1
|
Rice A, Gonzalez G, Carr M, Dean J, O’Byrne E, Aarts L, Vennema H, Banka W, Bennett C, Cleary S, Domegan L, O’Donnell J, O'Leary M, Goya S, Presser L, Meijer A, Martin G, Sawa H, Waters A, De Gascun C, Hare D. Human respiratory syncytial virus genetic diversity and lineage replacement in Ireland pre- and post-COVID-19 pandemic. Microb Genom 2025; 11:001379. [PMID: 40096248 PMCID: PMC11914048 DOI: 10.1099/mgen.0.001379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Human respiratory syncytial virus (HRSV) is a common cause of lower respiratory tract infections globally, and changes in viral epidemiology have been observed in many jurisdictions following the coronavirus disease 2019 (COVID-19) pandemic. Newly licensed vaccines and monoclonal antibodies are anticipated to alleviate the burden on healthcare systems, though such interventions may exert selective pressures on viral evolution. To evaluate the diversity of HRSV in Ireland pre- and post-COVID-19 pandemic, whole-genome sequencing was performed on HRSV-A (n=123) and -B (n=110) samples collected from community and hospitalized cases, during three HRSV seasons between 2021 and 2024. Additionally, G gene sequences, from HRSV-A (n=141) and -B (n=141), collected in the 2015-2019 period were examined. Lineages were assigned by phylogenetic analyses including reference lineages. Phylogenetic trees inferred with the G gene and whole genomes were consistent. Changes in the prevalence of certain lineages post-COVID-19 reflected the impact of non-pharmaceutical interventions (NPIs) introduced to reduce severe acute respiratory syndrome coronavirus 2 transmission, with A.D.1 and A.D.5 the dominant HRSV-A lineages and B.D.E.1 the most prevalent HRSV-B lineage. Similar trends were observed in HRSV lineages circulating across Europe during this time. The emergence of a new lineage was identified as a descendant from A.D.1, with eight distinctive substitutions in proteins G, F and L. Other circulating lineages with aa substitutions were observed in the F glycoprotein, which could impact nirsevimab binding. We provide the first comprehensive analysis of HRSV genomic diversity and evolution in Ireland over the last decade and the impact of the NPIs introduced during the COVID-19 pandemic. This study provides a foundation for future public health surveillance employing pathogen genomics to enable an evidence-based assessment of the impact of pharmaceutical interventions on HRSV evolution and disease severity.
Collapse
Affiliation(s)
- Alan Rice
- UCD National Virus Reference Laboratory, University College Dublin, Dublin, Belfield, D04 E1W1, Ireland
| | - Gabriel Gonzalez
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Michael Carr
- UCD National Virus Reference Laboratory, University College Dublin, Dublin, Belfield, D04 E1W1, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Jonathan Dean
- UCD National Virus Reference Laboratory, University College Dublin, Dublin, Belfield, D04 E1W1, Ireland
| | - Emer O’Byrne
- UCD National Virus Reference Laboratory, University College Dublin, Dublin, Belfield, D04 E1W1, Ireland
| | - Lynn Aarts
- Centre for Infectious Disease Control, National Institute for Public Health and Environment, Bilthoven, Netherlands
| | - Harry Vennema
- Centre for Infectious Disease Control, National Institute for Public Health and Environment, Bilthoven, Netherlands
| | - Weronika Banka
- UCD National Virus Reference Laboratory, University College Dublin, Dublin, Belfield, D04 E1W1, Ireland
| | - Charlene Bennett
- UCD National Virus Reference Laboratory, University College Dublin, Dublin, Belfield, D04 E1W1, Ireland
| | - Siobhán Cleary
- UCD National Virus Reference Laboratory, University College Dublin, Dublin, Belfield, D04 E1W1, Ireland
| | - Lisa Domegan
- Health Protection Surveillance Centre, Dublin, Ireland
| | | | | | - Stephanie Goya
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Lance Presser
- Centre for Infectious Disease Control, National Institute for Public Health and Environment, Bilthoven, Netherlands
| | - Adam Meijer
- Centre for Infectious Disease Control, National Institute for Public Health and Environment, Bilthoven, Netherlands
| | - Greg Martin
