(s)
- Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniel Martínez-Martínez
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO), Valencia, Spain
- Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Ulrici
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrés Moya
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO), Valencia, Spain
- Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| |
Collapse
|
21
|
Escalante-Minakata P, Blaschek HP, Barba de la Rosa AP, Santos L, De León-Rodríguez A. Identification of yeast and bacteria involved in the mezcal fermentation of Agave salmiana. Lett Appl Microbiol 2015; 46:626-30. [PMID: 18489025 DOI: 10.1111/j.1472-765x.2008.02359.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To identify the yeast and bacteria present in the mezcal fermentation from Agave salmiana. METHODS AND RESULTS The restriction and sequence analysis of the amplified region, between 18S and 28S rDNA and 16S rDNA genes, were used for the identification of yeast and bacteria, respectively. Eleven different micro-organisms were identified in the mezcal fermentation. Three of them were the following yeast: Clavispora lusitaniae, Pichia fermentans and Kluyveromyces marxianus. The bacteria found were Zymomonas mobilis subsp. mobilis and Zymomonas mobilis subsp. pomaceae, Weissella cibaria, Weissella paramesenteroides, Lactobacillus pontis, Lactobacillus kefiri, Lactobacillus plantarum and Lactobacillus farraginis. CONCLUSIONS The phylogenetic analysis of 16S rDNA and ITS sequences showed that microbial diversity present in mezcal is dominated by bacteria, mainly lactic acid bacteria species and Zymomonas mobilis. Pichia fermentans and K. marxianus could be micro-organisms with high potential for the production of some volatile compounds in mezcal. SIGNIFICANCE AND IMPACT OF THE STUDY We identified the community of bacteria and yeast present in mezcal fermentation from Agave salmiana.
Collapse
Affiliation(s)
- P Escalante-Minakata
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México
| | | | | | | | | |
Collapse
|
22
|
A Genomic View of Lactobacilli and Pediococci Demonstrates that Phylogeny Matches Ecology and Physiology. Appl Environ Microbiol 2015; 81:7233-43. [PMID: 26253671 DOI: 10.1128/aem.02116-15] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/31/2015] [Indexed: 12/17/2022] Open
Abstract
Lactobacilli are used widely in food, feed, and health applications. The taxonomy of the genus Lactobacillus, however, is confounded by the apparent lack of physiological markers for phylogenetic groups of lactobacilli and the unclear relationships between the diverse phylogenetic groups. This study used the core and pan-genomes of 174 type strains of Lactobacillus and Pediococcus to establish phylogenetic relationships and to identify metabolic properties differentiating phylogenetic groups. The core genome phylogenetic tree separated homofermentative lactobacilli and pediococci from heterofermentative lactobacilli. Aldolase and phosphofructokinase were generally present in homofermentative but not in heterofermentative lactobacilli; a two-domain alcohol dehydrogenase and mannitol dehydrogenase were present in most heterofermentative lactobacilli but absent in most homofermentative organisms. Other genes were predominantly present in homofermentative lactobacilli (pyruvate formate lyase) or heterofermentative lactobacilli (lactaldehyde dehydrogenase and glycerol dehydratase). Cluster analysis of the phylogenomic tree and the average nucleotide identity grouped the genus Lactobacillus sensu lato into 24 phylogenetic groups, including pediococci, with stable intra- and intergroup relationships. Individual groups may be differentiated by characteristic metabolic properties. The link between phylogeny and physiology that is proposed in this study facilitates future studies on the ecology, physiology, and industrial applications of lactobacilli.
Collapse
|
23
|
Sandes S, Alvin L, Silva B, Zanirati D, Jung L, Nicoli J, Neumann E, Nunes A. Lactobacillus species identification by amplified ribosomal 16S-23S rRNA restriction fragment length polymorphism analysis. Benef Microbes 2014; 5:471-81. [DOI: 10.3920/bm2013.0092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lactic acid bacteria strains are commonly used for animal and human consumption due to their probiotic properties. One of the major genera used is Lactobacillus, a highly diverse genus comprised of several closely related species. The selection of new strains for probiotic use, especially strains of Lactobacillus, is the focus of several research groups. Accurate identification to species level is fundamental for research on new strains, as well as for safety assessment and quality assurance. The 16S-23S internal transcribed spacer (ITS-1) is a deeply homologous region among prokaryotes that is commonly used for identification to the species level because it is able to acquire and accumulate mutations without compromising general bacterial metabolism. In the present study, 16S-23S ITS regions of 45 Lactobacillus species (48 strains) were amplified and subjected to independent enzymatic digestions, using 12 restriction enzymes that recognise six-base sequences. Twenty-nine species showed unique restriction patterns, and could therefore be precisely identified solely by this assay (64%). This approach proved to be reproducible, allowing us to establish simplified restriction patterns for each evaluated species. The restriction patterns of each species were similar among homologous strains, and to a large extent reflected phylogenetic relationships based on 16S rRNA sequences, demonstrating the promising nature of this region for evolutionary studies.
