1
|
Esmaeeli A, Ravan H, Hassanshahian M, Khaleghi M. Rapid LAMP-based detection of A. baumannii and aminoglycoside resistance genes in ESKAPE pathogens. Microb Pathog 2025; 202:107436. [PMID: 40021031 DOI: 10.1016/j.micpath.2025.107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The opportunistic pathogen Acinetobacter baumannii has emerged as a formidable challenge in the realm of healthcare-associated infections, primarily due to its remarkable capacity to develop resistance against a diverse array of antibiotics. In response to this pressing concern, this comprehensive study aims to design and validate a rapid and highly precise diagnostic tool, known as the Loop-Mediated Isothermal Amplification (LAMP) assay, for the detection of A. baumannii and its associated aminoglycoside resistance genes. Through meticulous comparative genomic analyses, the researchers have identified a unique 299-base pair segment within the glutathione S-transferase gene that exhibits exceptional specificity to A. baumannii. This discovery has enabled the development of a LAMP-based protocol that demonstrates complete specificity, with no cross-reactivity observed against other bacterial species. Furthermore, the assay has demonstrated a remarkable sensitivity threshold, capable of detecting as few as 10 colony-forming units per reaction for both the glutathione S-transferase target and the armA aminoglycoside resistance gene. Expanding the scope of the investigation, the researchers have also explored the distribution of five key aminoglycoside resistance genes (aadB, aacC1, aadA1, aphA6, and armA) across a diverse collection of bacterial isolates. Interestingly, the study has revealed that the aphA6 gene is the most widespread, being present in all the A. baumannii samples analyzed. The successful implementation of this LAMP-based diagnostic approach not only provides a rapid and precise means of identifying A. baumannii but also offers the ability to evaluate the presence of critical aminoglycoside resistance determinants. The adaptability of this methodology to other pathogens further underscores its potential as an invaluable tool in clinical diagnostics and epidemiological investigations. By enhancing the speed and accuracy of pathogen detection, this research holds promise for improving patient management and strengthening infection control strategies, ultimately contributing to better healthcare outcomes.
Collapse
Affiliation(s)
- Azam Esmaeeli
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hadi Ravan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mehdi Hassanshahian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Moj Khaleghi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
2
|
Quyen TLT, Hsieh YC, Li SW, Wu LT, Liu YZ, Pan YJ. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii group in Taiwan. mSphere 2025; 10:e0079324. [PMID: 39745372 PMCID: PMC11774041 DOI: 10.1128/msphere.00793-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/21/2024] [Indexed: 01/29/2025] Open
Abstract
Acinetobacter, particularly the Acinetobacter baumannii group, is a major cause of nosocomial infections, and carbapenem-resistant Acinetobacter spp. are important human pathogens. We collected 492 Acinetobacter spp. strains from two hospitals in Taiwan and classified them using MALDI-TOF MS and blaOXA-51-like PCR; 94.5% were A. baumannii, and 5.5% were non-A. baumannii (NAB). We confirmed their identity by rpoB gene sequencing of 239 randomly selected A. baumannii strains and all 27 NAB strains. Our analysis revealed that the rpoB alleles of OXA51-like-negative strains matched those of two NAB species, A. seifertii and A. nosocomialis, while all OXA51-like-positive strains matched A. baumannii, as per the Pasteur MLST scheme database. Among the 492 strains, 240 exhibited carbapenem resistance, including 237 carbapenem-resistant A. baumannii (CRAB) strains and three CR-NAB strains. All CRAB strains were positive for blaOXA-51-like; 72.6% also carried blaOXA-23-like, 22.8% carried blaOXA-24-like, 3.4% co-carried blaOXA-23-like+blaOXA-24-like, and 1.27% carried blaOXA-51-like alone. Among the three CR-NAB strains, one carried blaNDM-1, and two co-carried blaOXA-58-like+blaIMP. We also established a new multiplex PCR method for rapid screening of common capsular types (KL), which showed a difference between CRAB and carbapenem-susceptible A. baumannii (CSAB). KL2, KL10, KL22, and KL52 accounted for 76.6% of CRAB strains, whereas about half of the CSAB strains were other KL types. Of the remaining CSAB strains, KL14 was the most predominant type at 10.3%. We further conducted MLST Pasteur typing for 262 isolates and found that the carbapenemase genes were correlated with either ST or KL types. Additionally, KL types showed correlations with ST types, carbapenem resistance, and certain clinical records. Whole-genome sequencing of a blaNDM-1-carrying A. seifertii strain revealed a plasmid transferable via in vitro conjugation, suggesting A. seifertii may be a reservoir for NDM-1 plasmids.IMPORTANCECarbapenem-resistant Acinetobacter spp. have been identified by the World Health Organization as a top priority for new antibiotic development. We established a rapid KL-typing method for efficient screening of Acinetobacter baumannii strains to enable epidemiological surveillance and provide a foundation for effective infection control. Our investigation of the molecular epidemiology of the A. baumannii group isolates revealed the prevalence of carbapenemase genes and major KL types among CR and CS strains of A. baumannii and NAB. We identified an A. seifertii strain carrying a Ti-type conjugative operon on a small plasmid that harbored genes encoding the NDM-1 carbapenemase alongside genes conferring resistance to aminoglycosides and bleomycin and closely resembled sequences detected in A. soli and A. pittii in Taiwan and China, respectively, suggesting its potential for transmitting multidrug resistance and contributing to the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Tran Lam Tu Quyen
- Department of Biological Science and Technology, College of Life Science, China Medical University, Taichung, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chia Hsieh
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Shiao-Wen Li
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Lii-Tzu Wu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ya-Zhu Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Jiun Pan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Grenier F, Baby V, Allard S, Lévesque S, Papale F, Sullivan R, Landecker HL, Higgins PG, Rodrigue S, Haraoui LP. Isolation of a blaNDM-1-positive strain in Israel predating the earliest observations from India. Microbiol Spectr 2024; 12:e0100224. [PMID: 39320107 PMCID: PMC11537007 DOI: 10.1128/spectrum.01002-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
blaNDM, the most prevalent carbapenemase among carbapenem-resistant Enterobacteriaceae, is thought to have emerged in India, as its initial detection in 2008 was linked to this country, and subsequent retrospective surveys had so far established the earliest blaNDM-positive strains to be isolated in India in 2005. Molecular dating and analyses suggest blaNDM emerged within Acinetobacter species decades prior to 2005 on a Tn125 transposon. Despite early reports of elevated rates of carbapenem-resistant Acinetobacter species in Israel starting in the 1990s, limited molecular data are available from this location. We searched for blaNDM among Acinetobacter species isolated in Israel between 2001 and 2006. One A. junii strain, Ajun-H1-3, isolated in January 2004, carried blaNDM-1 within a Tn125-like transposon on a 49-kb plasmid, pNDM-Ajun-H1-3, making Ajun-H1-3 the earliest NDM-positive isolate observed to date. The pNDM-Ajun-H1-3 plasmid matched numerous BJ01-like NDM-positive plasmids identified from 2005 onward in Acinetobacter species as well as Enterobacterales. These results indicate the need for further retrospective work on global strain archives to shed light on the conditions favoring the emergence as well as subsequent evolution and spread of blaNDM. IMPORTANCE This study presents the earliest observation of blaNDM-1, isolated in a geographical region distant from where it is believed to have originated. In doing so, this study provides novel insights into the emergence and spread of blaNDM, the most prevalent carbapenemase among carbapenem-resistant Enterobacteriaceae, and its associated mobile genetic elements. It also sheds light on the conditions that foster the evolution of antimicrobial resistance, one of the greatest public health challenges we face.
Collapse
Affiliation(s)
- Frédéric Grenier
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Sherbrooke, Québec, Canada
| | - Vincent Baby
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Sherbrooke, Québec, Canada
| | - Sarah Allard
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Simon Lévesque
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
- CIUSSS de l’Estrie - CHUS, Sherbrooke, Québec, Canada
| | - François Papale
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Richard Sullivan
- Conflict and Health Research Group, King’s College London, London, United Kingdom
| | | | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), partner site Cologne-Bonn, Cologne, Germany
| | - Sébastien Rodrigue
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Sherbrooke, Québec, Canada
| | - Louis-Patrick Haraoui
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
- Centre de recherche Charles-Le Moyne, CISSS Montérégie-Centre, Longueuil, Québec, Canada
| |
Collapse
|
4
|
Sykes EME, Mateo-Estrada V, Muzaleva A, Zhanel G, Dettman J, Chapados J, Gerdis S, Akineden Ö, Castillo-Ramírez S, Khan IUH, Kumar A. Characterization of a colistin resistant, hypervirulent hospital isolate of Acinetobacter courvalinii from Canada. Eur J Clin Microbiol Infect Dis 2024; 43:1939-1949. [PMID: 39073669 DOI: 10.1007/s10096-024-04873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
Non-baumannii Acinetobacter spp. are becoming more prevalent in clinical settings including those that present resistance to last-resort antibiotics such as colistin. AB222-IK40 is an Acinetobacter courvalinii strain isolated from the Ottawa Hospital Research Institute located in Ottawa, Canada. To our knowledge, it is the first report of clinical A. courvalinii in Canada. Based on the susceptibility profile, AB222-IK40 is resistant to colistin and non-susceptible to ertapenem. Whole-genome sequencing allowed for genomic investigation into colistin resistance mechanisms. No previously identified mechanism(s) were observed, but a mobile colistin resistance (mcr)-like gene and a UDP-glucose dehydrogenase gene were identified. Based on phylogenomic analyses, the mcr-like gene is an intrinsic phosphoethanolamine transferase. This gene family is implicated in one of the many mechanisms responsible for colistin resistance in Acinetobacter baumannii as well as Acinetobacter modestus. UDP-glucose dehydrogenase is involved in colistin resistance in Enterobacterales and has been shown to be involved in capsule formation in A. baumannii. Global lipidomics revealed greater abundance of phosphatidyl-myo-inositol and lyso-phosphatidyl ethanolamine moieties in the membrane of A. courvalinii than in A. baumannii. Lipidomic profiles showed differences that were probably responsible for the colistin resistance phenotype in AB222-IK40. This isolate was also hypervirulent based on survival assays in Galleria mellonella. As this is the first report of A. courvalinii from a hospital in Canada, this species may be an emerging clinical pathogen, and therefore, it is important to understand this mechanism of its colistin resistance and hypervirulence.
Collapse
Affiliation(s)
- Ellen M E Sykes
- Department of Microbiology, University of Manitoba Winnipeg, Winnipeg, MB, R3T 2N2, Canada
| | - Valeria Mateo-Estrada
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Anna Muzaleva
- Department of Microbiology, University of Manitoba Winnipeg, Winnipeg, MB, R3T 2N2, Canada
| | - George Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Jeremy Dettman
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Julie Chapados
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Suzanne Gerdis
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Ömer Akineden
- Dairy Sciences, Institute of Veterinary Food Science, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Izhar U H Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba Winnipeg, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
5
|
Worku S, Abebe T, Seyoum B, Alemu B, Denkayehu G, Seyoum T, Alemayehu DH, Abdissa A, Beyene GT, Mihret A, Swedberg G. Molecular characterization of carbapenemase and extended spectrum beta-lactamase producing Acinetobacter baumannii isolates causing surgical site infections in Ethiopia. BMC Infect Dis 2024; 24:459. [PMID: 38689210 PMCID: PMC11061985 DOI: 10.1186/s12879-024-09362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Acinetobacter baumannii is an opportunistic pathogen that can cause a variety of nosocomial infections in humans. This study aimed to molecularly characterize extended-spectrum beta-lactamase (ESBL) producing and carbapenem-resistant Acinetobacter species isolated from surgical site infections (SSI). METHODS A multicentre cross-sectional study was performed among SSI patients at four hospitals located in Northern, Southern, Southwest, and Central parts of Ethiopia. The isolates were identified by microbiological methods and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Antibiotic susceptibility was determined using disk diffusion. The presence of phenotypic ESBL and carbapenemase production was detected by employing standard microbiological tests, including combined disk diffusion (CDT). ESBL and carbapenem resistance determinants genes were studied by polymerase chain reaction (PCR) and sequencing. RESULTS A total of 8.7% Acinetobacter species were identified from 493 culture-positive isolates out of 752 SSI wounds. The species identified by MALDI-TOF MS were 88.4% A. baumannii, 4.7% Acinetobacter pittii, 4.7% Acinetobacter soli, and 2.3% Acinetobacter lactucae. Of all isolates 93% were positive for ESBL enzymes according to the CDT. Using whole genome sequencing 62.8% of the A. baumannii harbored one or more beta-lactamase genes, and 46.5% harbored one or more carbapenemase producing genes. The distribution of beta-lactamases among Acinetobacter species by hospitals was 53.8%, 64.3%, 75%, and 75% at JUSH, TASH, DTCSH, and HUCSH respectively. Among ESBL genes, blaCTX-M alleles were detected in 21.4% of isolates; of these 83.3% were blaCTX-M-15. The predominant carbapenemase gene of blaOXA type was detected in 24 carbapenem-resistant A. baumannii followed by blaNDM alleles carried in 12 A. baumannii with blaNDM-1 as the most common. CONCLUSIONS The frequency of Acinetobacter species that produce metallobetalactamases (MBLs) and ESBLs that were found in this study is extremely scary and calls for strict infection prevention and control procedures in health facilities helps to set effective antibiotics stewardship.