- Health Improvement, Health Service Executive, Dublin, Ireland
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Allison Waters
- Irish Blood Transfusion Service, National Blood Centre, Dublin, Ireland
- UCD School of Public Health, Physiotherapy and Social Science, University College Dublin, Dublin, Ireland
| | - Cillian De Gascun
- UCD National Virus Reference Laboratory, University College Dublin, Dublin, Belfield, D04 E1W1, Ireland
| | - Daniel Hare
- UCD National Virus Reference Laboratory, University College Dublin, Dublin, Belfield, D04 E1W1, Ireland
| |
Collapse
|
2
|
Munjita SM, Mubemba B, Changula K, Tembo J, Hamoonga R, Bates M, Chitanga S, Munsaka S, Simulundu E. Unveiling the hidden threats: a review of pathogen diversity and public health risks from bats, rodents, and non-human primates in Zambia (1990-2022). Front Public Health 2024; 12:1471452. [PMID: 39651468 PMCID: PMC11621629 DOI: 10.3389/fpubh.2024.1471452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Background Infectious disease agents of animal origin, which can cause mild to severe illnesses in humans, are increasingly spilling over into human populations. Southern Africa, particularly Zambia as a regional transport hub, has experienced notable outbreaks of zoonotic pathogens in recent years. This context underscores the importance of research, as numerous studies over the past 33 years have reported various infectious agents with differing zoonotic potential from bats, rodents, and non-human primates (NHPs) in Zambia. However, the data remained unaggregated, hampering comprehensive and organized understanding of these threats. Methods A review spanning January 1990 to December 2022 synthesised data from selected studies conducted in bats, rodents, and NHPs across 14 of Zambia's 116 districts. Results Among the reported pathogens, viruses predominated (62%, 31/50), followed by parasites (20%, 10/50)), and bacteria (18%, 9/50). Notable pathogens included Ebola virus, Marburg virus, Hantavirus, Zika virus, Human parainfluenza virus-3, Anaplasma phagocytophilum, Borrelia faini, Coxiella burnetii, Trypanosoma brucei rhodesiense, Calodium hepaticum, and Trichinella spiralis. Most identified infectious agents came from short term cross-sectional investigations, thus, the temporal dynamics related to abundance and likelihood of outbreaks remain unknown. Conclusion The findings starkly illuminate significant zoonotic public health threats amidst glaring under-surveillance of zoonoses in humans in Zambia. This critical gap calls urgently for enhanced active, passive and syndromic surveillance activities to identify new diseases and provide evidence-based measures to safeguard public health from emerging infectious risks in Zambia and the Southern African sub-region, considering the country's position as a regional transport hub.
Collapse
Affiliation(s)
- Samuel Munalula Munjita
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Benjamin Mubemba
- Department of Wildlife Sciences, School of Natural Resources, Copperbelt University, Kitwe, Zambia
| | - Katendi Changula
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - John Tembo
- HerpeZ, University Teaching Hospital, Lusaka, Zambia
| | | | - Matthew Bates
- HerpeZ, University Teaching Hospital, Lusaka, Zambia
- School of Natural Sciences, University of Lincoln, Lincoln, Lincolnshire, United Kingdom
| | - Simbarashe Chitanga
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
- Department of Preclinical Studies, School of Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Sody Munsaka
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | | |
Collapse
|
3
|
Surján A, Gonzalez G, Gellért Á, Boldogh S, Carr MJ, Harrach B, Vidovszky MZ. First detection and genome analysis of simple nosed bat polyomaviruses in Central Europe. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105439. [PMID: 37105345 DOI: 10.1016/j.meegid.2023.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 04/29/2023]
Abstract
