1
|
Rodrigues YC, Silva MJA, dos Reis HS, dos Santos PAS, Sardinha DM, Gouveia MIM, dos Santos CS, Marcon DJ, Aires CAM, Souza CDO, Quaresma AJPG, Lima LNGC, Brasiliense DM, Lima KVB. Molecular Epidemiology of Pseudomonas aeruginosa in Brazil: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2024; 13:983. [PMID: 39452249 PMCID: PMC11504043 DOI: 10.3390/antibiotics13100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Globally, Pseudomonas aeruginosa is a high-priority opportunistic pathogen which displays several intrinsic and acquired antimicrobial resistance (AMR) mechanisms, leading to challenging treatments and mortality of patients. Moreover, its wide virulence arsenal, particularly the type III secretion system (T3SS) exoU+ virulotype, plays a crucial role in pathogenicity and poor outcome of infections. In depth insights into the molecular epidemiology of P. aeruginosa, especially the prevalence of high-risk clones (HRCs), are crucial for the comprehension of virulence and AMR features and their dissemination among distinct strains. This study aims to evaluate the prevalence and distribution of HRCs and non-HRCs among Brazilian isolates of P. aeruginosa. METHODS A systematic review and meta-analysis were conducted on studies published between 2011 and 2023, focusing on the prevalence of P. aeruginosa clones determined by multilocus sequence typing (MLST) in Brazil. Data were extracted from retrospective cross-sectional and case-control studies, encompassing clinical and non-clinical samples. The analysis included calculating the prevalence rates of various sequence types (STs) and assessing the regional variability in the distribution of HRCs and non-HRCs. RESULTS A total of 872 samples were analyzed within all studies, of which 298 (34.17%) were MLST typed, identifying 78 unique STs. HRCs accounted for 48.90% of the MLST-typed isolates, with ST277 being the most prevalent (100/298-33.55%), followed by ST244 (29/298-9.73%), ST235 (13/298-4.36%), ST111 (2/298-0.67%), and ST357 (2/298-0.67%). Significant regional variability was observed, with the Southeast region showing a high prevalence of ST277, while the North region shows a high prevalence of MLST-typed samples and HRCs. CONCLUSIONS Finally, this systematic review and meta-analysis highlight the role of P. aeruginosa clones in critical issue of AMR in P. aeruginosa in Brazil and the need of integration of comprehensive data from individual studies.
Collapse
Affiliation(s)
- Yan Corrêa Rodrigues
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Marcos Jessé Abrahão Silva
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Herald Souza dos Reis
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
| | - Pabllo Antonny Silva dos Santos
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Daniele Melo Sardinha
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
| | - Maria Isabel Montoril Gouveia
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Carolynne Silva dos Santos
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Davi Josué Marcon
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Caio Augusto Martins Aires
- Department of Health Sciences (DCS), Federal Rural University of the Semi-Arid Region (UFERSA), Av. Francisco Mota, 572-Bairro Costa e Silva, Mossoró 59625-900, RN, Brazil;
| | - Cintya de Oliveira Souza
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
| | - Ana Judith Pires Garcia Quaresma
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Luana Nepomuceno Gondim Costa Lima
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Danielle Murici Brasiliense
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Karla Valéria Batista Lima
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| |
Collapse
|
2
|
Glen KA, Lamont IL. Characterization of acquired β-lactamases in Pseudomonas aeruginosa and quantification of their contributions to resistance. Microbiol Spectr 2024; 12:e0069424. [PMID: 39248479 PMCID: PMC11448201 DOI: 10.1128/spectrum.00694-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024] Open
Abstract
Pseudomonas aeruginosa is a highly problematic opportunistic pathogen that causes a range of different infections. Infections are commonly treated with β-lactam antibiotics, including cephalosporins, monobactams, penicillins, and carbapenems, with carbapenems regarded as antibiotics of last resort. Isolates of P. aeruginosa can contain horizontally acquired bla genes encoding β-lactamase enzymes, but the extent to which these contribute to β-lactam resistance in this species has not been systematically quantified. The overall aim of this research was to address this knowledge gap by quantifying the frequency of β-lactamase-encoding genes in P. aeruginosa and by determining the effects of β-lactamases on susceptibility of P. aeruginosa to β-lactams. Genome analysis showed that β-lactamase-encoding genes are present in 3% of P. aeruginosa but are enriched in carbapenem-resistant isolates (35%). To determine the substrate antibiotics, 10 β-lactamases were expressed from an integrative plasmid in the chromosome of P. aeruginosa reference strain PAO1. The β-lactamases reduced susceptibility to a variety of clinically used antibiotics, including carbapenems (meropenem, imipenem), penicillins (ticarcillin, piperacillin), cephalosporins (ceftazidime, cefepime), and a monobactam (aztreonam). Different enzymes acted on different β-lactams. β-lactamases encoded by the genomes of P. aeruginosa clinical isolates had similar effects to the enzymes expressed in strain PAO1. Genome engineering was used to delete β-lactamase-encoding genes from three carbapenem-resistant clinical isolates and increased susceptibility to substrate β-lactams. Our findings demonstrate that acquired β-lactamases play an important role in β-lactam resistance in P. aeruginosa, identifying substrate antibiotics for a range of enzymes and quantifying their contributions to resistance.IMPORTANCEPseudomonas aeruginosa is an extremely problematic pathogen, with isolates that are resistant to the carbapenem class of β-lactam antibiotics being in critical need of new therapies. Genes encoding β-lactamase enzymes that degrade β-lactam antibiotics can be present in P. aeruginosa, including carbapenem-resistant isolates. Here, we show that β-lactamase genes are over-represented in carbapenem-resistant isolates, indicating their key role in resistance. We also show that different β-lactamases alter susceptibility of P. aeruginosa to different β-lactam antibiotics and quantify the effects of selected enzymes on β-lactam susceptibility. This research significantly advances the understanding of the contributions of acquired β-lactamases to antibiotic resistance, including carbapenem resistance, in P. aeruginosa and by implication in other species. It has potential to expedite development of methods that use whole genome sequencing of infecting bacteria to inform antibiotic treatment, allowing more effective use of antibiotics, and facilitate the development of new antibiotics.
