1
|
Fuchs W, Assad-Garcia N, Abkallo HM, Xue Y, Oldfield LM, Fedorova N, Hübner A, Kabuuka T, Pannhorst K, Höper D, Nene V, Gonzalez-Juarbe N, Steinaa L, Vashee S. A synthetic genomics-based African swine fever virus engineering platform. SCIENCE ADVANCES 2025; 11:eadu7670. [PMID: 40138431 PMCID: PMC11939070 DOI: 10.1126/sciadv.adu7670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
African swine fever (ASF) is a deadly viral disease in domestic pigs that has a large global economic impact for the swine industry. It is present in Africa, Europe, Asia, and in the Caribbean island of Hispaniola. There are no effective treatments or broadly licensed vaccines to prevent disease. Efforts to counteract ASF have been hampered because of the lack of convenient tools to engineer its etiological agent, ASF virus (ASFV), largely due to its large noninfectious genome. Here, we report the use of synthetic genomics methodology to develop a reverse genetics system for ASFV using a CRISPR-Cas9-inhibited self-helper virus to reconstitute live recombinant ASFV from synthetic genomes to rapidly generate a variety of combinatorial mutants of ASFV. The method will substantially facilitate the development of therapeutics or subunit and live-attenuated vaccines for ASF. This synthetic genomics-based approach has wide-ranging impact because it can be applied to rapidly develop reverse genetics tools for emerging viruses with noninfectious genomes.
Collapse
Affiliation(s)
- Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | | | | | - Yong Xue
- J. Craig Venter Institute, Rockville, MD 20850, USA
| | | | | | - Alexandra Hübner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Tonny Kabuuka
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
- National Agricultural Research Organization (NARO), P.O. Box 295, Entebbe, Uganda
| | - Katrin Pannhorst
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Vishvanath Nene
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | | | - Lucilla Steinaa
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | | |
Collapse
|
2
|
Ge C, Lu H, Han J, Sun G, Li S, Lan X, Liu Y, Yu M, Hu X, Hu M, Qi X, Cui H, Duan Y, Wang S, Chen Y, Wang X, Zhang Y, Gao Y, Liu C. Recombinant Marek's disease virus expressing VP1 and VP2 proteins provides robust immune protection against chicken infectious anemia virus. Front Microbiol 2025; 15:1515415. [PMID: 39834361 PMCID: PMC11743625 DOI: 10.3389/fmicb.2024.1515415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 01/22/2025] Open
Abstract
Chicken infectious anemia (CIA) is a highly contagious disease caused by the chicken infectious anemia virus (CIAV), and it poses a serious threat to the poultry industry. However, effective control measures and strategies have not been identified. In this study, a recombinant Marek's disease virus (rMDV) expressing the VP1 and VP2 proteins of CIAV was successfully constructed using CRISPR/Cas9, and a commercial Marek's disease virus (MDV) vaccine strain was used as the vector. VP1 and VP2 expression by rMDV was confirmed by immunofluorescence assay and western blot analysis, which revealed robust in vitro expression. Further analysis showed that the VP1 and VP2 genes integrated into the MDV genome did not alter the growth kinetics of the virus and remained stable even after 20 passages, indicating the genetic stability of the recombinant virus. In animal studies, vaccination of one-day-old specific-pathogen-free chickens with rMDV induced high levels of CIAV-specific antibodies (1 × 105) and neutralizing antibodies (1:25) and a potent cellular immune response. Moreover, rMDV vaccination conferred an 85% protective index against challenge with a highly virulent strain of CIAV, significantly reducing the occurrence of anemia and thymic atrophy caused by CIAV infection and dramatically suppressing CIAV replication in the thymus. Collectively, these results highlight the potential of rMDV as a vaccine candidate for preventing and controlling CIAV infection, thus offering a new avenue for mitigating the impact of CIA on the poultry industry.
Collapse
Affiliation(s)
- Chengfei Ge
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hangqiong Lu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinze Han
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guorong Sun
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shihao Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xingge Lan
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengmeng Yu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinyun Hu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingxue Hu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulu Duan
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuntong Chen
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
3
|
Gowripalan A, Smith SA, Tscharke DC. Cas9-Mediated Poxvirus Recombinant Recovery (CASPRR) for Fast Recovery of Recombinant Vaccinia Viruses. Methods Mol Biol 2025; 2860:115-130. [PMID: 39621264 DOI: 10.1007/978-1-0716-4160-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Generation of recombinant vaccinia viruses opens many avenues for poxvirus research; however current methods for virus production can be laborious. Traditional methods rely on recombination strategies that produce engineered viruses at a low frequency, which then need to be identified and isolated from a large background of parent virus. For this reason, marker and reporter genes are often included, but in many cases these require removal in subsequent steps and the entire process is relatively inefficient. Cas9-mediated selection is a technique that repurposes Cas9/guide RNA complexes to amplify chosen subsets of vaccinia viruses. We refer to this approach as Cas9-mediated poxvirus recombinant recovery (CASPRR). Transient introduction of appropriately guided Cas9 allows for recovery of marker-free recombinant viruses in just 5 days, and requires no additional virus modification. Following three rounds of purification, pure virus stocks are obtained. A newer method, stable expression of Cas9 and guide RNAs in a permissive cell line, allows for additional process streamlining, removing cell type-specific concerns related to transient transfection of Cas9. Within this chapter, the protocol for CASPRR is described in both a transient and stable expression model. These methods can be utilized to accelerate recovery of recombinant vaccinia viruses and be applied to generation of vaccinia libraries or novel therapeutic agents.
Collapse
Affiliation(s)
- Anjali Gowripalan
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Stewart A Smith
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
4
|
Kanbar K, El Darzi R, Jaalouk DE. Precision oncology revolution: CRISPR-Cas9 and PROTAC technologies unleashed. Front Genet 2024; 15:1434002. [PMID: 39144725 PMCID: PMC11321987 DOI: 10.3389/fgene.2024.1434002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024] Open
Abstract
Cancer continues to present a substantial global health challenge, with its incidence and mortality rates persistently reflecting its significant impact. The emergence of precision oncology has provided a breakthrough in targeting oncogenic drivers previously deemed "undruggable" by conventional therapeutics and by limiting off-target cytotoxicity. Two groundbreaking technologies that have revolutionized the field of precision oncology are primarily CRISPR-Cas9 gene editing and more recently PROTAC (PROteolysis TArgeting Chimeras) targeted protein degradation technology. CRISPR-Cas9, in particular, has gained widespread recognition and acclaim due to its remarkable ability to modify DNA sequences precisely. Rather than editing the genetic code, PROTACs harness the ubiquitin proteasome degradation machinery to degrade proteins of interest selectively. Even though CRISPR-Cas9 and PROTAC technologies operate on different principles, they share a common goal of advancing precision oncology whereby both approaches have demonstrated remarkable potential in preclinical and promising data in clinical trials. CRISPR-Cas9 has demonstrated its clinical potential in this field due to its ability to modify genes directly and indirectly in a precise, efficient, reversible, adaptable, and tissue-specific manner, and its potential as a diagnostic tool. On the other hand, the ability to administer in low doses orally, broad targeting, tissue specificity, and controllability have reinforced the clinical potential of PROTAC. Thus, in the field of precision oncology, gene editing using CRISPR technology has revolutionized targeted interventions, while the emergence of PROTACs has further expanded the therapeutic landscape by enabling selective protein degradation. Rather than viewing them as mutually exclusive or competing methods in the field of precision oncology, their use is context-dependent (i.e., based on the molecular mechanisms of the disease) and they potentially could be used synergistically complementing the strengths of CRISPR and vice versa. Herein, we review the current status of CRISPR and PROTAC designs and their implications in the field of precision oncology in terms of clinical potential, clinical trial data, limitations, and compare their implications in precision clinical oncology.
Collapse
Affiliation(s)
- Karim Kanbar
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Roy El Darzi
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Diana E. Jaalouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
5
|
Caetano BFR, Rocha VL, Rossini BC, Dos Santos LD, Elgui De Oliveira D. Epstein-Barr Virus miR-BARTs 7 and 9 modulate viral cycle, cell proliferation, and proteomic profiles in Burkitt lymphoma. Tumour Virus Res 2024; 17:200276. [PMID: 38159643 PMCID: PMC11000110 DOI: 10.1016/j.tvr.2023.200276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
The Epstein-Barr Virus (EBV) encodes viral microRNAs (miRs) that have been implicated in the pathogenesis of nasopharyngeal and gastric carcinomas, yet their potential roles in lymphomas remain to be fully elucidated. This study evaluated the impact of CRISPR/Cas9-mediated knockdown of EBV miRs BART-7 and BART-9 in EBV-positive Burkitt lymphoma cells Akata. As anticipated, the Akata cells subjected to CRISPR/Cas9-mediated knockdown of either EBV BART-7 or BART-9 exhibited a significant reduction in the expression of these viral miRs compared to cells with wild-type (wt) EBV genomes. This outcome effectively validates the experimental model employed in this study. Knocking down either BART-7 or BART-9 resulted in a notable reduction in cell viability and proliferation rates, alongside an elevation in the expression of EBV lytic genes. Global proteomic analysis revealed that the knockdown of EBV BART-7 significantly decreased the expression of ubiquitin/proteasome proteins while concurrently increasing RNA binding proteins (RBPs). Conversely, BART-9 knockdown reduced proteins associated with oxidoreductase activity, particularly those involved in fatty acid metabolism. Our findings unveil previously undiscovered EBV miRs BARTs 7 and 9 roles in cellular pathways relevant to both viral biology and lymphomagenesis.
Collapse
Affiliation(s)
- Brunno Felipe Ramos Caetano
- São Paulo State University (UNESP), Department of Pathology, Botucatu Medical School, Av. Prof. Dr. Mário Rubens Guimarães Montenegro S/n, CEP 18618-687, Botucatu, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil.
| | - Viviana Loureiro Rocha
- São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Biosciences (IBB). R. Prof. Dr. Antônio Celso Wagner Zanin, 250, CEP 18618-689, Botucatu, São Paulo, Brazil.
| | - Bruno Cesar Rossini
- São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil.
| | - Lucilene Delazari Dos Santos
- São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil.
| | - Deilson Elgui De Oliveira
- São Paulo State University (UNESP), Department of Pathology, Botucatu Medical School, Av. Prof. Dr. Mário Rubens Guimarães Montenegro S/n, CEP 18618-687, Botucatu, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil.
| |
Collapse
|
6
|
Mahmood M, Taufiq I, Mazhar S, Hafeez F, Malik K, Afzal S. Revolutionizing personalized cancer treatment: the synergy of next-generation sequencing and CRISPR/Cas9. Per Med 2024; 21:175-190. [PMID: 38708901 DOI: 10.1080/17410541.2024.2341610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
In the context of cancer heterogeneity, the synergistic action of next-generation sequencing (NGS) and CRISPR/Cas9 plays a promising role in the personalized treatment of cancer. NGS enables high-throughput genomic profiling of tumors and pinpoints specific mutations that primarily lead to cancer. Oncologists use this information obtained from NGS in the form of DNA profiling or RNA analysis to tailor precision strategies based on an individual's unique molecular signature. Furthermore, the CRISPR technique enables precise editing of cancer-specific mutations, allowing targeted gene modifications. Harnessing the potential insights of NGS and CRISPR/Cas9 heralds a remarkable frontier in cancer therapeutics with unprecedented precision, effectiveness and minimal off-target effects.
