1
|
Bian M, Huang E, Xia S, He C, Ye G. Bioturbation analysis of microbial community and organic acid metabolism in the enriched liquid of pit mud by Daqu, HuangShui, and ZaoPei. Food Sci Biotechnol 2025; 34:1981-1994. [PMID: 40196325 PMCID: PMC11972265 DOI: 10.1007/s10068-025-01824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/11/2024] [Accepted: 01/15/2025] [Indexed: 04/09/2025] Open
Abstract
In this study, the traditional fermentation starter (Daqu), a fermentation by-product (Huangshui) and fermentation grains (Zaopei) were combined with pit mud to provide the initial bacterial source, using a single pit mud bacterial inoculation source as the control group. Changes in metabolite accumulation and microbial community were assessed over six rounds of enrichment. Results showed that the addition of exogenous microorganisms (Daqu, Huangshui and Zaopei) better enhanced the quality of the enriched pit mud liquid compared to the use of multiple rounds of enrichment. The quality enhancement of the enriched pit mud liquid could be ranked in descending order as follows: Zaopei > Huangshui > Daqu. The quality of the enriched pit mud liquid was found to be highest in rounds 2-3 of the addition of Zaopei. These results provide theoretical guidance and technical support for the development of pit mud maintenance systems and techniques for the rapid aging of artificial pit mud. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-025-01824-z.
Collapse
Affiliation(s)
- MingHong Bian
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000 China
| | - Enze Huang
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000 China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, 644000 China
| | - Shangchao Xia
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000 China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, 644000 China
| | - Chunyan He
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000 China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, 644000 China
| | - Guangbin Ye
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000 China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, 644000 China
| |
Collapse
|
2
|
Biderre-Petit C, Hongleda AA, Marchal G, Mehta N, Guez JS, Viollier E, Scheepers M, Courtine D, Fadhlaoui K. Kineothrix sedimenti sp. nov., a 3-hydroxybutyrate-producing bacterium isolated from sediment of the meromictic Lake Pavin. Int J Syst Evol Microbiol 2025; 75. [PMID: 40272878 DOI: 10.1099/ijsem.0.006750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
An anaerobic, spore-forming, 3-hydroxybutyrate (3-HB)-producing bacterium, strain IPX_CKT, was isolated from sediment of a meromictic lake located in Massif Central (France). Cells were rods, forming filamentous chains which were observed moving under the microscope. Strain IPX_CKT utilized a wide variety of carbohydrates, but not raffinose, rhamnose and starch. Hydrogen (H2), 3-HB, acetate and ethanol were the main fermentative end-products from growth in medium containing glucose. Strain IPX_CKT grew optimally at 37 °C and pH 7. Its closest phylogenetic relative was Kineothrix alysoides (16S rRNA gene sequence identity 98.7%, isDDH 34.6%, ANIb 87.4%). The genomic DNA G+C content was 43.0 mol%. As for K. alysoides, whole-genome sequencing suggested that strain IPX_CKT is capable of fixing nitrogen (N2). However, strain IPX_CKT carried a five-nif-gene-set (nifHDKEB), not present in K. alysoides. Genome sequence also showed a high number of encoded chemotaxis receptors (42 genes, the second highest in the family Lachnospiraceae after K. alysoides). Based on phenotypic, genomic, phylogenetic and chemotaxonomic analyses, it is proposed that a novel species, Kineothrix sedimenti sp. nov., be created, with strain IPX_CKT (DSM 118044T, CIP 112511T) as the type strain.
Collapse
Affiliation(s)
- Corinne Biderre-Petit
- Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, CNRS, Clermont-Ferrand, F-63000, France
| | - Ayité Adama Hongleda
- Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, CNRS, Clermont-Ferrand, F-63000, France
- Present address: UMR GMPA, AgroParisTech, INRAE, Université Paris-Saclay, Thiverval-Grignon, F-78850, France
| | - Gaëlle Marchal
- Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, CNRS, Clermont-Ferrand, F-63000, France
| | - Neha Mehta
- Faculty of Science Biogeochemistry and Modeling of Earth System, Université Libre de Bruxelles, Avenue FD Roosevelt, 501050 Brussels, Belgium
| | - Jean-Sébastien Guez
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France
| | - Eric Viollier
- Laboratoire des Sciences du Climat et de l'Environnement and Université Paris Cité, CEA Saclay - l'Orme des Merisiers - bat. 714, 91191 Gif-sur-Yvette Cedex, Paris, France
| | - Maïlysia Scheepers
- Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, CNRS, Clermont-Ferrand, F-63000, France
| | - Damien Courtine
- Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, CNRS, Clermont-Ferrand, F-63000, France
| | - Khaled Fadhlaoui
- Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, CNRS, Clermont-Ferrand, F-63000, France
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, F-63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Perez-Esteban N, Tully R, Peces M, Dosta J, Astals S. Consistent acidogenic co-fermentation of waste activated sludge and food waste under thermophilic conditions. WATER RESEARCH 2025; 271:122970. [PMID: 39709884 DOI: 10.1016/j.watres.2024.122970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024]
Abstract
Acidogenic co-fermentation of waste activated sludge (WAS) and food waste (FW) under thermophilic conditions enhances process consistency, while overcoming the problem of acetic acid consumption due to growing methanogens. Two long-term continuous co-fermentation experiments were carried out with a WAS:FW mixture (70:30 % in VS) at organic loading rate of 8 gVS/(L·d). Experiment 1 assessed the impact of temperature (35 °C and 55 °C) and WAS origin (WAS_A and WAS_B) in two collection periods. Experiment 2 evaluated the consistency at 55 °C by testing three WAS origins (WAS_A, WAS_B and WAS_C) in 3 additional collection periods. Experimental results showed that at 55 °C, the solubilisation yield was enhanced compared to 35 °C, although this did not always lead to higher fermentation yield. The fermentation product profile was affected by the operating temperature, with 55 °C promoting the accumulation of acetic and butyric acids. Acetic acid consumption was only detected at 35 °C in fermenters treating WAS_A, whereas it was not observed in fermenters treating WAS_B. This consumption was prevented at 55 °C, as none of the 13 fermenters continuous operation showed acetic acid consumption. Acetic acid consumption was attributed to species midas_s_9557 (genus Methanosarcina), an aceticlastic methanogen, which did not grow under 55 °C. Temperature had a more significant effect on the microbial community structure than WAS origin. Functional redundancy was demonstrated by each fermenter having its own distinct microbial consortium while maintaining constant metabolic functions at 55 °C. Overall, the acidogenic co-fermentation of WAS and FW at 55 °C is regarded as a robust and consistent biotechnology.
Collapse
Affiliation(s)
- N Perez-Esteban
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - R Tully
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; School of Chemistry, Glasglow University, Joseph Black Building, University Pl, Glasglow G12 8QQ, UK
| | - M Peces
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - J Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
4
|
Kim G, Cho KS. Bacterial synergy and relay for thermophilic hydrogen production through dark fermentation using food waste. BIORESOURCE TECHNOLOGY 2025; 416:131748. [PMID: 39505282 DOI: 10.1016/j.biortech.2024.131748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/21/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Food waste is a significant global issue, with 1.3 billion tons generated annually, a figure expected to rise to 2.1 billion tons by 2030. Conventional disposal methods, such as landfilling and incineration, present environmental challenges, including methane emissions and pollution. Hydrogen production through dark fermentation presents a sustainable alternative, offering both waste management and renewable energy generation. This study investigates the bacterial synergy and relay mechanisms involved in thermophilic H2 production using food waste as a substrate. PURPOSE The primary aim of this research was to analyze the metabolic pathways and dynamics of functional genes prediction during thermophilic H2 production from food waste, focusing on the role of bacterial consortia in enhancing H2 yields. METHODS A continuous stirred-tank reactor (CSTR) was operated using food waste as the substrate and a thermophilic bacterial consortium as the inoculum. The study utilized genomic analysis to monitor changes in bacteriobiome composition over time and to correlate these changes with H2 production. Volatile fatty acids (VFAs) and H2 production rates were analyzed using gas chromatography and high-performance liquid chromatography (HPLC). The Kyoto Encyclopedia of Genes and Genomes (KEGG) database was employed to identify functional genes involved in the fermentation process. RESULTS The study identified key bacterial species, including Caproiciproducens and Caproicibacter, that dominated during the later stages of H2 production, replacing earlier dominant species such as Clostridium. These shifts in bacterial dominance were strongly correlated with sustained H2 production rates ranging from 353 to 403 mL·L-1·h-1, with H2 concentrations between 55 % and 62 % (v/v). Functional gene analysis revealed significant pathways related to polysaccharide degradation, glycolysis, and dark fermentation. CONCLUSIONS This study highlights the importance of bacterial synergy and relay in maintaining continuous H2 production from food waste under thermophilic conditions. The findings provide insights into optimizing biohydrogen production processes, emphasizing the role of specific bacterial species in enhancing efficiency. These results contribute to the development of sustainable waste management strategies and renewable energy production.
Collapse
Affiliation(s)
- Geunhee Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea; Center of SEBIS (Strategic Solutions for Environmental Blindsponts in the Interest of Society), Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
5
|
Machado DT, Dias BDC, Cayô R, Gales AC, Marques de Carvalho F, Vasconcelos ATR. Uncovering new Firmicutes species in vertebrate hosts through metagenome-assembled genomes with potential for sporulation. Microbiol Spectr 2024; 12:e0211324. [PMID: 39283121 PMCID: PMC11536998 DOI: 10.1128/spectrum.02113-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 11/07/2024] Open
Abstract
Metagenome-assembled genomes (MAGs) have contributed to identifying non-culturable microorganisms and understanding their ecological functions. MAGs offer an advantage in investigating sporulation-associated genes, especially given the difficulty of isolating many species residing in the gut microbiota of multiple hosts. Bacterial sporulation is a key survival mechanism with implications for pathogenicity and biotechnology. Here, we investigate MAGs from vertebrate hosts, emphasizing taxonomic identification and identifying sporulation-associated genes in potential novel species within the Firmicutes phylum. We identified potential new species in the classes Clostridia (Borkfalkiaceae, Lachnospiraceae, Monoglobaceae, and Oscillospiraceae families) and Bacilli (Bacillaceae and Erysipelotrichaceae families) through phylogenetic and functional pathway analyses, highlighting their sporulation potential. Our study covers 146 MAGs, 124 of them without refined taxonomic assignments at the family level. We found that Clostridia and Bacilli have unique sporulation gene profiles in the refined family MAGs for cattle, swine, poultry, and human hosts. The presence of genes related to Spo0A regulon, engulfment, and spore cortex in MAGs underscores fundamental mechanisms in sporulation processes in currently uncharacterized species with sporulation potential from metagenomic dark matter. Furthermore, genomic analyses predict sporulation potential based on gene presence, genome size, and metabolic pathways involved in spore formation. We emphasize MAGs covering families not yet characterized through the phylogenetic analysis, and with extensive potential for spore-forming bacteria within Clostridia, Bacilli, UBA4882, and UBA994 classes. These findings contribute to exploring spore-forming bacteria, which provides evidence for novel species diversity in multiple hosts, their adaptive strategies, and potential applications in biotechnology and host health.IMPORTANCESpores are essential for bacterial survival in harsh environments, facilitating their persistence and adaptation. Exploring sporulation-associated genes in metagenome-assembled genomes (MAGs) from different hosts contributes to clinical and biotechnological domains. Our study investigated the extent of genes associated with bacterial sporulation in MAGs from poultry, swine, cattle, and humans, revealing these genes in uncultivated bacteria. We identified potential novel Firmicutes species with sporulation capabilities through phylogenetic and functional analyses. Notably, MAGs belonging to Clostridia, Bacilli, and unknown classes, namely UBA4882 and UBA994, remained uncharacterized at the family level, which raises the hypothesis that sporulation would also be present in these genomes. These findings contribute to our understanding of microbial adaptation and have implications for microbial ecology, underlining the importance of sporulation in Firmicutes across different hosts. Further studies into novel species and their sporulation capability can contribute to bacterial maintenance mechanisms in various organisms and their applications in biotechnology studies.