Collapse
Affiliation(s)
- Karl A Glen
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Le Terrier C, Freire S, Viguier C, Findlay J, Nordmann P, Poirel L. Relative inhibitory activities of the broad-spectrum β-lactamase inhibitor xeruborbactam in comparison with taniborbactam against metallo-β-lactamases produced in Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2024; 68:e0157023. [PMID: 38727224 PMCID: PMC11620488 DOI: 10.1128/aac.01570-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/12/2024] [Indexed: 12/07/2024] Open
Abstract
Xeruborbactam is a newly developed β-lactamase inhibitor designed for metallo-β-lactamases (MBLs). This study assessed the relative inhibitory properties of this novel inhibitor in comparison with another MBL inhibitor, namely taniborbactam (TAN), against a wide range of acquired MBL produced either in Escherichia coli or Pseudomonas aeruginosa. As observed with taniborbactam, the combination of xeruborbactam (XER) with β-lactams, namely, ceftazidime, cefepime and meropenem, led to significantly decreased MIC values for a wide range of B1-type MBL-producing E. coli, including most recombinant strains producing NDM, VIM, IMP, GIM-1, and DIM-1 enzymes. Noteworthily, while TAN-based combinations significantly reduced MIC values of β-lactams for MBL-producing P. aeruginosa recombinant strains, those with XER were much less effective. We showed that this latter feature was related to the MexAB-OprM efflux pump significantly impacting MIC values when testing XER-based combinations in P. aeruginosa. The relative inhibitory concentrations (IC50 values) were similar for XER and TAN against NDM and VIM enzymes. Noteworthily, XER was effective against NDM-9, NDM-30, VIM-83, and most of IMP enzymes, although those latter enzymes were considered resistant to TAN. However, no significant inhibition was observed with XER against IMP-10, SPM-1, and SIM-1 as well as the representative subclass B2 and B3 enzymes, PFM-1 and AIM-1. The determination of the constant inhibition (Ki) of XER revealed a much higher value against IMP-10 than against NDM-1, VIM-2, and IMP-1. Hence, IMP-10 that differs from IMP-1 by a single amino-acid substitution (Val67Phe) can, therefore, be considered resistant to XER.
Collapse
Affiliation(s)
- Christophe Le Terrier
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Division of Intensive care unit, University hospitals of Geneva, Geneva, Switzerland
| | - Samanta Freire
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Clément Viguier
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Infectious Disease Department, University hospital of Toulouse, Toulouse, France
| | - Jacqueline Findlay
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Patrice Nordmann
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Laurent Poirel
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| |
Collapse
|
4
|
Gondal AJ, Choudhry N, Niaz A, Yasmin N. Molecular Analysis of Carbapenem and Aminoglycoside Resistance Genes in Carbapenem-Resistant Pseudomonas aeruginosa Clinical Strains: A Challenge for Tertiary Care Hospitals. Antibiotics (Basel) 2024; 13:191. [PMID: 38391577 PMCID: PMC10886086 DOI: 10.3390/antibiotics13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) strains have become a global threat due to their remarkable capability to survive and disseminate successfully by the acquisition of resistance genes. As a result, the treatment strategies have been severely compromised. Due to the insufficient available data regarding P. aeruginosa resistance from Pakistan, we aimed to investigate the resistance mechanisms of 249 P. aeruginosa strains by antimicrobial susceptibility testing, polymerase chain reaction for the detection of carbapenemases, aminoglycoside resistance genes, extended-spectrum beta-lactamases (ESBLs), sequence typing and plasmid typing. Furthermore, we tested silver nanoparticles (AgNPs) to evaluate their in vitro sensitivity against antimicrobial-resistant P. aeruginosa strains. We observed higher resistance against antimicrobials in the general surgery ward, general medicine ward and wound samples. Phenotypic carbapenemase-producer strains comprised 80.7% (201/249) with 89.0% (179/201) demonstrating genes encoding carbapenemases: blaNDM-1 (32.96%), blaOXA48 (37.43%), blaIMP (7.26%), blaVIM (5.03%), blaKPC-2 (1.12%), blaNDM-1/blaOXA48 (13.97%), blaOXA-48/blaVIM (1.68%) and blaVIM/blaIMP (0.56%). Aminoglycoside-modifying enzyme genes and 16S rRNA methylase variants were detected in 43.8% (109/249) strains: aac(6')-lb (12.8%), aac(3)-lla (12.0%), rmtB (21.1%), rmtC (11.0%), armA (12.8%), rmtD (4.6%), rmtF (6.4%), rmtB/aac(3)-lla (8.2%), rmtB/aac(6')-lla (7.3%) and rmtB/armA (3.6%). In total, 43.0% (77/179) of the strains coharbored carbapenemases and aminoglycoside resistance genes with 83.1% resistant to at least 1 agent in 3 or more classes and 16.9% resistant to every class of antimicrobials tested. Thirteen sequence types (STs) were identified: ST235, ST277, ST234, ST170, ST381, ST175, ST1455, ST1963, ST313, ST207, ST664, ST357 and ST348. Plasmid replicon types IncFI, IncFII, IncA/C, IncL/M, IncN, IncX, IncR and IncFIIK and MOB types F11, F12, H121, P131 and P3 were detected. Meropenem/AgNPs and Amikacin/AgNPs showed enhanced antibacterial activity. We reported the coexistence of carbapenemases and aminoglycoside resistance genes among carbapenem-resistant P. aeruginosa with diverse clonal lineages from Pakistan. Furthermore, we highlighted AgNP's potential role in handling future antimicrobial resistance concerns.
Collapse
Affiliation(s)
- Aamir Jamal Gondal
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| | - Nakhshab Choudhry
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Ammara Niaz
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Nighat Yasmin
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| |
Collapse
|
5
|
Dos Santos PAS, Silva MJA, Gouveia MIM, Lima LNGC, Quaresma AJPG, De Lima PDL, Brasiliense DM, Lima KVB, Rodrigues YC. The Prevalence of Metallo-Beta-Lactamese-(MβL)-Producing Pseudomonas aeruginosa Isolates in Brazil: A Systematic Review and Meta-Analysis. Microorganisms 2023; 11:2366. [PMID: 37764210 PMCID: PMC10534863 DOI: 10.3390/microorganisms11092366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
The purpose of the current study is to describe the prevalence of Pseudomonas aeruginosa (PA)-producing MβL among Brazilian isolates and the frequency of blaSPM-1 in MβL-PA-producing isolates. From January 2009 to August 2023, we carried out an investigation on this subject in the internet databases SciELO, PubMed, Science Direct, and LILACS. A total of 20 papers that met the eligibility requirements were chosen by comprehensive meta-analysis software v2.2 for data retrieval and analysis by one meta-analysis using a fixed-effects model for the two investigations. The prevalence of MβL-producing P. aeruginosa was 35.8% or 0.358 (95% CI = 0.324-0.393). The studies' differences were significantly different from one another (x2 = 243.15; p < 0.001; I2 = 92.18%), so they were divided into subgroups based on Brazilian regions. There was indication of asymmetry in the meta-analyses' publishing bias funnel plot; so, a meta-regression was conducted by the study's publication year. According to the findings of Begg's test, no discernible publishing bias was found. blaSPM-1 prevalence was estimated at 66.9% or 0.669 in MβL-PA isolates (95% CI = 0.593-0.738). The analysis of this one showed an average heterogeneity (x2 = 90.93; p < 0.001; I2 = 80.20%). According to the results of Begg's test and a funnel plot, no discernible publishing bias was found. The research showed that MβL-P. aeruginosa and SPM-1 isolates were relatively common among individuals in Brazil. P. aeruginosa and other opportunistic bacteria are spreading quickly and causing severe infections, so efforts are needed to pinpoint risk factors, reservoirs, transmission pathways, and the origin of infection.