Polyomaviruses (PyVs) are known to infect a diverse range of vertebrate host species. We report the discovery of PyVs in vesper bats (family Vespertilionidae) from sampling in Central Europe. Seven partial VP1 sequences from different PyVs were detected in samples originating from six distinct vesper bat species. Using a methodology based on conserved segments within the major capsid virus protein 1 (VP1) among known PyVs, the complete genomes of two different novel bat PyVs were determined. The genetic distances of the large T antigen coding sequences from these PyVs compared to previously-described bat PyVs exceeded 15% meriting classification as representatives of two novel PyV species: Alphapolyomavirus epserotinus and Alphapolyomavirus myodaubentonii. Phylogenetic analysis revealed that both belong to the genus Alphapolyomavirus and clustered together with high confidence in clades including other bat alphapolyomaviruses reported from China, South America and Africa. In silico protein modeling of the VP1 subunits and capsid pentamers, and electrostatic surface potential comparison of the pentamers showed significant differences between the reference template (murine polyomavirus) and the novel bat PyVs. An electrostatic potential difference pattern between the two bat VP1 pentamers was also revealed. Disaccharide molecular docking studies showed that the reference template and both bat PyVs possess the typical shallow sialic acid-binding site located between two VP1 subunits, with relevant oligosaccharide-binding affinities. The characterisation of these novel bat PyVs and the reported properties of their capsid proteins will potentially contribute in the elucidation of the conditions creating the host-pathogen restrictions associated with these viruses.
Collapse
Affiliation(s)
- András Surján
- Veterinary Medical Research Institute, Eötvös Lóránd Research Network (ELKH), Hungária krt. 21, H-1143 Budapest, Hungary.
| | - Gabriel Gonzalez
- UCD National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland; Japan Initiative for World-leading Vaccine Research and Development Centers, Hokkaido University, Institute for Vaccine Research and Development, Hokkaido, Japan
| | - Ákos Gellért
- Veterinary Medical Research Institute, Eötvös Lóránd Research Network (ELKH), Hungária krt. 21, H-1143 Budapest, Hungary
| | | | - Michael J Carr
- UCD National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Balázs Harrach
- Veterinary Medical Research Institute, Eötvös Lóránd Research Network (ELKH), Hungária krt. 21, H-1143 Budapest, Hungary
| | - Márton Z Vidovszky
- Veterinary Medical Research Institute, Eötvös Lóránd Research Network (ELKH), Hungária krt. 21, H-1143 Budapest, Hungary
| |
Collapse
|
4
|
Wang CW, Chen YL, Mao SJT, Lin TC, Wu CW, Thongchan D, Wang CY, Wu HY. Pathogenicity of Avian Polyomaviruses and Prospect of Vaccine Development. Viruses 2022; 14:v14092079. [PMID: 36146885 PMCID: PMC9505546 DOI: 10.3390/v14092079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Polyomaviruses are nonenveloped icosahedral viruses with a double-stranded circular DNA containing approximately 5000 bp and 5–6 open reading frames. In contrast to mammalian polyomaviruses (MPVs), avian polyomaviruses (APVs) exhibit high lethality and multipathogenicity, causing severe infections in birds without oncogenicity. APVs are classified into 10 major species: Adélie penguin polyomavirus, budgerigar fledgling disease virus, butcherbird polyomavirus, canary polyomavirus, cormorant polyomavirus, crow polyomavirus, Erythrura gouldiae polyomavirus, finch polyomavirus, goose hemorrhagic polyomavirus, and Hungarian finch polyomavirus under the genus Gammapolyomavirus. This paper briefly reviews the genomic structure and pathogenicity of the 10 species of APV and some of their differences in terms of virulence from MPVs. Each gene’s genomic size, number of amino acid residues encoding each gene, and key biologic functions are discussed. The rationale for APV classification from the Polyomavirdae family and phylogenetic analyses among the 10 APVs are also discussed. The clinical symptoms in birds caused by APV infection are summarized. Finally, the strategies for developing an effective vaccine containing essential epitopes for preventing virus infection in birds are discussed. We hope that more effective and safe vaccines with diverse protection will be developed in the future to solve or alleviate the problems of viral infection.
