1
|
Liu C, Lin X, Huang M, Zhang S, Che L, Lai Z, Chen X, Pu W, Yang S, Qiu Y, Yu H. Babaodan inhibits cell proliferation and metastasis and enhances anti-tumor effects of camrelizumab by inhibiting M2 phenotype macrophages in hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118540. [PMID: 38992397 DOI: 10.1016/j.jep.2024.118540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/20/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Babaodan (BBD) is a unique Chinese medication utilized in traditional Chinese medicine. It can eliminate toxins, induce diuresis, and eliminate yellowish hue. In addition to treating acute and chronic viral hepatitis, cholecystitis, cholangitis, and urinary tract infections, BBD has garnered popularity as a substitution treatment for several malignant cancers, particularly hepatocellular carcinoma (HCC). AIM OF THE STUDY To elucidate the efficacy and mechanism of BBD alone and combined with camrelizumab (CLM) for treating HCC. METHODS We investigated the effects of BBD on the HCC tumor microenvironment in vivo. Furthermore, we evaluated its effects on tumor growth and metastasis induced by M2 macrophages in vitro. RESULTS In a mouse model of orthotopic HCC, BBD decreased tumor growth. Furthermore, it increased the M1/M2 macrophage ratio and CD8+ T-cell abundance in mice. In addition, BBD reversed HCC cell proliferation and metastasis induced by M2 macrophages, increased the anti-HCC effect of low-dose CLM, and attenuated organ damage induced by high-dose CLM. Lastly, BBD enhanced the efficacy of CLM via the PI3K/AKT/mTOR signaling pathway. CONCLUSION BBD increases the antitumor effect of CLM by modulating the tumor immune microenvironment and attenuating its the toxic side effects of CLM.
Collapse
Affiliation(s)
- Caiyan Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaowei Lin
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Manru Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Siqi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Li Che
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen, 361100, China
| | - Zhicheng Lai
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen, 361100, China
| | - Xiyi Chen
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen, 361100, China
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shenshen Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
2
|
Yu Q, Zhou X, Kapini R, Arsecularatne A, Song W, Li C, Liu Y, Ren J, Münch G, Liu J, Chang D. Cytokine Storm in COVID-19: Insight into Pathological Mechanisms and Therapeutic Benefits of Chinese Herbal Medicines. MEDICINES (BASEL, SWITZERLAND) 2024; 11:14. [PMID: 39051370 PMCID: PMC11270433 DOI: 10.3390/medicines11070014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/20/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Cytokine storm (CS) is the main driver of SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) in severe coronavirus disease-19 (COVID-19). The pathological mechanisms of CS are quite complex and involve multiple critical molecular targets that turn self-limited and mild COVID-19 into a severe and life-threatening concern. At present, vaccines are strongly recommended as safe and effective treatments for preventing serious illness or death from COVID-19. However, effective treatment options are still lacking for people who are at the most risk or hospitalized with severe disease. Chinese herbal medicines have been shown to improve the clinical outcomes of mild to severe COVID-19 as an adjunct therapy, particular preventing the development of mild to severe ARDS. This review illustrates in detail the pathogenesis of CS-involved ARDS and its associated key molecular targets, cytokines and signalling pathways. The therapeutic targets were identified particularly in relation to the turning points of the development of COVID-19, from mild symptoms to severe ARDS. Preclinical and clinical studies were reviewed for the effects of Chinese herbal medicines together with conventional therapies in reducing ARDS symptoms and addressing critical therapeutic targets associated with CS. Multiple herbal formulations, herbal extracts and single bioactive phytochemicals with or without conventional therapies demonstrated strong anti-CS effects through multiple mechanisms. However, evidence from larger, well-designed clinical trials is lacking and their detailed mechanisms of action are yet to be well elucidated. More research is warranted to further evaluate the therapeutic value of Chinese herbal medicine for CS in COVID-19-induced ARDS.