Collapse
Affiliation(s)
- Pabllo Antonny Silva Dos Santos
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
| | - Marcos Jessé Abrahão Silva
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Maria Isabel Montoril Gouveia
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
| | - Luana Nepomuceno Gondim Costa Lima
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Ana Judith Pires Garcia Quaresma
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
| | - Patrícia Danielle Lima De Lima
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
| | - Danielle Murici Brasiliense
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Karla Valéria Batista Lima
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Yan Corrêa Rodrigues
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Department of Natural Science, State University of Pará (DCNA/UEPA), Belém 66050-540, PA, Brazil
| |
Collapse
|
6
|
Dos Santos PAS, Rodrigues YC, Marcon DJ, Lobato ARF, Cazuza TB, Gouveia MIM, Silva MJA, Souza AB, Lima LNGC, Quaresma AJPG, Brasiliense DM, Lima KVB. Endemic High-Risk Clone ST277 Is Related to the Spread of SPM-1-Producing Pseudomonas aeruginosa during the COVID-19 Pandemic Period in Northern Brazil. Microorganisms 2023; 11:2069. [PMID: 37630629 PMCID: PMC10457858 DOI: 10.3390/microorganisms11082069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa is a high-priority bacterial agent that causes healthcare-acquired infections (HAIs), which often leads to serious infections and poor prognosis in vulnerable patients. Its increasing resistance to antimicrobials, associated with SPM production, is a case of public health concern. Therefore, this study aims to determine the antimicrobial resistance, virulence, and genotyping features of P. aeruginosa strains producing SPM-1 in the Northern region of Brazil. To determine the presence of virulence and resistance genes, the PCR technique was used. For the susceptibility profile of antimicrobials, the Kirby-Bauer disk diffusion method was performed on Mueller-Hinton agar. The MLST technique was used to define the ST of the isolates. The exoS+/exoU- virulotype was standard for all strains, with the aprA, lasA, toxA, exoS, exoT, and exoY genes as the most prevalent. All the isolates showed an MDR or XDR profile against the six classes of antimicrobials tested. HRC ST277 played a major role in spreading the SPM-1-producing P. aeruginosa strains.
Collapse
Affiliation(s)
- Pabllo Antonny Silva Dos Santos
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (D.J.M.); (L.N.G.C.L.); (D.M.B.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Yan Corrêa Rodrigues
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Department of Natural Science, State University of Pará (DCNA/UEPA), Belém 66050-540, PA, Brazil
| | - Davi Josué Marcon
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (D.J.M.); (L.N.G.C.L.); (D.M.B.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Amália Raiana Fonseca Lobato
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Thalyta Braga Cazuza
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Maria Isabel Montoril Gouveia
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Marcos Jessé Abrahão Silva
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Alex Brito Souza
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Luana Nepomuceno Gondim Costa Lima
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (D.J.M.); (L.N.G.C.L.); (D.M.B.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Ana Judith Pires Garcia Quaresma
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Danielle Murici Brasiliense
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (D.J.M.); (L.N.G.C.L.); (D.M.B.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Karla Valéria Batista Lima
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (D.J.M.); (L.N.G.C.L.); (D.M.B.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| |
Collapse
|
7
|
Taylor E, Jauneikaite E, Sriskandan S, Woodford N, Hopkins KL. Detection and characterisation of 16S rRNA methyltransferase-producing Pseudomonas aeruginosa from the UK and Republic of Ireland from 2003-2015. Int J Antimicrob Agents 2022; 59:106550. [PMID: 35176475 DOI: 10.1016/j.ijantimicag.2022.106550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
Abstract
16S rRNA methyltransferase (16S RMTase) genes confer high-level aminoglycoside resistance, reducing treatment options for multidrug-resistant Gram-negative bacteria. Pseudomonas aeruginosa isolates (n = 221) exhibiting high-level pan-aminoglycoside resistance (amikacin, gentamicin and tobramycin MICs ≥64, ≥32 and ≥32 mg/L, respectively) were screened for 16S RMTase genes to determine their occurrence among isolates submitted to a national reference laboratory from December 2003 to December 2015. 16S RMTase genes were identified using two multiplex PCRs, and whole-genome sequencing (WGS) was used to identify other antibiotic resistance genes, sequence types (STs) and the genetic environment of 16S RMTase genes. 16S RMTase genes were found in 8.6% (19/221) of isolates, with rmtB4 (47.4%; 9/19) being most common, followed by rmtD3 (21.1%; 4/19), rmtF2 (15.8%; 3/19) and single isolates harbouring rmtB1, rmtC and rmtD1. Carbapenemase genes were found in 89.5% (17/19) of 16S RMTase-positive isolates, with blaVIM (52.9%; 9/17) being most common. 16S RMTase genes were found in 'high-risk' clones known to harbour carbapenemase genes (ST233, ST277, ST357, ST654 and ST773). Analysis of the genetic environment of 16S RMTase genes identified that IS6100 was genetically linked to rmtB1; IS91 to rmtB4, rmtC or rmtD3; ISCR14 to rmtD1; and rmtF2 was linked to Tn3, IS91 or Tn1721. Although 16S RMTase genes explained only 8.6% of pan-aminoglycoside resistance in the P. aeruginosa isolates studied, the association of 16S RMTase genes with carbapenemase-producers and 'high-risk' clones highlights that continued surveillance is required to monitor spread as well as the importance of suppressing the emergence of dually-resistant clones in hospital settings.