Collapse
Affiliation(s)
- Muniba Mahmood
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Izza Taufiq
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Sana Mazhar
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Faiqa Hafeez
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Kausar Malik
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Samia Afzal
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| |
Collapse
|
7
|
Zhang JF, Kim SW, Shang K, Park JY, Choi YR, Jang HK, Wei B, Kang M, Cha SY. Protection of Chickens against H9N2 Avian Influenza Isolates with a Live Vector Vaccine Expressing Influenza Hemagglutinin Gene Derived from Y280 Avian Influenza Virus. Animals (Basel) 2024; 14:872. [PMID: 38539970 PMCID: PMC10967311 DOI: 10.3390/ani14060872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 11/11/2024] Open
Abstract
Since the outbreak of the H9N2/Y439 avian influenza virus in 1996, the Korean poultry industry has incurred severe economic losses. A novel possibly zoonotic H9N2 virus from the Y280-like lineage (H9N2/Y280) has been prevalent in Korea since June 2020, posing a threat to the poultry sector. Rapid mutation of influenza viruses urges the development of effective vaccines against newly generated strains. Thus, we engineered a recombinant virus rHVT/Y280 to combat H9N2/Y280. We integrated the hemagglutinin (HA) gene of the H9N2/Y280 strain into the US2 region of the herpesvirus of turkeys (HVT) Fc126 vaccine strain, utilizing CRISPR/Cas9 gene-editing technology. The successful construction of rHVT/Y280 was confirmed by polymerase chain reaction and sequencing, followed by efficacy evaluation. Four-day-old specific pathogen-free chickens received the rHVT/Y280 vaccine and were challenged with the H9N2/Y280 strain A21-MRA-003 at 3 weeks post-vaccination. In 5 days, there were no gross lesions among the vaccinated chickens. The rHVT/Y280 vaccine induced strong humoral immunity and markedly reduced virus shedding, achieving 100% inhibition of virus recovery in the cecal tonsil and significantly lowering tissue viral load. Thus, HVT vector vaccines expressing HA can be used for protecting poultry against H9N2/Y280. The induction of humoral immunity by live vaccines is vital in such cases. In summary, the recombinant virus rHVT/Y280 is a promising vaccine candidate for the protection of chickens against the H9N2/Y280.
Collapse
Affiliation(s)
- Jun-Feng Zhang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Sang-Won Kim
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
| | - Ke Shang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
- College of Animal Science and Technology, Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471000, China
| | - Jong-Yeol Park
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
| | - Yu-Ri Choi
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
| | - Hyung-Kwan Jang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Republic of Korea
| | - Bai Wei
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
| | - Min Kang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Republic of Korea
| | - Se-Yeoun Cha
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
| |
Collapse
|
8
|
Zahedipour F, Zahedipour F, Zamani P, Jaafari MR, Sahebkar A. Harnessing CRISPR technology for viral therapeutics and vaccines: from preclinical studies to clinical applications. Virus Res 2024; 341:199314. [PMID: 38211734 PMCID: PMC10825633 DOI: 10.1016/j.virusres.2024.199314] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The CRISPR/Cas system, identified as a type of bacterial adaptive immune system, have attracted significant attention due to its remarkable ability to precisely detect and eliminate foreign genetic material and nucleic acids. Expanding upon these inherent capabilities, recent investigations have unveiled the potential of reprogrammed CRISPR/Cas 9, 12, and 13 systems for treating viral infections associated with human diseases, specifically targeting DNA and RNA viruses, respectively. Of particular interest is the RNA virus responsible for the recent global outbreak of coronavirus disease 2019 (COVID-19), which presents a substantial public health risk, coupled with limited efficacy of current prophylactic and therapeutic techniques. In this regard, the utilization of CRISPR/Cas technology offers a promising gene editing approach to overcome the limitations of conventional methods in managing viral infections. This comprehensive review provides an overview of the latest CRISPR/Cas-based therapeutic and vaccine strategies employed to combat human viral infections. Additionally, we discuss significant challenges and offer insights into the future prospects of this cutting-edge gene editing technology.
Collapse
Affiliation(s)
- Farzaneh Zahedipour
- Microbiology Department, Medical Sciences Branch, Islamic Azad University (IAU), Tehran, Iran
| | - Fatemeh Zahedipour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Rocchi A, Sariyer IK, Berger JR. Revisiting JC virus and progressive multifocal leukoencephalopathy. J Neurovirol 2023; 29:524-537. [PMID: 37659983 DOI: 10.1007/s13365-023-01164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 09/04/2023]
Abstract
Since its definition 65 years ago, progressive multifocal leukoencephalopathy (PML) has continued to devastate a growing population of immunosuppressed patients despite major advances in our understanding of the causative JC virus (JCV). Unless contained by the immune system, JCV lyses host oligodendrocytes collateral to its life cycle, leading to demyelination, neurodegeneration, and death. Novel treatments have stagnated in the absence of an animal model while current antiviral agents fail to address the now ubiquitous polyomavirus. In this review, we highlight the established pathogenesis by which JCV infection progresses to PML, highlighting major challenges that must be overcome to eliminate the underlying virus and, therefore, the debilitating disease.
Collapse
Affiliation(s)
- Angela Rocchi
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Ilker K Sariyer
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| | - Joseph R Berger
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Convention Avenue, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Dong Y, Huang Y, Fan H, Song L, An X, Xu S, Li M, Tong Y. Characterization, complete genome sequencing, and CRISPR/Cas9 system-based decontamination of a novel Escherichia coli phage TR1 from fermentation substrates. Front Microbiol 2023; 14:1230775. [PMID: 37637117 PMCID: PMC10450929 DOI: 10.3389/fmicb.2023.1230775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Phage contamination has become a major concern for industrial bacteria, such as Escherichia coli BL21(DE3), used in fermentation processes. Herein, we report a CRISPR/Cas9 defense system-based strategy to precisely prey and degrade phage DNA to decontaminate target phages. First, we isolated a novel phage from fermentation substrates with BL21(DE3) as the host, named TR1. It showed a typical podovirus morphology with a head diameter of 51.46 ± 2.04 nm and a tail length of 9.31 ± 2.77 nm. The burst size of phage TR1 was 151 PFU/cell, suggesting its strong fecundity in the fermentation system. Additionally, whole-genome sequencing revealed that phage TR1 has a DNA genome of 44,099 bp in length with a 43.8% GC content, encoding a total of 68 open reading frames. Comparative genomics and phylogenetic analysis designated this phage to be a new species of the genus Christensenvirus. To counteract phage TR1, we employed the CRISPR/Cas9 system-based strategy and constructed two phage-resistant E. coli strains, BL21-C and BL21-T, based on conserved genes. Both EOP assays and growth curves indicated strong phage resistance of the recombinant strains, without affecting cell growth. Therefore, this study aimed to provide a resilient strategy to respond to ever-changing phages and ongoing phage-host arm race in industrial fermentation environments by the personalized design of spacers in the recombinant CRISPR/Cas system-containing plasmid. More importantly, our research sparks the use of phage defense mechanism to prevent phage contamination in extensive biotechnological applications.
Collapse
Affiliation(s)
- Yuqi Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yunfei Huang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shan Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Qinhuangdao Bohai Biological Research Institute, Beijing University of Chemical Technology, Qinhuangdao, Hebei, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
11
|
Ali A, Zafar MM, Farooq Z, Ahmed SR, Ijaz A, Anwar Z, Abbas H, Tariq MS, Tariq H, Mustafa M, Bajwa MH, Shaukat F, Razzaq A, Maozhi R. Breakthrough in CRISPR/Cas system: Current and future directions and challenges. Biotechnol J 2023; 18:e2200642. [PMID: 37166088 DOI: 10.1002/biot.202200642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Targeted genome editing (GE) technology has brought a significant revolution in fictional genomic research and given hope to plant scientists to develop desirable varieties. This technology involves inducing site-specific DNA perturbations that can be repaired through DNA repair pathways. GE products currently include CRISPR-associated nuclease DNA breaks, prime editors generated DNA flaps, single nucleotide-modifications, transposases, and recombinases. The discovery of double-strand breaks, site-specific nucleases (SSNs), and repair mechanisms paved the way for targeted GE, and the first-generation GE tools, ZFNs and TALENs, were successfully utilized in plant GE. However, CRISPR-Cas has now become the preferred tool for GE due to its speed, reliability, and cost-effectiveness. Plant functional genomics has benefited significantly from the widespread use of CRISPR technology for advancements and developments. This review highlights the progress made in CRISPR technology, including multiplex editing, base editing (BE), and prime editing (PE), as well as the challenges and potential delivery mechanisms.
Collapse
Affiliation(s)
- Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | - Zunaira Farooq
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Huma Abbas
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sayyam Tariq
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Hala Tariq
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mahwish Mustafa
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | | | - Fiza Shaukat
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Razzaq
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ren Maozhi
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of, Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu, China
| |
Collapse
|
12
|
Tian R, Cao C, He D, Dong D, Sun L, Liu J, Chen Y, Wang Y, Huang Z, Li L, Jin Z, Huang Z, Xie H, Zhao T, Zhong C, Hong Y, Hu Z. Massively parallel CRISPR off-target detection enables rapid off-target prediction model building. MED 2023; 4:478-492.e6. [PMID: 37279759 DOI: 10.1016/j.medj.2023.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 04/16/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND CRISPR (clustered regularly interspaced short palindromic repeats) genome editing holds tremendous potential in clinical translation. However, the off-target effect has always been a major concern. METHODS Here, we have developed a novel sensitive and specific off-target detection method, AID-seq (adaptor-mediated off-target identification by sequencing), that can comprehensively and faithfully detect the low-frequency off targets generated by different CRISPR nucleases (including Cas9 and Cas12a). FINDINGS Based on AID-seq, we developed a pooled strategy to simultaneously identify the on/off targets of multiple gRNAs, as well as using mixed human and human papillomavirus (HPV) genomes to screen the most efficient and safe targets from 416 HPV gRNA candidates for antiviral therapy. Moreover, we used the pooled strategy with 2,069 single-guide RNAs (sgRNAs) at a pool size of about 500 to profile the properties of our newly discovered CRISPR, FrCas9. Importantly, we successfully built an off-target detection model using these off-target data via the CRISPR-Net deep learning method (area under the receiver operating characteristic curve [AUROC] = 0.97, area under the precision recall curve [AUPRC] = 0.29). CONCLUSIONS To our knowledge, AID-seq is the most sensitive and specific in vitro off-target detection method to date. And the pooled AID-seq strategy can be used as a rapid and high-throughput platform to select the best sgRNAs and characterize the properties of new CRISPRs. FUNDING This work was supported by The National Natural Science Foundation of China (grant nos. 32171465 and 82102392), the General Program of Natural Science Foundation of Guangdong Province of China (grant no. 2021A1515012438), Guangdong Basic and Applied Basic Research Foundation (grant no. 2020A1515110170), and the National Ten Thousand Plan-Young Top Talents of China (grant no. 80000-41180002).