Collapse
Affiliation(s)
- Chen-Wei Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- International Degree Program in Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuan Pei University of Medical Technology, Yuanpei Street, Hsinchu 300, Taiwan
| | - Simon J. T. Mao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Tzu-Chieh Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- International Degree Program in Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Ching-Wen Wu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Duangsuda Thongchan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Faculty of Agriculture and Technology, Rajamangala University of Technology Isan, Surin Campus, Nakhon Ratchasima 30000, Thailand
| | - Chi-Young Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (C.-Y.W.); (H.-Y.W.); Tel.: +886-4-22840369 (ext. 48) (C.-Y.W.); +886-8-7703202 (ext. 5072) (H.-Y.W.)
| | - Hung-Yi Wu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Correspondence: (C.-Y.W.); (H.-Y.W.); Tel.: +886-4-22840369 (ext. 48) (C.-Y.W.); +886-8-7703202 (ext. 5072) (H.-Y.W.)
| |
Collapse
|
5
|
Ramanantsalama RV, Goodman SM, Dietrich M, Lebarbenchon C. Interaction between Old World fruit bats and humans: From large scale ecosystem services to zoonotic diseases. Acta Trop 2022; 231:106462. [PMID: 35421381 DOI: 10.1016/j.actatropica.2022.106462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 11/01/2022]
Abstract
The Old World tropical and subtropical frugivorous bat genus Rousettus (Pteropodidae) contains species with broad distributions, as well as those occurring in restricted geographical areas, particularly islands. Herein we review the role of Rousettus as a keystone species from a global "One Health" approach and related to ecosystem functioning, zoonotic disease and public health. Rousettus are efficient at dispersing seeds and pollinating flowers; their role in forest regeneration is related to their ability to fly considerable distances during nightly foraging bouts and their relatively small body size, which allows them to access fruits in forested areas with closed vegetation. Rousettus are also reservoirs for various groups of pathogens (viruses, bacteria, fungi, protozoa), which, by definition, are infectious agents causing disease. The study of day roosts of different species of Rousettus and the successful establishment of captive breeding colonies have provided important details related to the infection dynamics of their associated pathogens. Large-scale conversion of forested areas into agricultural landscapes has increased contact between humans and Rousettus, therefore augmenting the chances of infectious agent spillover. Many crucial scientific details are still lacking related to members of this genus, which have direct bearing on the prevention of emerging disease outbreaks, as well as the conservation of these bats. The public should be better informed on the capacity of fruit bats as keystone species for large scale forest regeneration and in spreading pathogens. Precise details on the transmission of zoonotic diseases of public health importance associated with Rousettus should be given high priority.
Collapse
|
6
|
Liu FL, Chang SP, Liu HJ, Liu PC, Wang CY. Genomic and phylogenetic analysis of avian polyomaviruses isolated from parrots in Taiwan. Virus Res 2022; 308:198634. [PMID: 34793873 DOI: 10.1016/j.virusres.2021.198634] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/27/2022]
Abstract
Avian polyomavirus (APV) is a non-enveloped virus with a circular double-stranded DNA genome approximately 5000 bp in length. APV was first reported in fledgling budgerigars (Melopsittacus undulatus) as the causative agent of budgerigar fledgling disease, resulting in high parrot mortality rates in the 1980s. This disease has been observed worldwide, and APV has a wide host range including budgerigars, cockatoos, lorikeets, lovebirds, and macaws. Twenty APV isolates have been collected from healthy and symptomatic parrots in Taiwan from 2015 to 2019. These isolates were then amplified via polymerase chain reaction, after which the whole genomes of these isolates were sequenced. The overall APV-positive rate was 14.2%, and the full lengths of the APV Taiwan isolates varied from 4971 to 4982 bps. The APV genome contains an early region that encodes two regulatory proteins (the large tumor antigen (Large T-Ag) and the small tumor antigen (Small t-Ag)) and a late region which encodes the capsid proteins VP1, VP2, VP3, and VP4. The nucleotide identities of the VP1 and VP4 genes ranged from 98.7 to 100%, whereas the nucleotide sequence of the Large T-Ag gene had the highest identity (99.2-100%) relative to other APV isolates from the GenBank database. A phylogenetic tree based on the whole genome demonstrated that the APV Taiwan isolates were closely related to Japanese and Portuguese isolates. Recombination events were analyzed using the Recombination Detection Program version 4 and APV Taiwan isolate TW-3 was identified as a minor parent of the APV recombinants. In this study, we first reported the characterization of the whole genome sequences of APV Taiwan isolates and their phylogenetic relationships with all APV isolates available in the GenBank database.