Collapse
Affiliation(s)
- Seble Worku
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia.
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Berhanu Seyoum
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Bikila Alemu
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Gebrie Denkayehu
- Department of Surgery, College of Medicine, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tamrayehu Seyoum
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Dawit Hailu Alemayehu
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Alemseged Abdissa
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Getachew Tesfaye Beyene
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Adane Mihret
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Göte Swedberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Rangel K, Lechuga GC, Provance DW, Morel CM, De Simone SG. An Update on the Therapeutic Potential of Antimicrobial Peptides against Acinetobacter baumannii Infections. Pharmaceuticals (Basel) 2023; 16:1281. [PMID: 37765087 PMCID: PMC10537560 DOI: 10.3390/ph16091281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/09/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The rise in antibiotic-resistant strains of clinically important pathogens is a major threat to global health. The World Health Organization (WHO) has recognized the urgent need to develop alternative treatments to address the growing list of priority pathogens. Antimicrobial peptides (AMPs) rank among the suggested options with proven activity and high potential to be developed into effective drugs. Many AMPs are naturally produced by living organisms protecting the host against pathogens as a part of their innate immunity. Mechanisms associated with AMP actions include cell membrane disruption, cell wall weakening, protein synthesis inhibition, and interference in nucleic acid dynamics, inducing apoptosis and necrosis. Acinetobacter baumannii is a critical pathogen, as severe clinical implications have developed from isolates resistant to current antibiotic treatments and conventional control procedures, such as UV light, disinfectants, and drying. Here, we review the natural AMPs representing primary candidates for new anti-A. baumannii drugs in post-antibiotic-era and present computational tools to develop the next generation of AMPs with greater microbicidal activity and reduced toxicity.
Collapse
Affiliation(s)
- Karyne Rangel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Guilherme Curty Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - David W. Provance
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
| | - Salvatore G. De Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
7
|
Vo N, Sidner BS, Yu Y, Piepenbrink KH. Type IV Pilus-Mediated Inhibition of Acinetobacter baumannii Biofilm Formation by Phenothiazine Compounds. Microbiol Spectr 2023; 11:e0102323. [PMID: 37341603 PMCID: PMC10433872 DOI: 10.1128/spectrum.01023-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
Infections by pathogenic Acinetobacter species represent a significant burden on the health care system, despite their relative rarity, due to the difficulty of treating infections through oral antibiotics. Multidrug resistance is commonly observed in clinical Acinetobacter infections and multiple molecular mechanisms have been identified for this resistance, including multidrug efflux pumps, carbapenemase enzymes, and the formation of bacterial biofilm in persistent infections. Phenothiazine compounds have been identified as a potential inhibitor of type IV pilus production in multiple Gram-negative bacterial species. Here, we report the ability of two phenothiazines to inhibit type IV pilus-dependent surface (twitching) motility and biofilm formation in multiple Acinetobacter species. Biofilm formation was inhibited in both static and continuous flow models at micromolar concentrations without significant cytotoxicity, suggesting that type IV pilus biogenesis was the primary molecular target for these compounds. These results suggest that phenothiazines may be useful lead compounds for the development of biofilm dispersal agents against Gram-negative bacterial infections. IMPORTANCE Acinetobacter infections are a growing burden on health care systems worldwide due to increasing antimicrobial resistance through multiple mechanisms. Biofilm formation is an established mechanism of antimicrobial resistance, and its inhibition has the potential to potentiate the use of existing drugs against pathogenic Acinetobacter. Additionally, as discussed in the manuscript, anti-biofilm activity by phenothiazines has the potential to help to explain their known activity against other bacteria, including Staphylococcus aureus and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Nam Vo
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Benjamin S. Sidner
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yafan Yu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kurt H. Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
8
|
Sheck E, Romanov A, Shapovalova V, Shaidullina E, Martinovich A, Ivanchik N, Mikotina A, Skleenova E, Oloviannikov V, Azizov I, Vityazeva V, Lavrinenko A, Kozlov R, Edelstein M. Acinetobacter Non- baumannii Species: Occurrence in Infections in Hospitalized Patients, Identification, and Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1301. [PMID: 37627721 PMCID: PMC10451542 DOI: 10.3390/antibiotics12081301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Acinetobacter species other than A. baumannii are becoming increasingly more important as opportunistic pathogens for humans. The primary aim of this study was to assess the prevalence, species distribution, antimicrobial resistance patterns, and carbapenemase gene content of clinical Acinetobacter non-baumannii (Anb) isolates that were collected as part of a sentinel surveillance program of bacterial infections in hospitalized patients. The secondary aim was to evaluate the performance of MALDI-TOF MS systems for the species-level identification of Anb isolates. METHODS Clinical bacterial isolates were collected from multiple sites across Russia and Kazakhstan in 2016-2022. Species identification was performed by means of MALDI-TOF MS, with the Autobio and Bruker systems used in parallel. The PCR detection of the species-specific blaOXA-51-like gene was used as a means of differentiating A. baumannii from Anb species, and the partial sequencing of the rpoB gene was used as a reference method for Anb species identification. The susceptibility of isolates to antibiotics (amikacin, cefepime, ciprofloxacin, colistin, gentamicin, imipenem, meropenem, sulbactam, tigecycline, tobramycin, and trimethoprim-sulfamethoxazole) was determined using the broth microdilution method. The presence of the most common in Acinetobacter-acquired carbapenemase genes (blaOXA-23-like, blaOXA-24/40-like, blaOXA-58-like, blaNDM, blaIMP, and blaVIM) was assessed using real-time PCR. RESULTS In total, 234 isolates were identified as belonging to 14 Anb species. These comprised 6.2% of Acinetobacter spp. and 0.7% of all bacterial isolates from the observations. Among the Anb species, the most abundant were A. pittii (42.7%), A. nosocomialis (13.7%), the A. calcoaceticus/oleivorans group (9.0%), A. bereziniae (7.7%), and A. geminorum (6.0%). Notably, two environmental species, A. oleivorans and A. courvalinii, were found for the first time in the clinical samples of patients with urinary tract infections. The prevalence of resistance to different antibiotics in Anb species varied from <4% (meropenem and colistin) to 11.2% (gentamicin). Most isolates were susceptible to all antibiotics; however, sporadic isolates of A. bereziniae, A. johnsonii, A. nosocomialis, A. oleivorans, A. pittii, and A. ursingii were resistant to carbapenems. A. bereziniae was more frequently resistant to sulbactam, aminoglycosides, trimethoprim-sulfamethoxazole, and tigecycline than the other species. Four (1.7%) isolates of A. bereziniae, A. johnsonii, A. pittii were found to carry carbapenemase genes (blaOXA-58-like and blaNDM, either alone or in combination). The overall accuracy rates of the species-level identification of Anb isolates with the Autobio and Bruker systems were 80.8% and 88.5%, with misidentifications occurring in 5 and 3 species, respectively. CONCLUSIONS This study provides important new insights into the methods of identification, occurrence, species distribution, and antibiotic resistance traits of clinical Anb isolates.
Collapse
Affiliation(s)
- Eugene Sheck
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Andrey Romanov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Valeria Shapovalova
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Elvira Shaidullina
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Alexey Martinovich
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Natali Ivanchik
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Anna Mikotina
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Elena Skleenova
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Vladimir Oloviannikov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Ilya Azizov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Vera Vityazeva
- Republican Children’s Hospital, 185000 Petrozavodsk, Republic of Karelia, Russia
| | - Alyona Lavrinenko
- Shared Resource Laboratory, Karaganda Medical University, 100008 Karaganda, Kazakhstan
| | - Roman Kozlov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Mikhail Edelstein
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| |
Collapse
|
9
|
Amaral SC, Pruski BB, de Freitas SB, Dos Santos LM, Hartwig DD. Biofilm formation in drug-resistant Acinetobacter baumannii and Acinetobacter nosocomialis isolates obtained from a university hospital in Pelotas, RS, Brazil. Lett Appl Microbiol 2023; 76:ovad094. [PMID: 37563082 DOI: 10.1093/lambio/ovad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/29/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
This study aimed to investigate the antibiotic resistance and biofilm formation of Acinetobacter calcoaceticus-A. baumannii (ACB) complex isolates recovered from a university hospital in Pelotas, RS, Brazil. The species were confirmed using gyrB multiplex and blaOXA-51-like genes PCR. The presence of the bfmRS virulence gene was evaluated by the PCR, and the isolates were classified based on their biofilm-forming ability on polystyrene (PO) and glass surfaces (TM). Out of 50 ACB complex isolates evaluated, 41 were identified as A. baumannii and nine as A. nosocomialis. The bfmRS gene was detected in 97.6% (40/41) of A. baumannii and 33.3% (3/9) of A. nosocomialis species. Forty-nine isolates exhibited a multidrug-resistant (MDR) profile, while one A. nosocomialis isolate presented an extensively drug-resistant (XDR) profile. All isolates were able of forming biofilms on PO surfaces and 98% (49/50) on TM surfaces. A significant correlation was observed between biofilm production on PO and TM surfaces (P < 0.05). However, no correlation was found between biofilms forming and the presence of the bfmRS gene or displaying a certain antibiotic resistance profile. In conclusion, A. baumannii and A. nosocomialis are frequent species causing nosocomial infections in a hospital in Pelotas, RS, Brazil, and both are capable of forming biofilms.
Collapse
Affiliation(s)
- Suélen Cavalheiro Amaral
- Laboratory of Bacteriology and Bioassays (LaBBio), Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, 96010900, RS, Brazil
- Center of Technological Development, Biotechnology, Federal University of Pelotas, Pelotas, 96010900, RS, Brazil
| | - Beatriz Bohns Pruski
- Laboratory of Bacteriology and Bioassays (LaBBio), Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, 96010900, RS, Brazil
| | - Stella Buchhorn de Freitas
- Laboratory of Bacteriology and Bioassays (LaBBio), Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, 96010900, RS, Brazil
| | - Lucas Moreira Dos Santos
- Center of Technological Development, Biotechnology, Federal University of Pelotas, Pelotas, 96010900, RS, Brazil
| | - Daiane Drawanz Hartwig
- Laboratory of Bacteriology and Bioassays (LaBBio), Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, 96010900, RS, Brazil
| |
Collapse
|
10
|
Pulami D, Kämpfer P, Glaeser SP. High diversity of the emerging pathogen Acinetobacter baumannii and other Acinetobacter spp. in raw manure, biogas plants digestates, and rural and urban wastewater treatment plants with system specific antimicrobial resistance profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160182. [PMID: 36395844 DOI: 10.1016/j.scitotenv.2022.160182] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Carbapenem-resistant Acinetobacter baumannii causing immense treatment problems in hospitals. There is still a knowledge gap on the abundance and stability of acquired resistances and the diversity of resistant Acinetobacter in the environment. The aim of the study was to investigate the diversity and antimicrobial resistances of Acinetobacter spp. released from livestock and human wastewater into the environment. Raw and digested manure of small scale on farm biogas plants as well as untreated and treated wastewater and sewage sludge of rural and urban wastewater treatment plants (WWTPs) were studied comparatively. A total of 132 Acinetobacter isolates were phylogenetically identified (16S rRNA gene and rpoB sequence analyses) and 14 different phylotypes were detected. Fiftytwo isolates represented A. baumannii which were cultured from raw and digested manure of different biogas plants, and most stages of the rural WWTP (no hospital wastewater receiving) and the two studied urban WWTPs receiving veterinarian and human hospital wastewater. Multi-locus sequence typing (Pasteur_MLST) identified 23 novel and 12 known STs of A. baumannii. Most novel STs (18/23) were cultured from livestock samples and the rural WWTP. A. baumannii isolates from livestock and the rural WWTP were susceptible to carbapenems, colistin, ciprofloxacin, ceftazidime, and piperacillin. In contrast, A. baumannii isolates from the two urban WWTPs showed clinical linkage with respect to MLST and were multi-drug resistant (MDR). The presence of viable A. baumannii in digested manure and sewage sludge confirmed the survival of the strict aerobic bacteria during anoxic conditions. The study indicated the spread of diverse Acinetobacter from anthropogenic sources into the environment with a strong linkage of clinial associated MDR A. baumannii strains to the inflow of hospital wastewater to WWTPs. A more frequent detection of Acinetobacter in sewage sludge than effluent waters indicated that particle-attachment of Acinetobacter must be considered by the risk assessment of these bacteria.