Collapse
Affiliation(s)
- Qingyuan Yu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
- Xiyuan Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Rotina Kapini
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Anthony Arsecularatne
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Wenting Song
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Chunguang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Junguo Ren
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Gerald Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| |
Collapse
|
3
|
Huang B, Gui M, An H, Shen J, Ye F, Ni Z, Zhan H, Che L, Lai Z, Zeng J, Peng J, Lin J. Babao Dan alleviates gut immune and microbiota disorders while impacting the TLR4/MyD88/NF-кB pathway to attenuate 5-Fluorouracil-induced intestinal injury. Biomed Pharmacother 2023; 166:115387. [PMID: 37643486 DOI: 10.1016/j.biopha.2023.115387] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
Adjuvant chemotherapy based on 5-fluorouracil (5-FU), such as FOLFOX, is suggested as a treatment for gastrointestinal cancer. Yet, intestinal damage continues to be a prevalent side effect for which there are no practical prevention measures. We investigated whether Babao Dan (BBD), a Traditional Chinese Medicine, protects against intestinal damage induced by 5-FU by controlling immune response and gut microbiota. 5-FU was injected intraperitoneally to establish the mice model, then 250 mg/kg BBD was gavaged for five days straight. 5-FU led to marked weight loss, diarrhea, fecal blood, and histopathologic intestinal damage. Administration of BBD reduced these symptoms, inhibited proinflammatory cytokine (IL-6, IL-1β, IFN-γ, TNF-α) secretion, and upregulated the ratio of CD3(+) T cells and the CD4(+)/CD8(+) ratio. According to 16S rRNA sequencing, BBD dramatically repaired the disruption of the gut microbiota caused in a time-dependent way, and increased the Firmicutes/Bacteroidetes (F/B) ratio. Transcriptomic results showed that the mechanism is mainly concentrated on the NF-κB pathway, and we found that BBD reduced the concentration of LPS in the fecal suspension and serum, and inhibited TLR4/MyD88/NF-κB pathway activation. Furthermore, at the genus level on the fifth day, BBD upregulated the abundance of unidentified_Corynebacteriaceae, Aerococcus, Blautia, Jeotgalicoccus, Odoribacter, Roseburia, Rikenella, Intestinimonas, unidentified_Lachnospiraceae, Enterorhabdus, Ruminiclostridium, and downregulated the abundance of Bacteroides, Parabacteroides, Parasutterella, Erysipelatoclostridium, which were highly correlated with intestinal injury or the TLR4/MyD88/NF-κB pathway. In conclusion, we established a network involving 5-FU, BBD, the immune response, gut microbiota, and key pathways to explain the pharmacology of oral BBD in preventing 5-FU-induced intestinal injury.
Collapse
Affiliation(s)
- Bin Huang
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Mengxuan Gui
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Honglin An
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Jiayu Shen
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Feimin Ye
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Zhuona Ni
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Hanzhang Zhan
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Li Che
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361100, PR China
| | - Zhicheng Lai
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361100, PR China
| | - Jiahan Zeng
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361100, PR China
| | - Jun Peng
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Jiumao Lin
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China.
| |
Collapse
|
4
|
Oral Zinc Supplementation in Chronically HEV-Infected Patients Not Responding to Ribavirin Monotherapy. HEPATITIS MONTHLY 2023. [DOI: 10.5812/hepatmon-130865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Background: Chronic hepatitis E virus (HEV) infection may progress to end-stage liver disease in immunosuppressed individuals. Ribavirin therapy is efficient in most chronic HEV patients, but 10% remain without a sustained virological response (SVR). Objectives: We aimed to study whether zinc supplementation could represent a therapeutic approach in these patients. Methods: Antiviral properties of zinc salts were studied in vitro (subgenomic-replicon system), in vivo (rabbit model), and retrospectively in patients with chronic hepatitis E who did not achieve SVR under ribavirin monotherapy. Results: Zinc inhibited HEV genotype-3 replication in vitro. In a model of acute HEV infection in immunocompetent rabbits, zinc + ribavirin did not improve viral clearance compared to ribavirin monotherapy. In chronically HEV-infected patients not responding to ribavirin (n = 12), viral clearance was observed in 4/12 (33%) patients receiving additional zinc supplementation. Conclusions: Oral zinc, an inexpensive, harmless dietary supplement, could potentially represent a rescue treatment option for a few patients with chronic hepatitis E without SVR under ribavirin monotherapy. Further studies are needed to elucidate the role of zinc in HEV further.