Collapse
Affiliation(s)
- Rui Tian
- Generulor Co., Ltd., Zhuhai 519000, Guangdong, China.
| | - Chen Cao
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Dan He
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Dirong Dong
- Department of Gynecologic Oncology, Women and Children's Hospital Affiliated to Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Lili Sun
- Department of Gynecologic Oncology, Women and Children's Hospital Affiliated to Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Jiashuo Liu
- Department of Gynecological Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Ye Chen
- Department of Gynecological Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yuyan Wang
- Department of Gynecological Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zheying Huang
- Department of Gynecological Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Lifang Li
- Department of Gynecological Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhuang Jin
- Department of Gynecological Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhaoyue Huang
- Department of Gynecological Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Hongxian Xie
- Generulor Co., Ltd., Zhuhai 519000, Guangdong, China
| | - Tingting Zhao
- Generulor Co., Ltd., Zhuhai 519000, Guangdong, China
| | - Chaoyue Zhong
- Generulor Co., Ltd., Zhuhai 519000, Guangdong, China
| | - Yongfeng Hong
- Generulor Co., Ltd., Zhuhai 519000, Guangdong, China
| | - Zheng Hu
- Department of Gynecologic Oncology, Women and Children's Hospital Affiliated to Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.
| |
Collapse
|
13
|
Wang HM, Qiao YY, Cai BY, Tan J, Na L, Wang Y, Lu H, Tang YD. Genome editing of pseudorabies virus in the CRISPR/Cas9 era: a mini-review. Front Vet Sci 2023; 10:1237186. [PMID: 37476821 PMCID: PMC10354360 DOI: 10.3389/fvets.2023.1237186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Pseudorabies virus (PRV) is an important swine virus that has a significant impact on the global swine industry. PRV is a member of the herpesvirus family, specifically the alphaherpesvirus subfamily, and has been extensively utilized as a prototype herpesvirus. Notably, recent studies have reported that PRV sporadically spills over into humans. The PRV genome is approximately 150 kb in size and is difficult to manipulate at the genomic level. The development of clustered regularly interspaced short palindromic repeat-associated protein (CRISPR/Cas9) technology has revolutionized PRV genome editing. CRISPR/Cas9 has been widely used in the construction of reporter viruses, knock-out/knock-in of genes of interest, single virus tracking and antiviral strategies. Most importantly, for vaccine development, virulence gene knockout PRV vaccine candidates can be obtained within 2 weeks using CRISPR/Cas9. In this mini-review, we provide a concise overview of the application of CRISPR/Cas9 in PRV research and mainly share our experience with methods for efficiently editing the PRV genome. Through this review, we hope to give researchers better insight into the genome editing of pseudorabies virus.
Collapse
Affiliation(s)
- Hai-Ming Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Yang-Yang Qiao
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Bing-Yan Cai
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Ju Tan
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Lei Na
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Vocational College Agriculture and Forestry, Taizhou, Jiangsu, China
| | - Yu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hui Lu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China
| |
Collapse
|
14
|
The Potential Revolution of Cancer Treatment with CRISPR Technology. Cancers (Basel) 2023; 15:cancers15061813. [PMID: 36980699 PMCID: PMC10046289 DOI: 10.3390/cancers15061813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Immuno-oncology (IO) and targeted therapies, such as small molecule inhibitors, have changed the landscape of cancer treatment and prognosis; however, durable responses have been difficult to achieve due to tumor heterogeneity, development of drug resistance, and adverse effects that limit dosing and prolonged drug use. To improve upon the current medicinal armamentarium, there is an urgent need for new ways to understand, reverse, and treat carcinogenesis. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) 9 is a powerful and efficient tool for genome editing that has shown significant promise for developing new therapeutics. While CRISPR/Cas9 has been successfully used for pre-clinical cancer research, its use in the clinical setting is still in an early stage of development. The purpose of this review is to describe the CRISPR technology and to provide an overview of its current applications and future potential as cancer therapies.
Collapse
|
15
|
Aimola G, Wight DJ, Flamand L, Kaufer BB. Excision of Integrated Human Herpesvirus 6A Genomes Using CRISPR/Cas9 Technology. Microbiol Spectr 2023; 11:e0076423. [PMID: 36926973 PMCID: PMC10100985 DOI: 10.1128/spectrum.00764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Human herpesviruses 6A and 6B are betaherpesviruses that can integrate their genomes into the telomeres of latently infected cells. Integration can also occur in germ cells, resulting in individuals who harbor the integrated virus in every cell of their body and can pass it on to their offspring. This condition is termed inherited chromosomally integrated HHV-6 (iciHHV-6) and affects about 1% of the human population. The integrated HHV-6A/B genome can reactivate in iciHHV-6 patients and in rare cases can also cause severe diseases including encephalitis and graft-versus-host disease. Until now, it has remained impossible to prevent virus reactivation or remove the integrated virus genome. Therefore, we developed a system that allows the removal of HHV-6A from the host telomeres using the CRISPR/Cas9 system. We used specific guide RNAs (gRNAs) targeting the direct repeat region at the ends of the viral genome to remove the virus from latently infected cells generated in vitro and iciHHV-6A patient cells. Fluorescence-activated cell sorting (FACS), quantitative PCR (qPCR), and fluorescence in situ hybridization (FISH) analyses revealed that the virus genome was efficiently excised and lost in most cells. Efficient excision was achieved with both constitutive and transient expression of Cas9. In addition, reverse transcription-qPCR (RT-qPCR) revealed that the virus genome did not reactivate upon excision. Taken together, our data show that our CRISPR/Cas9 approach allows efficient removal of the integrated virus genome from host telomeres. IMPORTANCE Human herpesvirus 6 (HHV-6) infects almost all humans and integrates into the telomeres of latently infected cells to persist in the host for life. In addition, HHV-6 can also integrate into the telomeres of germ cells, which results in about 80 million individuals worldwide who carry the virus in every cell of their body and can pass it on to their offspring. In this study, we develop the first system that allows excision of the integrated HHV-6 genome from host telomeres using CRISPR/Cas9 technology. Our data revealed that the integrated HHV-6 genome can be efficiently removed from the telomeres of latently infected cells and cells of patients harboring the virus in their germ line. Virus removal could be achieved with both stable and transient Cas9 expression, without inducing viral reactivation.
Collapse
Affiliation(s)
- Giulia Aimola
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Darren J. Wight
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Louis Flamand
- Division of Infectious and Immune Diseases, CHU de Quebec Research Center-Laval University, Québec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Laval University, Québec, Canada
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
16
|
Lui WY, Bharti A, Wong NHM, Jangra S, Botelho MG, Yuen KS, Jin DY. Suppression of cGAS- and RIG-I-mediated innate immune signaling by Epstein-Barr virus deubiquitinase BPLF1. PLoS Pathog 2023; 19:e1011186. [PMID: 36802409 PMCID: PMC9983872 DOI: 10.1371/journal.ppat.1011186] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/03/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Epstein-Barr virus (EBV) has developed effective strategies to evade host innate immune responses. Here we reported on mitigation of type I interferon (IFN) production by EBV deubiquitinase (DUB) BPLF1 through cGAS-STING and RIG-I-MAVS pathways. The two naturally occurring forms of BPLF1 exerted potent suppressive effect on cGAS-STING-, RIG-I- and TBK1-induced IFN production. The observed suppression was reversed when DUB domain of BPLF1 was rendered catalytically inactive. The DUB activity of BPLF1 also facilitated EBV infection by counteracting cGAS-STING- and TBK1-mediated antiviral defense. BPLF1 associated with STING to act as an effective DUB targeting its K63-, K48- and K27-linked ubiquitin moieties. BPLF1 also catalyzed removal of K63- and K48-linked ubiquitin chains on TBK1 kinase. The DUB activity of BPLF1 was required for its suppression of TBK1-induced IRF3 dimerization. Importantly, in cells stably carrying EBV genome that encodes a catalytically inactive BPLF1, the virus failed to suppress type I IFN production upon activation of cGAS and STING. This study demonstrated IFN antagonism of BPLF1 mediated through DUB-dependent deubiquitination of STING and TBK1 leading to suppression of cGAS-STING and RIG-I-MAVS signaling.
Collapse
Affiliation(s)
- Wai-Yin Lui
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
| | - Aradhana Bharti
- Faculty of Dentistry, the University of Hong Kong, Sai Yin Pun, Hong Kong
| | - Nok-Hei Mickey Wong
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
| | - Sonia Jangra
- Faculty of Dentistry, the University of Hong Kong, Sai Yin Pun, Hong Kong
| | - Michael G. Botelho
- Faculty of Dentistry, the University of Hong Kong, Sai Yin Pun, Hong Kong
| | - Kit-San Yuen
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
- School of Nursing, Tung Wah College, Kowloon, Hong Kong
- * E-mail: (K-SY); (D-YJ)
| | - Dong-Yan Jin
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
- * E-mail: (K-SY); (D-YJ)
| |
Collapse
|
17
|
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) renaissance was catalysed by the discovery that RNA-guided prokaryotic CRISPR-associated (Cas) proteins can create targeted double-strand breaks in mammalian genomes. This finding led to the development of CRISPR systems that harness natural DNA repair mechanisms to repair deficient genes more easily and precisely than ever before. CRISPR has been used to knock out harmful mutant genes and to fix errors in coding sequences to rescue disease phenotypes in preclinical studies and in several clinical trials. However, most genetic disorders result from combinations of mutations, deletions and duplications in the coding and non-coding regions of the genome and therefore require sophisticated genome engineering strategies beyond simple gene knockout. To overcome this limitation, the toolbox of natural and engineered CRISPR-Cas systems has been dramatically expanded to include diverse tools that function in human cells for precise genome editing and epigenome engineering. The application of CRISPR technology to edit the non-coding genome, modulate gene regulation, make precise genetic changes and target infectious diseases has the potential to lead to curative therapies for many previously untreatable diseases.
Collapse
Affiliation(s)
- Michael Chavez
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Paul B Finn
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
18
|
Martinez MG, Smekalova E, Combe E, Gregoire F, Zoulim F, Testoni B. Gene Editing Technologies to Target HBV cccDNA. Viruses 2022; 14:v14122654. [PMID: 36560658 PMCID: PMC9787400 DOI: 10.3390/v14122654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Hepatitis B virus (HBV) remains a significant cause of mortality and morbidity worldwide, since chronic HBV infection is associated with elevated risk of cirrhosis and hepatocellular carcinoma. Current licensed therapies against HBV efficiently suppress viral replication; however, they do not have significant effects on the intrahepatic covalently closed circular DNA (cccDNA) of the viral minichromosome responsible for viral persistence. Thus, life-long treatment is required to avoid viral rebound. There is a significant need for novel therapies that can reduce, silence or eradicate cccDNA, thus preventing HBV reemergence after treatment withdrawal. In this review, we discuss the latest developments and applications of gene editing and related approaches for directly targeting HBV DNA and, more specifically, cccDNA in infected hepatocytes.
Collapse
Affiliation(s)
| | | | - Emmanuel Combe
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France
| | | | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France
- Hospices Civils de Lyon (HCL), 69002 Lyon, France
- Université Claude-Bernard Lyon 1 (UCBL1), 69008 Lyon, France
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France
- Université Claude-Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Correspondence:
| |
Collapse
|
19
|
Hawsawi YM, Shams A, Theyab A, Siddiqui J, Barnawee M, Abdali WA, Marghalani NA, Alshelali NH, Al-Sayed R, Alzahrani O, Alqahtani A, Alsulaiman AM. The State-of-the-Art of Gene Editing and its Application to Viral Infections and Diseases Including COVID-19. Front Cell Infect Microbiol 2022; 12:869889. [PMID: 35782122 PMCID: PMC9241565 DOI: 10.3389/fcimb.2022.869889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
Gene therapy delivers a promising hope to cure many diseases and defects. The discovery of gene-editing technology fueled the world with valuable tools that have been employed in various domains of science, medicine, and biotechnology. Multiple means of gene editing have been established, including CRISPR/Cas, ZFNs, and TALENs. These strategies are believed to help understand the biological mechanisms of disease progression. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been designated the causative virus for coronavirus disease 2019 (COVID-19) that emerged at the end of 2019. This viral infection is a highly pathogenic and transmissible disease that caused a public health pandemic. As gene editing tools have shown great success in multiple scientific and medical areas, they could eventually contribute to discovering novel therapeutic and diagnostic strategies to battle the COVID-19 pandemic disease. This review aims to briefly highlight the history and some of the recent advancements of gene editing technologies. After that, we will describe various biological features of the CRISPR-Cas9 system and its diverse implications in treating different infectious diseases, both viral and non-viral. Finally, we will present current and future advancements in combating COVID-19 with a potential contribution of the CRISPR system as an antiviral modality in this battle.