Collapse
Affiliation(s)
- Dipen Pulami
- Institut for Applied Microbiology, Justus-Liebig-University Giessen, Germany
| | - Peter Kämpfer
- Institut for Applied Microbiology, Justus-Liebig-University Giessen, Germany
| | - Stefanie P Glaeser
- Institut for Applied Microbiology, Justus-Liebig-University Giessen, Germany.
| |
Collapse
|
11
|
Wunderlich A, Xanthopoulou K, Wille J, Wohlfarth E, Gerson S, Kaase M, Seifert H, Higgins PG. Carbapenem resistance in Acinetobacter pittii isolates mediated by metallo-β-lactamases. J Antimicrob Chemother 2023; 78:488-496. [PMID: 36537203 DOI: 10.1093/jac/dkac418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To characterize the genetic environment of metallo-β-lactamases (MBL) in carbapenem-resistant clinical Acinetobacter pittii isolates. METHODS Seventeen carbapenem-resistant A. pittii isolates harbouring an MBL were collected between 2010 and 2015 in Germany. Antimicrobial susceptibility testing was performed using agar dilution. Presence of MBLs was confirmed by PCR and their genetic location determined by S1-pulsed-field gel electrophoresis followed by Southern blot hybridization. Whole-genome sequencing was performed using the Miseq and MinION platforms. Isolates were typed using an ad hoc core genome MLST scheme. Conjugation into A. baumannii was tested by broth mating. RESULTS In 10 isolates the MBL was plasmid-encoded and in seven isolates chromosomally encoded. blaGIM-1 and blaVIM-2 were plasmid-encoded, blaVIM-4 was chromosomally encoded, while blaNDM-1 was chromosomally encoded in four and plasmid-encoded in three isolates. Seven of ten plasmids were conjugative into A. baumannii. Although most isolates were unrelated, the backbones of the MBL-encoding plasmid showed >99% similarity and only differed in the MBL-encoding area. blaNDM-1-harbouring plasmids were highly similar to other plasmids from Acinetobacter isolates worldwide while the blaVIM-2- and blaGIM-1-encoding plasmids have not been described. CONCLUSIONS These data show the existence of a promiscuous plasmid circulating in A. pittii isolates in Germany that differs only in the MBL-encoding region. Its plasmid backbone has been found globally among multiple Acinetobacter spp. These data should raise awareness of an epidemic conjugative plasmid that has independently acquired MBLs. We should also consider that future comparative plasmid analysis will look beyond solely the resistome and include the mobile elements carrying the resistance genes.
Collapse
Affiliation(s)
- Alexander Wunderlich
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Kyriaki Xanthopoulou
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Julia Wille
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | | | - Stefanie Gerson
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Kaase
- Institute for Medical Microbiology, Ruhr-University Bochum, Bochum, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
12
|
Barrientos-Yong RS, Hinojosa-Salas BA, Salas-Ponce PG, Angles E, Ruiz J, Pons MJ. High rates of extensively drug-resistant Acinetobacter baumannii in a Peruvian hospital 2013–2019. Trop Doct 2022; 53:248-255. [PMID: 36518018 DOI: 10.1177/00494755221142939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii has become a major concern of hospital care. The objective of the study was to evaluate the evolution of antimicrobial resistance of A. baumannii in a Peruvian hospital from 2013 to 2019. A total of 993 A. baumannii clinical isolates were recovered. Antimicrobial resistance levels were extremely high, except for colistin. Among the remaining antibacterial agents, ampicillin plus sulbactam (AMS) was the most active (71.4% of resistance), with resistance levels to the remaining agents ranging from 75.9% to amikacin to 99.2% to ertapenem. The presence of significant differences was observed in extensively drug-resistant (XDR) A. baumannii according to samples origin. No association was observed between MDR or XDR isolates and seasonality. An impressive rate of XDR A. baumannii isolates was found, including a growing number of only-colistin-susceptible isolates highlighting the urgent need for new therapeutic alternatives.
Collapse
Affiliation(s)
| | | | - Percy Genaro Salas-Ponce
- Escuela de Medicina, Universidad Científica del Sur, Lima, Perú
- Hospital Nacional Arzobispo Loayza, Lima, Perú
| | | | - Joaquim Ruiz
- Laboratorio de Genética Molecular y Bioquímica, Universidad Científica del Sur, Lima, Perú
| | - Maria J Pons
- Laboratorio de Genética Molecular y Bioquímica, Universidad Científica del Sur, Lima, Perú
| |
Collapse
|
13
|
Mahapatra A, Pati A, Gupta K. Role of Efflux Pumps in Reduced Susceptibility to Tigecycline among Clinical Isolates of Acinetobacter baumannii. Int J Appl Basic Med Res 2022; 12:243-248. [PMID: 36726662 PMCID: PMC9886155 DOI: 10.4103/ijabmr.ijabmr_219_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/16/2022] [Accepted: 10/28/2022] [Indexed: 12/24/2022] Open
Abstract
Background Acinetobacter baumannii (A. baumannii) is a very well-known emerging pathogen and has become a major burden on healthcare system especially in intensive care units (ICUs). Tigecycline is the last resort drug for treatment of multidrug-resistant A. baumannii infections. However, non-susceptibility to this drug is a rising problem. Resistance to tigecycline is mediated by Resistance-nodulation-cell division (RND) efflux pumps. Objective This study was done to detect efflux pump genes (adeABC) and regulator genes (adeS,adeR) responsible for tigecycline resistance among the clinical isolates of A. baumannii. Materials and Methods A total of 150 OXA-51 confirmed clinical isolates were subjected for tigecycline susceptibility test by broth microdilution (BMD) method. All isolates irrespective of their MIC were subjected to conventional PCR for detection of efflux genes (adeABC) and regulator genes (adeRS). Results Prevalence of tigecycline resistance was found to be 14 (9.33%) by the reference broth microdilution method (BMD). Overall prevalence of efflux genes was highest for adeB (69%) and lowest for adeR (29%). Combination of genes especially three, four or five were found more prevalent among resistant isolates with higher minimum inhibitory concentration (MIC). Conclusion Combination of efflux genes confer higher MIC and can be a major contributor for resistance to tigecycline.
Collapse
Affiliation(s)
- Ashoka Mahapatra
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Amresh Pati
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Kavita Gupta
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
14
|
Leelapsawas C, Yindee J, Nittayasut N, Chueahiran S, Boonkham P, Suanpairintr N, Chanchaithong P. Emergence and multi-lineages of carbapenemase-producing Acinetobacter baumannii-calcoaceticus complex from canine and feline origins. J Vet Med Sci 2022; 84:1377-1384. [PMID: 36031361 PMCID: PMC9586037 DOI: 10.1292/jvms.22-0276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The carbapenemase-producing Acinetobacter baumannii is an important
opportunistic bacterium and frequently causes hospital-acquired infections in humans. It
also has increasingly been reported in veterinary medicine. This study illustrates
multiple clones of carbapenemase-producing A. baumannii disseminating and
causing diseases in dogs and cats in Thailand. Between 2016 and 2020, 44 A.
baumannii and two A. pittii isolates exhibiting imipenem
resistance (MIC≥16 μg/mL) from diagnostic samples were characterized by Pasteur multilocus
sequence typing (MLST), sequence grouping (SG), repetitive extragenic palindromic element
(rep)-PCR fingerprint analysis and antimicrobial resistance (AMR)
profiling. All isolates contained blaOXA-23 in the
Tn2006 family, and A. baumannii showed the sequence
type (ST) 16 (14/44), ST149 (12/44), ST25 (6/44), ST2 (4/44), ST1581 (3/44), ST23 (2/44),
ST1575 (1/44) and ST1576 (1/44). DNA fingerprint analysis and SG illustrated clonal
relationships in the STs and its single locus variants, and AMR gene profiles, including
tetracycline and aminoglycoside resistance genes, showed minor variations in the clones.
The findings suggest that blaOXA-23 has been spread in
multiple clones of A. baumannii and A. pittii from
canine and feline hosts. With the collection of multiple AMR genes and intrinsic
resistance, antimicrobial options are limited for treatment, and pets can be a potential
reservoir of extensively drug-resistant, carbapenemase-producing A.
baumannii in the community. Epidemiological tracking by passive and active
surveillance in animals, veterinary personnel and hospital environment and preventive
measurements should be promoted to decrease the risk of infection and transmission to
humans.
Collapse
Affiliation(s)
- Chavin Leelapsawas
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University
| | - Jitrapa Yindee
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University
| | - Naiyaphat Nittayasut
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University
| | - Surawit Chueahiran
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University
| | - Pongthai Boonkham
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Science, Chulalongkorn University
| | | | - Pattrarat Chanchaithong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University.,Research Unit in Microbial Food Safety and Antimicrobial Resistance, Faculty of Veterinary Science, Chulalongkorn University
| |
Collapse
|
15
|
A Variant Carbapenem Inactivation Method (CIM) for Acinetobacter baumannii Group with Shortened Time-to-Result: rCIM-A. Pathogens 2022; 11:pathogens11040482. [PMID: 35456157 PMCID: PMC9024794 DOI: 10.3390/pathogens11040482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii group organisms (CRAB) are challenging because the choice between targeted, new antibiotic drug options and hygiene measures should be guided by a timely identification of resistance mechanisms. In CRAB, acquired class-D carbapenemases (CHDLs) are active against meropenem and imipenem. If PCR methods are not the first choice, phenotypic methods have to be implemented. While promising, the carbapenemase inactivation method (CIM) using meropenem-hydrolysis is, however, hampered by poor performance or overly long time-to-result. We developed a rapid CIM (rCIM-A) with good performance using ertapenem, imipenem, and meropenem disks, 2-h permeabilization and incubation with the test strain in trypticase soy broth, and a read-out of residual carbapenem activity after 6 h, and optionally after 16–18 h. Using clinical isolates and type-strains of Acinetobacter (n = 67) not harboring carbapenemases (n = 28) or harboring acquired carbapenemases (n = 39), the sensitivity of detection was 97.4% with the imipenem disk after 6 h at a specificity of 92.9%. If the inhibition zone around the ertapenem disk at 6 h was 6 or ≤26 mm at 16–18 h, or ≤25.5 mm for meropenem, the specificity was 100%. Because of the high negative predictive value, the rCIM-A seems particularly appropriate in areas of lower CRAB-frequency.
Collapse
|
16
|
Artuso I, Lucidi M, Visaggio D, Capecchi G, Lugli GA, Ventura M, Visca P. Genome diversity of domesticated Acinetobacter baumannii ATCC 19606 T strains. Microb Genom 2022; 8. [PMID: 35084299 PMCID: PMC8914354 DOI: 10.1099/mgen.0.000749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acinetobacter baumannii has emerged as an important opportunistic pathogen worldwide, being responsible for large outbreaks for nosocomial infections, primarily in intensive care units. A. baumannii ATCC 19606T is the species type strain, and a reference organism in many laboratories due to its low virulence, amenability to genetic manipulation and extensive antibiotic susceptibility. We wondered if frequent propagation of A. baumannii ATCC 19606T in different laboratories may have driven micro- and macro-evolutionary events that could determine inter-laboratory differences of genome-based data. By combining Illumina MiSeq, MinION and Sanger technologies, we generated a high-quality whole-genome sequence of A. baumannii ATCC 19606T, then performed a comparative genome analysis between A. baumannii ATCC 19606T strains from several research laboratories and a reference collection. Differences between publicly available ATCC 19606T genome sequences were observed, including SNPs, macro- and micro-deletions, and the uneven presence of a 52 kb prophage belonging to genus Vieuvirus. Two plasmids, pMAC and p1ATCC19606, were invariably detected in all tested strains. The presence of a putative replicase, a replication origin containing four 22-mer direct repeats, and a toxin-antitoxin system implicated in plasmid stability were predicted by in silico analysis of p1ATCC19606, and experimentally confirmed. This work refines the sequence, structure and functional annotation of the A. baumannii ATCC 19606T genome, and highlights some remarkable differences between domesticated strains, likely resulting from genetic drift.
Collapse
Affiliation(s)
- Irene Artuso
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Massimiliano Lucidi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.,Santa Lucia Fundation IRCCS, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Giulia Capecchi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.,Santa Lucia Fundation IRCCS, Via Ardeatina 306-354, 00179 Rome, Italy
| |
Collapse
|
17
|
Rangel K, Chagas TPG, De-Simone SG. Acinetobacter baumannii Infections in Times of COVID-19 Pandemic. Pathogens 2021; 10:pathogens10081006. [PMID: 34451470 PMCID: PMC8399974 DOI: 10.3390/pathogens10081006] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has generated an overuse of antimicrobials in critically ill patients. Acinetobacter baumannii frequently causes nosocomial infections, particularly in intensive care units (ICUs), where the incidence has increased over time. Since the WHO declared the COVID-19 pandemic on 12 March 2020, the disease has spread rapidly, and many of the patients infected with SARS-CoV-2 needed to be admitted to the ICU. Bacterial co-pathogens are commonly identified in viral respiratory infections and are important causes of morbidity and mortality. However, we cannot neglect the increased incidence of antimicrobial resistance, which may be attributed to the excess use of antimicrobial agents during the COVID-19 pandemic. Patients with COVID-19 could be vulnerable to other infections owing to multiple comorbidities with severe COVID-19, prolonged hospitalization, and SARS-CoV-2-associated immune dysfunction. These patients have acquired secondary bacterial infections or superinfections, mainly bacteremia and urinary tract infections. This review will summarize the prevalence of A. baumannii coinfection and secondary infection in patients with COVID-19.