Collapse
Affiliation(s)
- Emma Taylor
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London W12 0NN, UK; Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Reference Services Division, UK Health Security Agency, London NW9 5EQ, UK
| | - Elita Jauneikaite
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London W12 0NN, UK; School of Public Health, Imperial College London, London W2 1PG, UK
| | - Shiranee Sriskandan
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London W12 0NN, UK; MRC Centre for Molecular Bacteriology & Infection, Imperial College London, London SW7 2DD, UK
| | - Neil Woodford
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London W12 0NN, UK; Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Reference Services Division, UK Health Security Agency, London NW9 5EQ, UK
| | - Katie L Hopkins
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London W12 0NN, UK; Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Reference Services Division, UK Health Security Agency, London NW9 5EQ, UK; Antimicrobial Resistance & Mechanisms Service, HCAI, Fungal, AMR, AMU and Sepsis Division, UK Health Security Agency, London NW9 5EQ, UK.
| |
Collapse
|
8
|
Lynch JP, Zhanel GG. Pseudomonas aeruginosa Pneumonia: Evolution of Antimicrobial Resistance and Implications for Therapy. Semin Respir Crit Care Med 2022; 43:191-218. [PMID: 35062038 DOI: 10.1055/s-0041-1740109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa (PA), a non-lactose-fermenting gram-negative bacillus, is a common cause of nosocomial infections in critically ill or debilitated patients, particularly ventilator-associated pneumonia (VAP), and infections of urinary tract, intra-abdominal, wounds, skin/soft tissue, and bloodstream. PA rarely affects healthy individuals, but may cause serious infections in patients with chronic structural lung disease, comorbidities, advanced age, impaired immune defenses, or with medical devices (e.g., urinary or intravascular catheters, foreign bodies). Treatment of pseudomonal infections is difficult, as PA is intrinsically resistant to multiple antimicrobials, and may acquire new resistance determinants even while on antimicrobial therapy. Mortality associated with pseudomonal VAP or bacteremias is high (> 35%) and optimal therapy is controversial. Over the past three decades, antimicrobial resistance (AMR) among PA has escalated globally, via dissemination of several international multidrug resistant "epidemic" clones. We discuss the importance of PA as a cause of pneumonia including health care-associated pneumonia, hospital-acquired pneumonia, VAP, the emergence of AMR to this pathogen, and approaches to therapy (both empirical and definitive).
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Ramos JF, Leite G, Martins RCR, Rizek C, Al Sanabani SS, Rossi F, Guimarães T, Levin AS, Rocha V, Costa SF. Clinical outcome from hematopoietic cell transplant patients with bloodstream infection caused by carbapenem-resistant P. aeruginosa and the impact of antimicrobial combination in vitro. Eur J Clin Microbiol Infect Dis 2021; 41:313-317. [PMID: 34651217 DOI: 10.1007/s10096-021-04361-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
Bloodstream infection (BSI) caused by carbapenem-resistant P. aeruginosa (CRPA) has high mortality in hematopoietic stem cell transplant (HSCT) recipients. We performed MIC, checkerboard, time-kill assay, PFGE, PCR, and whole genome sequence and described the clinical outcome through Epi Info comparing the antimicrobial combination in vitro. Mortality was higher in BSI caused by CRPA carrying the lasB virulence gene. The isolates were 97% resistant to meropenem displaying synergistic effect to 57% in combination with colistin. Seventy-three percent of the isolates harbored blaSPM-1 and Tn4371 and belonged to ST277. The synergistic effect in vitro with meropenem with colistin appeared to be a better therapeutic option.
Collapse
Affiliation(s)
- Jessica Fernandes Ramos
- Department of Infectious Diseases of Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
- Department of Haematology, Hemotherapy and Cellular Therapy of Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
| | - Gleice Leite
- Laboratory of Medical Investigation - LIM 49 - Medical Tropical Institute, University of Sao Paulo, São Paulo, Brazil.
| | | | - Camila Rizek
- Laboratory of Medical Investigation - LIM 49 - Medical Tropical Institute, University of Sao Paulo, São Paulo, Brazil
| | - Sabri Saeed Al Sanabani
- Laboratory of Medical Investigation - LIM 52 - Medical Tropical Institute, University of Sao Paulo, São Paulo, Brazil
| | - Flavia Rossi
- Laboratory of Clinical Microbiology of Hospital das Clínicas, Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
| | - Thais Guimarães
- Department of Infectious Diseases of Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
- Laboratory of Medical Investigation - LIM 49 - Medical Tropical Institute, University of Sao Paulo, São Paulo, Brazil
| | - Anna Sara Levin
- Department of Infectious Diseases of Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
- Laboratory of Medical Investigation - LIM 49 - Medical Tropical Institute, University of Sao Paulo, São Paulo, Brazil
| | - Vanderson Rocha
- Department of Haematology, Hemotherapy and Cellular Therapy of Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
- Haematology Department, NHS BT, Oxford University, Oxford, UK
| | - Silvia Figueiredo Costa
- Department of Infectious Diseases of Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
- Laboratory of Medical Investigation - LIM 49 - Medical Tropical Institute, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Esposito F, Cardoso B, Fontana H, Fuga B, Cardenas-Arias A, Moura Q, Fuentes-Castillo D, Lincopan N. Genomic Analysis of Carbapenem-Resistant Pseudomonas aeruginosa Isolated From Urban Rivers Confirms Spread of Clone Sequence Type 277 Carrying Broad Resistome and Virulome Beyond the Hospital. Front Microbiol 2021; 12:701921. [PMID: 34539602 PMCID: PMC8446631 DOI: 10.3389/fmicb.2021.701921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The dissemination of antibiotic-resistant priority pathogens beyond hospital settings is both a public health and an environmental problem. In this regard, high-risk clones exhibiting a multidrug-resistant (MDR) or extensively drug-resistant (XDR) phenotype have shown rapid adaptation at the human-animal-environment interface. In this study, we report genomic data and the virulence potential of the carbapenemase, São Paulo metallo-β-lactamase (SPM-1)-producing Pseudomonas aeruginosa strains (Pa19 and Pa151) isolated from polluted urban rivers, in Brazil. Bioinformatic analysis revealed a wide resistome to clinically relevant antibiotics (carbapenems, aminoglycosides, fosfomycin, sulfonamides, phenicols, and fluoroquinolones), biocides (quaternary ammonium compounds) and heavy metals (copper), whereas the presence of exotoxin A, alginate, quorum sensing, types II, III, and IV secretion systems, colicin, and pyocin encoding virulence genes was associated with a highly virulent behavior in the Galleria mellonella infection model. These results confirm the spread of healthcare-associated critical-priority P. aeruginosa belonging to the MDR sequence type 277 (ST277) clone beyond the hospital, highlighting that the presence of these pathogens in environmental water samples can have clinical implications for humans and other animals.