Collapse
Affiliation(s)
- Yousef M. Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, Mecca, Saudi Arabia
| | - Abdulrahman Theyab
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Jumana Siddiqui
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mawada Barnawee
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Wed A. Abdali
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Nada A. Marghalani
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Nada H. Alshelali
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Rawan Al-Sayed
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Othman Alzahrani
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Alanoud Alqahtani
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
20
|
Kim TH, Lee SW. Therapeutic Application of Genome Editing Technologies in Viral Diseases. Int J Mol Sci 2022; 23:5399. [PMID: 35628210 PMCID: PMC9140762 DOI: 10.3390/ijms23105399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Abstract
Viral infections can be fatal and consequently, they are a serious threat to human health. Therefore, the development of vaccines and appropriate antiviral therapeutic agents is essential. Depending on the virus, it can cause an acute or a chronic infection. The characteristics of viruses can act as inhibiting factors for the development of appropriate treatment methods. Genome editing technology, including the use of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) proteins, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), is a technology that can directly target and modify genomic sequences in almost all eukaryotic cells. The development of this technology has greatly expanded its applicability in life science research and gene therapy development. Research on the use of this technology to develop therapeutics for viral diseases is being conducted for various purposes, such as eliminating latent infections or providing resistance to new infections. In this review, we will look at the current status of the development of viral therapeutic agents using genome editing technology and discuss how this technology can be used as a new treatment approach for viral diseases.
Collapse
Affiliation(s)
- Tae Hyeong Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea;
| | - Seong-Wook Lee
- Department of Bioconvergence Engineering, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Korea
- R&D Center, Rznomics Inc., Seongnam 13486, Korea
| |
Collapse
|
21
|
A Recombinant Turkey Herpesvirus Expressing the F Protein of Newcastle Disease Virus Genotype XII Generated by NHEJ-CRISPR/Cas9 and Cre-LoxP Systems Confers Protection against Genotype XII Challenge in Chickens. Viruses 2022; 14:v14040793. [PMID: 35458523 PMCID: PMC9030537 DOI: 10.3390/v14040793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, we developed a new recombinant virus rHVT-F using a Turkey herpesvirus (HVT) vector, expressing the fusion (F) protein of the genotype XII Newcastle disease virus (NDV) circulating in Peru. We evaluated the viral shedding and efficacy against the NDV genotype XII challenge in specific pathogen-free (SPF) chickens. The F protein expression cassette was inserted in the unique long (UL) UL45–UL46 intergenic locus of the HVT genome by utilizing a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 gene-editing technology via a non-homologous end joining (NHEJ) repair pathway. The rHVT-F virus, which expressed the F protein stably in vitro and in vivo, showed similar growth kinetics to the wild-type HVT (wtHVT) virus. The F protein expression of the rHVT-F virus was detected by an indirect immunofluorescence assay (IFA), Western blotting, and a flow cytometry assay. The presence of an NDV-specific IgY antibody was detected in serum samples by an enzyme-linked immunosorbent assay (ELISA) in SPF chickens vaccinated with the rHVT-F virus. In the challenge experiment, the rHVT-F vaccine fully protects a high, and significantly reduced, virus shedding in oral at 5 days post-challenge (dpc). In conclusion, this new rHVT-F vaccine candidate is capable of fully protecting SPF chickens against the genotype XII challenge.
Collapse
|
22
|
Najafi S, Tan SC, Aghamiri S, Raee P, Ebrahimi Z, Jahromi ZK, Rahmati Y, Sadri Nahand J, Piroozmand A, Jajarmi V, Mirzaei H. Therapeutic potentials of CRISPR-Cas genome editing technology in human viral infections. Biomed Pharmacother 2022; 148:112743. [PMID: 35228065 PMCID: PMC8872819 DOI: 10.1016/j.biopha.2022.112743] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Viral infections are a common cause of morbidity worldwide. The emergence of Coronavirus Disease 2019 (COVID-19) has led to more attention to viral infections and finding novel therapeutics. The CRISPR-Cas9 system has been recently proposed as a potential therapeutic tool for the treatment of viral diseases. Here, we review the research progress in the use of CRISPR-Cas technology for treating viral infections, as well as the strategies for improving the delivery of this gene-editing tool in vivo. Key challenges that hinder the widespread clinical application of CRISPR-Cas9 technology are also discussed, and several possible directions for future research are proposed.
Collapse
Affiliation(s)
- Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Ebrahimi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Kargar Jahromi
- Central Research Laboratory, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Yazdan Rahmati
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Piroozmand
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Correspondence to: Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19395-4818, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,Corresponding author at: Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
23
|
Liu CY, Jin M, Guo H, Zhao HZ, Hou LN, Yang Y, Wen YJ, Wang FX. Concurrent Gene Insertion, Deletion, and Inversion during the Construction of a Novel Attenuated BoHV-1 Using CRISPR/Cas9 Genome Editing. Vet Sci 2022; 9:vetsci9040166. [PMID: 35448664 PMCID: PMC9029512 DOI: 10.3390/vetsci9040166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Bovine herpesvirus type I (BoHV-1) is an important pathogen that causes respiratory disease in bovines. The disease is prevalent worldwide, causing huge economic losses to the cattle industry. Gene-deficient vaccines with immunological markers to distinguish them from wild-type infections have become a mainstream in vaccine research and development. In order to knock out the gE gene BoHV-1, we employed the CRISPR/Cas9 system. Interesting phenomena were observed at the single guide RNA (sgRNA) splicing site, including gene insertion, gene deletion, and the inversion of 5′ and 3′ ends of the sgRNA splicing site. In addition to the deletion of the gE gene, the US9 gene, and the non-coding regions of gE and US9, it was found that the US4 sequence, US6 sequence, and part of the US7 sequence were inserted into the EGFP sgRNA splicing site and the 3′ end of the EGFP sequence was deleted. Similar to the BoHV-1 parent, the BoHV-1 mutants induced high neutralizing antibodies titer levels in mice. In summary, we developed a series of recombinant gE-deletion BoHV-1 samples using the CRISPR/Cas9 gene editing system. The mutant viruses with EGFP+ or EGFP− will lay the foundation for research on BoHV-1 and vaccine development in the future.
Collapse
Affiliation(s)
- Chun-Yu Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.-Y.L.); (M.J.); (H.G.); (H.-Z.Z.); (L.-N.H.)
| | - Ming Jin
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.-Y.L.); (M.J.); (H.G.); (H.-Z.Z.); (L.-N.H.)
| | - Hao Guo
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.-Y.L.); (M.J.); (H.G.); (H.-Z.Z.); (L.-N.H.)
| | - Hong-Zhe Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.-Y.L.); (M.J.); (H.G.); (H.-Z.Z.); (L.-N.H.)
| | - Li-Na Hou
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.-Y.L.); (M.J.); (H.G.); (H.-Z.Z.); (L.-N.H.)
| | - Yang Yang
- School of Life Sciences, Inner Mongolia University, Hohhot 010018, China;
| | - Yong-Jun Wen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.-Y.L.); (M.J.); (H.G.); (H.-Z.Z.); (L.-N.H.)
- Correspondence: (Y.-J.W.); (F.-X.W.)
| | - Feng-Xue Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.-Y.L.); (M.J.); (H.G.); (H.-Z.Z.); (L.-N.H.)
- Correspondence: (Y.-J.W.); (F.-X.W.)
| |
Collapse
|
24
|
Afzal S, Fiaz K, Noor A, Sindhu AS, Hanif A, Bibi A, Asad M, Nawaz S, Zafar S, Ayub S, Hasnain SB, Shahid M. Interrelated Oncogenic Viruses and Breast Cancer. Front Mol Biosci 2022; 9:781111. [PMID: 35419411 PMCID: PMC8995849 DOI: 10.3389/fmolb.2022.781111] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/15/2022] [Indexed: 12/23/2022] Open
Abstract
Breast Cancer is a multifactorial disease and recent evidence that viruses have a greater role in its aetiology and pathophysiology than previously hypothesized, has garnered a lot of attention in the past couple of years. After the role of Mouse Mammary Tumour Virus (MMTV) in the oncogenesis of breast cancer has been proved in mice, search for similar viruses found quite a plausible relation of Human Papilloma Virus (HPV), Epstein–Barr virus (EBV), and Bovine Leukaemia Virus (BLV) with breast cancer. However, despite practical efforts to provide some clarity in this issue, the evidence that viruses cause breast cancer still remains inconclusive. Therefore, this article aims to clarify some ambiguity and elucidate the correlation of breast cancer and those particular viruses which are found to bring about the development of tumorigenesis by a previous infection or by their own oncogenic ability to manipulate the molecular mechanisms and bypass the immune system of the human body. Although many studies have reported, both, the individual and co-existing presence of HPV, EBV, MMTV, and BLV in patient sample tissues, particularly in Western women, and proposed oncogenic mechanisms, majority of the collective survey of literature fails to provide a delineated and strong conclusive evidence that viruses do, in fact, cause breast cancer. Measures to prevent these viral infections may curb breast cancer cases, especially in the West. More studies are needed to provide a definite conclusion.
Collapse
|
25
|
V5 and GFP Tagging of Viral Gene pp38 of Marek's Disease Vaccine Strain CVI988 Using CRISPR/Cas9 Editing. Viruses 2022; 14:v14020436. [PMID: 35216029 PMCID: PMC8879161 DOI: 10.3390/v14020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Marek's disease virus (MDV) is a member of alphaherpesviruses associated with Marek's disease, a highly contagious neoplastic disease in chickens. The availability of the complete sequence of the viral genome allowed for the identification of major genes associated with pathogenicity using different techniques, such as bacterial artificial chromosome (BAC) mutagenesis and the recent powerful clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-based editing system. Thus far, most studies on MDV genome editing using the CRISPR/Cas9 system have focused on gene deletion. However, analysis of the expression and interactions of the viral proteins during virus replication in infected cells and tumor cells is also important for studying its role in MDV pathogenesis. The unavailability of antibodies against most of the MDV proteins has hindered the progress in such studies. This prompted us to develop pipelines to tag MDV genes as an alternative method for this purpose. Here we describe the application of CRISPR/Cas9 gene-editing approaches to tag the phosphoprotein 38 (pp38) gene of the MDV vaccine strain CVI988 with both V5 and green fluorescent protein (GFP). This rapid and efficient viral-gene-tagging technique can overcome the shortage of specific antibodies and speed up the MDV gene function studies significantly, leading to a better understanding of the molecular mechanisms of MDV pathogenesis.