Collapse
Affiliation(s)
- Karyne Rangel
- FIOCRUZ, Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Rio de Janeiro 21040-900, Brazil
- Correspondence: (K.R.); (S.G.D.-S.); Tel.: +55-213865-8240 (K.R. & S.G.D.-S.)
| | | | - Salvatore Giovanni De-Simone
- FIOCRUZ, Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Rio de Janeiro 21040-900, Brazil
- Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 24220-008, Brazil
- Correspondence: (K.R.); (S.G.D.-S.); Tel.: +55-213865-8240 (K.R. & S.G.D.-S.)
| |
Collapse
|
18
|
da Fonseca ADS, Mencalha AL, de Paoli F. Antimicrobial photodynamic therapy against Acinetobacter baumannii. Photodiagnosis Photodyn Ther 2021; 35:102430. [PMID: 34233224 DOI: 10.1016/j.pdpdt.2021.102430] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 01/22/2023]
Abstract
Acinetobacter baumannii (A. baumannii) has emerged as a pathogen of global importance able to cause opportunistic infections on the skin, urinary tract, lungs, and bloodstream, being frequently involved in hospital outbreaks. Such bacterium can resist a variety of environmental conditions and develop resistance to different classes of antibiotics. Antimicrobial photodynamic therapy (aPDT) has been considered a promising approach to overcome bacterial resistance once it does not cause selective environmental pressure on bacteria. In this review, studies on aPDT were accessed on PubMed, and their findings were summarized regarding its efficacy against A. baumannii. The data obtained from the literature show that exogenous photosensitizers belonging to different chemical classes are effective against multidrug-resistant A. baumannii strains. However, most of such data is from in vitro studies, and additional studies are necessary to evaluate if the exogenous photosensitizers may induce selective pressure on A. baumannii and the effectiveness of such photosensitizers in clinical practice.
Collapse
Affiliation(s)
- Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil; Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil; Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Teresópolis, Rio de Janeiro, 25964004, Brazil.
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Flavia de Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Khelmer - s/n, Campus Universitário, São Pedro, Juiz de Fora, Minas Gerais, 36036900, Brazil
| |
Collapse
|
19
|
Li LH, Yang YS, Sun JR, Huang TW, Huang WC, Chen FJ, Wang YC, Kuo TH, Kuo SC, Chen TL, Lee YT. Clinical and molecular characterization of Acinetobacter seifertii in Taiwan. J Antimicrob Chemother 2021; 76:312-321. [PMID: 33128052 DOI: 10.1093/jac/dkaa432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Acinetobacter seifertii, a new member of the Acinetobacter baumannii group, has emerged as a cause of severe infections in humans. We investigated the clinical and molecular characteristics of A. seifertii. PATIENTS AND METHODS This retrospective study enrolled 80 adults with A. seifertii bloodstream infection (BSI) at four medical centres over an 8 year period. Species identification was confirmed by MALDI-TOF MS, rpoB sequencing and WGS. Molecular typing was performed by MLST. Clinical information, antimicrobial susceptibility and the mechanisms of carbapenem and colistin resistance were analysed. Transmissibility of the carbapenem-resistance determinants was examined by conjugation experiments. RESULTS The main source of A. seifertii BSI was the respiratory tract (46.3%). The 28 day and in-hospital mortality rates of A. seifertii BSI were 18.8% and 30.0%, respectively. High APACHE II scores and immunosuppressant therapy were independent risk factors for 28 day mortality. The most common MLST type was ST553 (58.8%). Most A. seifertii isolates were susceptible to levofloxacin (86.2%), and only 37.5% were susceptible to colistin. Carbapenem resistance was observed in 16.3% of isolates, mostly caused by the plasmid-borne ISAba1-blaOXA-51-like genetic structure. A. seifertii could transfer various carbapenem-resistance determinants to A. baumannii, Acinetobacter nosocomialis and other A. seifertii isolates. Variations of pmrCAB and lpxCAD genes were not associated with colistin resistance of A. seifertii. CONCLUSIONS Levofloxacin and carbapenems, but not colistin, have the potential to be the drug of choice for A. seifertii infections. A. seifertii can transfer carbapenem-resistance determinants to other species of the A. baumannii group and warrants close monitoring.
Collapse
Affiliation(s)
- Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,PhD Program of Medical Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Ya-Sung Yang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jun-Ren Sun
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan.,Institute of Preventive Medicine, National Defence Medical Centre, Taipei, Taiwan
| | - Tzu-Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Cheng Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institute, Maoli County, Taiwan
| | - Feng-Jui Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institute, Maoli County, Taiwan
| | - Yung-Chih Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ting-Hao Kuo
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institute, Maoli County, Taiwan
| | - Te-Li Chen
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Tzu Lee
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | |
Collapse
|
20
|
Ma C, McClean S. Mapping Global Prevalence of Acinetobacter baumannii and Recent Vaccine Development to Tackle It. Vaccines (Basel) 2021; 9:vaccines9060570. [PMID: 34205838 PMCID: PMC8226933 DOI: 10.3390/vaccines9060570] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 12/23/2022] Open
Abstract
Acinetobacter baumannii is a leading cause of nosocomial infections that severely threaten public health. The formidable adaptability and resistance of this opportunistic pathogen have hampered the development of antimicrobial therapies which consequently leads to very limited treatment options. We mapped the global prevalence of multidrug-resistant A. baumannii and showed that carbapenem-resistant A. baumannii is widespread throughout Asia and the Americas. Moreover, when antimicrobial resistance rates of Acinetobacter spp. exceed a threshold level, the proportion of A. baumannii isolates from clinical samples surges. Therefore, vaccines represent a realistic alternative strategy to tackle this pathogen. Research into anti-A. baumannii vaccines have enhanced in the past decade and multiple antigens have been investigated preclinically with varying results. This review summarises the current knowledge of virulence factors relating to A. baumannii–host interactions and its implication in vaccine design, with a view to understanding the current state of A. baumannii vaccine development and the direction of future efforts.
Collapse
|
21
|
Molecular Characterization of German Acinetobacter baumannii Isolates and Multilocus Sequence Typing (MLST) Analysis Based on WGS Reveals Novel STs. Pathogens 2021; 10:pathogens10060690. [PMID: 34206118 PMCID: PMC8229575 DOI: 10.3390/pathogens10060690] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/14/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a major cause of severe nosocomial infections worldwide. The emergence of infections associated with A. baumannii poses a significant health risk in Germany. A. baumannii is part of the ACB complex and is difficult to distinguish from other species phenotypically, necessitating its reliable identification. The current study analyzed 89 A. baumannii strains from human and non-human origins by matrix-assisted laser desorption/ionization (MALDI–TOF) and PCR detection of intrinsic blaOXA-51-like carbapenemase, blaOXA-23-like, blaOXA-24-like, blaOXA-58-like, and ISAba 1 genes. Whole-genome sequencing (WGS) was applied for species confirmation and strain type determination. Combining the molecular detection of the intrinsic blaOXA-51-like carbapenemase gene together with MALDI–TOF with a score value of >2.300 proved to be a suitable tool for A. baumannii identification. WGS data for all of the sequenced strains confirmed the identity of all A. baumannii strains. The Pasteur scheme successfully assigned 79.7% of the strains into distinct STs, while the Oxford scheme succeeded in allocating only 42.7% of isolates. Multilocus sequence typing (MLST) analysis based on the Pasteur scheme identified 16 STs. ST/241 was the most prevalent in samples from non-human origin, whereas ST/2 was predominant in human samples. Furthermore, eight isolates of non-human origin were allocated to seven new STs (ST/1410, ST/1414, ST/1416, ST/1417, ST/1418, ST/1419, and ST/1421). Ten isolates from non-human origin could not be typed since new alleles were observed in the loci Pas_cpn60, Pas_rpoB, and Pas_gltA. MLST analysis based on the Pasteur scheme was more appropriate than the Oxford scheme for the current group of A. baumannii.
Collapse
|
22
|
Almeida OGGD, Furlan JPR, Stehling EG, De Martinis ECP. Comparative phylo-pangenomics reveals generalist lifestyles in representative Acinetobacter species and proposes candidate gene markers for species identification. Gene 2021; 791:145707. [PMID: 33979679 DOI: 10.1016/j.gene.2021.145707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/09/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Acinetobacter species have the potential to invade and colonize immunocompromised patients, therefore being well-known as opportunistic pathogens. Among these bacteria, the species of the Acinetobacter calcoaceticus-Acinetobacter baumannii "complex" (Acb members) emerge as the main often isolated bacteria in clinical specimens. The unequivocal taxonomy is crucial to correctly identify these species and associated with comparative genomic analyses aids to understand their life-styles as well. In this study, all publicly available Acinetobacter species at the date of this study preparation were analyzed. The results revealed that the Acb members are in fact a complex when phenotypic methods are confronted, while for comparative and phylogenomics analyses this term is misleading, since they composed a monophyletic group instead. Nine best gene markers (response regulator, recJ, recG, phosphomannomutase, pepSY, monovalent cation/H + antiporter subunit D, mnmE, glnE, and bamA) were selected for identification of Acinetobacter species. Moreover, representative strains of each species were split according their isolation sources in the categories: environmental, human, insect and non-human vertebrate. Neither niche-specific genome signature nor niche-associated functional and pathogenic potential were associated with their isolation source, meaning it is not the main force acting on Acinetobacter adaptation in a given niche and corroborating that their ubiquitous distribution is a reflex of their generalist life-styles.
Collapse
Affiliation(s)
| | | | - Eliana Guedes Stehling
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | | |
Collapse
|
23
|
Genomic Characterization of Clinical Extensively Drug-Resistant Acinetobacter pittii Isolates. Microorganisms 2021; 9:microorganisms9020242. [PMID: 33503968 PMCID: PMC7912037 DOI: 10.3390/microorganisms9020242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 01/26/2023] Open
Abstract
Carbapenem-resistant Acinetobacter pittii (CRAP) is a causative agent of nosocomial infections. This study aimed to characterize clinical isolates of CRAP from a tertiary hospital in Northeast Thailand. Six isolates were confirmed as extensively drug-resistant Acinetobacter pittii (XDRAP). The blaNDM-1 gene was detected in three isolates, whereas blaIMP-14 and blaIMP-1 were detected in the others. Multilocus sequence typing with the Pasteur scheme revealed ST220 in two isolates, ST744 in two isolates, and ST63 and ST396 for the remaining two isolates, respectively. Genomic characterization revealed that six XDRAP genes contained antimicrobial resistance genes: ST63 (A436) and ST396 (A1) contained 10 antimicrobial resistance genes, ST220 (A984 and A864) and ST744 (A56 and A273) contained 9 and 8 antimicrobial resistance genes, respectively. The single nucleotide polymorphism (SNP) phylogenetic tree revealed that the isolates A984 and A864 were closely related to A. pittii YB-45 (ST220) from China, while A436 was related to A. pittii WCHAP100020, also from China. A273 and A56 isolates (ST744) were clustered together; these isolates were closely related to strains 2014S07-126, AP43, and WCHAP005069, which were isolated from Taiwan and China. Strict implementation of infection control based upon the framework of epidemiological analyses is essential to prevent outbreaks and contain the spread of the pathogen. Continued surveillance and close monitoring with molecular epidemiological tools are needed.
Collapse
|
24
|
Munson E, Carroll KC. Summary of Novel Bacterial Isolates Derived from Human Clinical Specimens and Nomenclature Revisions Published in 2018 and 2019. J Clin Microbiol 2021; 59:e01309-20. [PMID: 32967902 PMCID: PMC8111135 DOI: 10.1128/jcm.01309-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Knowledge of novel prokaryotic taxon discovery and nomenclature revisions is of importance to clinical microbiology laboratory practice, infectious disease epidemiology, and studies of microbial pathogenesis. Relative to bacterial isolates derived from human clinical specimens, we present an in-depth summary of novel taxonomic designations and revisions to prokaryotic taxonomy that were published in 2018 and 2019. Included are several changes pertinent to former designations of or within Propionibacterium spp., Corynebacterium spp., Clostridium spp., Mycoplasma spp., Methylobacterium spp., and Enterobacteriaceae Future efforts to ascertain clinical relevance for many of these changes may be augmented by a document development committee that has been appointed by the Clinical and Laboratory Standards Institute.
