1
|
Trovão LDO, Vieira MAM, Santos ACDM, Puño-Sarmiento JJ, Nunes PHS, Santos FF, Rocha VGP, Knöbl T, Navarro-Garcia F, Gomes TAT. Identification of a genomic cluster related to hypersecretion of intestinal mucus and mucinolytic activity of atypical enteropathogenic Escherichia coli (aEPEC). Front Cell Infect Microbiol 2024; 14:1393369. [PMID: 39703371 PMCID: PMC11656320 DOI: 10.3389/fcimb.2024.1393369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/18/2024] [Indexed: 12/21/2024] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) strains are subdivided into typical (tEPEC) and atypical (aEPEC) according to the presence or absence of a virulence-associated plasmid called pEAF. Our research group has previously demonstrated that two aEPEC strains, 0421-1 and 3991-1, induce an increase in mucus production in a rabbit ileal loop model in vivo. This phenomenon was not observed with a tEPEC prototype strain. Few studies on aEPEC strains evaluating their capacity to induce intestinal mucus hypersecretion were done. This study aimed to investigate aEPEC strains regarding their genotypic and phenotypic characteristics, their ability to alter mucus production in an in vivo intestinal infection model, and their potential mucinolytic activity. To investigate the relationship between strains 0421-1 and 3991-1 and 11 other aEPEC strains, their serotypes, sequence types (ST), and virulence factors (VF), several sequencing and genomic analyses were carried out. The study also involved researching the reproduction of mucus hypersecretion in rabbits in vivo. We found that the two mucus-inducing strains and two other strains (1582-4 and 2531-13) shared the same phylogroup (A), ST (378), serotype (O101/O162:H33), and intimin subtype (ι2), were phylogenetically related, and induced mucus hypersecretion in vivo. A wide diversity of VFs was found among the strains, confirming their genomic heterogeneity. However, among the genes studied, no unique virulence factor or gene set was identified exclusively in the mucus-inducing strains, suggesting the multifactorial nature of this phenomenon. The two strains (1582-4 and 2531-13) closely related to the two aEPEC strains that induced mucus production in vivo also induced the phenomenon. The investigation of the mucinolytic activity revealed that all aEPEC strains used mucins as their carbon sources. Ten of the 13 aEPEC strains could cross a mucin layer, and only four adhered better to agar containing mucin than to agar without mucin. The present study paves the way for subsequent investigations into the molecular mechanisms regarding cellular interactions and responses, as well as the correlation between virulence factors and the induction of mucus production/expression during aEPEC infections.
Collapse
Affiliation(s)
- Liana de Oliveira Trovão
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mônica Aparecida Midolli Vieira
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Carolina de Mello Santos
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Juan Josue Puño-Sarmiento
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Pedro Henrique Soares Nunes
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Fernandes Santos
- Laboratório Alerta, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Terezinha Knöbl
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando Navarro-Garcia
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| | - Tânia Aparecida Tardelli Gomes
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Monte DFM, Sellera FP, Lincopan N, Landgraf M. Genome-based diagnostic of MDR Escherichia coli ONT:H19 ST10955 causing human gastrointestinal infection. Diagn Microbiol Infect Dis 2024; 110:116340. [PMID: 38850686 DOI: 10.1016/j.diagmicrobio.2024.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/27/2024] [Accepted: 05/03/2024] [Indexed: 06/10/2024]
Abstract
This study focuses on the genomic characterization of a multidrug-resistant Escherichia coli strain responsible for a severe gastrointestinal infection in a 33-year-old male. The patient initially received sulfamethoxazole/trimethoprim treatment, which proved ineffective. Fecal culture confirmed the presence of E. coli displaying a MDR profile to ampicillin, nalidixic acid, ciprofloxacin, sulfamethoxazole, trimethoprim, and tetracycline. Serotyping identified the strain as ONT:H19. Virulence analysis indicated a highly virulent profile with numerous virulence markers. Plasmid analysis uncovered various plasmids carrying both antimicrobial resistance and virulence genes. MLST assigned the strain to ST10955. Phylogenomic analysis revealed similarity to an older Brazilian isolate, suggesting the persistence of a common lineage with evolving antimicrobial resistance. This report highlights the first identification of a multidrug-resistant ST10955 E. coli strain with a wide resistome and virulence potential, emphasizing the importance of ongoing surveillance of E. coli strains due to their potential for severe infections, resistance development, and virulence.
Collapse
Affiliation(s)
- Daniel F M Monte
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil; Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil.