Collapse
|
26
|
Wu BW, Yee MB, Goldstein RS, Kinchington PR. Antiviral Targeting of Varicella Zoster Virus Replication and Neuronal Reactivation Using CRISPR/Cas9 Cleavage of the Duplicated Open Reading Frames 62/71. Viruses 2022; 14:v14020378. [PMID: 35215971 PMCID: PMC8880005 DOI: 10.3390/v14020378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/29/2022] Open
Abstract
Varicella Zoster Virus (VZV) causes Herpes Zoster (HZ), a common debilitating and complicated disease affecting up to a third of unvaccinated populations. Novel antiviral treatments for VZV reactivation and HZ are still in need. Here, we evaluated the potential of targeting the replicating and reactivating VZV genome using Clustered Regularly Interspaced Short Palindromic Repeat-Cas9 nucleases (CRISPR/Cas9) delivered by adeno-associated virus (AAV) vectors. After AAV serotype and guide RNA (gRNA) optimization, we report that a single treatment with AAV2-expressing Staphylococcus aureus CRISPR/Cas9 (saCas9) with gRNA to the duplicated and essential VZV genes ORF62/71 (AAV2-62gRsaCas9) greatly reduced VZV progeny yield and cell-to-cell spread in representative epithelial cells and in lytically infected human embryonic stem cell (hESC)-derived neurons. In contrast, AAV2-62gRsaCas9 did not reduce the replication of a recombinant virus mutated in the ORF62 targeted sequence, establishing that antiviral effects were a consequence of VZV-genome targeting. Delivery to latently infected and reactivation-induced neuron cultures also greatly reduced infectious-virus production. These results demonstrate the potential of AAV-delivered genome editors to limit VZV productive replication in epithelial cells, infected human neurons, and upon reactivation. The approach could be developed into a strategy for the treatment of VZV disease and virus spread in HZ.
Collapse
Affiliation(s)
- Betty W. Wu
- Graduate Program in Microbiology and Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Michael B. Yee
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | | | - Paul R. Kinchington
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Correspondence: ; Tel.: +1-412-647-6319
| |
Collapse
|
27
|
Targeted deletion of glycoprotein B gene by CRISPR/Cas9 nuclease inhibits Gallid herpesvirus type 3 in dually-infected Marek's disease virus-transformed lymphoblastoid cell line MSB-1. J Virol 2022; 96:e0202721. [PMID: 35107377 PMCID: PMC8941929 DOI: 10.1128/jvi.02027-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marek’s disease virus (MDV) is a member of the genus Mardivirus in the subfamily Alphaherpesvirinae. There are three different serotypes of MDV designated as MDV-1 (Gallid herpesvirus type 2), MDV-2 (Gallid herpesvirus type 3), and MDV-3 (Meleagrid herpesvirus 1, herpesvirus of turkeys, HVT). MDV-1 is the only serotype that induces Marek’s disease (MD), a lymphoproliferative disorder resulting in aggressive T-cell lymphomas and paralytic symptoms. In the lymphomas and lymphoblastoid cell lines (LCL) derived from them, MDV establishes latent infection with limited viral gene expression. The latent viral genome in LCL can be activated by co-cultivation with chicken embryo fibroblast (CEF) monolayers. MSB-1, one of the first MDV-transformed LCL established from the splenic lymphoma, is distinct in harboring both the oncogenic MDV-1 and non-oncogenic MDV-2 viruses. Following the successful application of CRISPR/Cas9 editing approach for precise knockdown of the MDV-1 genes in LCL, we describe here the targeted deletion of MDV-2 glycoprotein B (gB) in MSB-1 cells. Due to the essential nature of gB for infectivity, the production of MDV-2 plaques on CEF was completely abolished in the MDV-2-gB-deleted MSB-1 cells. Our study has demonstrated that the CRISPR/Cas9 system can be used for targeted inactivation of the co-infecting MDV-2 without affecting the MDV-1 in the MSB-1 cell line. Successful inactivation of MDV-2 demonstrated here also points toward the possibility of using targeted gene editing as an antiviral strategy against pathogenic MDV-1 and other viruses infecting chickens. IMPORTANCE Marek’s disease (MD) is a lymphoproliferative disease of chickens characterized by rapid-onset lymphomas in multiple organs and by infiltration into peripheral nerves, causing paralysis. Lymphoblastoid cell lines (LCL) derived from MD lymphomas have served as valuable resources to improve understanding of distinct aspects of virus-host interactions in transformed cells including transformation, latency, and reactivation. MDV-transformed LCL MSB-1, derived from spleen lymphoma induced by the BC-1 strain of MDV, has a unique feature of harboring an additional non-pathogenic MDV-2 strain HPRS-24. By targeted deletion of essential gene glycoprotein B from the MDV-2 genome within the MSB-1 cells, we demonstrated the total inhibition of MDV-2 virus replication on co-cultivated CEF, with no effect on MDV-1 replication. The identified viral genes critical for reactivation/inhibition of viruses will be useful as targets for development of de novo disease resistance in chickens to avian pathogens.
Collapse
|
28
|
Morgens DW, Nandakumar D, Didychuk AL, Yang KJ, Glaunsinger BA. A Two-tiered functional screen identifies herpesviral transcriptional modifiers and their essential domains. PLoS Pathog 2022; 18:e1010236. [PMID: 35041709 PMCID: PMC8797222 DOI: 10.1371/journal.ppat.1010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/28/2022] [Accepted: 12/29/2021] [Indexed: 11/19/2022] Open
Abstract
While traditional methods for studying large DNA viruses allow the creation of individual mutants, CRISPR/Cas9 can be used to rapidly create thousands of mutant dsDNA viruses in parallel, enabling the pooled screening of entire viral genomes. Here, we applied this approach to Kaposi’s sarcoma-associated herpesvirus (KSHV) by designing a sgRNA library containing all possible ~22,000 guides targeting the 154 kilobase viral genome, corresponding to one cut site approximately every 8 base pairs. We used the library to profile viral sequences involved in transcriptional activation of late genes, whose regulation involves several well characterized features including dependence on viral DNA replication and a known set of viral transcriptional activators. Upon phenotyping all possible Cas9-targeted viruses for transcription of KSHV late genes we recovered these established regulators and identified a new required factor (ORF46), highlighting the utility of the screening pipeline. By performing targeted deep sequencing of the viral genome to distinguish between knock-out and in-frame alleles created by Cas9, we identify the DNA binding but not catalytic domain of ORF46 to be required for viral DNA replication and thus late gene expression. Our pooled Cas9 tiling screen followed by targeted deep viral sequencing represents a two-tiered screening paradigm that may be widely applicable to dsDNA viruses.
Collapse
Affiliation(s)
- David W. Morgens
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
- * E-mail: (DM); (BG)
| | - Divya Nandakumar
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Allison L. Didychuk
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Kevin J. Yang
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, California, United States of America
| | - Britt A. Glaunsinger
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, UC Berkeley, Berkeley, California, United States of America
- * E-mail: (DM); (BG)
| |
Collapse
|
29
|
Targeting Cancer with CRISPR/Cas9-Based Therapy. Int J Mol Sci 2022; 23:ijms23010573. [PMID: 35008996 PMCID: PMC8745084 DOI: 10.3390/ijms23010573] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a devastating condition characterised by the uncontrolled division of cells with many forms remaining resistant to current treatment. A hallmark of cancer is the gradual accumulation of somatic mutations which drive tumorigenesis in cancerous cells, creating a mutation landscape distinctive to a cancer type, an individual patient or even a single tumour lesion. Gene editing with CRISPR/Cas9-based tools now enables the precise and permanent targeting of mutations and offers an opportunity to harness this technology to target oncogenic mutations. However, the development of safe and effective gene editing therapies for cancer relies on careful design to spare normal cells and avoid introducing other mutations. This article aims to describe recent advancements in cancer-selective treatments based on the CRISPR/Cas9 system, especially focusing on strategies for targeted delivery of the CRISPR/Cas9 machinery to affected cells, controlling Cas9 expression in tissues of interest and disrupting cancer-specific genes to result in selective death of malignant cells.
Collapse
|
30
|
Liu Y, Chen D, Zhang X, Chen S, Yang D, Tang L, Yang X, Wang Y, Luo X, Wang M, Hu Z, Huang Y. Construction of Baculovirus-Inducible CRISPR/Cas9 Antiviral System Targeting BmNPV in Bombyx mori. Viruses 2021; 14:59. [PMID: 35062262 PMCID: PMC8780094 DOI: 10.3390/v14010059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022] Open
Abstract
The silkworm Bombyx mori is an economically important insect. The sericulture industry is seriously affected by pathogen infections. Of these pathogens, Bombyx mori nucleopolyhedrovirus (BmNPV) causes approximately 80% of the total economic losses due to pathogen infections. We previously constructed a BmNPV-specific CRISPR/Cas9 silkworm line with significantly enhanced resistance to BmNPV. In order to optimize the resistance properties and minimize its impact on economic traits, we constructed an inducible CRISPR/Cas9 system for use in transgenic silkworms. We used the 39k promoter, which is induced by viral infection, to express Cas9 and the U6 promoter to express four small guide RNA targeting the genes encoding BmNPV late expression factors 1 and 3 (lef-1 and lef-3, respectively), which are essential for viral DNA replication. The system was rapidly activated when the silkworm was infected and showed considerably higher resistance to BmNPV infection than the wild-type silkworm. The inducible system significantly reduced the development effects due to the constitutive expression of Cas9. No obvious differences in developmental processes or economically important characteristics were observed between the resulting transgenic silkworms and wild-type silkworms. Adoption of this accurate and highly efficient inducible CRISPR/Cas9 system targeting BmNPV DNA replication will result in enhanced antivirus measures during sericulture, and our work also provides insights into the broader application of the CRISPR/Cas9 system in the control of infectious diseases and insect pests.
Collapse
Affiliation(s)
- Yujia Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (Y.L.); (S.C.); (D.Y.); (L.T.); (X.Y.); (Y.W.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongbin Chen
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China;
| | - Xiaoqian Zhang
- China College of Forestry, Shandong Agricultural University, Taian 271018, China;
| | - Shuqing Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (Y.L.); (S.C.); (D.Y.); (L.T.); (X.Y.); (Y.W.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dehong Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (Y.L.); (S.C.); (D.Y.); (L.T.); (X.Y.); (Y.W.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linmeng Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (Y.L.); (S.C.); (D.Y.); (L.T.); (X.Y.); (Y.W.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (Y.L.); (S.C.); (D.Y.); (L.T.); (X.Y.); (Y.W.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaohui Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (Y.L.); (S.C.); (D.Y.); (L.T.); (X.Y.); (Y.W.); (X.L.)
| | - Xingyu Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (Y.L.); (S.C.); (D.Y.); (L.T.); (X.Y.); (Y.W.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (Y.L.); (S.C.); (D.Y.); (L.T.); (X.Y.); (Y.W.); (X.L.)
| |
Collapse
|
31
|
Gowripalan A, Smith SA, Tscharke DC. Selection of Vaccinia Virus Recombinants Using CRISPR/Cas9. Bio Protoc 2021; 11:e4270. [PMID: 35087929 DOI: 10.21769/bioprotoc.4270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/07/2021] [Accepted: 10/26/2021] [Indexed: 11/02/2022] Open
Abstract
The engineering of poxvirus genomes is fundamental to primary and applied virology research. Indeed, recombinant poxviruses form the basis for many novel vaccines and virotherapies but producing and purifying these viruses can be arduous. In recent years, CRISPR/Cas9 has become the favoured approach for genome manipulation due to its speed and high success rate. However, recent data suggests poxvirus genomes are not repaired well following Cas9 cleavage. As a result, CRISPR/Cas9 is inefficient as an editing tool, but very effective as a programmable selection agent. Here, we describe protocols for the generation and enrichment of recombinant vaccinia viruses using targeted Cas9 as a selection tool. This novel use of Cas9 is a simple addition to current homologous recombination-based methods that are widespread in the field, facilitating implementation in laboratories already working with poxviruses. This is also the first method that allows for isolation of new vaccinia viruses in less than a fortnight, without the need to incorporate a marker gene or manipulation of large poxvirus genomes in vitro and reactivation with helper viruses. Whilst this protocol describes applications for laboratory strains of vaccinia virus, it should be readily adaptable to other poxviruses. Graphic abstract: Pipeline for Cas9 selection of recombinant poxviruses.