Collapse
Affiliation(s)
- Douglas Terra Machado
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| | - Beatriz do Carmo Dias
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| | - Rodrigo Cayô
- Laboratory of Environmental Antimicrobial Resistance (LEARN), Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Universidade Federal de São Paulo (UNIFESP), Unidade José Alencar, Centro, Diadema, São Paulo, Brazil
| | - Ana Cristina Gales
- Laboratório ALERTA, Division of Infectious Diseases, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Fabíola Marques de Carvalho
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| | - Ana Tereza Ribeiro Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Grana M, Riboli G, Tatangelo V, Mantovani M, Gandolfi I, Turolla A, Ficara E. Anaerobic valorization of sewage sludge pretreated through hydrothermal carbonization: Volatile fatty acids and biomethane production. BIORESOURCE TECHNOLOGY 2024; 412:131279. [PMID: 39151568 DOI: 10.1016/j.biortech.2024.131279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Hydrothermal carbonization (HTC) emerged as an effective technology for the treatment of various types of wet biomass and organic residues, including sewage sludge, offering the potential for sludge reduction and resource recovery. HTC pretreatment impact on downstream sludge fermentation is investigated. Results obtained at optimal conditions for HTC pretreatment (170 °C for 30 min) indicated that soluble carbon was significantly increased in the liquid fraction, enhancing feedstock availability for fermentation. Semi-continuous fermentation of HTC-treated sludge resulted in a stable process in which a mixed microbial community produced volatile fatty acids (VFAs) with longer chain acids content, acidification yield of 0.59 ± 0.05 g COD-VFA g-1 CODin and volumetric productivity of 1.6 ± 0.5 g COD-VFA L-1 d-1. Biomethane Potential tests evidenced high values for hydrochar. Overall, the HTC pretreatment enables improved conversion efficiencies, in the view of valorizing the liquid for VFA synthesis and the hydrochar for biomethane production.
Collapse
Affiliation(s)
- Matteo Grana
- Politecnico di Milano - Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Giorgia Riboli
- Politecnico di Milano - Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Valeria Tatangelo
- Università degli Studi di Milano - Bicocca, Department of Earth and Environmental Sciences (DISAT), Piazza della Scienza 1, 20126 Milano, Italy
| | - Marco Mantovani
- Università degli Studi di Milano - Bicocca, Department of Earth and Environmental Sciences (DISAT), Piazza della Scienza 1, 20126 Milano, Italy
| | - Isabella Gandolfi
- Università degli Studi di Milano - Bicocca, Department of Earth and Environmental Sciences (DISAT), Piazza della Scienza 1, 20126 Milano, Italy
| | - Andrea Turolla
- Politecnico di Milano - Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Elena Ficara
- Politecnico di Milano - Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
7
|
Jiang J, Guo T, Wang J, Sun A, Chen X, Xu X, Dai S, Qin Z. A novel microbial community restructuring strategy for enhanced hydrogen production using multiple pretreatments and CSTR operation. ENVIRONMENTAL RESEARCH 2024; 251:118725. [PMID: 38518915 DOI: 10.1016/j.envres.2024.118725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
To achieve rapid enrichment of the targeted hydrogen-producing bacterial population and reconstruction of the microbial community in the biological hydrogen-producing reactor, the activated sludge underwent multiple pretreatments using micro-aeration, alkaline treatment, and heat treatment. The activated sludge obtained from the multiple pretreatments was inoculated into the continuous stirred tank reactor (CSTR) for continuous operations. The community structure alteration and hydrogen-producing capability of the activated sludge were analyzed throughout the operation of the reactor. We found that the primary phyla in the activated sludge population shifted to Proteobacteria, Firmicutes, and Bacteroidetes, which collectively accounted for 96.69% after undergoing several pretreatments. This suggests that the multiple pretreatments facilitated in achieving the selective enrichment of the fermentation hydrogen-producing microorganisms in the activated sludge. The CSTR start-up and continuous operation of the biological hydrogen production reactor resulted in the reactor entering a highly efficient hydrogen production stage at influent COD concentrations of 4000 mg/L and 5000 mg/L, with the highest hydrogen production rate reaching 8.19 L/d and 9.33 L/d, respectively. The main genus present during the efficient hydrogen production stage in the reactor was Ethanoligenens, accounting for up to 33% of the total population. Ethanoligenens exhibited autoaggregation capabilities and a superior capacity for hydrogen production, leading to its prevalence in the reactor and contribution to efficient hydrogen production. During high-efficiency hydrogen production, flora associated with hydrogen production exhibited up to 46.95% total relative abundance. In addition, redundancy analysis (RDA) indicated that effluent pH and COD influenced the distribution of the primary hydrogen-producing bacteria, including Ethanoligenens, Raoultella, and Pectinatus, as well as other low abundant hydrogen-producing bacteria in the activated sludge. The data indicates that the multiple pretreatments and reactor's operation has successfully enriched the hydrogen-producing genera and changed the community structure of microbial hydrogen production.
Collapse
Affiliation(s)
- Jishan Jiang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tielan Guo
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jingyuan Wang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ao Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xingping Chen
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoxiao Xu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
8
|
Dai M, Xu Y, Zhao L, Wu M, Ma H, Zhu L, Li W, Li X, Sun B. Caproicibacter sp. BJN0012, a potential new species isolated from cellar mud for caproic acid production from glucose. J Biotechnol 2024; 388:11-23. [PMID: 38614441 DOI: 10.1016/j.jbiotec.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Acids play a crucial role in enhancing the flavor of strong-aroma Baijiu, and among them, caproic acid holds significant importance in determining the flavor of the final product. However, the metabolic synthesis of caproic acid during the production process of Baijiu has received limited attention, resulting in fluctuations in caproic acid content among fermentation batches and generating production instability. Acid-producing bacteria found in the cellar mud are the primary microorganisms responsible for caproic acid synthesis, but there is a lack of research on the related microbial resources and their metabolic properties. Therefore, it is essential to identify and investigate these acid-producing microorganisms from cellar mud to ensure stable caproic acid synthesis. In this study, a unique strain was isolated from the cellar mud, exhibiting a 98.12 % similarity in its 16 S rRNA sequence and an average nucleotide identity of 79.57 % with the reference specie, together with the DNA-DNA hybridization of 23.20 % similarity, confirming the distinct species boundaries. The strain was able to produce 1.22 ± 0.55 g/L caproic acid from glucose. Through genome sequencing, annotation, and bioinformatics analysis, the complete pathway of caproic acid synthesis from glucose was elucidated, and the catalytic mechanism of the key thiolase for caproic acid synthesis was investigated. These findings provide useful fundamental data for revealing the metabolic properties of caproic acid-producing bacteria found in cellar mud.
Collapse
Affiliation(s)
- Mengqi Dai
- School of Food and Health, Beijing Technology and Businmmess University, Beijing 100048, China
| | - Youqiang Xu
- School of Food and Health, Beijing Technology and Businmmess University, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Lei Zhao
- School of Food and Health, Beijing Technology and Businmmess University, Beijing 100048, China
| | - Mengqin Wu
- School of Food and Health, Beijing Technology and Businmmess University, Beijing 100048, China
| | - Huifeng Ma
- Hebei Fenglaiyi Wine Industry Co., Ltd, Xingtai, Hebei province 055550, China
| | - Lining Zhu
- Hebei Fenglaiyi Wine Industry Co., Ltd, Xingtai, Hebei province 055550, China
| | - Weiwei Li
- School of Food and Health, Beijing Technology and Businmmess University, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 102401, China.
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| |
Collapse
|
9
|
Gu X, Sun J, Wang T, Li J, Wang H, Wang J, Wang Y. Comprehensive review of microbial production of medium-chain fatty acids from waste activated sludge and enhancement strategy. BIORESOURCE TECHNOLOGY 2024; 402:130782. [PMID: 38701982 DOI: 10.1016/j.biortech.2024.130782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Microbial production of versatile applicability medium-chain fatty acids (MCFAs) (C6-C10) from waste activated sludge (WAS) provides a pioneering approach for wastewater treatment plants (WWTPs) to achieve carbon recovery. Mounting studies emerged endeavored to promote the MCFAs production from WAS while struggling with limited MCFAs production and selectivity. Herein, this review covers comprehensive introduction of the transformation process from WAS to MCFAs and elaborates the mechanisms for unsatisfactory MCFAs production. The enhancement strategies for biotransformation of WAS to MCFAs was presented. Especially, the robust performance of iron-based materials is highlighted. Furthermore, knowledge gaps are identified to outline future research directions. Recycling MCFAs from WAS presents a promising option for future WAS treatment, with iron-based materials emerging as a key regulatory strategy in advancing the application of WAS-to-MCFAs biotechnology. This review will advance the understanding of MCFAs recovery from WAS and promote sustainable resource management in WWTPs.
Collapse
Affiliation(s)
- Xin Gu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jialin Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
10
|
Ulčar B, Regueira A, Podojsteršek M, Boon N, Ganigué R. Why do lactic acid bacteria thrive in chain elongation microbiomes? Front Bioeng Biotechnol 2024; 11:1291007. [PMID: 38274012 PMCID: PMC10809155 DOI: 10.3389/fbioe.2023.1291007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Efficient waste management is necessary to transition towards a more sustainable society. An emerging trend is to use mixed culture biotechnology to produce chemicals from organic waste. Insights into the metabolic interactions between community members and their growth characterization are needed to mediate knowledge-driven bioprocess development and optimization. Here, a granular sludge bioprocess for the production of caproic acid through sugar-based chain elongation metabolism was established. Lactic acid and chain-elongating bacteria were identified as the two main functional guilds in the granular community. The growth features of the main community representatives (isolate Limosilactobacillus musocae G03 for lactic acid bacteria and type strain Caproiciproducens lactatifermentans for chain-elongating bacteria) were characterized. The measured growth rates of lactic acid bacteria (0.051 ± 0.005 h-1) were two times higher than those of chain-elongating bacteria (0.026 ± 0.004 h-1), while the biomass yields of lactic acid bacteria (0.120 ± 0.005 g biomass/g glucose) were two times lower than that of chain-elongating bacteria (0.239 ± 0.007 g biomass/g glucose). This points towards differential growth strategies, with lactic acid bacteria resembling that of a r-strategist and chain-elongating bacteria resembling that of a K-strategist. Furthermore, the half-saturation constant of glucose for L. mucosae was determined to be 0.35 ± 0.05 g/L of glucose. A linear trend of caproic acid inhibition on the growth of L. mucosae was observed, and the growth inhibitory caproic acid concentration was predicted to be 13.6 ± 0.5 g/L, which is the highest reported so far. The pre-adjustment of L. mucosae to 4 g/L of caproic acid did not improve the overall resistance to it, but did restore the growth rates at low caproic acid concentrations (1-4 g/L) to the baseline values (i.e., growth rate at 0 g/L of caproic acid). High resistance to caproic acid enables lactic acid bacteria to persist and thrive in the systems intended for caproic acid production. Here, insights into the growth of two main functional guilds of sugar-based chain elongation systems are provided which allows for a better understanding of their interactions and promotes future bioprocess design and optimization.