Collapse
Affiliation(s)
- S.H.C. Sandes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - L.B. Alvin
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - B.C. Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - D.F. Zanirati
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - L.R.C. Jung
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - J.R. Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - E. Neumann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - A.C. Nunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
24
|
Liu QH, Yang FY, Zhang JG, Shao T. Characteristics of Lactobacillus parafarraginis ZH1 and its role in improving the aerobic stability of silages. J Appl Microbiol 2014; 117:405-16. [PMID: 24766633 DOI: 10.1111/jam.12530] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/29/2022]
Abstract
AIMS Lactobacillus parafarraginis ZH1 isolated from silage was characterized, and the effects of inoculating ZH1 and Lact. buchneri (LB) on the aerobic stability of sweet corn stalk (SCS) silage and whole-plant oat (WPO) silage ensiled at 15 and 30°C were studied. METHODS AND RESULTS After ensiling of SCS or WPO in plastic bottle silo for 45 days, silos were opened, and aerobic stability was studied by monitoring temperature change with thermo recorders in silage for 6 days. SCS silage and WPO silage were well conserved naturally at both storage temperatures. However, silages were prone to aerobic deterioration due to the presence of residual yeasts. ZH1 inoculated silages ensiled at both temperatures, LB inoculated silages ensiled at 30°C had better aerobic stability than the uninoculated silages and the LB-inoculated silage at 15°C. CONCLUSIONS Strain ZH1 improved the aerobic stability of SCS silage and WPO silage ensiled at both 15 and 30°C, while LB improved the aerobic stability of silage only ensiled at the high temperature of 30°C. SIGNIFICANCE AND IMPACT OF THE STUDY The new strain ZH1 can be used as an effective inhibitor for aerobic deterioration of silage maintained from 15 to 30°C.
Collapse
Affiliation(s)
- Q H Liu
- College of Agriculture, South China Agricultural University, Guangzhou, China; College of Prataculture Science, Nanjing Agricultural University, Nanjing, China
| | | | | | | |
Collapse
|
25
|
Draft Genome Sequences of Two Lactobacillus Strains, L. farraginis JCM 14108T and L. composti JCM 14202T, Isolated from Compost of Distilled Shōchū Residue. GENOME ANNOUNCEMENTS 2014; 2:2/2/e00257-14. [PMID: 24675866 PMCID: PMC3968344 DOI: 10.1128/genomea.00257-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the draft genome sequences of two type strains of Lactobacillus, Lactobacillus farraginis JCM 14108T and Lactobacillus composti JCM 14202T, isolated from the compost of distilled shōchū residue. Their genome information will be useful for studies of ecological and physiological functions of these Lactobacillus species.
Collapse
|
26
|
Montaño A, Sánchez AH, Casado FJ, Beato VM, de Castro A. Degradation of ascorbic acid and potassium sorbate by different Lactobacillus species isolated from packed green olives. Food Microbiol 2013; 34:7-11. [DOI: 10.1016/j.fm.2012.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 11/12/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022]
|
27
|
Kumar H, Pandey PK, Doiphode VV, Vir S, Bhutani KK, Patole MS, Shouche YS. Microbial community structure at different fermentation stages of kutajarista, a herbal formulation. Indian J Microbiol 2012; 53:11-7. [PMID: 24426073 DOI: 10.1007/s12088-012-0325-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/18/2012] [Indexed: 11/27/2022] Open
Abstract
Kutajarista is an Ayurvedic fermented herbal formulation prescribed for gastrointestinal disorders. This herbal formulation undergoes a gradual fermentative process and takes around 2 months for production. In this study, microbial composition at initial stages of fermentation of Kutajarista was assessed by culture independent 16S rRNA gene clone library approach. Physicochemical changes were also compared at these stages of fermentation. High performance liquid chromatography-mass spectrometry analysis showed that Gallic acid, Ellagic acid, and its derivatives were the major chemical constituents recovered in this process. At 0 day of fermentation, Lactobacillus sp., Acinetobacter sp., Alcaligenes sp., and Methylobacterium sp. were recovered, but were not detected at 8 day of fermentation. Initially, microbial diversity increased after 8 days of fermentation with 11 operational taxonomic units (OTUs), which further decreased to 3 OTUs at 30 day of fermentation. Aeromonas sp., Pseudomonas sp., and Klebsiella sp. dominated till 30 day of fermentation. Predominance of γ- Proteobacteria and presence of gallolyl derivatives at the saturation stage of fermentation implies tannin degrading potential of these microbes. This is the first study to highlight the microbial role in an Ayurvedic herbal product fermentation.