Collapse
Affiliation(s)
- Erik Munson
- College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Mancilla-Rojano J, Ochoa SA, Reyes-Grajeda JP, Flores V, Medina-Contreras O, Espinosa-Mazariego K, Parra-Ortega I, Rosa-Zamboni DDL, Castellanos-Cruz MDC, Arellano-Galindo J, Cevallos MA, Hernández-Castro R, Xicohtencatl-Cortes J, Cruz-Córdova A. Molecular Epidemiology of Acinetobacter calcoaceticus- Acinetobacter baumannii Complex Isolated From Children at the Hospital Infantil de México Federico Gómez. Front Microbiol 2020; 11:576673. [PMID: 33178158 PMCID: PMC7593844 DOI: 10.3389/fmicb.2020.576673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
The Acinetobacter calcoaceticus-baumannii (Acb) complex is regarded as a group of phenotypically indistinguishable opportunistic pathogens responsible for mainly causing hospital-acquired pneumonia and bacteremia. The aim of this study was to determine the frequency of isolation of the species that constitute the Acb complex, as well as their susceptibility to antibiotics, and their distribution at the Hospital Infantil de Mexico Federico Gomez (HIMFG). A total of 88 strains previously identified by Vitek 2®, 40 as Acinetobacter baumannii and 48 as Acb complex were isolated from 52 children from 07, January 2015 to 28, September 2017. A. baumannii accounted for 89.77% (79/88) of the strains; Acinetobacter pittii, 6.82% (6/88); and Acinetobacter nosocomialis, 3.40% (3/88). Most strains were recovered mainly from patients in the intensive care unit (ICU) and emergency wards. Blood cultures (BC) provided 44.32% (39/88) of strains. The 13.63% (12/88) of strains were associated with primary bacteremia, 3.4% (3/88) with secondary bacteremia, and 2.3% (2/88) with pneumonia. In addition, 44.32% (39/88) were multidrug-resistant (MDR) strains and, 11.36% (10/88) were extensively drug-resistant (XDR). All strains amplified the blaOXA-51 gene; 51.13% (45/88), the blaOXA-23 gene; 4.54% (4/88), the blaOXA-24 gene; and 2.27% (2/88), the blaOXA-58 gene. Plasmid profiles showed that the strains had 1–6 plasmids. The strains were distributed in 52 pulsotypes, and 24 showed identical restriction patterns, with a correlation coefficient of 1.0. Notably, some strains with the same pulsotype were isolated from different patients, wards, or years, suggesting the persistence of more than one clone. Twenty-seven sequence types (STs) were determined for the strains based on a Pasteur multilocus sequence typing (MLST) scheme using massive sequencing; the most prevalent was ST 156 (27.27%, 24/88). The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas I-Fb system provided amplification in A. baumannii and A. pittii strains (22.73%, 20/88). This study identified an increased number of MDR strains and the relationship among strains through molecular typing. The data suggest that more than one strain could be causing an infection in some patient. The implementation of molecular epidemiology allowed the characterization of a set of strains and identification of different attributes associated with its distribution in a specific environment.
Collapse
Affiliation(s)
- Jetsi Mancilla-Rojano
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico.,Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Sara A Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Juan Pablo Reyes-Grajeda
- Subdirección de Desarrollo de Aplicaciones Clínicas, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Víctor Flores
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Irapuato, Mexico
| | - Oscar Medina-Contreras
- Unidad de Investigación Epidemiológica en Endocrinología y Nutrición, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Karina Espinosa-Mazariego
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Israel Parra-Ortega
- Departamento de Laboratorio Clínico, Laboratorio Central, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | | | | | - José Arellano-Galindo
- Unidad de investigación en Enfermedades Infecciosas, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Miguel A Cevallos
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| |
Collapse
|
26
|
Bagudo AI, Obande GA, Harun A, Singh KKB. Advances in automated techniques to identify Acinetobacter calcoaceticus-Acinetobacter baumannii complex. ASIAN BIOMED 2020; 14:177-186. [PMID: 37551265 PMCID: PMC10373397 DOI: 10.1515/abm-2020-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Acinetobacter species, particularly those within Acinetobacter calcoaceticus-A. baumannii complex (ACB complex), have emerged as clinically relevant pathogens in hospital environments worldwide. Early and quick detection and identification of Acinetobacter infections is challenging, and traditional culture and biochemical methods may not achieve adequate levels of speciation. Moreover, currently available techniques to identify and differentiate closely related Acinetobacter species are insufficient. The objective of this review is to recapitulate the current evolution in phenotypic and automated techniques used to identify the ACB complex. Compared with other automated or semiautomated systems of bacterial identification, matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) demonstrates a high level of Acinetobacter species identification and discrimination, including newly discovered species A. seifertii and A. dijkshoorniae.
Collapse
Affiliation(s)
- Ahmad Ibrahim Bagudo
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150Kubang Kerian, Kelantan, Malaysia
| | - Godwin Attah Obande
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150Kubang Kerian, Kelantan, Malaysia
| | - Azian Harun
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150Kubang Kerian, Kelantan, Malaysia
| | - Kirnpal Kaur Banga Singh
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
27
|
Castro-Jaimes S, Bello-López E, Velázquez-Acosta C, Volkow-Fernández P, Lozano-Zarain P, Castillo-Ramírez S, Cevallos MA. Chromosome Architecture and Gene Content of the Emergent Pathogen Acinetobacter haemolyticus. Front Microbiol 2020; 11:926. [PMID: 32670207 PMCID: PMC7326120 DOI: 10.3389/fmicb.2020.00926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/20/2020] [Indexed: 11/25/2022] Open
Abstract
Acinetobacter haemolyticus is a Gammaproteobacterium that has been involved in serious diseases frequently linked to the nosocomial environment. Most of the strains causing such infections are sensitive to a wide variety of antibiotics, but recent reports indicate that this pathogen is acquiring very efficiently carbapenem-resistance determinants like the blaNDM-1 gene, all over the world. With this work we contribute with a collection set of 31 newly sequenced nosocomial A. haemolyticus isolates. Genome analysis of these sequences and others collected from RefSeq indicates that their chromosomes are organized in 12 syntenic blocks that contain most of the core genome genes. These blocks are separated by hypervariable regions that are rich in unique gene families, but also have signals of horizontal gene transfer. Genes involved in virulence or encoding different secretion systems are located inside syntenic regions and have recombination signals. The relative order of the synthetic blocks along the A. haemolyticus chromosome can change, indicating that they have been subject to several kinds of inversions. Genomes of this microorganism show large differences in gene content even if they are in the same clade. Here we also show that A. haemolyticus has an open pan-genome.
Collapse
Affiliation(s)
- Semiramis Castro-Jaimes
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Elena Bello-López
- Centro de Investigaciones en Ciencias Microbiológicas, Posgrado en Microbiología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | | | - Patricia Lozano-Zarain
- Centro de Investigaciones en Ciencias Microbiológicas, Posgrado en Microbiología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Santiago Castillo-Ramírez
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Miguel Angel Cevallos
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
28
|
Antibiotic Resistance Profiles, Molecular Mechanisms and Innovative Treatment Strategies of Acinetobacter baumannii. Microorganisms 2020; 8:microorganisms8060935. [PMID: 32575913 PMCID: PMC7355832 DOI: 10.3390/microorganisms8060935] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic resistance is one of the biggest challenges for the clinical sector and industry, environment and societal development. One of the most important pathogens responsible for severe nosocomial infections is Acinetobacter baumannii, a Gram-negative bacterium from the Moraxellaceae family, due to its various resistance mechanisms, such as the β-lactamases production, efflux pumps, decreased membrane permeability and altered target site of the antibiotic. The enormous adaptive capacity of A. baumannii and the acquisition and transfer of antibiotic resistance determinants contribute to the ineffectiveness of most current therapeutic strategies, including last-line or combined antibiotic therapy. In this review, we will present an update of the antibiotic resistance profiles and underlying mechanisms in A. baumannii and the current progress in developing innovative strategies for combating multidrug-resistant A. baumannii (MDRAB) infections.
Collapse
|
29
|
Casanovas Moreno-Torres MI, Rodríguez-Campos F, Gutiérrez-Soto M, Navarro-Marí JM, Gutiérrez-Fernández J. [Urinary tract infection by Acinetobacter dijkshoorniae and good clinical response to treatment]. REVISTA ESPANOLA DE QUIMIOTERAPIA 2020; 33:281-282. [PMID: 32466628 PMCID: PMC7374032 DOI: 10.37201/req/011.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | | | | | - J Gutiérrez-Fernández
- José Gutiérrez-Fernández. Laboratorio de Microbiología. Hospital Universitario Virgen de las Nieves. Avenida de las Fuerzas Armadas, 2. E-18012 Granada, Spain.
| |
Collapse
|
30
|
Ayoub Moubareck C, Hammoudi Halat D. Insights into Acinetobacter baumannii: A Review of Microbiological, Virulence, and Resistance Traits in a Threatening Nosocomial Pathogen. Antibiotics (Basel) 2020; 9:antibiotics9030119. [PMID: 32178356 PMCID: PMC7148516 DOI: 10.3390/antibiotics9030119] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Being a multidrug-resistant and an invasive pathogen, Acinetobacter baumannii is one of the major causes of nosocomial infections in the current healthcare system. It has been recognized as an agent of pneumonia, septicemia, meningitis, urinary tract and wound infections, and is associated with high mortality. Pathogenesis in A. baumannii infections is an outcome of multiple virulence factors, including porins, capsules, and cell wall lipopolysaccharide, enzymes, biofilm production, motility, and iron-acquisition systems, among others. Such virulence factors help the organism to resist stressful environmental conditions and enable development of severe infections. Parallel to increased prevalence of infections caused by A. baumannii, challenging and diverse resistance mechanisms in this pathogen are well recognized, with major classes of antibiotics becoming minimally effective. Through a wide array of antibiotic-hydrolyzing enzymes, efflux pump changes, impermeability, and antibiotic target mutations, A. baumannii models a unique ability to maintain a multidrug-resistant phenotype, further complicating treatment. Understanding mechanisms behind diseases, virulence, and resistance acquisition are central to infectious disease knowledge about A. baumannii. The aims of this review are to highlight infections and disease-producing factors in A. baumannii and to touch base on mechanisms of resistance to various antibiotic classes.
Collapse
Affiliation(s)
- Carole Ayoub Moubareck
- College of Natural and Health Sciences, Zayed University, Dubai P.O. Box 144534, UAE
- Correspondence: ; Tel.: +971-4-402-1745
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Beirut, Bekaa Campuses 1103, Lebanon;
| |
Collapse
|
31
|
Bunnoy A, Na-Nakorn U, Kayansamruaj P, Srisapoome P. Acinetobacter Strain KUO11TH, a Unique Organism Related to Acinetobacter pittii and Isolated from the Skin Mucus of Healthy Bighead Catfish and Its Efficacy Against Several Fish Pathogens. Microorganisms 2019; 7:microorganisms7110549. [PMID: 31717696 PMCID: PMC6920915 DOI: 10.3390/microorganisms7110549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
The bacterial strain KU011TH was isolated from the skin mucus of healthy bighead catfish. The strain is a Gram-negative coccobacillus that is nonmotile, aerobic, catalase positive, oxidase negative, and nonhemolytic. Sequence analyses of the housekeeping genes 16S rRNA, gyrB and rpoB indicate that this strain is a new member of the Acb complex of the genus Acinetobacter and is closely related to Acinetobacter pittii and Acinetobacter lactucae. In addition, the genome relatedness-associated ANIb (<95–96%) and in silico DDH (<70%) values clearly supported the new member of the genus Acinetobacter and the Acb complex. The genome of the strain KU011TH was approximately 3.79 Mbp in size, comprising 3619 predicted genes, and the DNA G+C content was 38.56 mol%. The major cellular fatty acids were C18:1ω9c, C16:0, C16:1, C20:2, C18:2ω6c and C18:1ω9t. The whole-genome sequences and phenotypic, phylogenetic, and chemotaxonomic data clearly support the classification of the strain KU011TH as a new member in the genus Acinetobacter which is closest to A. pittii. Additionally, the new bacterial strain exhibited strong activity against a broad range of freshwater fish pathogens in vitro.
Collapse
Affiliation(s)
- Anurak Bunnoy
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (A.B.); (P.K.)
| | - Uthairat Na-Nakorn
- Laboratory of Aquatic Animal Genetics, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand;
| | - Pattanapon Kayansamruaj
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (A.B.); (P.K.)
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (A.B.); (P.K.)