Collapse
Affiliation(s)
- Barbara Ulčar
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Gent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Gent, Belgium
| | - Alberte Regueira
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Gent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Gent, Belgium
- Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Maja Podojsteršek
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Gent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Gent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Gent, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Gent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Gent, Belgium
| |
Collapse
|
11
|
Candry P, Flinkstrom Z, Henriikka Winkler MK. Wetlands harbor lactic acid-driven chain elongators. Microbiol Spectr 2024; 12:e0210523. [PMID: 38084977 PMCID: PMC10783096 DOI: 10.1128/spectrum.02105-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/02/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Wetlands are globally significant carbon cycling hotspots that both sequester large amounts of CO2 as soil carbon as well as emit a third of all CH4 globally. Their outsized role in the global carbon cycle makes it critical to understand microbial processes contributing to carbon breakdown and storage in these ecosystems. Here, we confirm the presence of chain-elongating organisms in freshwater wetland soils. These organisms take small carbon compounds formed during the breakdown of biomass and turn them into larger compounds (six to eight carbon organic acids) that may potentially contribute to the formation of soil organic matter and long-term carbon storage. Moreover, we find that these chain-elongating organisms may be widely distributed in wetlands globally. Future work should identify these organisms' contribution to carbon cycling in wetlands and the potential role of the products they form in carbon sequestration in wetlands.
Collapse
Affiliation(s)
- Pieter Candry
- Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Zachary Flinkstrom
- Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
12
|
Zeng C, Zeng X, Xia S, Ye G. Caproicibacterium argilliputei sp. nov., a novel caproic acid producing anaerobic bacterium isolated from pit clay. Int J Syst Evol Microbiol 2024; 74. [PMID: 38265435 DOI: 10.1099/ijsem.0.006246] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
An anaerobic, Gram-positive, rod-shaped, motile and spore-forming bacterium, designated strain ZCY20-5T, was isolated from pit clay of Chinese strong-aroma type Baijiu (Chinese liquor). Phylogenetic analyses based on 16S rRNA gene and genome sequences showed that strain ZCY20-5T belonged to the genus Caproicibacterium, family Oscillospiracheae, but it showed low similarity to the type species Caproicibacterium amylolyticum LBM18003T (98.00 %) and Caproicibacterium lactatifermentans LBM19010T (95.67 %). In anaerobic yeast extract medium, growth was observed at 20-45 °C (optimum, 35-40 °C), at pH 4.0-9.0 (optimum, pH 6.5-7.0) and with 0.0-2.0 % NaCl (w/v). The predominant fatty acids were C16 : 0, C14 : 0, C13 3-OH and C16 3-OH, and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, three phospholipids of unknown structure containing glucosamine and two unidentified phospholipids. Strain ZCY20-5T exhibited an 81.32 % pairwise average nucleotide identity value, a 78.98 % average amino acid identity value and a 22.30 % digital DNA-DNA hybridization value compared to its closest relative C. amylolyticum LBM18003T. Based on morphological, physiological, biochemical, chemotaxonomic, genotypic and phylogenetic results, strain ZCY20-5T represents a novel species of Caproicibacterium, and the type strain is ZCY20-5T (=MCCC 1A19399T=KCTC 25590T).
Collapse
Affiliation(s)
- Caiyu Zeng
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin644000,Sichuan, PR China
- Liquormaking Biotechnology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644000, Sichuan, PR China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, PR China
| | - Xiang Zeng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, PR China
- Faculty of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, Fujian, PR China
| | - Shangcao Xia
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin644000,Sichuan, PR China
- Liquormaking Biotechnology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644000, Sichuan, PR China
| | - Guangbin Ye
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin644000,Sichuan, PR China
- Liquormaking Biotechnology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644000, Sichuan, PR China
| |
Collapse
|
13
|
Sousa M, Ksiezarek M, Perovic SU, Antunes-Lopes T, Grosso F, Ribeiro TG, Peixe L. Gardnerella pickettii sp. nov. (formerly Gardnerella genomic species 3) and Gardnerella greenwoodii sp. nov. (formerly Gardnerella genomic species 8) isolated from female urinary microbiome. Int J Syst Evol Microbiol 2023; 73. [PMID: 37921436 DOI: 10.1099/ijsem.0.006140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
During an ongoing female urinary microbiome research study, strains c17Ua_112T and c31Ua_26T isolated from urine samples of a patient diagnosed with overactive bladder and a healthy postmenopausal woman, respectively, could not be allocated to any Gardnerella species with valid names. In this work, we aimed to characterize these strains. The 16S rRNA gene sequences confirmed that these strains are members of the genus Gardnerella. Phylogenetic analysis based on cpn60 strongly supported two clades, one encompassing c17Ua_112T and nine other strains from the public database, and the other including c31Ua_26T and three other strains, which were distinct from currently recognized species of the genus Gardnerella. Likewise, the phylogenomic tree also showed that strains c17Ua_112T and c31Ua_26T formed independent and robust clusters. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between c17Ua_112T and c31Ua_26T were 79.27 and 27.4 %, respectively. Strain c17Ua_112T showed the highest ANI (94.8 %) and dDDH values (59.8 %) with Gardnerella piotii UGent 18.01T, and strain c31Ua_26T revealed highest ANI (84.2 %) and dDDH (29.1 %) values with Gardnerella swidsinskii GS 9838-1T. Based on the data presented here, the two strains c17Ua_112T and c31Ua_26T represent two novel species of the genus Gardnerella, for which the names Gardnerella pickettii (c17Ua_112T=DSM 113414T=CCP 71T) and Gardnerella greenwoodii (c31Ua_26T=DSM 113415T=CCP 72T) are proposed.
Collapse
Affiliation(s)
- Márcia Sousa
- Associate Laboratory i4HB , Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Magdalena Ksiezarek
- Associate Laboratory i4HB , Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Svetlana Ugarcina Perovic
- Associate Laboratory i4HB , Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | | | - Filipa Grosso
- Associate Laboratory i4HB , Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Teresa Gonçalves Ribeiro
- Associate Laboratory i4HB , Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Culture Collection of Porto - Faculty of Pharmacy, University of Porto (CCP), Porto, Portugal
| | - Luísa Peixe
- Associate Laboratory i4HB , Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Culture Collection of Porto - Faculty of Pharmacy, University of Porto (CCP), Porto, Portugal
| |
Collapse
|
14
|
Candry P, Chadwick GL, Caravajal-Arroyo JM, Lacoere T, Winkler MKH, Ganigué R, Orphan VJ, Rabaey K. Trophic interactions shape the spatial organization of medium-chain carboxylic acid producing granular biofilm communities. THE ISME JOURNAL 2023; 17:2014-2022. [PMID: 37715042 PMCID: PMC10579388 DOI: 10.1038/s41396-023-01508-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
Granular biofilms producing medium-chain carboxylic acids (MCCA) from carbohydrate-rich industrial feedstocks harbor highly streamlined communities converting sugars to MCCA either directly or via lactic acid as intermediate. We investigated the spatial organization and growth activity patterns of MCCA producing granular biofilms grown on an industrial side stream to test (i) whether key functional guilds (lactic acid producing Olsenella and MCCA producing Oscillospiraceae) stratified in the biofilm based on substrate usage, and (ii) whether spatial patterns of growth activity shaped the unique, lenticular morphology of these biofilms. First, three novel isolates (one Olsenella and two Oscillospiraceae species) representing over half of the granular biofilm community were obtained and used to develop FISH probes, revealing that key functional guilds were not stratified. Instead, the outer 150-500 µm of the granular biofilm consisted of a well-mixed community of Olsenella and Oscillospiraceae, while deeper layers were made up of other bacteria with lower activities. Second, nanoSIMS analysis of 15N incorporation in biofilms grown in normal and lactic acid amended conditions suggested Oscillospiraceae switched from sugars to lactic acid as substrate. This suggests competitive-cooperative interactions may govern the spatial organization of these biofilms, and suggests that optimizing biofilm size may be a suitable process engineering strategy. Third, growth activities were similar in the polar and equatorial biofilm peripheries, leaving the mechanism behind the lenticular biofilm morphology unexplained. Physical processes (e.g., shear hydrodynamics, biofilm life cycles) may have contributed to lenticular biofilm development. Together, this study develops an ecological framework of MCCA-producing granular biofilms that informs bioprocess development.
Collapse
Affiliation(s)
- Pieter Candry
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA, 98195-2700, USA
| | - Grayson L Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - José Maria Caravajal-Arroyo
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Tim Lacoere
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | | | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Center for Advanced Processes and Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000, Ghent, Belgium
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
- Center for Advanced Processes and Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000, Ghent, Belgium.
| |
Collapse
|
15
|
Huang J, Chen K, Xia X, Zhu H. Long-term performance on volatile fatty acids production improved in a kitchen wastewater fermenter by co-fermentation of sludge and membrane separation. CHEMOSPHERE 2023:139049. [PMID: 37245599 DOI: 10.1016/j.chemosphere.2023.139049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Kitchen wastewater can be transformed into a valuable resource through anaerobic fermentation. However, the efficiency of this process is hindered by various factors including salt inhibition and nutrient imbalance. In this study, we examined the effects of co-fermentation with sludge and membrane filtration on the anaerobic fermentation of kitchen wastewater. Our findings indicate that co-fermentation with sludge resulted in a 4-fold increase in fermentation rate and a 2-fold increase in short-chain fatty acids (SCFAs) production. This suggests that the addition of sludge helped to alleviate salt and acid inhibition through ammonia buffering and elemental balancing. The membrane filtration retained 60% of soluble carbohydrates and 15% of proteins in the reactor for further fermentation and recovered nearly 100% of NH4+ and SCFAs in the filtrate, which helped to alleviate acid and ammonia inhibition. The combined fermentation system significantly increased the richness and diversity of microorganisms, particularly caproiciproducens and Clostridium_sensu_stricto_12. The membrane flux remained stable and at a relatively high level, indicating that the combined process may be economically feasible. However, scaling up the co-anaerobic fermentation of kitchen wastewater and sludge in a membrane reactor is necessary for further economic evaluation in the future.