Collapse
Affiliation(s)
- Fang-Lin Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
| | - Shu-Ping Chang
- Department of Laboratory, Chang Bing Show Chwan Memorial Hospital, 6 Lugong Road, Changhua, Lugang, Taiwan
| | - Hung-Jen Liu
- Institute of Molecular Biology, College of Life Science, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
| | - Pan-Chen Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
| | - Chi-Young Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan.
| |
Collapse
|
7
|
Tan CW, Yang X, Anderson DE, Wang LF. Bat virome research: the past, the present and the future. Curr Opin Virol 2021; 49:68-80. [PMID: 34052731 DOI: 10.1016/j.coviro.2021.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Bats have been increasingly recognised as an exceptional reservoir for emerging zoonotic viruses for the past few decades. Recent studies indicate that the unique bat immune system may be partially responsible for their ability to co-exist with viruses with minimal or no clinical diseases. In this review, we discuss the history and importance of bat virome studies and contrast the vast difference between such studies before and after the introduction of next generation sequencing (NGS) in this area of research. We also discuss the role of discovery serology and high-throughput single cell RNA-seq in future bat virome research.
Collapse
Affiliation(s)
- Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Xinglou Yang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore; Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Danielle E Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore; SingHealth Duke-NUS Global Health Institute, 169857, Singapore.
| |
Collapse
|
8
|
Vidovszky MZ, Tan Z, Carr MJ, Boldogh S, Harrach B, Gonzalez G. Bat-borne polyomaviruses in Europe reveal an evolutionary history of intrahost divergence with horseshoe bats distributed across the African and Eurasian continents. J Gen Virol 2020; 101:1119-1130. [PMID: 32644038 DOI: 10.1099/jgv.0.001467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Polyomaviruses (PyVs) are small, circular dsDNA viruses carried by diverse vertebrates, including bats. Although previous studies have reported several horseshoe bat PyVs collected in Zambia and China, it is still unclear how PyVs evolved in this group of widely dispersed mammals. Horseshoe bats (genus Rhinolophus) are distributed across the Old World and are natural reservoirs of numerous pathogenic viruses. Herein, non-invasive bat samples from European horseshoe bat species were collected in Hungary for PyV identification and novel PyVs with complete genomes were successfully recovered from two different European horseshoe bat species. Genomic and phylogenetic analysis of the Hungarian horseshoe bat PyVs supported their classification into the genera Alphapolyomavirus and Betapolyomavirus. Notably, despite the significant geographical distances between the corresponding sampling locations, Hungarian PyVs exhibited high genetic relatedness with previously described Zambian and Chinese horseshoe bat PyVs, and phylogenetically clustered with these viruses in each PyV genus. Correlation and virus-host relationship analysis suggested that these PyVs co-diverged with their European, African and Asian horseshoe bat hosts distributed on different continents during their evolutionary history. Additionally, assessment of selective pressures over the major capsid protein (VP1) of horseshoe bat PyVs showed sites under positive selection located in motifs exposed to the exterior of the capsid. In summary, our findings revealed a pattern of stable intrahost divergence of horseshoe bat PyVs with their mammalian hosts on the African and Eurasian continents over evolutionary time.