- Correspondence:
| |
Collapse
|
32
|
Koizumi Y, Sakanashi D, Ohno T, Yamada A, Shiota A, Kato H, Hagihara M, Watanabe H, Asai N, Watarai M, Murotani K, Yamagishi Y, Suematsu H, Mikamo H. The clinical characteristics of Acinetobacter bacteremia differ among genomospecies: A hospital-based retrospective comparative analysis of genotypically identified strains. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:966-972. [PMID: 31813733 DOI: 10.1016/j.jmii.2019.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/21/2019] [Accepted: 09/30/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND/PURPOSE Acinetobacter is an aerobic, gram-negative coccobacillus, which causes nosocomial infections including bacteremia. Recent development of molecular techniques has made classification of the Acinetobacter genomospecies possible, but there are still only a few studies comparing clinical features of the subspecies. We investigated bacteremia caused by Acinetobacter, isolated subspecies, and compared clinical features for each group. METHODS A retrospective analysis of Acinetobacter bacteremia cases was made in a 900-bed hospital in Japan. In addition to conventional procedures, subspecies identification based on rpoB sequence was made, and comparison of clinical characteristics between each subspecies were analyzed. RESULTS We collected 35 cases (Acinetobacter baumannii 14, A. nosocomialis 12, Acinetobacter ursingii 6, and A. seifertii 3). All of the A. seifertii bacteremia cases were blood stream infection occurring in cerebrovascular disease patients, showing particularly higher incidence of shock (100%) and high Pitt bacteremia score (PBS) (6.33 ± 2.52) in comparison to A. baumannii (43% and 2.86 ± 2.25, respectively). Sequential Organ Failure Assessment (SOFA) score and the PBS were slightly higher in A. nosocomialis in comparison to A. baumannii, and the 7 day mortality rate was higher in A. nosocomialis (25%) than in A. baumannii (7%), though this difference was not found to be significant. CONCLUSIONS A.seifertii, the recently defined novel species, showed distinctive clinical features of bacteremia. And, in contrast to previous studies, the severity of A. nosocomialis infection was not lower than that of A. baumannii, which might suggest the influence of local epidemiology. Further characterization of these subspecies should be continued.
Collapse
Affiliation(s)
- Yusuke Koizumi
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, Japan; Department of Infection Control and Prevention, Aichi Medical University Hospital, Japan.
| | - Daisuke Sakanashi
- Department of Infection Control and Prevention, Aichi Medical University Hospital, Japan
| | - Tomoko Ohno
- Department of Infection Control and Prevention, Aichi Medical University Hospital, Japan
| | - Atsuko Yamada
- Department of Infection Control and Prevention, Aichi Medical University Hospital, Japan
| | - Arufumi Shiota
- Department of Infection Control and Prevention, Aichi Medical University Hospital, Japan
| | - Hideo Kato
- Department of Infection Control and Prevention, Aichi Medical University Hospital, Japan
| | - Mao Hagihara
- Department of Infection Control and Prevention, Aichi Medical University Hospital, Japan
| | - Hiroki Watanabe
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, Japan; Department of Infection Control and Prevention, Aichi Medical University Hospital, Japan
| | - Nobuhiro Asai
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, Japan; Department of Infection Control and Prevention, Aichi Medical University Hospital, Japan
| | - Masaya Watarai
- Department of Hematology, Aichi Medical University Hospital, Japan
| | - Kenta Murotani
- Biostatistics Center, Graduate School of Medicine, Kurume University, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, Japan; Department of Infection Control and Prevention, Aichi Medical University Hospital, Japan
| | - Hiroyuki Suematsu
- Department of Infection Control and Prevention, Aichi Medical University Hospital, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, Japan; Department of Infection Control and Prevention, Aichi Medical University Hospital, Japan
| |
Collapse
|
33
|
Cosgaya C, Ratia C, Marí-Almirall M, Rubio L, Higgins PG, Seifert H, Roca I, Vila J. In vitro and in vivo Virulence Potential of the Emergent Species of the Acinetobacter baumannii (Ab) Group. Front Microbiol 2019; 10:2429. [PMID: 31708900 PMCID: PMC6821683 DOI: 10.3389/fmicb.2019.02429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/08/2019] [Indexed: 01/30/2023] Open
Abstract
The increased use of molecular identification methods and mass spectrometry has revealed that Acinetobacter spp. of the A. baumannii (Ab) group other than A. baumannii are increasingly being recovered from human samples and may pose a health challenge if neglected. In this study 76 isolates of 5 species within the Ab group (A. baumannii n = 16, A. lactucae n = 12, A. nosocomialis n = 16, A. pittii n = 20, and A. seifertii n = 12), were compared in terms of antimicrobial susceptibility, carriage of intrinsic resistance genes, biofilm formation, and the ability to kill Caenorhabditis elegans in an infection assay. In agreement with previous studies, antimicrobial resistance was common among A. baumannii while all other species were generally more susceptible. Carriage of genes encoding different efflux pumps was frequent in all species and the presence of intrinsic class D β-lactamases was reported in A. baumannii, A. lactucae (heterotypic synonym of A. dijkshoorniae) and A. pittii but not in A. nosocomialis and A. seifertii. A. baumannii and A. nosocomialis presented weaker pathogenicity in our in vitro and in vivo models than A. seifertii, A. pittii and, especially, A. lactucae. Isolates from the former species showed decreased biofilm formation and required a longer time to kill C. elegans nematodes. These results suggest relevant differences in terms of antibiotic susceptibility patterns among the members of the Ab group as well as highlight a higher pathogenicity potential for the emerging species of the group in this particular model. Nevertheless, the impact of such potential in the human host still remains to be determined.
Collapse
Affiliation(s)
- Clara Cosgaya
- ISGlobal, Hospital Clínic - University of Barcelona, Barcelona, Spain
| | - Carlos Ratia
- ISGlobal, Hospital Clínic - University of Barcelona, Barcelona, Spain
| | | | - Laia Rubio
- ISGlobal, Hospital Clínic - University of Barcelona, Barcelona, Spain
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Bonn, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Bonn, Germany
| | - Ignasi Roca
- ISGlobal, Hospital Clínic - University of Barcelona, Barcelona, Spain
| | - Jordi Vila
- ISGlobal, Hospital Clínic - University of Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
New Shuttle Vectors for Real-Time Gene Expression Analysis in Multidrug-Resistant Acinetobacter Species: In Vitro and In Vivo Responses to Environmental Stressors. Appl Environ Microbiol 2019; 85:AEM.01334-19. [PMID: 31324623 DOI: 10.1128/aem.01334-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/06/2019] [Indexed: 11/20/2022] Open
Abstract
The Acinetobacter genus includes species of opportunistic pathogens and harmless saprophytes. The type species, Acinetobacter baumannii, is a nosocomial pathogen renowned for being multidrug resistant (MDR). Despite the clinical relevance of infections caused by MDR A. baumannii and a few other Acinetobacter spp., the regulation of their pathogenicity remains elusive due to the scarcity of adequate genetic tools, including vectors for gene expression analysis. Here, we report the generation and testing of a series of Escherichia coli-Acinetobacter promoter-probe vectors suitable for gene expression analysis in Acinetobacter spp. These vectors, named pLPV1Z, pLPV2Z, and pLPV3Z, carry both gentamicin and zeocin resistance markers and contain lux, lacZ, and green fluorescent protein (GFP) reporter systems downstream of an extended polylinker, respectively. The presence of a toxin-antitoxin gene system and the high copy number allow pLPV plasmids to be stably maintained even without antibiotic selection. The pLPV plasmids can easily be introduced by electroporation into MDR A. baumannii belonging to the major international lineages as well as into species of the Acinetobacter calcoaceticus-A. baumannii complex. The pLPV vectors have successfully been employed to study the regulation of stress-responsive A. baumannii promoters, including the DNA damage-inducible uvrABC promoter, the ethanol-inducible adhP and yahK promoters, and the iron-repressible promoter of the acinetobactin siderophore biosynthesis gene basA A lux-tagged A. baumannii ATCC 19606T strain, carrying the iron-responsive pLPV1Z::PbasA promoter fusion, allowed in vivo and ex vivo monitoring of the bacterial burden in the Galleria mellonella infection model.IMPORTANCE The short-term adaptive response to environmental cues greatly contributes to the ecological success of bacteria, and profound alterations in bacterial gene expression occur in response to physical, chemical, and nutritional stresses. Bacteria belonging to the Acinetobacter genus are ubiquitous inhabitants of soil and water though some species, such as Acinetobacter baumannii, are pathogenic and cause serious concern due to antibiotic resistance. Understanding A. baumannii pathobiology requires adequate genetic tools for gene expression analysis, and to this end we developed user-friendly shuttle vectors to probe the transcriptional responses to different environmental stresses. Vectors were constructed to overcome the problem of antibiotic selection in multidrug-resistant strains and were equipped with suitable reporter systems to facilitate signal detection. By means of these vectors, the transcriptional response of A. baumannii to DNA damage, ethanol exposure, and iron starvation was investigated both in vitro and in vivo, providing insights into A. baumannii adaptation during stress and infection.
Collapse
|
35
|
Wang X, Li J, Cao X, Wang W, Luo Y. Isolation, identification and characterisation of an emerging fish pathogen, Acinetobacter pittii, from diseased loach (Misgurnus anguillicaudatus) in China. Antonie van Leeuwenhoek 2019; 113:21-32. [PMID: 31432291 DOI: 10.1007/s10482-019-01312-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/31/2019] [Indexed: 11/29/2022]
Abstract
Although members of the genus Acinetobacter have emerged as important nosocomial pathogens causing severe human infections, there are few reports about their occurrence as fish pathogens. In this study, five bacterial strains were isolated from diseased loach (Misgurnus anguillicaudatus) cultured in a farm in China. The diseased loach displayed shedding of skin mucus and many petechial haemorrhages all over the body. Based on sequence analyses of 16S rRNA and rpoB genes, the isolates were identified as Acinetobacter pittii. An experimental infection assay confirmed their pathogenicity to loach. The results of artificial infection in zebrafish (Barchydanio rerio) and nematode (Caenorhabditis elegans) suggested that, as well as loach, these A. pittii isolates are pathogenic and highly virulent to these organisms. Multilocus sequence typing analysis revealed that all the isolates belong to sequence type (ST) 839, which may be the dominant clone causing fish disease and exhibits a close phylogenetic relationship with ST396 from human clinical samples in Korea or Taiwan China. This is the first report demonstrating that A. pittii is an emerging causal agent of mass mortality in loach and poses significant risks to fish culturing besides causing human clinical infection worldwide.
Collapse
Affiliation(s)
- Xu Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Jie Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xiaojuan Cao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Weimin Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yi Luo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China. .,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
36
|
Abstract
Acinetobacter species have emerged as one of the most clinically important pathogens. The phenotypic techniques which are currently available are insufficient in accurately identifying and differentiating the closely related and clinically important Acinetobacter species. Here, we discuss the advantages and limitations of the conventional phenotypic methods, automated identification systems, molecular methods and MALDI-TOF in the precise identification and differentiation of Acinetobacter species. More specifically, several species of this genus are increasingly reported to be of high clinical importance. Molecular characterization such as of blaOXA-51-like PCR together with rpoB sequencing has high discriminatory power over the conventional methods for Acinetobacter species identification, especially within the Acinetobacter calcoaceticus–Acinetobacter baumannii complex. Acinetobacter species are considered to be one of the most important pathogens and associated with increased mortality. The species within the Acinetobacter calcoaceticus–Acinetobacter baumannii complex have emerged as high priority pathogens, especially in intensive care units, thereby posing a challenge to infection management practices. However, identification of Acinetobacter to the species level is difficult. Clear differentiation among various Acinetobacter species with available standard biochemical methods and automated systems is challenging. Although various molecular methods are available, they are not regularly used in diagnostic laboratories. The advantages and disadvantages of different methods useful in the accurate identification of Acinetobacter species are discussed in this review.
Collapse
|
37
|
Marí-Almirall M, Cosgaya C, Pons MJ, Nemec A, Ochoa TJ, Ruiz J, Roca I, Vila J. Pathogenic Acinetobacter species including the novel Acinetobacter dijkshoorniae recovered from market meat in Peru. Int J Food Microbiol 2019; 305:108248. [PMID: 31226568 DOI: 10.1016/j.ijfoodmicro.2019.108248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/17/2019] [Accepted: 06/10/2019] [Indexed: 11/19/2022]
Abstract
Species of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex are important human pathogens which can be recovered from animals and food, potential sources for their dissemination. The aim of the present study was to characterise the Acinetobacter isolates recovered from market meat samples in Peru. From July through August 2012, 138 meat samples from six traditional markets in Lima were cultured in Lysogeny and Selenite broths followed by screening of Gram-negative bacteria in selective media. Bacterial isolates were identified by MALDI-TOF MS and DNA-based methods and assessed for their clonal relatedness and antimicrobial susceptibility. Twelve Acinetobacter isolates were recovered from calf samples. All but one strain were identified as members of the clinically-relevant Acinetobacter calcoaceticus-Acinetobacter baumannii complex: 9 strains as Acinetobacter pittii, 1 strain as A. baumannii, and 1 strain as the recently described novel species A. dijkshoorniae. The remaining strain could not be identified at the species level unambiguously but all studies suggested close relatedness to A. bereziniae. All isolates were well susceptible to antibiotics. Based on macrorestriction analysis, six isolates were further selected and some of them were associated with novel MLST profiles. The presence of pathogenic Acinetobacter species in human consumption meat might pose a risk to public health as potential reservoirs for their further spread into the human population. Nevertheless, the Acinetobacter isolates from meat found in this study were not multidrug resistant and their prevalence was low. To our knowledge, this is also the first time that the A. dijkshoorniae species is reported in Peru.