Collapse
Affiliation(s)
- Jianghao Huang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; Power China Guizhou Electric Power Design & Research Institute Co., LTD, Guiyang, 550002, China
| | - Kai Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xiaodong Xia
- Power China Guizhou Electric Power Design & Research Institute Co., LTD, Guiyang, 550002, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
16
|
Myers KS, Ingle AT, Walters KA, Fortney NW, Scarborough MJ, Donohue TJ, Noguera DR. Comparison of metagenomes from fermentation of various agroindustrial residues suggests a common model of community organization. Front Bioeng Biotechnol 2023; 11:1197175. [PMID: 37260833 PMCID: PMC10228549 DOI: 10.3389/fbioe.2023.1197175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
The liquid residue resulting from various agroindustrial processes is both rich in organic material and an attractive source to produce a variety of chemicals. Using microbial communities to produce chemicals from these liquid residues is an active area of research, but it is unclear how to deploy microbial communities to produce specific products from the different agroindustrial residues. To address this, we fed anaerobic bioreactors one of several agroindustrial residues (carbohydrate-rich lignocellulosic fermentation conversion residue, xylose, dairy manure hydrolysate, ultra-filtered milk permeate, and thin stillage from a starch bioethanol plant) and inoculated them with a microbial community from an acid-phase digester operated at the wastewater treatment plant in Madison, WI, United States. The bioreactors were monitored over a period of months and sampled to assess microbial community composition and extracellular fermentation products. We obtained metagenome assembled genomes (MAGs) from the microbial communities in each bioreactor and performed comparative genomic analyses to identify common microorganisms, as well as any community members that were unique to each reactor. Collectively, we obtained a dataset of 217 non-redundant MAGs from these bioreactors. This metagenome assembled genome dataset was used to evaluate whether a specific microbial ecology model in which medium chain fatty acids (MCFAs) are simultaneously produced from intermediate products (e.g., lactic acid) and carbohydrates could be applicable to all fermentation systems, regardless of the feedstock. MAGs were classified using a multiclass classification machine learning algorithm into three groups, organisms fermenting the carbohydrates to intermediate products, organisms utilizing the intermediate products to produce MCFAs, and organisms producing MCFAs directly from carbohydrates. This analysis revealed common biological functions among the microbial communities in different bioreactors, and although different microorganisms were enriched depending on the agroindustrial residue tested, the results supported the conclusion that the microbial ecology model tested was appropriate to explain the MCFA production potential from all agricultural residues.
Collapse
Affiliation(s)
- Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Abel T. Ingle
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin A. Walters
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Nathaniel W. Fortney
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Matthew J. Scarborough
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Timothy J. Donohue
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Daniel R. Noguera
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
17
|
Nguyen TV, Viver T, Smets I, Bernaerts K, Faust K, Lavigne R, Poughon L, Dussap CG, Springael D. Thermocaproicibacter melissae gen. nov., sp. nov., a thermophilic chain-elongating bacterium, producing n-caproate from polymeric carbohydrates. Int J Syst Evol Microbiol 2023; 73. [PMID: 37200213 DOI: 10.1099/ijsem.0.005893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Strain MDTJ8T is a chain-elongating thermophilic bacterium isolated from a thermophilic acidogenic anaerobic digestor treating human waste while producing the high commodity chemical n-caproate. The strain grows and produces formate, acetate, n-butyrate, n-caproate and lactate from mono-, di- and polymeric saccharides at 37-60 °C (optimum, 50-55 °C) and at pH 5.0-7.0 (optimum, pH 6.5). The organism is an obligate anaerobe, is motile and its cells form rods (0.3-0.5×1.0-3.0 µm) that stain Gram-positive and occur primarily as chains. Phylogenetic analysis of both the 16S rRNA gene and full genome sequence shows that strain MDTJ8T belongs to a group that consists of mesophylic chain-elongating bacteria within the family Oscillospiraceae, being nearest to Caproicibacter fermentans EA1T (94.8 %) and Caproiciproducens galactitolivorans BS-1T (93.7 %). Its genome (1.96 Mbp) with a G+C content of 49.6 mol% is remarkably smaller than those of other chain-elongating bacteria of the family Oscillospiraceae. Pairwise average nucleotide identity and DNA-DNA hybridization values between strain MDJT8T and its mesophilic family members are less than 70 and 35 %, respectively, while pairwise average amino acid identity values are less than 68 %. In addition, strain MDJT8T uses far less carbohydrate and non-carbohydrate substrates compared to its nearest family members. The predominant cellular fatty acids of strain MDTJ8T are C14 : 0, C14 : 0 DMA (dimethyl acetal) and C16 : 0, while its polar lipid profile shows three unidentified glycophospholipids, 11 glycolipids, 13 phospholipids and six unidentified lipids. No respiratory quinones and polyamines are detected. Based on its phylogenetic, genotypic, morphological, physiological, biochemical and chemotaxonomic characteristics, strain MDTJ8T represents a novel species and novel genus of the family Oscillospiraceae and Thermocaproicibacter melissae gen. nov., sp. nov. is proposed as its name. The type strain is MDTJ8T (=DSM 114174T=LMG 32615T=NCCB 100883T).
Collapse
Affiliation(s)
- Tinh Van Nguyen
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
- Institut Pascal, Université Clermont Auvergne, Avenue Blaise Pascal 4, F-63178 Aubiére cedex, France
| | - Tomeu Viver
- Marine Microbiology Group, Mediterranean Institute of Advanced Studies (CSIC-UIB), C/Miquel Marquès 21, 07190 Esporles, Spain
| | - Ilse Smets
- Chemical Reactor Engineering and Safety, KU Leuven, Celestijnenlaan 200F, B-3001, Heverlee, Belgium
| | - Kristel Bernaerts
- Chemical Reactor Engineering and Safety, KU Leuven, Celestijnenlaan 200F, B-3001, Heverlee, Belgium
| | - Karoline Faust
- Laboratory of Molecular Bacteriology (Rega Institute), KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, B-3001 Heverlee, Belgium
| | - Laurent Poughon
- Institut Pascal, Université Clermont Auvergne, Avenue Blaise Pascal 4, F-63178 Aubiére cedex, France
| | - Claude-Gilles Dussap
- Institut Pascal, Université Clermont Auvergne, Avenue Blaise Pascal 4, F-63178 Aubiére cedex, France
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| |
Collapse
|
18
|
Li D, Ye G, Zong X, Zou W. Effect of Multiple Rounds of Enrichment on Metabolite Accumulation and Microbiota Composition of Pit Mud for Baijiu Fermentation. Foods 2023; 12:foods12081594. [PMID: 37107389 PMCID: PMC10137600 DOI: 10.3390/foods12081594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Pit mud (PM) is the main component of Baijiu (traditional Chinese liquor), and its microorganisms are the primary sources of the aroma of Chinese strong-flavor Baijiu (SFB). Enrichment plays an important role in the selection of functional microorganisms in PM. Herein, the PM of SFB was submitted to six rounds of enrichment using clostridial growth medium (CGM), and changes in the metabolite accumulation and microbiota composition were evaluated. Based on the metabolite production and microbiota composition, the enrichment rounds were classified as the acclimation stage (round 2), main fermentation stage (rounds 3 and 4), and late fermentation stage (rounds 5 and 6). Species within the genus Clostridium dominated in the acclimation stage (65.84-74.51%). In the main fermentation stage, the dominant microbial groups were producers of butyric acid, acetic acid, and caproic acid, which included Clostridium (45.99-74.80%), Caproicibacter (1.45-17.02%), and potential new species within the order of Oscillataceae (14.26-29.10%). In the late stage of enrichment, Pediococcus dominated (45.96-79.44%). Thus, the main fermentation stage can be considered optimal for the isolation of acid-producing bacteria from PM. The findings discussed herein support the development and application of functional bacteria by bioaugmentation, and contribute to improving the quality of PM and SFB production.
Collapse
Affiliation(s)
- Dong Li
- School of Life Science, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Guangbin Ye
- School of Life Science, Sichuan University of Science & Engineering, Yibin 644000, China
- Liquor-Making Biotechnology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Xuyan Zong
- School of Life Science, Sichuan University of Science & Engineering, Yibin 644000, China
- Liquor-Making Biotechnology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Wei Zou
- School of Life Science, Sichuan University of Science & Engineering, Yibin 644000, China
| |
Collapse
|
19
|
Yang P, Leng L, Zhuang H, Lee PH. Significant enhancement by casamino acids of caproate production via chain elongation. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
20
|
Guo K, Figueroa-Romero C, Noureldein M, Hinder LM, Sakowski SA, Rumora AE, Petit H, Savelieff MG, Hur J, Feldman EL. Gut microbiota in a mouse model of obesity and peripheral neuropathy associated with plasma and nerve lipidomics and nerve transcriptomics. MICROBIOME 2023; 11:52. [PMID: 36922895 PMCID: PMC10015923 DOI: 10.1186/s40168-022-01436-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Peripheral neuropathy (PN) is a common complication in obesity, prediabetes, and type 2 diabetes, though its pathogenesis remains incompletely understood. In a murine high-fat diet (HFD) obesity model of PN, dietary reversal (HFD-R) to a low-fat standard diet (SD) restores nerve function and the nerve lipidome to normal. As the gut microbiome represents a potential link between dietary fat intake and nerve health, the current study assessed shifts in microbiome community structure by 16S rRNA profiling during the paradigm of dietary reversal (HFD-R) in various gut niches. Dietary fat content (HFD versus SD) was also correlated to gut flora and metabolic and PN phenotypes. Finally, PN-associated microbial taxa that correlated with the plasma and sciatic nerve lipidome and nerve transcriptome were used to identify lipid species and genes intimately related to PN phenotypes. RESULTS Microbiome structure was altered in HFD relative to SD but rapidly reversed with HFD-R. Specific taxa variants correlating positively with metabolic health associated inversely with PN, while specific taxa negatively linked to metabolic health positively associated with PN. In HFD, PN-associated taxa variants, including Lactobacillus, Lachnoclostridium, and Anaerotruncus, also positively correlated with several lipid species, especially elevated plasma sphingomyelins and sciatic nerve triglycerides. Negative correlations were additionally present with other taxa variants. Moreover, relationships that emerged between specific PN-associated taxa variants and the sciatic nerve transcriptome were related to inflammation, lipid metabolism, and antioxidant defense pathways, which are all established in PN pathogenesis. CONCLUSIONS The current results indicate that microbiome structure is altered with HFD, and that certain taxa variants correlate with metabolic health and PN. Apparent links between PN-associated taxa and certain lipid species and nerve transcriptome-related pathways additionally provide insight into new targets for microbiota and the associated underlying mechanisms of action in PN. Thus, these findings strengthen the possibility of a gut-microbiome-peripheral nervous system signature in PN and support continuing studies focused on defining the connection between the gut microbiome and nerve health to inform mechanistic insight and therapeutic opportunities. Video Abstract.