Collapse
Affiliation(s)
- Márton Z Vidovszky
- Institute for Veterinary Medical Research, Centre for Agricultural Research, H-1143 Budapest, Hungary
| | - Zhizhou Tan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Michael J Carr
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Balázs Harrach
- Institute for Veterinary Medical Research, Centre for Agricultural Research, H-1143 Budapest, Hungary
| | - Gabriel Gonzalez
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| |
Collapse
|
9
|
Extensive Genetic Diversity of Polyomaviruses in Sympatric Bat Communities: Host Switching versus Coevolution. J Virol 2020; 94:JVI.02101-19. [PMID: 32075934 DOI: 10.1128/jvi.02101-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/11/2020] [Indexed: 01/17/2023] Open
Abstract
Polyomaviruses (PyVs) are small DNA viruses carried by diverse vertebrates. The evolutionary relationships of viruses and hosts remain largely unclear due to very limited surveillance in sympatric communities. In order to investigate whether PyVs can transmit among different mammalian species and to identify host-switching events in the field, we conducted a systematic study of a large collection of bats (n = 1,083) from 29 sympatric communities across China which contained multiple species with frequent contact. PyVs were detected in 21 bat communities, with 192 PyVs identified in 186 bats from 15 species within 6 families representing at least 28 newly described PyVs. Surveillance results and phylogenetic analyses surprisingly revealed three interfamily PyV host-switching events in these sympatric bat communities: two distinct PyVs were identified in two bat species in restricted geographical locations, while another PyV clustered phylogenetically with PyVs carried by bats from a different host family. Virus-host relationships of all discovered PyVs were also evaluated, and no additional host-switching events were found. PyVs were identified in different horseshoe bat species in sympatric communities without observation of host-switching events, showed high genomic identities, and clustered with each other. This suggested that even for PyVs with high genomic identities in closely related host species, the potential for host switching is low. In summary, our findings revealed that PyV host switching in sympatric bat communities can occur but is limited and that host switching of bat-borne PyVs is relatively rare on the predominantly evolutionary background of codivergence with their hosts.IMPORTANCE Since the discovery of murine polyomavirus in the 1950s, polyomaviruses (PyVs) have been considered highly host restricted in mammals. Sympatric bat communities commonly contain several different bat species in an ecological niche facilitating viral transmission, and they therefore represent a model to identify host-switching events of PyVs. In this study, we screened PyVs in a large number of bats in sympatric communities from diverse habitats across China. We provide evidence that cross-species bat-borne PyV transmission exists, though is limited, and that host-switching events appear relatively rare during the evolutionary history of these viruses. PyVs with close genomic identities were also identified in different bat species without host-switching events. Based on these findings, we propose an evolutionary scheme for bat-borne PyVs in which limited host-switching events occur on the background of codivergence and lineage duplication, generating the viral genetic diversity in bats.
Collapse
|
10
|
Evolution and molecular epidemiology of polyomaviruses. INFECTION GENETICS AND EVOLUTION 2019; 79:104150. [PMID: 31870972 DOI: 10.1016/j.meegid.2019.104150] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 02/08/2023]
Abstract
Polyomaviruses (PyVs) are small DNA viruses that infect several species, including mammals, birds and fishes. Their study gained momentum after the report of previously unidentified viral species in the past decade, and especially, since the description of the first polyomavirus clearly oncogenic for humans. The aim of this work was to review the most relevant aspects of the evolution and molecular epidemiology of polyomaviruses, allowing to reveal general evolutionary patterns and to identify some unaddressed issues and future challenges. The main points analysed included: 1) the species and genera assignation criteria; 2) the hypotheses, mechanisms and timescale of the ancient and recent evolutionary history of polyomaviruses; and 3) the molecular epidemiology of human viruses, with special attention to JC, BK and Merkel cell polyomaviruses.