Collapse
Affiliation(s)
- Marta Marí-Almirall
- Department of Clinical Microbiology, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Clara Cosgaya
- Department of Clinical Microbiology, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Maria J Pons
- Department of Clinical Microbiology, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Universidad Científica del Sur, Lima, Peru
| | - Alexandr Nemec
- Laboratory of Bacterial Genetics, National Institute of Public Health, Prague, Czech Republic; Department of Laboratory Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Theresa J Ochoa
- Tropical Medicine Institute "Alexander von Humboldt", Universidad Peruana Cayetano Hereida, Lima, Peru
| | - Joaquim Ruiz
- Department of Clinical Microbiology, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Ignasi Roca
- Department of Clinical Microbiology, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
| | - Jordi Vila
- Department of Clinical Microbiology, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Subhadra B, Surendran S, Lim BR, Yim JS, Kim DH, Woo K, Han K, Oh MH, Choi CH. Complete genome sequence and phylogenetic analysis of nosocomial pathogen Acinetobacter nosocomialis strain NCTC 8102. Genes Genomics 2019; 41:1063-1075. [PMID: 31177378 DOI: 10.1007/s13258-019-00834-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/20/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Acinetobacter has emerged recently as one of the most challenging nosocomial pathogens because of its increased rate of antimicrobial resistance. The genetic complexity and genome diversity, as well as the lack of adequate knowledge on the pathogenic determinants of Acinetobacter strains often hinder with pathogenesis studies for the development of better therapeutics to tackle this nosocomial pathogen. OBJECTIVES In this study, we comparatively analyzed the whole genome sequence of a virulent Acinetobacternosocomialis strain NCTC 8102. METHODS The genomic DNA of A. nosocomialis NCTC 8102 was isolated and sequenced using PacBio RS II platform. The sequenced genome was functionally annotated and gene prediction was carried out using the program, Glimmer 3. The phylogenetic analysis of the genome was performed using Mega 6 program and the comparative genome analysis was carried out by BLAST (Basic Local Alignment Search Tool). RESULTS The complete genome analysis depicted that the genome consists of a circular chromosome with an average G + C content of 38.7%. The genome comprises 3700 protein-coding genes, 96 RNA genes (18 rRNA, 74 tRNA and 4 ncRNA genes), and 91 pseudogenes. In addition, 6 prophage regions comprising 2 intact, 1 incomplete and 3 questionable ones and 18 genomic islands were identified in the genome, suggesting the possible occurrence of horizontal gene transfer in this strain. Comparative genome analysis of A. nosocomialis NCTC 8102 genome with the already sequenced A. nosocomialis strain SSA3 showed an average nucleotide identity of 99.0%. In addition, the number of prophages and genomic islands were higher in the A. nosocomialis NCTC 8102 genome compared to that of the strain SSA3. 14 of the genomic islands were unique to A. nosocomialis NCTC 8102 compared to strain SSA3 and they harbored genes which are involved in virulence, multidrug resistance, biofilm formation and bacterial pathogenesis. CONCLUSION We sequenced the whole genome of A. nosocomialis strain NCTC 8102 followed by comparatively genome analysis. The study provides valuable information on the genetic features of A. nosocomialis strain and the data from this study would assist in further studies for the development of control measures for this nosocomial pathogen.
Collapse
Affiliation(s)
- Bindu Subhadra
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, 266 Munwha-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Surya Surendran
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, 266 Munwha-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Bo Ra Lim
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, 266 Munwha-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Jong-Sung Yim
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, 266 Munwha-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Dong Ho Kim
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, 266 Munwha-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Kyungho Woo
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, 266 Munwha-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Kyudong Han
- Department of Nanobiomedical Science, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116, South Korea.,BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116, South Korea.
| | - Chul Hee Choi
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, 266 Munwha-ro, Jung-gu, Daejeon, 35015, South Korea.
| |
Collapse
|
39
|
Villalón P, Ortega M, Sáez-Nieto JA, Carrasco G, Medina-Pascual MJ, Garrido N, Valdezate S. Dynamics of a Sporadic Nosocomial Acinetobacter calcoaceticus - Acinetobacter baumannii Complex Population. Front Microbiol 2019; 10:593. [PMID: 30967856 PMCID: PMC6440288 DOI: 10.3389/fmicb.2019.00593] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/08/2019] [Indexed: 12/27/2022] Open
Abstract
Our objective was to improve current knowledge of sporadic (Spo) nosocomial Acinetobactercalcoaceticus-Acinetobacter baumannii (Acb) complex populations, and thus better understand the epidemiology of Spo and endemoepidemic (EE) strains. Between 1999 and 2010, 133 isolates of Spo Acb complex were obtained from a single hospital. Species were identified by gyrB-PCR, and via gyrB- and rpoB-sequencing. Clonal analysis was undertaken using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. Susceptibility to antimicrobial agents was determined by microdilution and E-tests. Carbapenemase genes were detected by PCR. One hundred and one PFGE types were detected. A. baumannii was the most common (67/101 PFGE types), followed by Acinetobacter pittii (22/101), Acinetobacter lactucae (6/101), and Acinetobacter calcoaceticus (2/101). gyrB, rpoB1, and rpoB2 sequencing returned 49, 13, and 16 novel sequences, respectively. Sixty-three sequence types (STs) (38 new STs and 66 new alleles) were detected; the most common were ST2 (29/133 isolates) and ST132 (14/133). Twenty-six OXA-51 allelic variants were detected, nine of which were novel. The PFGE types were generally susceptible (88/101) to all the tested antimicrobials; 3/101 were carbapenem-resistant due to the presence of the genetic structure ISAba2-blaOXA-58-like-ISAba3, and 2/101 were multidrug-resistant. It can be concluded that the examined Spo Acb complex population was mainly composed of A. baumannii. Many different clones were detected (with ST2 clearly dominant), all largely susceptible to antimicrobials; multidrug resistance was rare. In contrast, a previously examined EE Acb population was composed of just four expanding, multidrug-resistant A. baumannii clones -ST2, ST3, ST15, and ST80-.
Collapse
Affiliation(s)
- Pilar Villalón
- Laboratorio de Referencia e Investigación en Taxonomía, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Ortega
- Laboratorio de Referencia e Investigación en Taxonomía, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan A Sáez-Nieto
- Laboratorio de Referencia e Investigación en Taxonomía, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Gema Carrasco
- Laboratorio de Referencia e Investigación en Taxonomía, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María J Medina-Pascual
- Laboratorio de Referencia e Investigación en Taxonomía, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Noelia Garrido
- Laboratorio de Referencia e Investigación en Taxonomía, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Sylvia Valdezate
- Laboratorio de Referencia e Investigación en Taxonomía, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
40
|
Gales AC, Seifert H, Gur D, Castanheira M, Jones RN, Sader HS. Antimicrobial Susceptibility of Acinetobacter calcoaceticus-Acinetobacter baumannii Complex and Stenotrophomonas maltophilia Clinical Isolates: Results From the SENTRY Antimicrobial Surveillance Program (1997-2016). Open Forum Infect Dis 2019; 6:S34-S46. [PMID: 30895213 PMCID: PMC6419908 DOI: 10.1093/ofid/ofy293] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Acinetobacter calcoaceticus-A. baumannii (Acb) complex and Stenotrophomonas maltophilia represent frequent causes of hospital-acquired infections. We evaluated the frequency and resistance rates of Acb complex and S. maltophilia isolates from medical centers enrolled in the SENTRY Program. Methods A total of 13 752 Acb complex and 6467 S. maltophilia isolates were forwarded to a monitoring laboratory by 259 participating sites from the Asia-Pacific region, Latin America, Europe, and North America between 1997 and 2016. Confirmation of species identification and antimicrobial susceptibility testing were performed using conventional methods and/or matrix-assisted laser desorption ionization-time of flight mass spectrometry and the broth microdilution method, respectively. Antimicrobial susceptibility results were interpreted by CLSI and EUCAST 2018 criteria. Results Acb complex and S. maltophilia were most frequently isolated from patients hospitalized with pneumonia (42.9% and 55.8%, respectively) and bloodstream infections (37.3% and 33.8%, respectively). Colistin and minocycline were the most active agents against Acb complex (colistin MIC50/90, ≤0.5/2 mg/L; 95.9% susceptible) and S. maltophilia (minocycline MIC50/90, ≤1/2 mg/L; 99.5% susceptible) isolates, respectively. Important temporal decreases in susceptibility rates among Acb complex isolates were observed for all antimicrobial agents in all regions. Rates of extensively drug-resistant Acb complex rates were highest in Europe (66.4%), followed by Latin America (61.5%), Asia-Pacific (56.9%), and North America (38.8%). Among S. maltophilia isolates, overall trimethoprim-sulfamethoxazole (TMP-SMX) susceptibility rates decreased from 97.2% in 2001-2004 to 95.7% in 2013-2016, but varied according to the geographic region. Conclusions We observed important reductions of susceptibility rates to all antimicrobial agents among Acb complex isolates obtained from all geographic regions. In contrast, resistance rates to TMP-SMX among S. maltophilia isolates remained low and relatively stable during the study period.
Collapse
Affiliation(s)
- Ana C Gales
- Universidade Federal de São Paulo, São Paulo, Brazil
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Centre for Infection Research, partner site Bonn-Cologne, Germany
| | - Deniz Gur
- Hacettepe University, Ankara, Turkey
| | | | | | | |
Collapse
|
41
|
Püntener-Simmen S, Zurfluh K, Schmitt S, Stephan R, Nüesch-Inderbinen M. Phenotypic and Genotypic Characterization of Clinical Isolates Belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) Complex Isolated From Animals Treated at a Veterinary Hospital in Switzerland. Front Vet Sci 2019; 6:17. [PMID: 30805352 PMCID: PMC6370676 DOI: 10.3389/fvets.2019.00017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/17/2019] [Indexed: 11/25/2022] Open
Abstract
Objectives: We investigated a collection of strains belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex obtained from a veterinary clinic with regard to their genetic relatedness, presence of antibiotic resistance genes and antimicrobial susceptibility profiles. Methods: Fifty-eight ACB-complex strains from animals treated at a veterinary clinic between 2006 and 2017, and seven strains collected from the hospital environment during 2012 were analyzed. Assignment to sequence types (ST) and international complexes (IC) was done by multilocus sequence typing (MLST) according to the Pasteur scheme. Genes encoding carbapenemases, aminoglycoside-modifying enzymes, macrolide-, quinolone- and co-trimoxazole resistance genes, the ISAba1 element, virulence associated intI1 genes and plasmid associated toxin-antitoxin markers were identified by microarray. Genes encoding blaOXA−51-like carbapenemases were amplified by PCR and sequenced. Susceptibility profiles were determined by disc diffusion or by broth microdilution. Results: Among 50 A. baumannii isolates from animals, two predominant clones were observed linked to CC1 (n = 27/54% of the isolates) and CC25 (n = 14/28%), respectively. Strains of IC I harbored blaOXA−69, aac(3′)-la, aadA1, sul1, intI1, and splA/T genes. Isolates belonging to CC25 possessed blaOXA−64. Six (12%) isolates belonging to CC2 and carrying blaOXA−66 were also noted. One isolate belonged to CC10 (blaOXA−68), one to CC149 (blaOXA−104), the remaining isolate was assigned to ST1220 and possessed blaOXA−116. Of six environmental A. baumannii, four (66.7%) belonged to CC25 (blaOXA−64), one (16.7%) to CC2 (blaOXA−66) and one to CC3 (blaOXA−71). Nine isolates (eight from animals and one environmental strain) were non-baumannii strains and did not harbor blaOXA−51-like genes. None of the isolates carried blaOXA−23, blaOXA−48, or blaOXA−58, and none were resistant to carbapenems. Conclusions: Clonal lineages of the veterinary A. baumannii isolates in our collection are identical to those globally emerging in humans but do not harbor blaOXA−23. A. baumannii CC25 may be specific for this particular veterinary clinic environment.