Collapse
Affiliation(s)
- Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | | | - Mohamed Noureldein
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
- Reata Pharmaceuticals, Irving, TX 75063 USA
| | - Stacey A. Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Amy E. Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Neurology, Columbia University, New York, NY 10032 USA
| | - Hayley Petit
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Masha G. Savelieff
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
21
|
Baleeiro FCF, Raab J, Kleinsteuber S, Neumann A, Sträuber H. Mixotrophic chain elongation with syngas and lactate as electron donors. Microb Biotechnol 2023; 16:322-336. [PMID: 36378491 PMCID: PMC9871530 DOI: 10.1111/1751-7915.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Feeding microbial communities with both organic and inorganic substrates can improve sustainability and feasibility of chain elongation processes. Sustainably produced H2 , CO2 , and CO can be co-fed to microorganisms as a source for acetyl-CoA, while a small amount of an ATP-generating organic substrate helps overcome the kinetic hindrances associated with autotrophic carboxylate production. Here, we operated two semi-continuous bioreactor systems with continuous recirculation of H2 , CO2 , and CO while co-feeding an organic model feedstock (lactate and acetate) to understand how a mixotrophic community is shaped during carboxylate production. Contrary to the assumption that H2 , CO2 , and CO support chain elongation via ethanol production in open cultures, significant correlations (p < 0.01) indicated that relatives of Clostridium luticellarii and Eubacterium aggregans produced carboxylates (acetate to n-caproate) while consuming H2 , CO2 , CO, and lactate themselves. After 100 days, the enriched community was dominated by these two bacteria coexisting in cyclic dynamics shaped by the CO partial pressure. Homoacetogenesis was strongest when the acetate concentration was low (3.2 g L-1 ), while heterotrophs had the following roles: Pseudoramibacter, Oscillibacter, and Colidextribacter contributed to n-caproate production and Clostridium tyrobutyricum and Acidipropionibacterium spp. grew opportunistically producing n-butyrate and propionate, respectively. The mixotrophic chain elongation community was more efficient in carboxylate production compared with the heterotrophic one and maintained average carbon fixation rates between 0.088 and 1.4 g CO2 equivalents L-1 days-1 . The extra H2 and CO consumed routed 82% more electrons to carboxylates and 50% more electrons to carboxylates longer than acetate. This study shows for the first time long-term, stable production of short- and medium-chain carboxylates with a mixotrophic community.
Collapse
Affiliation(s)
- Flávio C. F. Baleeiro
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
- Technical Biology, Institute of Process Engineering in Life ScienceKarlsruhe Institute of Technology – KITKarlsruheGermany
| | - Jana Raab
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Sabine Kleinsteuber
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Anke Neumann
- Technical Biology, Institute of Process Engineering in Life ScienceKarlsruhe Institute of Technology – KITKarlsruheGermany
| | - Heike Sträuber
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| |
Collapse
|
22
|
Choi JY, Cho G, Park JE, Choi SH, Kim JS, Lee J, Lee MK, Lee JS, Lee JH, Kim HB, Lee JH, Kim JK, Kang SW, Park SH. Caproiciproducens faecalis sp. nov., Isolated from Cow Faeces. Curr Microbiol 2023; 80:65. [PMID: 36602627 DOI: 10.1007/s00284-022-03169-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023]
Abstract
The bacterial strain AGMB10547T was isolated from cow faeces deposited by the National Institute of Animal Science in Cheonan, Republic of Korea. The strain AGMB10547T possessed the phenotypic, biochemical and chemotaxonomic characteristics of the bacteria of the family Oscillospiraceae. The isolate was obligately anaerobic, non-motile, Gram-positive and rod-shaped bacteria. The growth of strain AGMB10547T occurred within 35-40 °C (optimum at 37 °C), at pH 6-7 (optimum of 7) and in the presence of 0.5-2.0% (w/v) NaCl. Based on 16S rRNA gene sequence similarity, strain AGMB10547T belonged to the genus Caproiciproducens and was most closely related to Caproiciproducens galactitolivorans BS-1T (96.9%). The DNA G+C content was 49.0 mol%. The major cellular fatty acids (> 10%) of the isolate were C14:0, C14:0 DMA, C16:1 ω9c and C16:0. The average nucleotide identity (ANI) and digital DNA-DNA Hybridization (dDDH) values between strain AGMB10547T and C. galactitolivorans BS-1T were 75.5% and 19.2%. Based on the phenotypic, genotypic, biochemical and chemotaxonomic analyses, strain AGMB10547T represents a novel species of the genus Caproiciproducens, for which the name Caproiciproducens faecalis sp. nov. is proposed. The type strain AGMB10547T (=KCTC 25200T=NBRC 115006T=GDMCC 1.2575T).
Collapse
Affiliation(s)
- Ji Young Choi
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Gyeongbin Cho
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea
| | - Jam-Eon Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Seung-Hyeon Choi
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Ji-Sun Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Jiyoung Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Mi-Kyung Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food Science and Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, 56212, Republic of Korea
| | - Se Won Kang
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
| |
Collapse
|
23
|
Description of a moderately acidotolerant and aerotolerant anaerobic bacterium Acidilutibacter cellobiosedens gen. nov., sp. nov. within the family Acidilutibacteraceae fam. nov., and proposal of Sporanaerobacteraceae fam. nov. and Tepidimicrobiaceae fam. nov. Syst Appl Microbiol 2023; 46:126376. [PMID: 36375421 DOI: 10.1016/j.syapm.2022.126376] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
A Gram-stain positive, moderately thermophilic, acidotolerant and aerotolerant anaerobic bacterium, designated JN-28 T, was isolated from the pit mud of Chinese strong-flavor liquor. Growth was observed at 25-50 °C and pH 5.5-8.0 in the presence of 0-25 g l-1 NaCl (optimally at 45 °C, pH 6.0, without NaCl). Strain JN-28 T was heterotrophic, requiring yeast extract for growth. The major cellular fatty acids were iso-C15:0 and C14:0. The DNA G + C content of genomic DNA was 33.54 mol%. The strain was resistant to vancomycin (10 mg l-1). Genome analysis revealed the presence of genes involved in the response to mild acid stress and oxidative stress, and resistance to vancomycin. 16S rRNA gene-based phylogenetic analysis showed that strain JN-28 T shares ≤ 89.3 % sequence similarity with its closest relatives Sporanaerobacter acetigenes DSM 13106 T and other members in the order Tissierellales. Based on phenotypic and phylogenetic characteristics, Acidilutibacter cellobiosedens gen. nov., sp. nov. is proposed for the new genus and novel species with the type strain JN-28 T (=CCAM 418 T = JCM 39087 T). Further phylogenetic and phylogenomic analyses suggested strain JN-28 T represents a novel family within the order Tissierellales, for which Acidilutibacteraceae fam. nov. is proposed. In addition, the family Tissierellaceae was reclassified, Sporanaerobacteraceae fam. nov. and Tepidimicrobiaceae fam. nov. were formally proposed. Emended description of the family Tissierellaceae is also provided.
Collapse
|
24
|
Van Nguyen T, Viver T, Mortier J, Liu B, Smets I, Bernaerts K, Faust K, Lavigne R, Poughon L, Dussap CG, Springael D. Isolation and characterization of a thermophilic chain elongating bacterium that produces the high commodity chemical n-caproate from polymeric carbohydrates. BIORESOURCE TECHNOLOGY 2023; 367:128170. [PMID: 36283667 DOI: 10.1016/j.biortech.2022.128170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
A thermophilic chain elongating bacterium, strain MDTJ8, was isolated from a thermophilic acidogenic anaerobic digestor producing n-caproate from human waste, growing optimally at 50-55 °C and pH 6.5. 16S rRNA gene analysis suggests that MDTJ8 represents a new species/genus within a group currently composed of mesophilic chain elongators of the Oscillospiraceae family. Genome analysis showed that strain MDTJ8 contains homologues of genes encoding for chain elongation and energy conservation but also indicated n-caproate production from carbohydrates including polymeric substances. This was confirmed by culturing experiments in which MDTJ8 converted, at pH 6.5 and 55 °C, mono-, di- and polymeric carbohydrates (starch and hemicellulose) to n-caproate reaching concentrations up to 283 mg/L and accounting for up to 10 % of the measured fermentation products. MDTJ8 is the first axenic organism that thermophilically performs chain elongation, opening doors to understand and intensify thermophilic bioprocesses targeting anaerobic digestion towards the production of the value-added chemical n-caproate.
Collapse
Affiliation(s)
- Tinh Van Nguyen
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium; Institut Pascal, Université Clermont Auvergne, Avenue Blaise Pascal 4, F-63178 Aubiére cedex, France
| | - Tomeu Viver
- Marine Microbiology Group, Mediterranean Institute of Advanced Studies (CSIC-UIB), C/Miquel Marqués 21, 07190 Esporles, Spain
| | - Jonah Mortier
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | - Bin Liu
- Laboratory of Molecular Bacteriology (Rega Institute), KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Ilse Smets
- Chemical Reactor Engineering and Safety, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Kristel Bernaerts
- Chemical Reactor Engineering and Safety, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Karoline Faust
- Laboratory of Molecular Bacteriology (Rega Institute), KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, B-3001 Heverlee, Belgium
| | - Laurent Poughon
- Institut Pascal, Université Clermont Auvergne, Avenue Blaise Pascal 4, F-63178 Aubiére cedex, France
| | - Claude-Gilles Dussap
- Institut Pascal, Université Clermont Auvergne, Avenue Blaise Pascal 4, F-63178 Aubiére cedex, France
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium.
| |
Collapse
|
25
|
Eliasson KA, Singh A, Isaksson S, Schnürer A. Co-substrate composition is critical for enrichment of functional key species and for process efficiency during biogas production from cattle manure. Microb Biotechnol 2022; 16:350-371. [PMID: 36507711 PMCID: PMC9871532 DOI: 10.1111/1751-7915.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
Cattle manure has a low energy content and high fibre and water content, limiting its value for biogas production. Co-digestion with a more energy-dense material can improve the output, but the co-substrate composition that gives the best results in terms of degree of degradation, gas production and digestate quality has not yet been identified. This study examined the effects of carbohydrate, protein and fat as co-substrates for biogas production from cattle manure. Laboratory-scale semi-continuous mesophilic reactors were operated with manure in mono-digestion or in co-digestion with egg albumin, rapeseed oil, potato starch or a mixture of these, and chemical and microbiological parameters were analysed. The results showed increased gas yield for all co-digestion reactors, but only the reactor supplemented with rapeseed oil showed synergistic effects on methane yield. The reactor receiving potato starch indicated improved fibre degradation, suggesting a priming effect by the easily accessible carbon. Both these reactors showed increased species richness and enrichment of key microbial species, such as fat-degrading Syntrophomonadaceae and families known to include cellulolytic bacteria. The addition of albumin promoted enrichment of known ammonia-tolerant syntrophic acetate- and potential propionate-degrading bacteria, but still caused slight process inhibition and less efficient overall degradation of organic matter in general, and of cellulose in particular.