Collapse
Affiliation(s)
- Anjali Gowripalan
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Stewart A Smith
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
32
|
Yang X, Zhang X, Liu Y, Yang D, Liu Z, Chen K, Tang L, Wang M, Hu Z, Zhang S, Huang Y. Transgenic genome editing-derived antiviral therapy to nucleopolyhedrovirus infection in the industrial strain of the silkworm. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103672. [PMID: 34700022 DOI: 10.1016/j.ibmb.2021.103672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The silkworm (Bombyx mori) is a domesticated and economically important insect. During the whole growth period, silkworm suffers various pathogen infection. Nearly 80% of silk cocoon crop losses are attributed to viral diseases. The circular double-stranded DNA virus Bombyx mori nuclepolyhedrovirus (BmNPV) is the major viral pathogen responsible for massive silkworm death and huge economic losses in the sericulture industry. Up to now, almost all the new strategies for developing immunity against BmNPV are in laboratory strains because of the lack of transgenic technology in industrial silkworm strains. We previously demonstrated that modification of BmNPV genome DNA with the antivirus transgenic CRISPR/Cas9 system effectively improved the resistance of laboratory silkworm strains to viral pathogens. The industrial strains are monovoltine or bivoltine. It is very difficult to break the diapause before microinjection for genetic transformation. Here, we show that the anti-BmNPV transgenic CRISPR/Cas9 system also works in the industrial silkworm strain Jingsong. In this study, we successfully broke diapause and obtained generation-skipping embryos and constructed two TG Jingsong lines. Both lines exhibited significantly enhanced immunity to BmNPV without significant changes in most of the commercially important traits. These results demonstrate that the construction of TG silkworm lines carrying a heritable immune defense system against BmNPV could be an effective strategy to enhance the resistance of industrial silkworm strains to the most devastating DNA virus. The research opened a window for genetic modification of the important strains from laboratory strains to industrial strains.
Collapse
Affiliation(s)
- Xu Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoqian Zhang
- College of Forestry, Shandong Agricultural University, Taian Shandong, 271018, China
| | - Yujia Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dehong Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zulian Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Kai Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Linmeng Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shengxiang Zhang
- College of Forestry, Shandong Agricultural University, Taian Shandong, 271018, China.
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
33
|
The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy. J Adv Res 2021; 40:135-152. [PMID: 36100322 PMCID: PMC9481961 DOI: 10.1016/j.jare.2021.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Due to its high accuracy and efficiency, CRISPR/Cas9 techniques may provide a great chance to treat some gene-related diseases. Researchers used the CRISPR/Cas9 technique to cure or alleviate cancers through different approaches, such as gene therapy and immune therapy. The treatment of ocular diseases by Cas9 has entered into clinical phases.
Background Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is derived from the bacterial innate immune system and engineered as a robust gene-editing tool. Due to the higher specificity and efficiency of CRISPR/Cas9, it has been widely applied to many genetic and non-genetic disease, including cancers, genetic hemolytic diseases, acquired immunodeficiency syndrome, cardiovascular diseases, ocular diseases, and neurodegenerative diseases, and some X-linked diseases. Furthermore, in terms of the therapeutic strategy of cancers, many researchers used the CRISPR/Cas9 technique to cure or alleviate cancers through different approaches, such as gene therapy and immune therapy. Aim of Review Here, we conclude the recent application and clinical trials of CRISPR/Cas9 in non-cancerous diseases and cancers and pointed out some of the problems to be solved. Key Scientific Concepts of Review CRISPR/Cas9, derived from the microbial innate immune system, is developed as a robust gene-editing tool and has been applied widely. Due to its high accuracy and efficiency, CRISPR/Cas9 techniques may provide a great chance to treat some gene-related diseases by disrupting, inserting, correcting, replacing, or blocking genes for clinical application with gene therapy.
Collapse
|
34
|
Zhang H, Qin C, An C, Zheng X, Wen S, Chen W, Liu X, Lv Z, Yang P, Xu W, Gao W, Wu Y. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol Cancer 2021; 20:126. [PMID: 34598686 PMCID: PMC8484294 DOI: 10.1186/s12943-021-01431-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
The 2020 Nobel Prize in Chemistry was awarded to Emmanuelle Charpentier and Jennifer Doudna for the development of the Clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease9 (CRISPR/Cas9) gene editing technology that provided new tools for precise gene editing. It is possible to target any genomic locus virtually using only a complex nuclease protein with short RNA as a site-specific endonuclease. Since cancer is caused by genomic changes in tumor cells, CRISPR/Cas9 can be used in the field of cancer research to edit genomes for exploration of the mechanisms of tumorigenesis and development. In recent years, the CRISPR/Cas9 system has been increasingly used in cancer research and treatment and remarkable results have been achieved. In this review, we introduced the mechanism and development of the CRISPR/Cas9-based gene editing system. Furthermore, we summarized current applications of this technique for basic research, diagnosis and therapy of cancer. Moreover, the potential applications of CRISPR/Cas9 in new emerging hotspots of oncology research were discussed, and the challenges and future directions were highlighted.
Collapse
Affiliation(s)
- Huimin Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chunhong Qin
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Changming An
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,General Hospital, Clinical Medical Academy, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Shuxin Wen
- Department of Otolaryngology Head & Neck Surgery, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, China
| | - Wenjie Chen
- Department of Otolaryngology Head & Neck Surgery, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, China
| | - Xianfang Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, Shandong, China
| | - Zhenghua Lv
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, Shandong, China
| | - Pingchang Yang
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, 518055, Guangdong, China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, 518055, Guangdong, China
| | - Wei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, Shandong, China.
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China. .,General Hospital, Clinical Medical Academy, Shenzhen University, Shenzhen, 518055, Guangdong, China. .,Department of Cell biology and Genetics, Basic Medical School of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China. .,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China. .,General Hospital, Clinical Medical Academy, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
35
|
Suppression of JAK-STAT signaling by Epstein-Barr virus tegument protein BGLF2 through recruitment of SHP1 phosphatase and promotion of STAT2 degradation. J Virol 2021; 95:e0102721. [PMID: 34319780 DOI: 10.1128/jvi.01027-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Some lytic proteins encoded by Epstein-Barr virus (EBV) suppress host interferon (IFN) signaling to facilitate viral replication. In this study we sought to identify and characterize EBV proteins antagonizing IFN signaling. The induction of IFN-stimulated genes (ISGs) by IFN-β was effectively suppressed by EBV. A functional screen was therefore performed to identify IFN-antagonizing proteins encoded by EBV. EBV tegument protein BGLF2 was identified as a potent suppressor of JAK-STAT signaling. This activity was found to be independent of its stimulatory effect on p38 and JNK pathways. Association of BGLF2 with STAT2 resulted in more pronounced K48-linked polyubiquitination and proteasomal degradation of the latter. Mechanistically, BGLF2 promoted the recruitment of SHP1 phosphatase to STAT1 to inhibit its tyrosine phosphorylation. In addition, BGLF2 associated with cullin 1 E3 ubiquitin ligase to facilitate its recruitment to STAT2. Consequently, BGLF2 suppressed ISG induction by IFN-β. Furthermore, BGLF2 also suppressed type II and type III IFN signaling, although the suppressive effect on type II IFN response was milder. When pre-treated with IFN-β, host cells became less susceptible to primary infection of EBV. This phenotype was reversed when expression of BGLF2 was enforced. Finally, genetic disruption of BGLF2 in EBV led to more pronounced induction of ISGs. Taken together, our study unveils the roles of BGLF2 not only in the subversion of innate IFN response but also in lytic infection and reactivation of EBV. Importance Epstein-Barr virus (EBV) is an oncogenic virus associated with the development of lymphoid and epithelial malignancies. EBV has to subvert interferon-mediated host antiviral response to replicate and cause diseases. It is therefore of great interest to identify and characterize interferon-antagonizing proteins produced by EBV. In this study we perform a screen to search for EBV proteins that suppress the action of interferons. We further show that BGLF2 protein of EBV is particularly strong in this suppression. This is achieved by inhibiting two key proteins STAT1 and STAT2 that mediate the antiviral activity of interferons. BGLF2 recruits a host enzyme to remove the phosphate group from STAT1 thereby inactivating its activity. BGLF2 also redirects STAT2 for degradation. A recombinant virus in which BGLF2 gene has been disrupted can activate host interferon response more robustly. Our findings reveal a novel mechanism by which EBV BGLF2 protein suppresses interferon signaling.
Collapse
|
36
|
Siddiqui MF, Kim MM. SIRT7 gene knockout using CRISPR/Cas9 system enhances melanin production in the melanoma cells. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166219. [PMID: 34303808 DOI: 10.1016/j.bbadis.2021.166219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/22/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022]
Abstract
Melanin is a prominent pigment of skin and hair, and its deficiency can cause various disorders such as hair graying and albinism. The improvement of melanin production at a genetic level could offer an effective and permanent solution. Recently, SIRT7 has evoked an interest in the study of hair follicle stem cells, but its role in melanin synthesis remains unclear. In the present study, we have first successfully developed SIRT7 gene KO melanoma cells using the CRISPR/Cas9 system. It was found that the SIRT7 gene KO enhanced melanin production in melanoma cells. To validate the role of SIRT7 in melanin production, RT-PCR, western blot, and immunofluorescence staining assays were performed. The expression levels of melanin-producing genes and proteins (MITF, TRP1, TRP-2, TYR, TH) were significantly increased in SIRT7 gene KO cells compared to normal cells. In addition, melanin production was increased in KO cells higher than in normal cells through the image analysis. All these results suggest that SIRT7 could play an essential role in regulating melanin production, providing an alternative drug target to treat pigmentary disorders.
Collapse
Affiliation(s)
- Mohd Farhan Siddiqui
- Department of Applied Chemistry, Dong-Eui University, Busan 614-714, Republic of Korea
| | - Moon-Moo Kim
- Department of Applied Chemistry, Dong-Eui University, Busan 614-714, Republic of Korea.
| |
Collapse
|
37
|
Sun J, Wang J, Zheng D, Hu X. Advances in therapeutic application of CRISPR-Cas9. Brief Funct Genomics 2021; 19:164-174. [PMID: 31769791 DOI: 10.1093/bfgp/elz031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/04/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) is one of the most versatile and efficient gene editing technologies, which is derived from adaptive immune strategies for bacteria and archaea. With the remarkable development of programmable nuclease-based genome engineering these years, CRISPR-Cas9 system has developed quickly in recent 5 years and has been widely applied in countless areas, including genome editing, gene function investigation and gene therapy both in vitro and in vivo. In this paper, we briefly introduce the mechanisms of CRISPR-Cas9 tool in genome editing. More importantly, we review the recent therapeutic application of CRISPR-Cas9 in various diseases, including hematologic diseases, infectious diseases and malignant tumor. Finally, we discuss the current challenges and consider thoughtfully what advances are required in order to further develop the therapeutic application of CRISPR-Cas9 in the future.