Collapse
Affiliation(s)
- Fernanda Esposito
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Brenda Cardoso
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Bruna Fuga
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriana Cardenas-Arias
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Quézia Moura
- Federal Institute of Education, Science and Technology of Espírito Santo, Vila Velha, Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Espinosa-Camacho LF, Delgado G, Cravioto A, Morales-Espinosa R. Diversity in the composition of the accessory genome of Mexican Pseudomonas aeruginosa strains. Genes Genomics 2021; 44:53-77. [PMID: 34410625 DOI: 10.1007/s13258-021-01155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is an important opportunistic pathogen especially in nosocomial infections due to its easy adaptation to different environments; this characteristic is due to the great genetic diversity that presents its genome. In addition, it is considered a pathogen of critical priority due to the high antimicrobial resistance. OBJECTIVES The aim of this study was to characterize the mobile genetic elements present in the chromosome of six Mexican P. aeruginosa strains isolated from adults with pneumonia and children with bacteremia. METHODS The genomic DNA of six P. aeruginosa strains were isolated and sequenced using PacBio RS-II platform. They were annotated using Prokaryotic Genome Annotation Pipeline and manually curated and analyzed for the presence of mobile genetic elements, antibiotic resistances genes, efflux pumps and virulence factors using several bioinformatics programs and databases. RESULTS The global analysis of the strains chromosomes showed a novel chromosomal rearrangement in two strains, possibly mediated by subsequent recombination and inversion events. They have a high content of mobile genetic elements: 21 genomic islands, four new islets, four different integrative conjugative elements, 28 different prophages, one CRISPR-Cas arrangements, and one class 1 integron. The acquisition of antimicrobials resistance genes into these elements are in concordance with their phenotype of multi-drug resistance. CONCLUSION The accessory genome increased the ability of the strains to adapt or survive to the hospital environment, promote genomic plasticity and chromosomal rearrangements, which may affect the expression or functionality of the gene and might influence the clinical outcome, having an impact on the treatment.
Collapse
Affiliation(s)
- Luis F Espinosa-Camacho
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Gabriela Delgado
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Alejandro Cravioto
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Rosario Morales-Espinosa
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico.
| |
Collapse
|
12
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
13
|
Diversity and Distribution of Resistance Markers in Pseudomonas aeruginosa International High-Risk Clones. Microorganisms 2021; 9:microorganisms9020359. [PMID: 33673029 PMCID: PMC7918723 DOI: 10.3390/microorganisms9020359] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa high-risk clones are disseminated worldwide and they are common causative agents of hospital-acquired infections. In this review, we will summarize available data of high-risk P. aeruginosa clones from confirmed outbreaks and based on whole-genome sequence data. Common feature of high-risk clones is the production of beta-lactamases and among metallo-beta-lactamases NDM, VIM and IMP types are widely disseminated in different sequence types (STs), by contrast FIM type has been reported in ST235 in Italy, whereas GIM type in ST111 in Germany. In the case of ST277, it is most frequently detected in Brazil and it carries a resistome linked to blaSPM. Colistin resistance develops among P. aeruginosa clones in a lesser extent compared to other resistance mechanisms, as ST235 strains remain mainly susceptible to colistin however, some reports described mcr positive P. aeurigonsa ST235. Transferable quinolone resistance determinants are detected in P. aeruginosa high-risk clones and aac(6′)-Ib-cr variant is the most frequently reported as this determinant is incorporated in integrons. Additionally, qnrVC1 was recently detected in ST773 in Hungary and in ST175 in Spain. Continuous monitoring and surveillance programs are mandatory to track high-risk clones and to analyze emergence of novel clones as well as novel resistance determinants.
Collapse
|
14
|
The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9040186. [PMID: 32316342 PMCID: PMC7235769 DOI: 10.3390/antibiotics9040186] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Carbapenemases are β-lactamases belonging to different Ambler classes (A, B, D) and can be encoded by both chromosomal and plasmid-mediated genes. These enzymes represent the most potent β-lactamases, which hydrolyze a broad variety of β-lactams, including carbapenems, cephalosporins, penicillin, and aztreonam. The major issues associated with carbapenemase production are clinical due to compromising the activity of the last resort antibiotics used for treating serious infections, and epidemiological due to their dissemination into various bacteria across almost all geographic regions. Carbapenemase-producing Enterobacteriaceae have received more attention upon their first report in the early 1990s. Currently, there is increased awareness of the impact of nonfermenting bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa, as well as other Gram-negative bacteria that are carbapenemase-producers. Outside the scope of clinical importance, carbapenemases are also detected in bacteria from environmental and zoonotic niches, which raises greater concerns over their prevalence, and the need for public health measures to control consequences of their propagation. The aims of the current review are to define and categorize the different families of carbapenemases, and to overview the main lines of their spread across different bacterial groups.
Collapse
|
15
|
Silveira MC, Rocha-de-Souza CM, Albano RM, de Oliveira Santos IC, Carvalho-Assef APD. Exploring the success of Brazilian endemic clone Pseudomonas aeruginosa ST277 and its association with the CRISPR-Cas system type I-C. BMC Genomics 2020; 21:255. [PMID: 32293244 PMCID: PMC7092672 DOI: 10.1186/s12864-020-6650-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The Brazilian endemic clone Pseudomonas aeruginosa ST277 carries important antibiotic resistance determinants, highlighting the gene coding for SPM-1 carbapenemase. However, the resistance and persistence of this clone is apparently restricted to the Brazilian territory. To understand the differences between Brazilian strains from those isolated in other countries, we performed a phylogenetic analysis of 47 P. aeruginosa ST277 genomes as well as analyzed the virulence and resistance gene profiles. Furthermore, we evaluated the distribution of genomic islands and assessed in detail the characteristics of the CRISPR-Cas immunity system in these isolates. RESULTS The Brazilian genomes presented a typical set of resistance and virulence determinants, genomic islands and a high frequency of the CRISPR-Cas system type I-C. Even though the ST277 genomes are closely related, the phylogenetic analysis showed that the Brazilian strains share a great number of exclusively SNPs when compared to other ST277 genomes. We also observed a standard CRISPR spacers content for P. aeruginosa ST277, confirming a strong link between sequence type and spacer acquisition. Most CRISPR spacer targets were phage sequences. CONCLUSIONS Based on our findings, P. aeruginosa ST277 strains circulating in Brazil characteristically acquired In163 and PAGI-25, which can distinguish them from strains that do not accumulate resistance mechanisms and can be found on the Asian, European and North American continents. The distinctive genetic elements accumulated in Brazilian samples can contribute to the resistance, pathogenicity and transmission success that characterize the ST277 in this country.