Collapse
Affiliation(s)
| | - Abhijeet Singh
- Department of Molecular Sciences, BioCenterSwedish University of Agricultural SciencesUppsalaSweden
| | - Simon Isaksson
- Department of Molecular Sciences, BioCenterSwedish University of Agricultural SciencesUppsalaSweden
| | - Anna Schnürer
- Department of Molecular Sciences, BioCenterSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
26
|
Revealing the Characteristics of Glucose- and Lactate-Based Chain Elongation for Caproate Production by Caproicibacterium lactatifermentans through Transcriptomic, Bioenergetic, and Regulatory Analyses. mSystems 2022; 7:e0053422. [PMID: 36073803 PMCID: PMC9600882 DOI: 10.1128/msystems.00534-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Caproate, an important medium-chain fatty acid, can only be synthesized by limited bacterial species by using ethanol, lactate, or certain saccharides. Caproicibacterium lactatifermentans is a promising caproate producer due to its glucose and lactate utilization capabilities. However, the global cellular responses of this bacterium to different carbon sources were not well understood. Here, C. lactatifermentans showed robust growth on glucose but more active caproate synthesis on lactate. Comparative transcriptome revealed that the genes involved in reverse β-oxidation for caproate synthesis and V-type ATPase-dependent ATP generation were upregulated under lactate condition, while several genes responsible for biomass synthesis were upregulated under glucose condition. Based on metabolic pathway reconstructions and bioenergetics analysis, the biomass accumulation on glucose condition may be supported by sufficient supplies of ATP and metabolite intermediates via glycolysis. In contrast, the ATP yield per glucose equivalent from lactate conversion into caproate was only 20% of that from glucose. Thus, the upregulation of the reverse β-oxidation genes may be essential for cell survival under lactate conditions. Furthermore, the remarkably decreased lactate utilization was observed after glucose acclimatization, indicating the negative modulation of lactate utilization by glucose metabolism. Based on the cotranscription of the lactate utilization repressor gene lldR with sugar-specific PTS genes and the opposite expression patterns of lldR and lactate utilization genes, a novel regulatory mechanism of glucose-repressed lactate utilization mediated via lldR was proposed. The results of this study suggested the molecular mechanism underlying differential physiologic and metabolic characteristics of C. lactatifermentans grown on glucose and lactate. IMPORTANCE Caproicibacterium lactatifermentans is a unique and robust caproate-producing bacterium in the family Oscillospiraceae due to its lactate utilization capability, whereas its close relatives such as Caproicibacterium amylolyticum, Caproiciproducens galactitolivorans, and Caproicibacter fermentans cannot utilize lactate but produce lactate as the main fermentation end product. Moreover, C. lactatifermentans can also utilize several saccharides such as glucose and maltose. Although the metabolic versatility of the bacterium makes it to be a promising industrial caproate producer, the cellular responses of C. lactatifermentans to different carbon sources were unknown. Here, the molecular mechanisms of biomass synthesis supported by glucose utilization and the cell survival supported by lactate utilization were revealed. A novel insight into the regulatory machinery in which glucose negatively regulates lactate utilization was proposed. This study provides a valuable basis to control and optimize caproate production, which will contribute to achieving a circular economy and environmental sustainability.
Collapse
|
27
|
Ren W, Wu Q, Deng L, Hu Y, Guo W, Ren N. Simultaneous medium chain fatty acids production and process carbon emissions reduction in a continuous-flow reactor: Re-understanding of carbon flow distribution. ENVIRONMENTAL RESEARCH 2022; 212:113294. [PMID: 35460635 DOI: 10.1016/j.envres.2022.113294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/03/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Due to its wide application and high value, the production of medium chain fatty acids (MCFAs) from waste biomass has become one of the worldwide research hotspots. Increasing the carbon element participation from short-chain fatty acids to the form of MCFAs is also conductive to reduce the release of biogas from biological treatment process, because carbon is in the form of MCFAs instead of biogas which directly contribute to process carbon emissions reduction. However, many barriers limiting MCFAs production and application remain to be resolved. Aiming continuous MCFAs production from lactate-rich waste biomass, this study optimized the operation conditions and clarified the main limiting factors and possible mechanisms. The maximum caproic acid concentration of 2.757 g/L were obtained at the Upflow Velocity (ULV) of 1.15 m/h and pH 4.9-5.1. Caproiciproducens, Pseudoramibacter, norank_f_Eubacteriaceae, and Oscillibacter were identified to be the dominant microbial genus responsible for MCFAs production from lactate. The reduction of carbon emissions calculation was also studied in the present processes.
Collapse
Affiliation(s)
- Weitong Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China; College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Lin Deng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Yanbiao Hu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
28
|
Mariën Q, Ulčar B, Verleyen J, Vanthuyne B, Ganigué R. High-rate conversion of lactic acid-rich streams to caproic acid in a fermentative granular system. BIORESOURCE TECHNOLOGY 2022; 355:127250. [PMID: 35562021 DOI: 10.1016/j.biortech.2022.127250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Lactic acid-driven chain elongation enables upgrading low-value organic streams into caproic acid. Recently, volumetric production rates over 0.5 g L-1 h-1have been reported for carbohydrate-rich streams in expanded granular sludge bed (EGSB) reactors. However, many target streams contain mixtures of carbohydrates and lactic acid, and little is known about their impact on product profile and microbial ecology, or the importance of carbohydrates as substrate to achieve high rates. This manuscript investigated varying glucose-to-lactate ratios and observed that decreasing glucose-content eliminated odd-chain by-products, while glucose omission required acetic acid addition to support lactic acid conversion. Decreasing the glucose-content fed resulted in decreasing amounts of granular biomass, with the disappearance of granules when no glucose was fed. Lowering the HRT to 0.3 days while feeding only lactic and acetic acid likely triggered re-granulation, enabling the highest lactic acid-driven caproic acid production rates reported thus far at 16.4 ± 1.7 g L-1 d-1.
Collapse
Affiliation(s)
- Quinten Mariën
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000 Ghent, Belgium
| | - Barbara Ulčar
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000 Ghent, Belgium
| | - Jesper Verleyen
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Benjamin Vanthuyne
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000 Ghent, Belgium.
| |
Collapse
|
29
|
Yuan S, Jin Z, Ali A, Wang C, Liu J. Caproic Acid-Producing Bacteria in Chinese Baijiu Brewing. Front Microbiol 2022; 13:883142. [PMID: 35602080 PMCID: PMC9114508 DOI: 10.3389/fmicb.2022.883142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Caproic acid can be used as spices, preservatives, animal feed additives, and biofuels. At the same time, caproic acid plays an important role in Chinese Baijiu. It is the precursor substance for the synthesis of ethyl caproate, which directly affects the quality of Chinese Baijiu. Caproic acid-producing bacteria are the main microorganisms that synthesize caproic acid in Chinese Baijiu, and the most common strain is Clostridium kluyveri. Caproic acid-producing bacteria synthesize n-caproic acid through reverse β-oxidation to extend the carboxylic acid chain. This method mainly uses ethanol and lactic acid as substrates. Ethanol and lactic acid are converted into acetyl-CoA, and acetyl-CoA undergoes a series of condensation, dehydrogenation, dehydration, and reduction to extend the carboxylic acid chain. This review addresses the important issues of caproic acid-producing bacteria in the brewing process of Baijiu: the common caproic acid-producing bacteria that have been reported metabolic pathways, factors affecting acid production, biological competition pathways, and the effect of mixed bacteria fermentation on acid production. It is hoped that this will provide new ideas for the study of caproic acid-producing bacteria in Chinese Baijiu.
Collapse
Affiliation(s)
- Siqi Yuan
- School of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China.,Luzhou Laojiao Group Co. Ltd., Luzhou, China.,Key Laboratory of Brewing Biotechnology and Application of Sichuan Province, Yibin, China
| | - Ziyang Jin
- School of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Ayaz Ali
- School of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Chengjun Wang
- School of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China.,Wuliangye Group Co. Ltd., Yibin, China
| | - Jun Liu
- School of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China.,Key Laboratory of Brewing Biotechnology and Application of Sichuan Province, Yibin, China
| |
Collapse
|
30
|
Dai X, Chen L, Liu M, Liu Y, Jiang S, Xu T, Wang A, Yang S, Wei W. Effect of 6-Methoxybenzoxazolinone on the Cecal Microbiota of Adult Male Brandt's Vole. Front Microbiol 2022; 13:847073. [PMID: 35422782 PMCID: PMC9002351 DOI: 10.3389/fmicb.2022.847073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
The anti-microbial effects of plant secondary metabolite (PSM) 6-methoxybenzoxazolinone (6-MBOA) have been overlooked. This study investigated the effect of 6-MBOA on the cecal microbiota of adult male Brandt’s voles (Lasiopodomys brandtii), to evaluate its effect on the physiology of mammalian herbivores. The growth of voles was inhibited by 6-MBOA. A low dose of 6-MBOA enhanced the observed species, as well as the Chao1 and abundance-based coverage estimator (ACE) indices and introduced changes in the structure of cecal microbiota. The abundance of the phylum Tenericutes, classes Mollicutes and Negativicutes, order Selenomonadales, families Ruminococcaceae and Veillonellaceae, genera Quinella, Caproiciproducens, Anaerofilum, Harryflintia, and unidentified Spirochaetaceae in the cecal microbiota was enhanced upon administration of a low dose of 6-MBOA, which also inhibited glucose metabolism and protein digestion and absorption in the cecal microbiota. 6-MBOA treatment also stimulated butyrate production and dose-dependently enhanced the metabolism of xenobiotics in the cecal microbiome. Our findings indicate that 6-MBOA can affect Brandt’s voles by inducing changes in the abundance of cecal bacteria, thereby, altering the contents of short-chain fatty acids (SCFAs) and pathway intermediates, ultimately inhibiting the growth of voles. Our research suggests that 6-MBOA could potentially act as a digestion-inhibiting PSM in the interaction between mammalian herbivores and plants.
Collapse
Affiliation(s)
- Xin Dai
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Lin Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Mengyue Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Ying Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Siqi Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Tingting Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Aiqin Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Shengmei Yang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Wanhong Wei
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
31
|
Murillo T, Schneider D, Fichtel C, Daniel R. Dietary shifts and social interactions drive temporal fluctuations of the gut microbiome from wild redfronted lemurs. ISME COMMUNICATIONS 2022; 2:3. [PMID: 37938637 PMCID: PMC9723586 DOI: 10.1038/s43705-021-00086-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 05/06/2023]
Abstract
Animals living in highly seasonal environments adapt their diets accordingly to changes in food availability. The gut microbiome as an active participant in the metabolization of the host's diet should adapt and change with temporal diet fluctuations, but dietary shifts can be short-term and, hence, difficult to detect in cross-sectional studies. Therefore, we performed a longitudinal study combining repeated sampling of fecal samples with observations of feeding behavior in wild redfronted lemurs. We amplified taxonomical marker genes for assessing the bacteria, archaea, protozoa, helminths, and fungi, as well as the active bacterial community inhabiting their gut. We found that the most abundant protozoans were Trichostomatia and Trichomonadida, and the most abundant helminths were Chromadorea. We detected known members of the gut mycobiome from humans but in low abundances. The archaeal community is composed only of members of Methanomethylophilaceae. The predominant phyla in the entire bacterial community were Bacteroidota and Firmicutes while the most abundant genera harbor so far unknown bacteria. Temporal fluctuations at the entire community level were driven by consumption of fruits and flowers, and affiliative interactions. Changes in alpha diversity correlated only with the consumption of flowers and leaves. The composition of the entire and active bacterial community was not significantly different, but the most abundant taxa differed. Our study revealed that monthly changes in the bacterial community composition were linked to fruit and flower consumption and affiliative interactions. Thus, portraying the importance of longitudinal studies for understanding the adaptations and alterations of the gut microbiome to temporal fluctuations.