Collapse
Affiliation(s)
- Jinyu Sun
- Sparkfire Scientific Research Group, Nanjing Medical University, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Road, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Donghui Zheng
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
38
|
Huang X, Li X, Yang L, Wang P, Yan J, Nie Z, Gao Y, Li Z, Wen J, Cao X. Construction and optimization of herpes simplex virus vectors for central nervous system gene delivery based on CRISPR/Cas9-mediated genome editing. Curr Gene Ther 2021; 22:66-77. [PMID: 34148538 DOI: 10.2174/1566523219666210618154326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 11/22/2022]
Abstract
AIMS We aim to define parameters affecting the safety and long-term transgene expression of attenuated HSV-1 vectors and optimize the expression cassettes to achieve robust and sustained expression in CNS. BACKGROUND Engineered, attenuated Herpes simplex virus (HSV) vectors are promising vehicles for gene delivery to the peripheral and central nervous systems. The virus latent promoter (LAP) is commonly used to drive exogenous gene expression; however, parameters affecting the safety and long-term transgene expression of attenuated HSV-1 vectors have not been fully understood. OBJECTIVE This study aimed to construct attenuated HSV-1 vectors using the CRISPR-Cas9 system and examine the influence of transgene cassette construction and insertion site on transgene expression and vector safety. METHOD In this study, we used a CRISPR-Cas9 system to accurately and efficiently edit attenuated HSV-1 strain 1716, and constructed two series of recombinant virus LMR and LMRx with different sets of gene cassettes insertion in Exon1(LAP2) and 2.0 kb intron downstream of LAP, respectively. The transgene expression and viral gene transcriptional kinetics were compared in in-vitro cell lines. The reporter gene expression and safety profiles of each vector were further evaluated in the mouse hippocampus gene transduction model. RESULT The in-vitro cell line analysis indicated that the insertion of a gene expression cassette would disrupt virus gene transcription. Mouse hippocampus transducing analysis suggested that complete expression cassette insertion at 2.0 kb intron could achieve robust and longtime gene expression than the other constructs. Recombinants with gene expression cassettes lacked Poly (A), which induced significant neuronal inflammation due to persistent viral antigen expression and microglia activation. CONCLUSION Our results indicated that the integrity of LAT transcripts was not necessary for the establishment of long-term latent expression. Exogenous strong promoters (like cBh promoter) could remain active during latency when placed in Exon1 or 2.0 Kb Intron of LAT locus, although their transcriptional activity declined with time. Consistent with previous research, the foreign gene expression would last much longer when the gene cassette was located downstream of Exon1, which suggested a role of LAP2 in maintaining promoter activity during latency. Besides, over-transcription of the downstream part of LAT may induce continuous activation of the attenuated vectors, suggesting an important role of LAT in maintaining viral reactivation potential.
Collapse
Affiliation(s)
- Xinwei Huang
- Key Laboratory of The Second Affiliated Hospital of Kuming Medical College, Kunming, 650101, China
| | - Xiuqing Li
- Key Laboratory of The Second Affiliated Hospital of Kuming Medical College, Kunming, 650101, China
| | - Lijuan Yang
- Key Laboratory of The Second Affiliated Hospital of Kuming Medical College, Kunming, 650101, China
| | - Pengfei Wang
- Key Laboratory of The Second Affiliated Hospital of Kuming Medical College, Kunming, 650101, China
| | - Jingyuan Yan
- Key Laboratory of The Second Affiliated Hospital of Kuming Medical College, Kunming, 650101, China
| | - Zuqing Nie
- Key Laboratory of The Second Affiliated Hospital of Kuming Medical College, Kunming, 650101, China
| | - Yingzheng Gao
- Key Laboratory of The Second Affiliated Hospital of Kuming Medical College, Kunming, 650101, China
| | - Zhiwei Li
- Key Laboratory of The Second Affiliated Hospital of Kuming Medical College, Kunming, 650101, China
| | - Jie Wen
- Key Laboratory of The Second Affiliated Hospital of Kuming Medical College, Kunming, 650101, China
| | - Xia Cao
- Key Laboratory of The Second Affiliated Hospital of Kuming Medical College, Kunming, 650101, China
| |
Collapse
|
39
|
Abstract
Despite numerous viral outbreaks in the last decade, including a devastating global pandemic, diagnostic and therapeutic technologies remain severely lacking. CRISPR-Cas systems have the potential to address these critical needs in the response against infectious disease. Initially discovered as the bacterial adaptive immune system, these systems provide a unique opportunity to create programmable, sequence-specific technologies for detection of viral nucleic acids and inhibition of viral replication. This review summarizes how CRISPR-Cas systems-in particular the recently discovered DNA-targeting Cas12 and RNA-targeting Cas13, both possessing a unique trans-cleavage activity-are being harnessed for viral diagnostics and therapies. We further highlight the numerous technologies whose development has accelerated in response to the COVID-19 pandemic.
Collapse
Affiliation(s)
- Catherine A. Freije
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA,Ph.D. Program in Virology, Harvard Medical School, Boston, MA 02115, USA,Corresponding author
| | - Pardis C. Sabeti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA,Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA,Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA,Corresponding author
| |
Collapse
|
40
|
Ghorbani A, Hadifar S, Salari R, Izadpanah K, Burmistrz M, Afsharifar A, Eskandari MH, Niazi A, Denes CE, Neely GG. A short overview of CRISPR-Cas technology and its application in viral disease control. Transgenic Res 2021; 30:221-238. [PMID: 33830423 PMCID: PMC8027712 DOI: 10.1007/s11248-021-00247-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) together with CRISPR-associated (Cas) proteins have catalysed a revolution in genetic engineering. Native CRISPR-Cas systems exist in many bacteria and archaea where they provide an adaptive immune response through sequence-specific degradation of an invading pathogen's genome. This system has been reconfigured for use in genome editing, drug development, gene expression regulation, diagnostics, the prevention and treatment of cancers, and the treatment of genetic and infectious diseases. In recent years, CRISPR-Cas systems have been used in the diagnosis and control of viral diseases, for example, CRISPR-Cas12/13 coupled with new amplification techniques to improve the specificity of sequence-specific fluorescent probe detection. Importantly, CRISPR applications are both sensitive and specific and usually only require commonly available lab equipment. Unlike the canonical Cas9 which is guided to double-stranded DNA sites of interest, Cas13 systems target RNA sequences and thus can be employed in strategies directed against RNA viruses or for transcriptional silencing. Many challenges remain for these approach, including issues with specificity and the requirement for better mammalian delivery systems. In this review, we summarize the applications of CRISPR-Cas systems in controlling mammalian viral infections. Following necessary improvements, it is expected that CRISPR-Cas systems will be used effectively for such applications in the future.
Collapse
Affiliation(s)
- Abozar Ghorbani
- Plant Virology Research Centre, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Shima Hadifar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Roya Salari
- Institute of Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Michal Burmistrz
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-089, Warsaw, Poland
| | - Alireza Afsharifar
- Plant Virology Research Centre, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Christopher E Denes
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW, 2006, Australia
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
41
|
Escalona‐Noguero C, López‐Valls M, Sot B. CRISPR/Cas technology as a promising weapon to combat viral infections. Bioessays 2021; 43:e2000315. [PMID: 33569817 PMCID: PMC7995209 DOI: 10.1002/bies.202000315] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The versatile clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has emerged as a promising technology for therapy and molecular diagnosis. It is especially suited for overcoming viral infections outbreaks, since their effective control relies on an efficient treatment, but also on a fast diagnosis to prevent disease dissemination. The CRISPR toolbox offers DNA- and RNA-targeting nucleases that constitute dual weapons against viruses. They allow both the manipulation of viral and host genomes for therapeutic purposes and the detection of viral nucleic acids in "Point of Care" sensor devices. Here, we thoroughly review recent advances in the use of the CRISPR/Cas system for the treatment and diagnosis of viral deleterious infections such as HIV or SARS-CoV-2, examining their strengths and limitations. We describe the main points to consider when designing CRISPR antiviral strategies and the scientific efforts to develop more sensitive CRISPR-based viral detectors. Finally, we discuss future prospects to improve both applications. Also see the video abstract here: https://www.youtube.com/watch?v=C0z1dLpJWl4.
Collapse
Affiliation(s)
| | | | - Begoña Sot
- Fundación IMDEA‐NanocienciaMadridSpain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)MadridSpain
| |
Collapse
|
42
|
Randhawa S. CRISPR-Cas9 in cancer therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:129-163. [PMID: 34127191 DOI: 10.1016/bs.pmbts.2021.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is a disease mainly caused by an accumulation of mutations in cells. Consequently, correcting those genetic aberrations could be a potential treatment strategy. The traditional route for cancer drug development is tedious, laborious, and time-consuming. Due to target identification, drug formulation, pre-clinical testing, clinical testing, and regulatory hurdles, on average, it takes 10-15 years for a cancer drug to go from target discovery to a marketable oncology drug. The advent of CRISPR-Cas9 technology has greatly expedited this procedure. CRISPR-Cas9 has single-handedly accelerated target identification and pre-clinical testing. Furthermore, CRISPR-Cas9 has also been used in ex vivo editing of T-cells to specifically target tumor cells. In this chapter, we will discuss the various ways in which CRISPR-Cas9 has been used for the betterment of the cancer drug development process. Additionally, we will discuss various ways in which it is currently being used as therapy and the drawbacks which restrict the use of this groundbreaking technology as direct therapy.
Collapse
|
43
|
The evolution and history of gene editing technologies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 178:1-62. [PMID: 33685594 DOI: 10.1016/bs.pmbts.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Scientific enquiry must be the driving force of research. This sentiment is manifested as the profound impact gene editing technologies are having in our current world. There exist three main gene editing technologies today: Zinc Finger Nucleases, TALENs and the CRISPR-Cas system. When these systems were being uncovered, none of the scientists set out to design tools to engineer genomes. They were simply trying to understand the mechanisms existing in nature. If it was not for this simple sense of wonder, we probably would not have these breakthrough technologies. In this chapter, we will discuss the history, applications and ethical issues surrounding these technologies, focusing on the now predominant CRISPR-Cas technology. Gene editing technologies, as we know them now, are poised to have an overwhelming impact on our world. However, it is impossible to predict the route they will take in the future or to comprehend the full impact of its repercussions.
Collapse
|
44
|
Sharma G, Sharma AR, Bhattacharya M, Lee SS, Chakraborty C. CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases. Mol Ther 2021; 29:571-586. [PMID: 33238136 PMCID: PMC7854284 DOI: 10.1016/j.ymthe.2020.09.028] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/12/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
At present, the idea of genome modification has revolutionized the modern therapeutic research era. Genome modification studies have traveled a long way from gene modifications in primary cells to genetic modifications in animals. The targeted genetic modification may result in the modulation (i.e., either upregulation or downregulation) of the predefined gene expression. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) is a promising genome-editing tool that has therapeutic potential against incurable genetic disorders by modifying their DNA sequences. In comparison with other genome-editing techniques, CRISPR-Cas9 is simple, efficient, and very specific. This enabled CRISPR-Cas9 genome-editing technology to enter into clinical trials against cancer. Besides therapeutic potential, the CRISPR-Cas9 tool can also be applied to generate genetically inhibited animal models for drug discovery and development. This comprehensive review paper discusses the origin of CRISPR-Cas9 systems and their therapeutic potential against various genetic disorders, including cancer, allergy, immunological disorders, Duchenne muscular dystrophy, cardiovascular disorders, neurological disorders, liver-related disorders, cystic fibrosis, blood-related disorders, eye-related disorders, and viral infection. Finally, we discuss the different challenges, safety concerns, and strategies that can be applied to overcome the obstacles during CRISPR-Cas9-mediated therapeutic approaches.