Collapse
|
5
|
Liu T, Wang L, Wang L. Animal Models for Hepatitis E Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:171-184. [PMID: 37223866 DOI: 10.1007/978-981-99-1304-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Animal models are one of the most important tools in the study of human hepatitis E virus (HEV) infection. They are particularly important in light of the major limitations of the cell culture system for HEV. Besides nonhuman primates, which are extremely valuable because of their susceptibility to HEV genotypes 1-4, animals like swine, rabbit, and humanized mice are also potential models for studies of pathogenesis, cross-species infection, and the molecular biology of HEV. Identification of a useful animal model for human HEV infection studies is crucial to further investigations into this ubiquitous yet poorly understood virus and facilitate the development of antiviral therapeutics and vaccines.
Collapse
Affiliation(s)
- Tianxu Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lin Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| | - Ling Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
6
|
Gui MX, Huang B, Peng J, Chen X, Muthu R, Gao Y, Wang RG, Lin JM. Babao Dan Alleviates 5-Fluorouracil-Induced Intestinal Damage via Wnt/β-Catenin Pathway. Chin J Integr Med 2022; 28:1000-1006. [PMID: 33420580 DOI: 10.1007/s11655-021-3282-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the protective function of Babao Dan (BBD) on 5-flurouracil (5-FU)-induced intestinal mucositis (IM) and uncover the underlying mechanism. METHODS A total of 18 male mice were randomly divided into 3 groups by a random number table, including control, 5-FU and 5-FU combined BBD groups, 6 mice in each group. A single intraperitoneal injection of 5-FU (150 mg/kg) was performed in 5-FU and 5-FU combined BBD groups on day 0. Mice in 5-FU combined BBD group were gavaged with BBD (250 mg/kg) daily from day 1 to 6. Mice in the control group were gavaged with saline solution for 6 days. The body weight and diarrhea index of mice were recorded daily. On the 7th day, the blood from the heart of mice was collected to analyze the proportional changes of immunological cells, and the mice were subsequently euthanized by mild anesthesia with 2% pentobarbital sodium. Colorectal lengths and villus heights were measured. Intestinal-cellular apoptosis and proliferation were evaluated by Tunel assay and immunohistochemical staining of proliferating cell nuclear antigen, respectively. Immunohistochemistry and Western blot were performed to investigate the expressions of components in Wnt/β-catenin pathway (Wnt3, LRP5, β-catenin, c-Myc, LRG5 and CD44). RESULTS BBD obviously alleviated 5-FU-induced body weight loss and diarrhea, and reversed the decrease in the number of white blood cells, including monocyte, granulocyte and lymphocyte, and platelet (P<0.01). The shortening of colon caused by 5-FU was also reversed by BBD (P<0.01). Moreover, BBD inhibited apoptosis and promoted proliferation in jejunum tissues so as to reduce the intestinal mucosal damage and improve the integrity of villus and crypts. Mechanically, the expression levels of Wnt/β -catenin mediators such as Wnt3, LRP5, β-catenin were upregulated by BBD, activating the transcription of c-Myc, LRG5 and CD44 (P<0.01). CONCLUSIONS BBD attenuates the adverse effects induced by 5-FU via Wnt/β-catenin pathway, suggesting it may act as a potential agent against chemotherapy-induced intestinal mucositis.
Collapse
Affiliation(s)
- Meng-Xuan Gui
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Bin Huang
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Xi Chen
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, 350025, China
| | - Ragunath Muthu
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Ying Gao
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Rui-Guo Wang
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jiu-Mao Lin
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| |
Collapse
|
7
|
Liang Z, Shu J, He Q, Zhang F, Dai L, Wang L, Lu F, Wang L. High dose sofosbuvir and sofosbuvir-plus-ribavirin therapy inhibit Hepatitis E Virus (HEV) replication in a rabbit model for acute HEV infection. Antiviral Res 2022; 199:105274. [PMID: 35247472 DOI: 10.1016/j.antiviral.2022.105274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV) is an important cause of viral hepatitis worldwide and there is currently no FDA-approved anti-HEV drug. The commonly used drug ribavirin (RBV) could not achieve viral clearance in all patients and can induce drug resistance. Recent studies showed sofosbuvir (SOF) can inhibit HEV replication in vitro and has add-on effect when combined with RBV, but the effect of SOF against HEV infection remains controversial and the dosage of SOF warrants further exploration. In this study, a rabbit model for acute HEV infection was used to evaluate the effect of SOF at different doses against HEV genotype 3 and 4, and to compare the antiviral effect of SOF-plus-RBV therapy with RBV monotherapy. Virological parameters on fecal, serological and intrahepatic level were tested by real-time PCR and ELISA. Liver function tests and histopathological assays were performed. Both 200 mg/d and 300 mg/d SOF treatment inhibits HEV replication with relieved liver inflammation and declined levels of fecal HEV RNA, viremia and antigenemia. 300 mg/d SOF eliminated HEV replication while a short viral rebound was observed after 200 mg/d SOF treatment. The SOF-plus-RBV therapy also showed stronger anti-HEV effect than RBV monotherapy. Our study suggests that high dose of SOF showed better anti-HEV effect in the rabbit model. Moreover, the de novo SOF-plus-RBV therapy which eliminated acute HEV infection more efficiently than RBV monotherapy may serve as an alternative treatment strategy.