Collapse
Affiliation(s)
- Himanshu Kumar
- Laboratory No. 3, National Centre for Cell Science, Pune University Campus, Ganeshkhind Road, Pune, 411007 India
| | - Prashant Kumar Pandey
- Laboratory No. 3, National Centre for Cell Science, Pune University Campus, Ganeshkhind Road, Pune, 411007 India
| | - V V Doiphode
- Department of Ayurvedic Medicine, University of Pune, Pune, 411007 India
| | - Sanjay Vir
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Mohali, 160062 India
| | - K K Bhutani
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Mohali, 160062 India
| | - M S Patole
- Laboratory No. 3, National Centre for Cell Science, Pune University Campus, Ganeshkhind Road, Pune, 411007 India
| | - Y S Shouche
- Laboratory No. 3, National Centre for Cell Science, Pune University Campus, Ganeshkhind Road, Pune, 411007 India
| |
Collapse
|
28
|
Johanningsmeier SD, Franco W, Perez-Diaz I, McFeeters RF. Influence of Sodium Chloride, pH, and Lactic Acid Bacteria on Anaerobic Lactic Acid Utilization during Fermented Cucumber Spoilage. J Food Sci 2012; 77:M397-404. [DOI: 10.1111/j.1750-3841.2012.02780.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Borneman AR, McCarthy JM, Chambers PJ, Bartowsky EJ. Functional divergence in the genus Oenococcus as predicted by genome sequencing of the newly-described species, Oenococcus kitaharae. PLoS One 2012; 7:e29626. [PMID: 22235313 PMCID: PMC3250461 DOI: 10.1371/journal.pone.0029626] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/02/2011] [Indexed: 11/23/2022] Open
Abstract
Oenococcus kitaharae is only the second member of the genus Oenococcus to be identified and is the closest relative of the industrially important wine bacterium Oenococcus oeni. To provide insight into this new species, the genome of the type strain of O. kitaharae, DSM 17330, was sequenced. Comparison of the sequenced genomes of both species show that the genome of O. kitaharae DSM 17330 contains many genes with predicted functions in cellular defence (bacteriocins, antimicrobials, restriction-modification systems and a CRISPR locus) which are lacking in O. oeni. The two genomes also appear to differentially encode several metabolic pathways associated with amino acid biosynthesis and carbohydrate utilization and which have direct phenotypic consequences. This would indicate that the two species have evolved different survival techniques to suit their particular environmental niches. O. oeni has adapted to survive in the harsh, but predictable, environment of wine that provides very few competitive species. However O. kitaharae appears to have adapted to a growth environment in which biological competition provides a significant selective pressure by accumulating biological defence molecules, such as bacteriocins and restriction-modification systems, throughout its genome.
Collapse
Affiliation(s)
- Anthony R Borneman
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia.
| | | | | | | |
Collapse
|
30
|
Endo A, Okada S. Lactobacillus composti sp. nov., a lactic acid bacterium isolated from a compost of distilled shochu residue. Int J Syst Evol Microbiol 2007; 57:870-872. [PMID: 17392222 DOI: 10.1099/ijs.0.64743-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two strains of lactic acid bacteria, strains NRIC 0689T and NRIC 0690, were isolated from a compost of distilled shochu residue in Japan. The isolates showed quite low sequence similarity to known species of lactic acid bacteria on the basis of 16S rRNA gene sequence; the highest sequence similarities to NRIC 0689T were shown by the type strains of Lactobacillus satsumensis, L. plantarum, L. hilgardii, L. buchneri and L. parabuchneri (92.9, 92.9, 92.8, 92.6 and 92.5 %, respectively). The isolates formed a distinct subcluster in the Lactobacillus casei–Pediococcus phylogenetic cluster. Levels of DNA–DNA relatedness revealed that the isolates belonged to the same taxon. Therefore, the isolates represent a novel species, for which the name Lactobacillus composti sp. nov. is proposed. The type strain is NRIC 0689T (=JCM 14202T=DSM 18527T).
Collapse
Affiliation(s)
- Akihito Endo
- NODAI Culture Collection Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Sanae Okada
- NODAI Culture Collection Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| |
Collapse
|