Collapse
Affiliation(s)
- Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea; Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India.
| |
Collapse
|
45
|
Tripathi L, Ntui VO, Tripathi JN, Kumar PL. Application of CRISPR/Cas for Diagnosis and Management of Viral Diseases of Banana. Front Microbiol 2021; 11:609784. [PMID: 33584573 PMCID: PMC7873300 DOI: 10.3389/fmicb.2020.609784] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/29/2020] [Indexed: 12/26/2022] Open
Abstract
Viral diseases are significant biotic constraints for banana (Musa spp.) production as they affect the yield and limit the international movement of germplasm. Among all the viruses known to infect banana, the banana bunchy top virus and banana streak viruses are widespread and economically damaging. The use of virus-resistant bananas is the most cost-effective option to minimize the negative impacts of viral-diseases on banana production. CRISPR/Cas-based genome editing is emerging as the most powerful tool for developing virus-resistant crop varieties in several crops, including the banana. The availability of a vigorous genetic transformation and regeneration system and a well-annotated whole-genome sequence of banana makes it a compelling candidate for genome editing. A robust CRISPR/Cas9-based genome editing of the banana has recently been established, which can be applied in developing disease-resistant varieties. Recently, the CRISPR system was exploited to detect target gene sequences using Cas9, Cas12, Cas13, and Cas14 enzymes, thereby unveiling the use of this technology for virus diagnosis. This article presents a synopsis of recent advancements and perspectives on the application of CRISPR/Cas-based genome editing for diagnosing and developing resistance against banana viruses and challenges in genome-editing of banana.
Collapse
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | | | | | - P. Lava Kumar
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| |
Collapse
|
46
|
Chen YC. CRISPR based genome editing and removal of human viruses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 179:93-116. [PMID: 33785179 DOI: 10.1016/bs.pmbts.2020.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated proteins 9 (Cas9), a gene-editing technology, has been extensively applied as a tool for genetic engineering in basic research. Efficient genome engineering has been performed in viruses, human cells, bacteria, fungi, plants and animals, etc. Currently, it has been employed to edit human viruses for studying viral molecular biology, pathogenesis and oncogenesis, and facilitate the development of antiviral agents and vaccine. The virus is ubiquitous worldwide and elicits global health problems, many human diseases are associated with virus infections. Although traditional drugs can be used to treat or prevent productive viral infections, their efficacy is limited because of toxicity, side effects and other problems. Additionally, no current drugs are approved to be indicated for latent infections. Therefore, the next highlight is to develop antiviral approaches to against both productive and latent infections. Fortunately, CRISPR has been successfully applied in the removal of human viruses ex vivo and/or in vivo, and has the potential to be used to manufacture antiviral agents for clinical application. CRISPR/Cas9 is promising in applications, even though some technical challenges, safety concerns, ethic concerns need to be improved. In this article, the discovery and application of genome editing and removal of human viruses based on CRISPR are explored. Additionally, we evaluate the prospects and limitations of this novel antiviral strategies.
Collapse
Affiliation(s)
- Yuan-Chuan Chen
- Jenteh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan; Program in Comparative Biochemistry, University of California, Berkeley, CA, United States.
| |
Collapse
|
47
|
Song X, Liu C, Wang N, Huang H, He S, Gong C, Wei Y. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv Drug Deliv Rev 2021; 168:158-180. [PMID: 32360576 DOI: 10.1016/j.addr.2020.04.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems are efficient and versatile gene editing tools, which offer enormous potential to treat cancer by editing genome, transcriptome or epigenome of tumor cells and/or immune cells. A large body of works have been done with CRISPR/Cas systems for genetic modification, and 16 clinical trials were conducted to treat cancer by ex vivo or in vivo gene editing approaches. Now, promising preclinical works have begun using CRISPR/Cas systems in vivo. However, efficient and safe delivery of CRISPR/Cas systems in vivo is still a critical challenge for their clinical applications. This article summarizes delivery of CRISPR/Cas systems by physical methods, viral vectors and non-viral vectors for cancer gene therapy and immunotherapy. The prospects for the development of physical methods, viral vectors and non-viral vectors for delivery of CRISPR/Cas systems are reviewed, and promising advances in cancer treatment using CRISPR/Cas systems are discussed.
Collapse
Affiliation(s)
- Xiangrong Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hai Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Siyan He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
48
|
Liang Z, Qin Z, Riker AI, Xi Y. CRISPR/Cas9 ablating viral microRNA promotes lytic reactivation of Kaposi's sarcoma-associated herpesvirus. Biochem Biophys Res Commun 2020; 533:1400-1405. [PMID: 33092788 PMCID: PMC7813130 DOI: 10.1016/j.bbrc.2020.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated gene 9) system is an RNA-guided, DNA editing method that has been widely used for gene editing, including human viruses. Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8), following latent infection in human cells, can cause a variety of malignancies, such as Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD), with a high prevalence in immunocompromised patients. Of significant concern, the latent infection with KSHV has been shown to lead to increased resistance to antiviral therapies. MicroRNAs (miRNAs) are a set of non-coding, small RNA molecules that regulate protein-coding genes at the post-transcriptional and translational levels. KSHV has its miRNAs, most of which are expressed in latently infected cells and play a crucial role in maintaining KSHV latency. Notably, by regulating the expression of the downstream target genes in host cells, KSHV miRNAs can interact with the host environment to promote the development of KSHV-related diseases. Although CRISPR/Cas9 has been reported to edit KSHV protein-coding genes, there is no published literature on whether the CRISPR/Cas9 system can regulate the expression of KSHV miRNAs. In this study, we used CRISPR/Cas9 to inhibit the expression of KSHV miRNAs by directly editing the DNA sequences of individual KSHV miRNAs, or the promoter of clustered KHSV miRNAs, in latent KSHV-infected PEL cells. Our results show that CRISPR/Cas9 can ablate KSHV miRNAs expression, which in turn leads to the upregulation of viral lytic genes and alteration of host cellular gene expression. To the best of our knowledge, our study is the first reported demonstration of the CRISPR/Cas9 system editing KSHV miRNAs, further expanding the application of CRISPR/Cas9 as a novel antiviral strategy targeting KSHV latency.
Collapse
Affiliation(s)
- Zhipin Liang
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adam I Riker
- Geaton and JoAnn DeCesaris Cancer Institute, Anne Arundel Medical Center, Luminis Health, Annapolis, MD, USA
| | - Yaguang Xi
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
49
|
Siegrist CM, Kinahan SM, Settecerri T, Greene AC, Santarpia JL. CRISPR/Cas9 as an antiviral against Orthopoxviruses using an AAV vector. Sci Rep 2020; 10:19307. [PMID: 33168908 PMCID: PMC7653928 DOI: 10.1038/s41598-020-76449-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023] Open
Abstract
A vaccine for smallpox is no longer administered to the general public, and there is no proven, safe treatment specific to poxvirus infections, leaving people susceptible to infections by smallpox and other zoonotic Orthopoxviruses such as monkeypox. Using vaccinia virus (VACV) as a model organism for other Orthopoxviruses, CRISPR-Cas9 technology was used to target three essential genes that are conserved across the genus, including A17L, E3L, and I2L. Three individual single guide RNAs (sgRNAs) were designed per gene to facilitate redundancy in rendering the genes inactive, thereby reducing the reproduction of the virus. The efficacy of the CRISPR targets was tested by transfecting human embryonic kidney (HEK293) cells with plasmids encoding both SaCas9 and an individual sgRNA. This resulted in a reduction of VACV titer by up to 93.19% per target. Following the verification of CRISPR targets, safe and targeted delivery of the VACV CRISPR antivirals was tested using adeno-associated virus (AAV) as a packaging vector for both SaCas9 and sgRNA. Similarly, AAV delivery of the CRISPR antivirals resulted in a reduction of viral titer by up to 92.97% for an individual target. Overall, we have identified highly specific CRISPR targets that significantly reduce VACV titer as well as an appropriate vector for delivering these CRISPR antiviral components to host cells in vitro.
Collapse
Affiliation(s)
- Cathryn M Siegrist
- WMD Threats and Aerosol Science, Sandia National Laboratories, Albuquerque, NM, USA.
- University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sean M Kinahan
- University of Nebraska Medical Center, Omaha, NE, USA
- CWMD Research, National Strategic Research Institute, Albuquerque, NM, USA
| | - Taylor Settecerri
- WMD Threats and Aerosol Science, Sandia National Laboratories, Albuquerque, NM, USA
| | | | - Joshua L Santarpia
- University of Nebraska Medical Center, Omaha, NE, USA
- CWMD Research, National Strategic Research Institute, Albuquerque, NM, USA
| |
Collapse
|
50
|
Zhu ZJ, Teng M, Li HZ, Zheng LP, Liu JL, Chai SJ, Yao YX, Nair V, Zhang GP, Luo J. Marek's Disease Virus ( Gallid alphaherpesvirus 2)-Encoded miR-M2-5p Simultaneously Promotes Cell Proliferation and Suppresses Apoptosis Through RBM24 and MYOD1-Mediated Signaling Pathways. Front Microbiol 2020; 11:596422. [PMID: 33224130 PMCID: PMC7669912 DOI: 10.3389/fmicb.2020.596422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) have been demonstrated for their involvement in virus biology and pathogenesis, including functioning as key determinants of virally-induced cancers. As an important oncogenic α-herpesvirus affecting poultry health, Marek’s disease virus serotype 1 [Gallid alphaherpesvirus 2 (GaHV-2)] induces rapid-onset T-cell lymphomatous disease commonly referred to as Marek’s disease (MD), an excellent biological model for the study of virally-induced cancer in the natural hosts. Previously, we have demonstrated that GaHV-2-encoded miRNAs (especially those within the Meq-cluster) have the potential to act as critical regulators of multiple processes such as virus replication, latency, pathogenesis, and/or oncogenesis. In addition to miR-M4-5p (miR-155 homolog) and miR-M3-5p, we have recently found that miR-M2-5p possibly participate in inducing MD lymphomagenesis. Here, we report the identification of two tumor suppressors, the RNA-binding protein 24 (RBM24) and myogenic differentiation 1 (MYOD1), being two biological targets for miR-M2-5p. Our experiments revealed that as a critical miRNA, miR-M2-5p promotes cell proliferation via regulating the RBM24-mediated p63 overexpression and MYOD1-mediated IGF2 signaling and suppresses apoptosis by targeting the MYOD1-mediated Caspase-3 signaling pathway. Our data present a new strategy of a single viral miRNA exerting dual role to potentially participate in the virally-induced T-cell lymphomagenesis by simultaneously promoting the cell proliferation and suppressing apoptosis.
Collapse
Affiliation(s)
- Zhi-Jian Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Immunology, Ministry of Agriculture and Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hui-Zhen Li
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lu-Ping Zheng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jin-Ling Liu
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shu-Jun Chai
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yong-Xiu Yao
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Guildford, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Guildford, United Kingdom
| | - Gai-Ping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, China.,Key Laboratory of Animal Disease and Public Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|