Collapse
Affiliation(s)
- Zhaochao Liang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jingyi Shu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qiyu He
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Fan Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lizhong Dai
- Peking University-Sansure Biotech Joint Laboratory of Molecular Medicine, Peking University, Beijing, China
| | - Ling Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Peking University-Sansure Biotech Joint Laboratory of Molecular Medicine, Peking University, Beijing, China.
| | - Lin Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Peking University-Sansure Biotech Joint Laboratory of Molecular Medicine, Peking University, Beijing, China.
| |
Collapse
|
8
|
Zhang Y, Lv J, Zhang J, Lv Z, Yu M. Lipidomic-based investigation into the therapeutic effects of polyene phosphatidylcholine and Babao Dan on rats with non-alcoholic fatty liver disease. Biomed Chromatogr 2021; 36:e5271. [PMID: 34727379 DOI: 10.1002/bmc.5271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 11/11/2022]
Abstract
In recent years, with the improvement of people's living standards, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world. In this paper, the metabolic disorders in Sprague Dawley (SD) rats were induced by a choline-deficient, l-amino acid-defined (CDAA) diet. The therapeutic effects of polyene phosphatidylcholine (PPC) and Babao Dan (BBD) on NAFLD were observed. Lipidomic analysis was performed using ultra-high-performance liquid chromatography-Orbitrap MS, and data analysis and lipid identification were performed using the software LipidSearch. Both PPC and BBD can reduce lipid accumulation in the liver and improve abnormal biochemical indicators in rats, including reduction of triglycerides, total cholesterol, alanine transaminase and aspartate transaminase in serum. In addition, lipids in rat serum were systematically analyzed by lipidomics. The lipidomic results showed that the most obvious lipids with abnormal metabolism in CDAA diet-induced rats were glycerides (triglycerides and diacylglycerols), phospholipids and cholesterol esters. Both BBD and PPC partly reversed the disturbance to lipids induced by the CDAA diet. PPC may be more effective than BBD in alleviating NAFLD because it has a better effect on inhibiting the abnormal accumulation of lipids and reducing the inflammatory reaction in the body.
Collapse
Affiliation(s)
- Yicong Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jinxiao Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jiayuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China.,Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao, China
| |
Collapse
|
9
|
Qian J, Xu H, Lv D, Liu W, Chen E, Zhou Y, Wang Y, Ying K, Fan X. Babaodan controls excessive immune responses and may represent a cytokine-targeted agent suitable for COVID-19 treatment. Biomed Pharmacother 2021; 139:111586. [PMID: 33866132 PMCID: PMC8030745 DOI: 10.1016/j.biopha.2021.111586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 01/17/2023] Open
Abstract
It has become evident that the actions of pro-inflammatory cytokines and/or the development of a cytokine storm are responsible for the occurrence of severe COVID-19 during SARS-CoV-2 infection. Although immunomodulatory mechanisms vary among viruses, the activation of multiple TLRs that occurs primarily through the recruitment of adapter proteins such as MyD88 and TRIF contributes to the induction of a cytokine storm. Based on this, controlling the robust production of pro-inflammatory cytokines by macrophages may be applicable as a cellular approach to investigate potential cytokine-targeted therapies against COVID-19. In the current study, we utilized TLR2/MyD88 and TLR3/TRIF co-activated macrophages and evaluated the anti-cytokine storm effect of the traditional Chinese medicine (TCM) formula Babaodan (BBD). An RNA-seq-based transcriptomic approach was used to determine the molecular mode of action. Additionally, we evaluated the anti-inflammatory activity of BBD in vivo using a mouse model of post-viral bacterial infection-induced pneumonia and seven severely ill COVID-19 patients. Our study reveals the protective role of BBD against excessive immune responses in macrophages, where the underlying mechanisms involve the inhibition of the NF-κB and MAPK signaling pathways. In vivo, BBD significantly inhibited the release of IL-6, thus resulting in increased survival rates in mice. Based on limited data, we demonstrated that severely ill COVID-19 patients benefited from BBD treatment due to a reduction in the overproduction of IL-6. In conclusion, our study indicated that BBD controls excessive immune responses and may thus represent a cytokine-targeted agent that could be considered to treating COVID-19.