Collapse
Affiliation(s)
- Sabrina Püntener-Simmen
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Katrin Zurfluh
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sarah Schmitt
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
42
|
Munson E, Carroll KC. An Update on the Novel Genera and Species and Revised Taxonomic Status of Bacterial Organisms Described in 2016 and 2017. J Clin Microbiol 2019; 57:e01181-18. [PMID: 30257907 PMCID: PMC6355528 DOI: 10.1128/jcm.01181-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recognition and acknowledgment of novel bacterial taxonomy and nomenclature revisions can impact clinical practice, disease epidemiology, and routine clinical microbiology laboratory operations. The Journal of Clinical Microbiology (JCM) herein presents its biannual report summarizing such changes published in the years 2016 and 2017, as published and added by the International Journal of Systematic and Evolutionary Microbiology Noteworthy discussion centers around descriptions of novel Corynebacteriaceae and an anaerobic mycolic acid-producing bacterium in the suborder Corynebacterineae; revisions within the Propionibacterium, Clostridium, Borrelia, and Enterobacter genera; and a major reorganization of the family Enterobacteriaceae. JCM intends to sustain this series of reports as advancements in molecular genetics, whole-genome sequencing, and studies of the human microbiome continue to produce novel taxa and clearer understandings of bacterial relatedness.
Collapse
Affiliation(s)
- Erik Munson
- College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Teixeira AM, Nemec A, Sousa C. Differentiation of Taxonomically Closely Related Species of the Genus Acinetobacter Using Raman Spectroscopy and Chemometrics. Molecules 2019; 24:molecules24010168. [PMID: 30621147 PMCID: PMC6337300 DOI: 10.3390/molecules24010168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/18/2018] [Accepted: 12/26/2018] [Indexed: 11/16/2022] Open
Abstract
In recent years, several efforts have been made to develop quick and low cost bacterial identification methods. Genotypic methods, despite their accuracy, are laborious and time consuming, leaving spectroscopic methods as a potential alternative. Mass and infrared spectroscopy are among the most reconnoitered techniques for this purpose, with Raman having been practically unexplored. Some species of the bacterial genus Acinetobacter are recognized as etiological agents of nosocomial infections associated with high rates of mortality and morbidity, which makes their accurate identification important. The goal of this study was to assess the ability of Raman spectroscopy to discriminate between 16 Acinetobacter species belonging to two phylogroups containing taxonomically closely related species, that is, the Acinetobacter baumannii-Acinetobacter calcoaceticus complex (six species) and haemolytic clade (10 species). Bacterial spectra were acquired without the need for any sample pre-treatment and were further analyzed with multivariate data analysis, namely partial least squares discriminant analysis (PLSDA). Species discrimination was achieved through a series of sequential PLSDA models, with the percentage of correct species assignments ranging from 72.1% to 98.7%. The obtained results suggest that Raman spectroscopy is a promising alternative for identification of Acinetobacter species.
Collapse
Affiliation(s)
- A Margarida Teixeira
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Alexandr Nemec
- Laboratory of Bacterial Genetics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, 100 42 Prague 10, Czech Republic.
- Department of Laboratory Medicine, Third Faculty of Medicine, Charles University, Šrobárova 50, 100 34 Prague 10, Czech Republic.
| | - Clara Sousa
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
44
|
Proposed nomenclature or classification changes for bacteria of medical importance: Taxonomic Update 4. Diagn Microbiol Infect Dis 2018; 94:205-208. [PMID: 30683468 DOI: 10.1016/j.diagmicrobio.2018.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/22/2022]
Abstract
A key aspect of medical, public health, and diagnostic microbiology laboratories is the accurate identification and rapid reporting and communication to medical staff regarding patients with infectious agents of clinical importance. Microbial taxonomy continues to change at a very rapid rate in the era of molecular diagnostics including whole genome sequencing. This update focuses on taxonomic changes and proposals that may be of medical importance for years 2017 and 2018.
Collapse
|
45
|
Jamal S, Al Atrouni A, Rafei R, Dabboussi F, Hamze M, Osman M. Molecular mechanisms of antimicrobial resistance in Acinetobacter baumannii, with a special focus on its epidemiology in Lebanon. J Glob Antimicrob Resist 2018; 15:154-163. [PMID: 29859266 DOI: 10.1016/j.jgar.2018.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/24/2018] [Accepted: 05/22/2018] [Indexed: 10/16/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic bacterium involved in several types of infection with high mortality and morbidity, especially in intensive care units. Treatment of these infections remains a challenge due to the worldwide emergence of broad-spectrum resistance to many antibiotics. Following the implementation of molecular techniques to study A. baumannii outbreaks, it has been shown that they are mainly caused by specific clones such as international clones I, II and III. The present work aims to review the available data on the mechanisms underlying antimicrobial resistance in A. baumannii, with a special focus on the molecular epidemiology of this species in Lebanon.
Collapse
Affiliation(s)
- Sabah Jamal
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Ahmad Al Atrouni
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon.
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| |
Collapse
|
46
|
Ronish LA, Lillehoj E, Fields JK, Sundberg EJ, Piepenbrink KH. The structure of PilA from Acinetobacter baumannii AB5075 suggests a mechanism for functional specialization in Acinetobacter type IV pili. J Biol Chem 2018; 294:218-230. [PMID: 30413536 DOI: 10.1074/jbc.ra118.005814] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/19/2018] [Indexed: 11/06/2022] Open
Abstract
Type IV pili (T4P) are bacterial appendages composed of protein subunits, called pilins, noncovalently assembled into helical fibers. T4P are essential, in many bacterial species, for processes as diverse as twitching motility, natural competence, biofilm or microcolony formation, and host cell adhesion. The genes encoding type IV pili are found universally in the Gram-negative, aerobic, nonflagellated, and pathogenic coccobacillus Acinetobacter baumannii, but there is considerable variation in PilA, the major protein subunit, both in amino acid sequence and in glycosylation patterns. Here we report the X-ray crystal structure of PilA from AB5075, a recently characterized, highly virulent isolate, at 1.9 Å resolution and compare it to homologues from A. baumannii strains ACICU and BIDMC57, which are C-terminally glycosylated. These structural comparisons revealed that PilAAB5075 exhibits a distinctly electronegative surface chemistry. To understand the functional consequences of this change in surface electrostatics, we complemented a ΔpilA knockout strain with divergent pilA genes from ACICU, BIDMC57, and AB5075. The resulting transgenic strains showed differential twitching motility and biofilm formation while maintaining the ability to adhere to epithelial cells. PilAAB5075 and PilAACICU, although structurally similar, promote different characteristics, favoring twitching motility and biofilm formation, respectively. These results support a model in which differences in pilus electrostatics affect the equilibrium of microcolony formation, which in turn alters the balance between motility and biofilm formation in Acinetobacter.
Collapse
Affiliation(s)
- Leslie A Ronish
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Erik Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - James K Fields
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201; Departments of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Kurt H Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588; Departments of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588; Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588; Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska 68588.
| |
Collapse
|
47
|
Mohd Rani F, A Rahman NI, Ismail S, Abdullah FH, Othman N, Alattraqchi AG, Cleary DW, Clarke SC, Yeo CC. Prevalence and antimicrobial susceptibilities of Acinetobacter baumannii and non-baumannii Acinetobacters from Terengganu, Malaysia and their carriage of carbapenemase genes. J Med Microbiol 2018; 67:1538-1543. [PMID: 30251951 DOI: 10.1099/jmm.0.000844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A total of 153 non-repeat Acinetobacter spp. clinical isolates obtained in 2015 from Hospital Sultanah Nur Zahirah (HSNZ) in Terengganu, Malaysia, were characterized. Identification of the isolates at species level was performed by ribosomal DNA restriction analysis (ARDRA) followed by sequencing of the rpoB gene. The majority of the isolates (n=128; 83.7 %) were A. baumannii while the rest were identified as A. nosocomialis (n=16), A. calcoaceticus (n=5), A. soli (n=2), A. berezeniae (n=1) and A. variabilis (n=1). Multidrug resistance (MDR) was most prevalent in A. baumannnii (66.4 %) whereas only one non-baumannii isolate (A. nosocomialis) was MDR. The blaOXA-23 gene was the predominant acquired carbapenemase gene (56.2 %) and was significantly associated (P<0.001) with carbapenem resistance. However, no significant association was found for carbapenem resistance and isolates that contained the ISAba1-blaOXA-51 configuration.
Collapse
Affiliation(s)
- Farahiyah Mohd Rani
- 1Faculty of Medicine, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| | - Nor Iza A Rahman
- 1Faculty of Medicine, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| | - Salwani Ismail
- 1Faculty of Medicine, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| | - Fatimah Haslina Abdullah
- 2Department of Pathology, Hospital Sultanah Nur Zahirah, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| | - Norlela Othman
- 2Department of Pathology, Hospital Sultanah Nur Zahirah, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| | - Ahmed Ghazi Alattraqchi
- 1Faculty of Medicine, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| | - David W Cleary
- 3Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.,4NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK
| | - Stuart C Clarke
- 6International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.,5Global Health Research Institute, University of Southampton, Southampton, UK.,4NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK.,3Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Chew Chieng Yeo
- 1Faculty of Medicine, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| |
Collapse
|
48
|
Subhadra B, Kim J, Kim DH, Woo K, Oh MH, Choi CH. Local Repressor AcrR Regulates AcrAB Efflux Pump Required for Biofilm Formation and Virulence in Acinetobacter nosocomialis. Front Cell Infect Microbiol 2018; 8:270. [PMID: 30131944 PMCID: PMC6090078 DOI: 10.3389/fcimb.2018.00270] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022] Open
Abstract
Multidrug efflux systems contribute to antimicrobial resistance and pathogenicity in bacteria. Here, we report the identification and characterization of a transcriptional regulator AcrR controlling the yet uncharacterized multidrug efflux pump, AcrAB in Acinetobacter nosocomialis. In silico analysis revealed that the homologs of AcrR and AcrAB are reported in the genomes of many other bacterial species. We confirmed that the genes encoding the AcrAB efflux pump, acrA and acrB forms a polycistronic operon which is under the control of acrR gene upstream of acrA. Bioinformatic analysis indicated the presence of AcrR binding motif in the promoter region of acrAB operon and the specific binding of AcrR was confirmed by electrophoretic mobility shift assay (EMSA). The EMSA data showed that AcrR binds to −89 bp upstream of the start codon of acrA. The mRNA expression analysis depicted that the expression of acrA and acrB genes are elevated in the deletion mutant compared to that in the wild type confirming that AcrR acts as a repressor of acrAB operon in A. nosocomialis. The deletion of acrR resulted in increased motility, biofilm/pellicle formation and invasion in A. nosocomialis. We further analyzed the role of AcrR in A. nosocomialis pathogenesis in vivo using murine model and it was shown that acrR mutant is highly virulent inducing severe infection in mouse leading to host death. In addition, the intracellular survival rate of acrR mutant was higher compared to that of wild type. Our data demonstrates that AcrR functions as an important regulator of AcrAB efflux pump and is associated with several phenotypes such as motility, biofilm/pellicle formation and pathogenesis in A. nosocomialis.
Collapse
Affiliation(s)
- Bindu Subhadra
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jaeseok Kim
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Dong Ho Kim
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Kyungho Woo
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, South Korea
| | - Chul Hee Choi
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
49
|
New Shuttle Vectors for Gene Cloning and Expression in Multidrug-Resistant Acinetobacter Species. Antimicrob Agents Chemother 2018; 62:AAC.02480-17. [PMID: 29339383 DOI: 10.1128/aac.02480-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/02/2018] [Indexed: 12/28/2022] Open
Abstract
Understanding bacterial pathogenesis requires adequate genetic tools to assess the role of individual virulence determinants by mutagenesis and complementation assays, as well as for homologous and heterologous expression of cloned genes. Our knowledge of Acinetobacter baumannii pathogenesis has so far been limited by the scarcity of genetic tools to manipulate multidrug-resistant (MDR) epidemic strains, which are responsible for most infections. Here, we report on the construction of new multipurpose shuttle plasmids, namely, pVRL1 and pVRL2, which can efficiently replicate in Acinetobacter spp. and in Escherichia coli The pVRL1 plasmid has been constructed by combining (i) the cryptic plasmid pWH1277 from Acinetobacter calcoaceticus, which provides an origin of replication for Acinetobacter spp.; (ii) a ColE1-like origin of replication; (iii) the gentamicin or zeocin resistance cassette for antibiotic selection; and (iv) a multilinker containing several unique restriction sites. Modification of pVRL1 led to the generation of the pVRL2 plasmid, which allows arabinose-inducible gene transcription with an undetectable basal expression level of cloned genes under uninduced conditions and a high dynamic range of responsiveness to the inducer. Both pVRL1 and pVRL2 can easily be selected in MDR A. baumannii, have a narrow host range and a high copy number, are stably maintained in Acinetobacter spp., and appear to be compatible with indigenous plasmids carried by epidemic strains. Plasmid maintenance is guaranteed by the presence of a toxin-antitoxin system, providing more insights into the mechanism of plasmid stability in Acinetobacter spp.
Collapse
|
50
|
Acinetobacter dijkshoorniae is a later heterotypic synonym of Acinetobacter lactucae. Int J Syst Evol Microbiol 2018; 68:131-132. [DOI: 10.1099/ijsem.0.002470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|