Collapse
Affiliation(s)
- Melise Chaves Silveira
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil
| | - Cláudio Marcos Rocha-de-Souza
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil
| | - Rodolpho Mattos Albano
- Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, fundos, andar 4, Vila Isabel, Rio de Janeiro, Rio de Janeiro, 20551-030, Brazil
| | - Ivson Cassiano de Oliveira Santos
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil
| | - Ana Paula D'Alincourt Carvalho-Assef
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil.
| |
Collapse
|
16
|
Meunier D, Woodford N, Hopkins KL. Evaluation of the AusDiagnostics MT CRE EU assay for the detection of carbapenemase genes and transferable colistin resistance determinants mcr-1/-2 in MDR Gram-negative bacteria. J Antimicrob Chemother 2019; 73:3355-3358. [PMID: 30189011 DOI: 10.1093/jac/dky347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/02/2018] [Indexed: 01/05/2023] Open
Abstract
Objectives To evaluate the AusDiagnostics MT CRE EU assay for the detection of carbapenemase and acquired colistin resistance genes in Gram-negative bacteria. Methods The assay allows the detection of blaKPC, blaOXA-48-like, blaNDM, blaVIM, blaIMP, blaSIM, blaGIM, blaSPM, blaFRI, blaIMI, blaGES (differentiating ESBL and carbapenemase variants), blaSME and mcr-1/-2. It was evaluated against a panel of isolates including Enterobacteriaceae, Pseudomonas spp. and Acinetobacter spp. retrospectively (n = 210) and prospectively (n = 182). Results The CRE EU assay was able to detect 268/268 carbapenemase genes, with 239 belonging to the 'big five' families (KPC, OXA-48-like, NDM, VIM and IMP) and 29 carbapenemase genes of the SIM, GIM, SPM, FRI, IMI, SME and GES families. It could distinguish between ESBL and carbapenemase variants of GES. It also allowed detection of mcr-1/-2 colistin resistance genes on their own or in isolates co-producing a carbapenemase. Conclusions The AusDiagnostics MT CRE EU assay offered wide coverage for detection of acquired carbapenemase genes. It required minimal hands-on time and delivered results in less than 4 h from bacterial culture.
Collapse
Affiliation(s)
- Danièle Meunier
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Katie L Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| |
Collapse
|
17
|
Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat 2019; 44:100640. [PMID: 31492517 DOI: 10.1016/j.drup.2019.07.002] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Antibiotics are powerful drugs used in the treatment of bacterial infections. The inappropriate use of these medicines has driven the dissemination of antibiotic resistance (AR) in most bacteria. Pseudomonas aeruginosa is an opportunistic pathogen commonly involved in environmental- and difficult-to-treat hospital-acquired infections. This species is frequently resistant to several antibiotics, being in the "critical" category of the WHO's priority pathogens list for research and development of new antibiotics. In addition to a remarkable intrinsic resistance to several antibiotics, P. aeruginosa can acquire resistance through chromosomal mutations and acquisition of AR genes. P. aeruginosa has one of the largest bacterial genomes and possesses a significant assortment of genes acquired by horizontal gene transfer (HGT), which are frequently localized within integrons and mobile genetic elements (MGEs), such as transposons, insertion sequences, genomic islands, phages, plasmids and integrative and conjugative elements (ICEs). This genomic diversity results in a non-clonal population structure, punctuated by specific clones that are associated with significant morbidity and mortality worldwide, the so-called high-risk clones. Acquisition of MGEs produces a fitness cost in the host, that can be eased over time by compensatory mutations during MGE-host coevolution. Even though plasmids and ICEs are important drivers of AR, the underlying evolutionary traits that promote this dissemination are poorly understood. In this review, we provide a comprehensive description of the main strategies involved in AR in P. aeruginosa and the leading drivers of HGT in this species. The most recently developed genomic tools that allowed a better understanding of the features contributing for the success of P. aeruginosa are discussed.
Collapse
|
18
|
Botelho J, Grosso F, Peixe L. WITHDRAWN: Antibiotic resistance in Pseudomonas aeruginosa – mechanisms, epidemiology and evolution. Drug Resist Updat 2019. [DOI: 10.1016/j.drup.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
de Oliveira Santos IC, Pereira de Andrade NF, da Conceição Neto OC, da Costa BS, de Andrade Marques E, Rocha-de-Souza CM, Asensi MD, D'Alincourt Carvalho-Assef AP. Epidemiology and antibiotic resistance trends in clinical isolates of Pseudomonas aeruginosa from Rio de janeiro - Brazil: Importance of mutational mechanisms over the years (1995-2015). INFECTION GENETICS AND EVOLUTION 2019; 73:411-415. [PMID: 31121306 DOI: 10.1016/j.meegid.2019.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
Abstract
Pseudomonas aeruginosa is a major health concern globally and treating infections caused by MDR-isolates unarguably a humongous challenge that remains an unmet need in modern medicine. To determine patterns and mechanisms of antimicrobial resistance and its spread over the years in Rio de Janeiro, Brazil, 88 P. aeruginosa isolates were selected from 1995 to 2015. Phenotypic and genotypic characterization of antimicrobial resistance was evaluated and isolates were submitted to clonality by PFGE and MLST. PFGE analysis showed a great variability of clonal groups mainly over the past 10 years of this study. STs predominant in the early years (ST804, ST1860, ST487 and ST1602) associated to multidrug resistance (MDR) phenotype were replaced by ST277, ST244, ST1945, ST1791 with extensive drug resistance (XDR) in last years, with significant increase in resistance to carbapenems, fluoroquinolones and aminoglycosides. Colistin resistance was detected in 3.5%. The main mechanisms of antimicrobial resistance were mutational mechanisms (mutations in oprD, mexT and gyrA genes). We found the ESBL genes blaTEM (n = 2), blaSHV (n = 3) and blaCTX (n = 1).The carbapenemases genes was present in ST277 (blaSPM, n = 3), ST1560 (blaKPC, n = 3) and ST1944 (blaKPC, n = 2). The 16S RNA methylase gene (rmtD) was found in five isolates belonged to ST277. In conclusion, molecular epidemiological investigation reveals an increase of antimicrobial resistance in P. aeruginosa over 21 years in Rio de Janeiro with higher population structure and occurrence of high risk clone in the last years. The mutational mechanisms of resistance were present in all XDR isolates.
Collapse
Affiliation(s)
- Ivson Cassiano de Oliveira Santos
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Brasil Avenue 4365, Manguinhos, 21040-360, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Natacha Ferreira Pereira de Andrade
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Brasil Avenue 4365, Manguinhos, 21040-360, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Orlando Carlos da Conceição Neto
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Brasil Avenue 4365, Manguinhos, 21040-360, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Santos da Costa
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Brasil Avenue 4365, Manguinhos, 21040-360, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elizabeth de Andrade Marques
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Boulervard 28 de setembro, 77, Vila Isabel, Rio de Janeiro 20551-030, Brazil
| | - Cláudio Marcos Rocha-de-Souza
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Brasil Avenue 4365, Manguinhos, 21040-360, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marise Dutra Asensi
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Brasil Avenue 4365, Manguinhos, 21040-360, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula D'Alincourt Carvalho-Assef
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Brasil Avenue 4365, Manguinhos, 21040-360, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Galetti R, Andrade LN, Varani AM, Darini ALC. SPM-1-producing Pseudomonas aeruginosa ST277 carries a chromosomal pack of acquired resistance genes: An example of high-risk clone associated with 'intrinsic resistome'. J Glob Antimicrob Resist 2018; 16:183-186. [PMID: 30586621 DOI: 10.1016/j.jgar.2018.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/14/2018] [Accepted: 12/17/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The purpose of this study was to investigate the resistome of an SPM-1-producing Pseudomonas aeruginosa ST277 isolate (HC84) from Brazil. METHODS Whole-genome sequencing of P. aeruginosa HC84 was performed using an Ion Proton™ System. De novo assembly was carried out using CLC Genomics Workbench 8.0, and gene prediction was performed using the Prokka pipeline. RESULTS AND CONCLUSION Here we describe the resistome of SPM-1-producing P. aeruginosa ST277 (HC84) consisting of 13 different antimicrobial resistance genes [blaSPM-1, rmtD, aacA4, aadA7, blaOXA-56, blaOXA-396, blaPAO, aph(3')-IIb, aac(6')-Ib-cr, crpP, catB7, cmx and fosA). This particular chromosomal pack of resistance genes is strongly associated with clonal dissemination and suggests an important role in the persistence of this clone in Brazilian nosocomial infections. For that reason, could we already consider the 'chromosomal pack of acquired resistance genes' like an 'ST277 intrinsic resistome'? This is an example of chromosomal accumulation of acquired resistance genes as well as integrative and conjugative elements into a successful bacterial pathogen and calls attention to the evolution of other species driving to insertion and persistence of multiple acquired resistance genes in the bacterial chromosome.