Collapse
Affiliation(s)
- Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hangdi Xu
- Department of Respiratory and Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongqing Lv
- Department of Respiratory and Critical Medicine, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Wei Liu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Enguo Chen
- Department of Respiratory and Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yong Zhou
- Department of Respiratory and Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kejing Ying
- Department of Respiratory and Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Guan JH, Cao ZY, Guan B, Wei LH, Peng J, Chen YQ, Sferra TJ, Sankararaman S, Zhan ZX, Lin JM. Effect of Babao Dan on angiogenesis of gastric cancer in vitro by regulating VEGFA/VEGFR2 signaling pathway. Transl Cancer Res 2021; 10:953-965. [PMID: 35116423 PMCID: PMC8798656 DOI: 10.21037/tcr-20-2559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/04/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND To further elucidate the anti-angiogenesis effect of Babao Dan (BBD) in vitro, gastric cancer (GC) cells and human umbilical vein endothelial cells (HUVECs) were used to evaluate the regulation role of BBD by vascular endothelial growth factor A (VEGFA)/vascular endothelial growth factor receptor 2 (VEGFR2) signaling pathway. METHODS After induced by VEGFA, GC cells (AGS, MGC80-3 and BGC823) were treated by different concentrations of BBD and then were detected cell viability, migration and VEGFA level. And the anti-angiogenesis effect of BBD was evaluated with HUVECs. To furtherly mimic the tumor microenvironment of angiogenesis, VEGFA as an inducer (10 ng/mL) was used to trigger a cascade of angiogenesis of HUVECs in vitro. RESULTS The viability and migration of GC cells with VEGFA-induced or non-induced and VEGFA levels in GC cells were significantly inhibited by BBD with concentration-dependent manner (P<0.01). BBD significantly inhibited the HUVECs viability with concentration-dependent manner (P<0.01), which was consistent with the inhibitory action on augmentation of cell viability induced by VEGFA (P<0.01). BBD exhibited the similar inhibitory trend on cyto behavioral variability such as wound repairing (P<0.05), migration (P<0.01) and tube formation (P<0.01) and activation effect on cell apoptosis rate (P<0.01) with VEGFA-induced or non-induced. Moreover, BBD notably regulated the levels of VEGFA, VEGFR2, matrix metalloprotein 2 (MMP2) and matrix metalloprotein 9 (MMP9) of HUVECs on present or absent of VEGFA with dose-dependent manner. CONCLUSIONS BBD inhibited GC growth against VEGFA-induced angiogenesis of HUVECs by VEGFA/VEGFR2 signaling pathway in vitro.