Collapse
|
11
|
Novel Polyomaviruses in Mammals from Multiple Orders and Reassessment of Polyomavirus Evolution and Taxonomy. Viruses 2019; 11:v11100930. [PMID: 31658738 PMCID: PMC6833039 DOI: 10.3390/v11100930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
As the phylogenetic organization of mammalian polyomaviruses is complex and currently incompletely resolved, we aimed at a deeper insight into their evolution by identifying polyomaviruses in host orders and families that have either rarely or not been studied. Sixteen unknown and two known polyomaviruses were identified in animals that belong to 5 orders, 16 genera, and 16 species. From 11 novel polyomaviruses, full genomes could be determined. Splice sites were predicted for large and small T antigen (LTAg, STAg) coding sequences (CDS) and examined experimentally in transfected cell culture. In addition, splice sites of seven published polyomaviruses were analyzed. Based on these data, LTAg and STAg annotations were corrected for 10/86 and 74/86 published polyomaviruses, respectively. For 25 polyomaviruses, a spliced middle T CDS was observed or predicted. Splice sites that likely indicate expression of additional, alternative T antigens, were experimentally detected for six polyomaviruses. In contrast to all other mammalian polyomaviruses, three closely related cetartiodactyl polyomaviruses display two introns within their LTAg CDS. In addition, the VP2 of Glis glis (edible dormouse) polyomavirus 1 was observed to be encoded by a spliced transcript, a unique experimental finding within the Polyomaviridae family. Co-phylogenetic analyses based on LTAg CDS revealed a measurable signal of codivergence when considering all mammalian polyomaviruses, most likely driven by relatively recent codivergence events. Lineage duplication was the only other process whose influence on polyomavirus evolution was unambiguous. Finally, our analyses suggest that an update of the taxonomy of the family is required, including the creation of novel genera of mammalian and non-mammalian polyomaviruses.
Collapse
|
12
|
Discovery and genetic characterization of diverse smacoviruses in Zambian non-human primates. Sci Rep 2019; 9:5045. [PMID: 30962460 PMCID: PMC6453971 DOI: 10.1038/s41598-019-41358-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/07/2019] [Indexed: 11/12/2022] Open
Abstract
The Smacoviridae has recently been classified as a family of small circular single-stranded DNA viruses. An increasing number of smacovirus genomes have been identified exclusively in faecal matter of various vertebrate species and from insect body parts. However, the genetic diversity and host range of smacoviruses remains to be fully elucidated. Herein, we report the genetic characterization of eleven circular replication-associated protein (Rep) encoding single-stranded (CRESS) DNA viruses detected in the faeces of Zambian non-human primates. Based on pairwise genome-wide and amino acid identities with reference smacovirus species, ten of the identified CRESS DNA viruses are assigned to the genera Porprismacovirus and Huchismacovirus of the family Smacoviridae, which bidirectionally encode two major open reading frames (ORFs): Rep and capsid protein (CP) characteristic of a type IV genome organization. The remaining unclassified CRESS DNA virus was related to smacoviruses but possessed a genome harbouring a unidirectionally oriented CP and Rep, assigned as a type V genome organization. Moreover, phylogenetic and recombination analyses provided evidence for recombination events encompassing the 3′-end of the Rep ORF in the unclassified CRESS DNA virus. Our findings increase the knowledge of the known genetic diversity of smacoviruses and highlight African non-human primates as carrier animals.
Collapse
|
13
|
Gedvilaite A, Tryland M, Ulrich RG, Schneider J, Kurmauskaite V, Moens U, Preugschas H, Calvignac-Spencer S, Ehlers B. Novel polyomaviruses in shrews ( Soricidae) with close similarity to human polyomavirus 12. J Gen Virol 2017; 98:3060-3067. [PMID: 29095685 DOI: 10.1099/jgv.0.000948] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Shrews (family Soricidae) have already been reported to host microorganisms pathogenic for humans. In an effort to search for additional infectious agents with zoonotic potential, we detected polyomaviruses (PyVs) in common shrew, crowned shrew, and pygmy shrew (Sorex araneus, S. coronatus and S. minutus). From these, 11 full circular genomes were determined. Phylogenetic analysis based on large T protein sequences showed that these novel PyVs form a separate clade within the genus Alphapolyomavirus. Within this clade, the phylogenetic relationships suggest host-virus co-divergence. Surprisingly, one PyV from common shrew showed a genomic sequence nearly identical to that of the human polyomavirus 12 (HPyV12). This indicated that HPyV12 is a variant of a non-human PyV that naturally infects shrews. Whether HPyV12 is a bona fide human-tropic polyomavirus arising from a recent shrew-to-human transmission event or instead reflects a technical artefact, such as consumable contamination with shrew material, needs further investigation.