Collapse
Affiliation(s)
- Renata Galetti
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Leonardo Neves Andrade
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Alessandro M Varani
- Faculdade de Ciencias Agrárias e Veterinárias, Universidade Estadual Paulista 'Julio de Mesquita Filho', Jaboticabal, Brazil
| | - Ana Lúcia Costa Darini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
21
|
Abboud MI, Kosmopoulou M, Krismanich AP, Johnson JW, Hinchliffe P, Brem J, Claridge TDW, Spencer J, Schofield CJ, Dmitrienko GI. Cyclobutanone Mimics of Intermediates in Metallo-β-Lactamase Catalysis. Chemistry 2018; 24:5734-5737. [PMID: 29250863 PMCID: PMC5947706 DOI: 10.1002/chem.201705886] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Indexed: 01/25/2023]
Abstract
The most important resistance mechanism to β-lactam antibiotics involves hydrolysis by two β-lactamase categories: the nucleophilic serine and the metallo-β-lactamases (SBLs and MBLs, respectively). Cyclobutanones are hydrolytically stable β-lactam analogues with potential to inhibit both SBLs and MBLs. We describe solution and crystallographic studies on the interaction of a cyclobutanone penem analogue with the clinically important MBL SPM-1. NMR experiments using 19 F-labeled SPM-1 imply the cyclobutanone binds to SPM-1 with micromolar affinity. A crystal structure of the SPM-1:cyclobutanone complex reveals binding of the hydrated cyclobutanone through interactions with one of the zinc ions, stabilisation of the hydrate by hydrogen bonding to zinc-bound water, and hydrophobic contacts with aromatic residues. NMR analyses using a 13 C-labeled cyclobutanone support assignment of the bound species as the hydrated ketone. The results inform on how MBLs bind substrates and stabilize tetrahedral intermediates. They support further investigations on the use of transition-state and/or intermediate analogues as inhibitors of all β-lactamase classes.
Collapse
Affiliation(s)
- Martine I. Abboud
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Magda Kosmopoulou
- School of Cellular and Molecular MedicineUniversity of Bristol, Medical Sciences BuildingBristolBS8 1TDUK
| | - Anthony P. Krismanich
- Department of ChemistryUniversity of Waterloo200 University Ave. W.Waterloo, OntarioN2L 3G1Canada
| | - Jarrod W. Johnson
- Department of ChemistryUniversity of Waterloo200 University Ave. W.Waterloo, OntarioN2L 3G1Canada
| | - Philip Hinchliffe
- School of Cellular and Molecular MedicineUniversity of Bristol, Medical Sciences BuildingBristolBS8 1TDUK
| | - Jürgen Brem
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | | | - James Spencer
- School of Cellular and Molecular MedicineUniversity of Bristol, Medical Sciences BuildingBristolBS8 1TDUK
| | | | - Gary I. Dmitrienko
- Department of ChemistryUniversity of Waterloo200 University Ave. W.Waterloo, OntarioN2L 3G1Canada
| |
Collapse
|
22
|
Martins WMBS, Narciso AC, Cayô R, Santos SV, Fehlberg LCC, Ramos PL, da Cruz JB, Gales AC. SPM-1-producing Pseudomonas aeruginosa ST277 clone recovered from microbiota of migratory birds. Diagn Microbiol Infect Dis 2017; 90:221-227. [PMID: 29224710 DOI: 10.1016/j.diagmicrobio.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 02/02/2023]
Abstract
The production of São Paulo metallo-β-lactamase (SPM-1) is the most common carbapenem resistance mechanism detected among multidrug-resistant Pseudomonas aeruginosa clinical isolates in Brazil. Dissemination of SPM-1-producing P. aeruginosa has been restricted to the nosocomial settings, with sporadic reports of environmental isolates due to contamination by hospital sewage. Herein, we described the detection and molecular characterization of SPM-1-producing P. aeruginosa recovered from the microbiota of migratory birds in Brazil. Three hundred gram-negative bacilli were recovered from cloacal and choanal swabs of Dendrocygna viduata during a surveillance study for detection of carbapenem-resistant isolates. All isolates were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Molecular typing was performed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. MICs were determined by agar dilution, except for polymyxin B. Antibiotic resistance genes were detected by polymerase chain reaction (PCR) followed by DNA sequencing. Transcriptional levels of oprD and efflux system encoding genes were also carried out by quantitative real-time PCR. Nine imipenem-resistant P. aeruginosa isolates were recovered with 7 of them carrying blaSPM-1. Additional resistance genes (rmtD-1, blaOXA-56,aacA4, and aac(6')-Ib-cr) were also detected in all 9 isolates. The SPM-1-producing isolates showed high MICs for all β-lactams, fluoroquinolones, and aminoglycosides, being susceptible only to polymyxin B. Interestingly, all isolates showed the same PFGE pattern and belonged to ST277. Overexpression of MexXY-OprM and MexAB-OprM was observed in those isolates that did not harbor blaSPM-1. Our results suggest that migratory birds might have played a role in the dissemination of SPM-1-producing P. aeruginosa within the Brazilian territory.