Collapse
Affiliation(s)
- Jian-Hua Guan
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhi-Yun Cao
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bin Guan
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen, China
| | - Li-Hui Wei
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jun Peng
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - You-Qin Chen
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Thomas Joseph Sferra
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Senthilkumar Sankararaman
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Zhi-Xue Zhan
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen, China
| | - Jiu-Mao Lin
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
11
|
Shang H, Cao Z, Zhao J, Guan J, Liu J, Peng J, Chen Y, Joseph Sferra T, Sankararaman S, Lin J. Babao Dan induces gastric cancer cell apoptosis via regulating MAPK and NF-κB signaling pathways. J Int Med Res 2019; 47:5106-5119. [PMID: 31456462 PMCID: PMC6833375 DOI: 10.1177/0300060519867502] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/12/2019] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE The objective was to further investigate apoptosis induction by Babao Dan (BBD), which supports its anti-tumor mechanisms, using two human gastric cancer cell lines (AGS and MGC80-3). METHODS After treatment with various BBD concentrations, cell viability and cytotoxic effects were investigated using methyl thiazolyl tetrazolium (MTT) and lactate dehydrogenase (LDH) assays, respectively. The following indicators of cell apoptosis were evaluated: Annexin V-APC staining, caspase-3/-8/-9 activation, and mitochondrial membrane potential loss. Apoptosis-related protein levels (including Bcl-2-associated X protein [Bax], B-cell CLL/lymphoma 2 [Bcl-2], factor associated suicide [Fas], and Fas ligand [FasL]) were determined by western blot. The following multi-pathway factors were also assessed: p-ERK1/2, p-JNK, p-p38, and p-NF-κB. RESULTS The MTT and LDH assays both demonstrated increased BBD cytotoxicity. BBD induced cell apoptosis by stimulating caspase-3/-8/-9 activity and destroying the mitochondrial membrane potential. BBD also regulated key factor expression levels including Bcl-2, Bax, Fas, and FasL and down-regulated protein phosphorylation via the MAPK and NF-κB pathway. CONCLUSIONS The possible anti-tumor mechanism is that BBD induces apoptosis via the MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Haixia Shang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zhiyun Cao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jinyan Zhao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jianhua Guan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jianxin Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Youqin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Thomas Joseph Sferra
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Senthilkumar Sankararaman
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
12
|
Sayed IM, Elkhawaga AA, El-Mokhtar MA. In vivo models for studying Hepatitis E virus infection; Updates and applications. Virus Res 2019; 274:197765. [PMID: 31563457 DOI: 10.1016/j.virusres.2019.197765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023]
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis globally. HEV belongs to the Hepeviridae family and at least five genotypes (gt) infect humans. Several animal species are reservoirs for different HEV strains, and they are the source of infection for humans. Some HEV strains are species specific, but other strains could cross species and infect many hosts. The study of HEV infection and pathogenesis was hampered due to the lack of an in vitro and in vivo robust model system. The cell culture system has been established for certain HEV strains, especially gt3 and 4, but gt1 strains replicate poorly in vitro. To date, animal models are the best tool for studying HEV infection. Non-human primates (NHPs) and pigs are the main animal models used for studying HEV infection, but ethical and financial concerns restrict the use of NHPs in research. Therefore, new small animal models have been developed which help more progress in HEV research. In this review, we give updates on the animal models used for studying HEV infection, focusing on the applicability of each model in studying different HEV infections, cross-species infection, virus-host interaction, evaluation of anti-HEV therapies and testing potential HEV vaccines.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA; Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Amal A Elkhawaga
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A El-Mokhtar
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
13
|
Horvatits T, Schulze Zur Wiesch J, Lütgehetmann M, Lohse AW, Pischke S. The Clinical Perspective on Hepatitis E. Viruses 2019; 11:E617. [PMID: 31284447 PMCID: PMC6669652 DOI: 10.3390/v11070617] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
Every year, there are an estimated 20 million hepatitis E virus (HEV) infections worldwide, leading to an estimated 3.3 million symptomatic cases of hepatitis E. HEV is largely circulating in the west and is associated with several hepatic and extrahepatic diseases. HEV Genotype 1 and 2 infections are waterborne and causative for epidemics in the tropics, while genotype 3 and 4 infections are zoonotic diseases and are mainly transmitted by ingestion of undercooked pork in industrialized nations. The clinical course of these infections differs: genotype 1 and 2 infection can cause acute illness and can lead to acute liver failure (ALF) or acute on chronic liver failure (ACLF) with a high mortality rate of 20% in pregnant women. In contrast, the majority of HEV GT-3 and -4 infections have a clinically asymptomatic course and only rarely lead to acute on chronic liver failure in elderly or patients with underlying liver disease. Immunosuppressed individuals infected with genotype 3 or 4 may develop chronic hepatitis E, which then can lead to life-threatening cirrhosis. Furthermore, several extra-hepatic manifestations affecting various organs have been associated with ongoing or previous HEV infections but the causal link for many of them still needs to be proven. There is no approved specific therapy for the treatment of acute or chronic HEV GT-3 or -4 infections but off-label use of ribavirin has been demonstrated to be safe and effective in the majority of patients. However, in approximately 15% of chronically HEV infected patients, cure is not possible.
Collapse
Affiliation(s)
- Thomas Horvatits
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany
- Institute of Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany
| | - Ansgar W Lohse
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany
| | - Sven Pischke
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany.
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany.
| |
Collapse
|