Collapse
Affiliation(s)
- Tatiana Murillo
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Göttingen, Germany
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany.
| |
Collapse
|
32
|
Wang H, Gu Y, Zhao D, Qiao Z, Zheng J, Gao J, Ren C, Xu Y. Caproicibacterium lactatifermentans sp. nov., isolated from pit clay used for the production of Chinese strong aroma-type liquor. Int J Syst Evol Microbiol 2022; 72. [PMID: 35085065 DOI: 10.1099/ijsem.0.005206] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two recently reported bacterial strains that were identified as the dominant caproate-producing bacteria in pit clay, were further characterized to determine their phylogeny and taxonomy. The two strains, designated as LBM19010T and JNU-WLY1368, were short rod-shaped, Gram-stain-positive, non-motile and strictly anaerobic. Analysis of the 16S rRNA gene sequences revealed that strains LBM19010T and JNU-WLY1368 shared a 16S rRNA gene sequence similarity of 99.93 % and belonged to a recent proposed genus Caproicibacterium in the family Oscillospiraceae. The proposed type strain, LBM19010T, showed the highest 16S rRNA gene sequence similarity to Caproicibacterium amylolyticum LBM18003T (96.34%), followed by Caproiciproducens galactitolivorans JCM 30532T (94.14 %). The pairwise average nucleotide identity and average amino acid identity values between strains LBM19010T and LBM18003T were 74.84 and 76.18 %, respectively. Growth of strain LBM19010T occurred at pH 4.5-7.5 (optimum, pH 5.0-5.5), 20-40 °C (optimum, 35 °C) and with 0-1 % (w/v) NaCl (optimum, 0 %). Strains LBM19010T and JNU-WLY1368 were both able to ferment several hexoses, disaccharides, starch and lactate but not pentoses. Caproate and butyrate were the major end-products from glucose. The predominant cellular fatty acids (>10 %) of strain LBM19010T were C16 : 0 (56.3 %), C14 : 0 DMA (19.5 %) and C14 : 0 (14.9 %). The identified polar lipids of strain LBM19010T were diphosphatidylglycerol, phosphatidylglycerol, three unidentified phospholipids and nine unidentified glycolipids. Based on phylogenetic, phenotypic and chemotaxonomic evidence, strains LBM19010T and JNU-WLY1368 belong to a novel species of the genus Caproicibacterium, for which the name Caproicibacterium lactatifermentans sp. nov. is proposed. The type strain is LBM19010T (=GDMCC 1.1627T=JCM 33782T).
Collapse
Affiliation(s)
- Huilin Wang
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Yang Gu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Dong Zhao
- China Light Industry Key Laboratory of Solid-state Fermentation for Strong Aroma-type Liquor, Yibin 644007, PR China
| | - Zongwei Qiao
- China Light Industry Key Laboratory of Solid-state Fermentation for Strong Aroma-type Liquor, Yibin 644007, PR China
| | - Jia Zheng
- China Light Industry Key Laboratory of Solid-state Fermentation for Strong Aroma-type Liquor, Yibin 644007, PR China
| | - Jiangjing Gao
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Cong Ren
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
33
|
Wang J, Yin Y. Biological production of medium-chain carboxylates through chain elongation: An overview. Biotechnol Adv 2021; 55:107882. [PMID: 34871718 DOI: 10.1016/j.biotechadv.2021.107882] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/01/2021] [Accepted: 11/28/2021] [Indexed: 12/15/2022]
Abstract
Medium chain carboxylates (MCCs) have wide applications in various industries, but the traditional MCCs production methods are costly and unsustainable. Anaerobic fermentation offers a more scalable, economical and eco-friendly platform for producing MCCs through chain elongation which converts short chain carboxylates and electron donor into more valuable MCCs. However, the underlying microbial pathways are not well understood. In this review, biological production of MCCs through chain elongation is introduced elaborately, including the metabolic pathways, electron donor and substrates, microorganisms and influencing factors. Then, the strategies for enhancing MCCs production are extensively analyzed and summarized, along with the technologies for MCCs separation from the fermentation broth. Finally, challenges and perspectives concerning the large-scale MCCs production are proposed, providing suggestions for the future research. Extensive review demonstrated that anaerobic fermentation has great potential in achieving economical and sustainable MCCs production from complex organic substrates, including organic waste streams, which would significantly broaden the application of MCCs, especially in the renewable energy field. An interdisciplinary approach with knowledge from microbiology and biochemistry to chemical separations and environmental engineering is required to use this promising technology as a valorization method for converting organic biomass or organic wastes into valuable MCCs.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| | - Yanan Yin
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
34
|
Wei Z, Ma S, Chen R, Wu W, Fan H, Dai L, Deng Y. Aminipila luticellarii sp. nov., an anaerobic bacterium isolated from the pit mud of strong aromatic Chinese liquor, and emended description of the genus Aminipila. Int J Syst Evol Microbiol 2021; 71. [PMID: 34662267 DOI: 10.1099/ijsem.0.004710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel mesophilic, aerotolerant anaerobic bacterium, designated JN-18T, was isolated from the pit mud of a strong aromatic Chinese liquor. According to a 16S rRNA gene sequence analysis, it had the highest sequence similarity to Aminipila butyrica DSM 103574T (95.69%). The G+C content of its genomic DNA was 43.39 mol%. The cells were Gram-stain-negative, slightly curved rods with flagella. Optimum growth was observed at 37 °C, pH 6.5 and without extra addition of NaCl. Strain JN-18Tutilized amino acids (l-alanine, l-arginine, l-asparagine, l-lysine, l-methionine, l-serine and l-threonine), malate and pyruvate, and used l-arginine and l-lysine to produce acetate, butyrate, H2, and CO2. The major cellular fatty acids of strain JN-18T were C14:0, C16:0 DMA and C18:1 cis-9 DMA. The carbohydrate composition of the cell wall predominantly included galactose, glucose and rhamnose. Based on its phylogenetic, phenotypic, physiological and biochemical characteristics, strain JN-18T was classified as a representative of a novel species within the genus Aminipila, for which the name Aminipila luticellarii sp. nov. is proposed. The type strain is JN-18T (=CCAM 412T=JCM 39126T).
Collapse
Affiliation(s)
- Zhixian Wei
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.,Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Shichun Ma
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.,Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Rui Chen
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.,Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Weidong Wu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.,Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Hui Fan
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.,Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Lirong Dai
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.,Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Yu Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.,Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
35
|
Adaptability of a caproate-producing bacterium contributes to its dominance in an anaerobic fermentation system. Appl Environ Microbiol 2021; 87:e0120321. [PMID: 34378978 DOI: 10.1128/aem.01203-21] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transformation of diverse feedstocks into medium-chain fatty acids (MCFAs) by mixed cultures is a promising biorefinery route because of the high value of MCFAs. A particular concern is how to maintain the microbial consortia in mixed cultures to achieve stable MCFA production. Chinese strong aroma-type liquor (Baijiu) fermentation system continually produces caproic acid for decades through a spontaneous inoculation of anaerobes from pit mud into fermented grains. Therefore, illuminating the dominant caproate-producing bacterium (CPB) in pit mud and how the CPB sustains in the spontaneous fermentation system will benefit to reveal the microbiological mechanisms of the stable caproate production. Here, we examined pit mud samples across four Chinese strong aroma-type Baijiu producing areas and found that a caproate-producing Caproicibacterium sp. was widely distributed in these distilleries with relative abundance ranging from 1.4% to 35.5% and an average abundance of 11.4%. Through controlling carbon source availability, we achieved different simplified caproate-producing consortia and found that the growth advantage of Caproicibacterium sp. was highly dependent on glucose. Then two strains, named Caproicibacterium sp. LBM19010 and Caproicibacterium sp. JNU-WLY1368, were isolated from pit mud of two regions. The metabolic versatility of this bacterium utilizing starch, maltose, glucose and lactate reflected its adaptability to the fermentation environment where these carbon sources coexist. The simultaneous utilization of glucose and lactate contributed to the balance between cell growth and pH homeostasis. This study reveals that multiple adaptation strategies employed by the predominant CPB promotes its stability and dominance in a saccharide- and lactate-rich anaerobic habitat. IMPORTANCE Chinese strong aroma-type liquor (Baijiu) fermentation environment is a typical medium-chain fatty acid producing system with complex nutrients. Although several studies have revealed the correlation between microbial community composition and abiotic factors, the adaptation mechanisms of dominant species to abiotic environment are still unknown in this special anaerobic habitat. This study identified the predominant CPB in Chinese strong aroma-type Baijiu fermentation system. Metabolic versatility and flexibility of the dominant CPB with a small-size genome indicated that this bacterium can effectively exploit available carbon and nitrogen sources, which could be a key factor to promote its ecological success in a multi-species environment. The understanding of growth and metabolic features of CPB responsible for its dominance in microbial community will not only contribute to the improvement of Chinese strong aroma-type Baijiu production but also expand its potential industrial applications in caproate production.
Collapse
|
36
|
De Groof V, Coma M, Arnot T, Leak DJ, Lanham AB. Selecting fermentation products for food waste valorisation with HRT and OLR as the key operational parameters. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 127:80-89. [PMID: 33932853 DOI: 10.1016/j.wasman.2021.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Acidogenic fermentation is attractive for food waste valorisation. A better understanding is required on how operation affects product selectivity. This study demonstrated that the hydraulic retention time (HRT) and organic loading rate (OLR) selected fermentation pathways in a single-stage, semi-continuous stirred tank reactor. Three combinations of HRT and OLR were tested to distinguish the effect of each parameter. Three fermentation profiles with distinct microbial communities were obtained. Predominantly n-butyric acid (13 ± 2 gCOD L-1, 55 ± 14% of carboxylates) was produced at an HRT of 8.5 days and OLR around 12 gCOD L-1d-1. Operating at an HRT two days longer, yet with similar OLR, stimulated chain elongation (up to 13.6 gCOD L-1 of n-caproic acid). This was reflected by a microbial community twice as diverse at longer HRT as indicated by first and second order Hill number (1D = 24 ± 4, 2D = 12 ± 3) and by a higher relative abundance of genera related to secondary fermentation, such as the VFA-elongating Caproiciproducens spp., and secondary lactic acid fermenter Secundilactobacillus spp.. Operating at a higher OLR (20 gCOD L-1d-1) but HRT of 8.5 days, resulted in typical lactic acid fermentation (34 ± 5 gCOD L-1) harbouring a less diverse community (1D = 8.0 ± 0.7, 2D = 5.7 ± 0.9) rich in acid-resistant homofermentative Lactobacillus spp. These findings demonstrate that a flexible product portfolio can be achieved by small adjustments in two key operating conditions. This improves the economic potential of acidogenic fermentation for food waste valorisation.