Collapse
Affiliation(s)
- Willames M B S Martins
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil.
| | - Ana Clara Narciso
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Rodrigo Cayô
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Stéfanie Vanessa Santos
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Lorena C C Fehlberg
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Patrícia Locosque Ramos
- Departamento de Pesquisas Aplicadas, Fundação Parque Zoológico de São Paulo, São Paulo, SP, Brazil
| | | | - Ana Cristina Gales
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| |
Collapse
|
23
|
Chaves L, Tomich LM, Salomão M, Leite GC, Ramos J, Martins RR, Rizek C, Neves P, Batista MV, Amigo U, Guimaraes T, Levin AS, Costa SF. High mortality of bloodstream infection outbreak caused by carbapenem-resistant P. aeruginosa producing SPM-1 in a bone marrow transplant unit. J Med Microbiol 2017; 66:1722-1729. [PMID: 29095142 DOI: 10.1099/jmm.0.000631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Carbapenem resistance in P. aeruginosa is increasing worldwide. In Brazil, SPM-1 is the main P. aeruginosa carbapenemase identified. Little is known about the virulence factor in SPM-1 clones.Methodolgy. We describe a carbapenem-resistant P. aeruginosa bloodstream infection (CRPa-BSI) outbreak in a bone marrow transplant Unit (BMT). Twenty-nine CRPa-BSI cases were compared to 58 controls. Microbiological characteristics of isolates, such as sensitivity, carbapenemase gene PCR for P. aeruginosa, and PFGE are described, as well as the whole-genome sequence (WGS) of three strains.Results/Key findings. The cultures from environmental and healthcare workers were negative. Some isolates harboured KPC and SPM. The WGS showed that the 03 strains belonged to ST277, presented the same mutations in outer membrane protein, efflux pump, and virulence genes such as those involved in adhesion, biofilm, quorum-sensing and the type III secretion system, but differ regarding the carbapenemase profile. A predominant clone-producing SPM harbouring Tn 4371 was identified and showed cross-transmission; no common source was found. Overall mortality rate among cases was 79 %. The first multivariate analysis model showed that neutropenia (P=0.018), GVHD prophylaxis (P=0.016) and prior use of carbapenems (P=0.0089) were associated with CRPa-BSI. However, when MASCC>21 points and platelets were added in the final multivariate analysis, only prior use of carbapenems remained as an independent risk factor for CRPa-BSI (P=0.043). CONCLUSIONS The predominant clone belonging to ST277 showed high mortality. Carbapenem use was the only risk factor associated with CRPa-BSI. This finding is a wake-up call for the need to improve management in BMT units.
Collapse
Affiliation(s)
- Lucas Chaves
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lísia Moura Tomich
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Matias Salomão
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Gleice Cristina Leite
- Laboratory of Bacteriology-LIM54, Hospital das Clínicas, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Jessica Ramos
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Roberta Ruedas Martins
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Camila Rizek
- Laboratory of Bacteriology-LIM54, Hospital das Clínicas, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Patricia Neves
- Laboratory of Bacteriology-LIM54, Hospital das Clínicas, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Marjorie Vieira Batista
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ulysses Amigo
- Bone Marrow Transplantation Unit, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Thais Guimaraes
- Infection Control Committee, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Anna Sara Levin
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil.,Laboratory of Bacteriology-LIM54, Hospital das Clínicas, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Silvia Figueiredo Costa
- Laboratory of Bacteriology-LIM54, Hospital das Clínicas, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil.,Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Abboud MI, Hinchliffe P, Brem J, Macsics R, Pfeffer I, Makena A, Umland KD, Rydzik AM, Li GB, Spencer J, Claridge TDW, Schofield CJ. 19
F-NMR Reveals the Role of Mobile Loops in Product and Inhibitor Binding by the São Paulo Metallo-β-Lactamase. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Martine I. Abboud
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine; University of Bristol; Bristol UK
| | - Jürgen Brem
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Robert Macsics
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Inga Pfeffer
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Anne Makena
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Klaus-Daniel Umland
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Anna M. Rydzik
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Guo-Bo Li
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - James Spencer
- School of Cellular and Molecular Medicine; University of Bristol; Bristol UK
| | | | | |
Collapse
|
25
|
Abboud MI, Hinchliffe P, Brem J, Macsics R, Pfeffer I, Makena A, Umland KD, Rydzik AM, Li GB, Spencer J, Claridge TDW, Schofield CJ. 19 F-NMR Reveals the Role of Mobile Loops in Product and Inhibitor Binding by the São Paulo Metallo-β-Lactamase. Angew Chem Int Ed Engl 2017; 56:3862-3866. [PMID: 28252254 PMCID: PMC5396265 DOI: 10.1002/anie.201612185] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/16/2016] [Indexed: 01/19/2023]
Abstract
Resistance to β‐lactam antibiotics mediated by metallo‐β‐lactamases (MBLs) is a growing problem. We describe the use of protein‐observe 19F‐NMR (PrOF NMR) to study the dynamics of the São Paulo MBL (SPM‐1) from β‐lactam‐resistant Pseudomonas aeruginosa. Cysteinyl variants on the α3 and L3 regions, which flank the di‐ZnII active site, were selectively 19F‐labeled using 3‐bromo‐1,1,1‐trifluoroacetone. The PrOF NMR results reveal roles for the mobile α3 and L3 regions in the binding of both inhibitors and hydrolyzed β‐lactam products to SPM‐1. These results have implications for the mechanisms and inhibition of MBLs by β‐lactams and non‐β‐lactams and illustrate the utility of PrOF NMR for efficiently analyzing metal chelation, identifying new binding modes, and studying protein binding from a mixture of equilibrating isomers.
Collapse
Affiliation(s)
- Martine I Abboud
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jürgen Brem
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Robert Macsics
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Inga Pfeffer
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Anne Makena
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Klaus-Daniel Umland
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Anna M Rydzik
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Guo-Bo Li
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Timothy D W Claridge
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | | |
Collapse
|
26
|
Escandón-Vargas K, Reyes S, Gutiérrez S, Villegas MV. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther 2016; 15:277-297. [PMID: 27915487 DOI: 10.1080/14787210.2017.1268918] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Enterobacteriaceae, Pseudomonas spp., and Acinetobacter spp. infections are major causes of morbidity and mortality, especially due to the emergence and spread of β-lactamases. Carbapenemases, which are β-lactamases with the capacity to hydrolyze or inactivate carbapenems, have become a serious concern as they have the largest hydrolytic spectrum and therefore limit the utility of most β-lactam antibiotics. Areas covered: Here, we present an update of the current status of carbapenemases in Latin America and the Caribbean. Expert commentary: The increased frequency of reports on carbapenemases in Latin America and the Caribbean shows that they have successfully spread and have even become endemic in some countries. Countries such as Brazil, Colombia, Argentina, and Mexico account for the majority of these reports. Early suspicion and detection along with implementation of antimicrobial stewardship programs in all healthcare settings are crucial for the control and prevention of carbapenemase-producing bacteria.
Collapse
Affiliation(s)
- Kevin Escandón-Vargas
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia
| | - Sergio Reyes
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia
| | - Sergio Gutiérrez
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia
| | - María Virginia Villegas
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia.,b Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics , Universidad El Bosque , Bogotá , Colombia
| |
Collapse
|