Collapse
Affiliation(s)
- Alma Gedvilaite
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Morten Tryland
- Department of Arctic and Marine Biology, Arctic Infection Biology, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Julia Schneider
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.,Present address: NMI TT Pharmaservices, c/o CoLaborator, Berlin, Germany
| | | | - Ugo Moens
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | | | | | - Bernhard Ehlers
- Division 12 'Measles, Mumps, Rubella and Viruses Affecting Immunocompromised Patients', Robert Koch Institute, Berlin, Germany
| |
Collapse
|
14
|
Carr M, Gonzalez G, Sasaki M, Dool SE, Ito K, Ishii A, Hang'ombe BM, Mweene AS, Teeling EC, Hall WW, Orba Y, Sawa H. Identification of the same polyomavirus species in different African horseshoe bat species is indicative of short-range host-switching events. J Gen Virol 2017; 98:2771-2785. [PMID: 28984241 DOI: 10.1099/jgv.0.000935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polyomaviruses (PyVs) are considered to be highly host-specific in different mammalian species, with no well-supported evidence for host-switching events. We examined the species diversity and host specificity of PyVs in horseshoe bats (Rhinolophus spp.), a broadly distributed and highly speciose mammalian genus. We annotated six PyV genomes, comprising four new PyV species, based on pairwise identity within the large T antigen (LTAg) coding region. Phylogenetic comparisons revealed two instances of highly related PyV species, one in each of the Alphapolyomavirus and Betapolyomavirus genera, present in different horseshoe bat host species (Rhinolophus blasii and R. simulator), suggestive of short-range host-switching events. The two pairs of Rhinolophus PyVs in different horseshoe bat host species were 99.9 and 88.8 % identical with each other over their respective LTAg coding sequences and thus constitute the same virus species. To corroborate the species identification of the bat hosts, we analysed mitochondrial cytb and a large nuclear intron dataset derived from six independent and neutrally evolving loci for bat taxa of interest. Bayesian estimates of the ages of the most recent common ancestors suggested that the near-identical and more distantly related PyV species diverged approximately 9.1E4 (5E3-2.8E5) and 9.9E6 (4E6-18E6) years before the present, respectively, in contrast to the divergence times of the bat host species: 12.4E6 (10.4E6-15.4E6). Our findings provide evidence that short-range host-switching of PyVs is possible in horseshoe bats, suggesting that PyV transmission between closely related mammalian species can occur.
Collapse
Affiliation(s)
- Michael Carr
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.,National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gabriel Gonzalez
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Serena E Dool
- Zoological Institute and Museum, University of Greifswald, Anklamer Street 20, D-17489 Greifswald, Germany
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Akihiro Ishii
- Hokudai Center for Zoonosis Control in Zambia, Research Center for Zoonosis Control, Hokkaido University, Lusaka, Zambia
| | - Bernard M Hang'ombe
- Department of Para-clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Aaron S Mweene
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - William W Hall
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.,Global Virus Network, Baltimore, MD 21201, USA
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Global Virus Network, Baltimore, MD 21201, USA.,Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.,Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| |
Collapse
|
15
|
[Discovery of DNA viruses in wildlife in Zambia and Indonesia]. Uirusu 2017; 67:151-160. [PMID: 30369539 DOI: 10.2222/jsv.67.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Zoonoses originate from pathogens harbored in domestic and wild animals and therefore it is likely impossible to completely eradicate zoonotic diseases. For pre-emptive measures to attempt to predict the emergence of zoonosis outbreaks and the prevention of future epidemics and pandemics, it is imperative to identify natural host animals carrying potential pathogens and elucidate the routes of pathogen transmission into the human population. Our research team is conducting epidemiological research studies in Zambia and Indonesia for the control of viral zoonotic diseases. In this review, we present the research findings, including the discovery of orthopoxviruses and polyomaviruses in wildlife in Zambia and the identification of herpesviruses in bats in Indonesia among our activities.
Collapse
|