Collapse
Affiliation(s)
- Vicky De Groof
- EPSRC Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath BA2 7AY, UK; Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Marta Coma
- Centre for Sustainable and Circular Technologies (CSCT), University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Tom Arnot
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Centre for Sustainable and Circular Technologies (CSCT), University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - David J Leak
- Centre for Sustainable and Circular Technologies (CSCT), University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Claverton Down, Bath BA2 7AY, UK; Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Ana B Lanham
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
37
|
Gu Y, Zhu X, Lin F, Shen C, Li Y, Ao L, Fan W, Ren C, Xu Y. Caproicibacterium amylolyticum gen. nov., sp. nov., a novel member of the family Oscillospiraceae isolated from pit clay used for making Chinese strong aroma-type liquor. Int J Syst Evol Microbiol 2021; 71. [PMID: 33906707 DOI: 10.1099/ijsem.0.004789] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An anaerobic, Gram-stain-positive, rod-shaped, motile and spore-forming bacterium, designated strain LBM18003T, was isolated from pit clay used for making Chinese strong aroma-type liquor. Growth occurred at 20-40 °C (optimum, 30-37 °C), pH 4.5-9.5 (optimum, pH 6.5-7.0) and in the presence of 0.0-1.0 % (w/v) sodium chloride (optimum, 0 %). The predominant fatty acids were C16:0, C14:0, C14:0 DMA and C16:0 3-OH, and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two unidentified phospholipids and nine unidentified glycolipids. Phylogenetic analysis revealed that strain LBM18003T is a novel member of the family Oscillospiraceae. The 16S rRNA gene sequence similarities of strain LBM18003T to its two most closely related species were less than 94.5 % for distinguishing genera, i.e. closely related to Caproiciproducens galactitolivorans JCM 30532T (94.1 %) and Caproicibacter fermentans DSM 107079T (93.2 %). The genome size of strain LBM18003T was 2 996 201 bp and its DNA G+C content was 48.48 mol%. Strain LBM18003T exhibited 67.8 and 68.1% pairwise-determined whole-genome average nucleotide identity values to Caproiciproducens galactitolivorans JCM 30532T and Caproicibacter fermentans DSM 107079T, respectively; and showed 62.2 and 61.0 % the average amino acid identity values to Caproiciproducens galactitolivorans JCM 30532T and Caproicibacter fermentans DSM 107079T, respectively; and demonstrated 46.1 and 41.5 % conserved genes to Caproiciproducens galactitolivorans JCM 30532T and Caproicibacter fermentans DSM 107079T, respectively. The comparisons of 16S rRNA gene and genome sequences confirmed that strain LBM18003T represented a novel genus of the family Oscillospiraceae. Based on morphological, physiological, biochemical, chemotaxonomic, genotypic and phylogenetic results, strain LBM18003T represents a novel species of a novel genus of the family Oscillospiraceae, for which the name Caproicibacterium amylolyticum gen. nov., sp. nov. is proposed. The type strain is LBM18003T (=GDMCC 1.1626T=JCM 33783T).
Collapse
Affiliation(s)
- Yang Gu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Xiaojun Zhu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Feng Lin
- National Engineering Research Center of Solid-state Brewing, Luzhou 646000, PR China
| | - Caihong Shen
- National Engineering Research Center of Solid-state Brewing, Luzhou 646000, PR China
| | - Yong Li
- National Engineering Research Center of Solid-state Brewing, Luzhou 646000, PR China
| | - Ling Ao
- National Engineering Research Center of Solid-state Brewing, Luzhou 646000, PR China
| | - Wenlai Fan
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Cong Ren
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
38
|
Candry P, Ganigué R. Chain elongators, friends, and foes. Curr Opin Biotechnol 2021; 67:99-110. [PMID: 33529974 DOI: 10.1016/j.copbio.2021.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
Abstract
Bioproduction of medium chain carboxylic acids has recently emerged as an alternative strategy to valorize low-value organic waste and side-streams. Key to this route is chain elongation, an anaerobic microbial process driven by ethanol, lactic acid, or carbohydrates. Because these technologies use wastes as feedstocks, mixed microbial communities are often considered as biocatalysts. Understanding and steering these microbiomes is key to optimize bioprocess performance. From a meta-analysis of publicly available sequencing data, we (i) explore how the current collection of isolated chain elongators compares to microbiome members, (ii) discuss the main beneficial and antagonistic interactions with community partners, and (iii) identify the key research gaps and needs to help understand chain elongation microbiomes, and design/steer these novel bioproduction processes.
Collapse
Affiliation(s)
- Pieter Candry
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA 98195-2700, USA
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
39
|
Esquivel-Elizondo S, Bağcı C, Temovska M, Jeon BS, Bessarab I, Williams RBH, Huson DH, Angenent LT. The Isolate Caproiciproducens sp. 7D4C2 Produces n-Caproate at Mildly Acidic Conditions From Hexoses: Genome and rBOX Comparison With Related Strains and Chain-Elongating Bacteria. Front Microbiol 2021; 11:594524. [PMID: 33584563 PMCID: PMC7873966 DOI: 10.3389/fmicb.2020.594524] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Bulk production of medium-chain carboxylates (MCCs) with 6-12 carbon atoms is of great interest to biotechnology. Open cultures (e.g., reactor microbiomes) have been utilized to generate MCCs in bioreactors. When in-line MCC extraction and prevention of product inhibition is required, the bioreactors have been operated at mildly acidic pH (5.0-5.5). However, model chain-elongating bacteria grow optimally at neutral pH values. Here, we isolated a chain-elongating bacterium (strain 7D4C2) that grows at mildly acidic pH. We studied its metabolism and compared its whole genome and the reverse β-oxidation (rBOX) genes to other bacteria. Strain 7D4C2 produces lactate, acetate, n-butyrate, n-caproate, biomass, and H2/CO2 from hexoses. With only fructose as substrate (pH 5.5), the maximum n-caproate specificity (i.e., products per other carboxylates produced) was 60.9 ± 1.5%. However, this was considerably higher at 83.1 ± 0.44% when both fructose and n-butyrate (electron acceptor) were combined as a substrate. A comparison of 7D4C2 cultures with fructose and n-butyrate with an increasing pH value from 4.5 to 9.0 showed a decreasing n-caproate specificity from ∼92% at mildly acidic pH (pH 4.5-5.0) to ∼24% at alkaline pH (pH 9.0). Moreover, when carboxylates were extracted from the broth (undissociated n-caproic acid was ∼0.3 mM), the n-caproate selectivity (i.e., product per substrate fed) was 42.6 ± 19.0% higher compared to 7D4C2 cultures without extraction. Based on the 16S rRNA gene sequence, strain 7D4C2 is most closely related to the isolates Caproicibacter fermentans (99.5%) and Caproiciproducens galactitolivorans (94.7%), which are chain-elongating bacteria that are also capable of lactate production. Whole-genome analyses indicate that strain 7D4C2, C. fermentans, and C. galactitolivorans belong to the same genus of Caproiciproducens. Their rBOX genes are conserved and located next to each other, forming a gene cluster, which is different than for other chain-elongating bacteria such as Megasphaera spp. In conclusion, Caproiciproducens spp., comprising strain 7D4C2, C. fermentans, C. galactitolivorans, and several unclassified strains, are chain-elongating bacteria that encode a highly conserved rBOX gene cluster. Caproiciproducens sp. 7D4C2 (DSM 110548) was studied here to understand n-caproate production better at mildly acidic pH within microbiomes and has the additional potential as a pure-culture production strain to convert sugars into n-caproate.
Collapse
Affiliation(s)
- Sofia Esquivel-Elizondo
- AG Angenent, Max Planck Institute for Developmental Biology, Max Planck Society (MPG), Tübingen, Germany
| | - Caner Bağcı
- Algorithms in Bioinformatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
- International Max Planck Research School “From Molecules to Organisms”, Max Planck Institute for Developmental Biology, University of Tübingen, Tübingen, Germany
| | - Monika Temovska
- Environmental Biotechnology Group, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| | - Byoung Seung Jeon
- Environmental Biotechnology Group, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| | - Irina Bessarab
- Integrative Analysis Unit, Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Rohan B. H. Williams
- Integrative Analysis Unit, Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Daniel H. Huson
- Algorithms in Bioinformatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
- Integrative Analysis Unit, Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Largus T. Angenent
- AG Angenent, Max Planck Institute for Developmental Biology, Max Planck Society (MPG), Tübingen, Germany
- Environmental Biotechnology Group, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| |
Collapse
|
40
|
Ma H, Lin Y, Jin Y, Gao M, Li H, Wang Q, Ge S, Cai L, Huang Z, Van Le Q, Xia C. Effect of ultrasonic pretreatment on chain elongation of saccharified residue from food waste by anaerobic fermentation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115936. [PMID: 33158614 DOI: 10.1016/j.envpol.2020.115936] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/03/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
Converting biowaste into value-added products has raised the researchers' interests. In this study, bioconversion was applied to produce chain acids from food waste by anaerobic fermentation. To improve the caproic acid production, different pretreatments (i.e., ultrasonic, hydrothermal, and alkaline-thermal) were used for investigating their effects on the acidogenic production and microbial communities. The results showed that ultrasonic and hydrothermal pretreatments (207.8 and 210.1 mg COD/g VS, respectively) were very efficient for enhancing the caproic acid production, compared to the alkaline-thermal pretreated samples and control samples (72.6 and 97.5 mg COD/g VS, respectively). The ultrasonic pretreatment was beneficial for reducing volatile fatty acids (VFAs) during the caproic acid production, resulting in converting more lactic acid to caproic acid by adding the hydrothermal pretreatment. The microbial community analysis showed that the acidogenic bacteria Caproiciproducens dominated the fermentation in this bioconversion process of food waste into chain acids. The Caproiciproducens mainly degraded the proteins and carbohydrates from the saccharified residues of food waste to produce caproic acids through chain elongation procedure. The investigation and optimized method may help develop the bioconversion technology for producing VFAs products from food wastes.
Collapse
Affiliation(s)
- Hongzhi Ma
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yujia Lin
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yong Jin
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Ming Gao
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China
| | - Hongai Li
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Liping Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Department of Mechanical Engineering, University of North Texas, Denton, TX, 76207, USA
| | - Zhenhua Huang
- Department of Mechanical Engineering, University of North Texas, Denton, TX, 76207, USA
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
41
|
Fermentation of Organic Residues to Beneficial Chemicals: A Review of Medium-Chain Fatty Acid Production. Processes (Basel) 2020. [DOI: 10.3390/pr8121571] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Medium-chain fatty acids (MCFAs) have a variety of uses in the production of industrial chemicals, food, and personal care products. These compounds are often produced through palm refining, but recent work has demonstrated that MCFAs can also be produced through the fermentation of complex organic substrates, including organic waste streams. While “chain elongation” offers a renewable platform for producing MCFAs, there are several limitations that need to be addressed before full-scale implementation becomes widespread. Here, we review the history of work on MCFA production by both pure and mixed cultures of fermenting organisms, and the unique metabolic features that lead to MCFA production. We also offer approaches to address the remaining challenges and increase MCFA production from renewable feedstocks.
Collapse
|