| | - Fabio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariza Landgraf
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Lee W, Ha J, Choi J, Jung Y, Kim E, An ES, Kim SH, Shin H, Ryu S, Kim SH, Kim HY. Genetic and virulence characteristics of hybrid Shiga toxin-producing and atypical enteropathogenic Escherichia coli strains isolated in South Korea. Front Microbiol 2024; 15:1398262. [PMID: 38812694 PMCID: PMC11133561 DOI: 10.3389/fmicb.2024.1398262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction The predominant hybrid pathogenic E. coli, enterohemorrhagic E. coli (EHEC), combines characteristics of Shiga toxin-producing E. coli (STEC) and enteropathogenic E. coli (EPEC), contributing to global outbreaks with severe symptoms including fatal consequences. Since EHEC infection was designated as a notifiable disease in 2000 in South Korea, around 2000 cases have been reported, averaging approximately 90 cases annually. Aim In this work, genome-based characteristic analysis and cell-based assay of hybrid STEC/aEPEC strains isolated from livestock feces, animal source foods, and water in South Korea was performed. Methods To identify the virulence and antimicrobial resistance genes, determining the phylogenetic position of hybrid STEC/aEPEC strains isolated in South Korea, a combination of real-time PCR and whole-genome sequencing (WGS) was used. Additionally, to assess the virulence of the hybrid strains and compare them with genomic characterization, we performed a cell cytotoxicity and invasion assays. Results The hybrid STEC/aEPEC strains harbored stx and eae genes, encoding Shiga toxins and E. coli attachment/effacement related protein of STEC and EPEC, respectively. Furthermore, all hybrid strains harbored plasmid-carried enterohemolysin(ehxCABD), a key virulence factor in prevalent pathogenic E. coli infections, such as diarrheal disease and hemolytic-uremic syndrome (HUS). Genome-wide phylogenetic analysis revealed a close association between all hybrid strains and specific EPEC strains, suggesting the potential acquisition of Stx phages during STEC/aEPEC hybrid formation. Some hybrid strains showed cytotoxic activity against HeLa cells and invasive properties against epithelial cells. Notably, all STEC/aEPEC hybrids with sequence type (ST) 1,034 (n = 11) exhibited higher invasiveness than those with E2348/69. This highlights the importance of investigating potential correlations between STs and virulence characteristics of E. coli hybrid strains. Conclusion Through genome-based characterization, we confirmed that the hybrid STEC/aEPEC strains are likely EPEC strains that have acquired STEC virulence genes via phage. Furthermore, our results emphasize the potential increased danger to humans posed by hybrid STEC/aEPEC strains isolated in South Korea, containing both stx and eaeA, compared to STEC or EPEC alone.
Collapse
Affiliation(s)
- Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Jina Ha
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Jaehyun Choi
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Yewon Jung
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Eun Sook An
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Seung Hwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Hakdong Shin
- Department of Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Soon Han Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
4
|
Lee W, Sung S, Ha J, Kim E, An ES, Kim SH, Kim SH, Kim HY. Molecular and Genomic Analysis of the Virulence Factors and Potential Transmission of Hybrid Enteropathogenic and Enterotoxigenic Escherichia coli (EPEC/ETEC) Strains Isolated in South Korea. Int J Mol Sci 2023; 24:12729. [PMID: 37628911 PMCID: PMC10454139 DOI: 10.3390/ijms241612729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Hybrid strains Escherichia coli acquires genetic characteristics from multiple pathotypes and is speculated to be more virulent; however, understanding their pathogenicity is elusive. Here, we performed genome-based characterization of the hybrid of enteropathogenic (EPEC) and enterotoxigenic E. coli (ETEC), the strains that cause diarrhea and mortality in children. The virulence genes in the strains isolated from different sources in the South Korea were identified, and their phylogenetic positions were analyzed. The EPEC/ETEC hybrid strains harbored eae and est encoding E. coli attaching and effacing lesions and heat-stable enterotoxins of EPEC and ETEC, respectively. Genome-wide phylogeny revealed that all hybrids (n = 6) were closely related to EPEC strains, implying the potential acquisition of ETEC virulence genes during ETEC/EPEC hybrid emergence. The hybrids represented diverse serotypes (O153:H19 (n = 3), O49:H10 (n = 2), and O71:H19 (n = 1)) and sequence types (ST546, n = 4; ST785, n = 2). Furthermore, heat-stable toxin-encoding plasmids possessing estA and various other virulence genes and transporters, including nleH2, hlyA, hlyB, hlyC, hlyD, espC, espP, phage endopeptidase Rz, and phage holin, were identified. These findings provide insights into understanding the pathogenicity of EPEC/ETEC hybrid strains and may aid in comparative studies, virulence characterization, and understanding evolutionary biology.
Collapse
Affiliation(s)
- Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (W.L.); (S.S.); (J.H.); (E.S.A.); (S.H.K.)
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Soohyun Sung
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (W.L.); (S.S.); (J.H.); (E.S.A.); (S.H.K.)
| | - Jina Ha
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (W.L.); (S.S.); (J.H.); (E.S.A.); (S.H.K.)
| | - Eiseul Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Eun Sook An
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (W.L.); (S.S.); (J.H.); (E.S.A.); (S.H.K.)
| | - Seung Hwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (W.L.); (S.S.); (J.H.); (E.S.A.); (S.H.K.)
| | - Soon Han Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (W.L.); (S.S.); (J.H.); (E.S.A.); (S.H.K.)
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| |
Collapse
|
5
|
Beraldo LG, Borges CA, Maluta RP, Cardozo MV, de Ávila FA. Molecular analysis of enteropathogenic Escherichia coli (EPEC) isolates from healthy food-producing animals and humans with diarrhoea. Zoonoses Public Health 2023; 70:117-124. [PMID: 36377683 DOI: 10.1111/zph.13007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/31/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a pathogen associated with acute diarrhoea in humans. To determine whether EPEC isolated from healthy food-producing animals possesses the same virulence gene repertoire as EPEC isolated from human with diarrhoea, we compared six typical EPEC (tEPEC) and 20 atypical EPEC (aEPEC) from humans with diarrhoea and 42 aEPEC from healthy animals (swine, sheep and buffaloes), using pulsed-field gel electrophoresis (PFGE), virulence markers, serotyping and subtyping of eae and tir genes. We found that human and animal isolates shared virulence genes, including nleB, nleE and nleF, which were associated with human diarrhoea. Serogroups and serotypes identified in isolates of food-producing animals such as O26:H11, O128:H2, O76:H7, O103, O108, O111 and O145, have previously been implicated in human disease. The subtypes eae and tir were also shared between human and animal isolates, being eae-γ1 and eae-β1 the most prevalent in both groups, while the most common tir subtypes were α and β. Despite PFGE analysis demonstrating that EPEC strains are heterogeneous and there was no prevalent clone identified, EPEC isolated from humans and food-producing animals shared some characteristics, such as virulence genes associated with human diarrhoea, indicating that food-producing animals could play a role as reservoirs for those genes.
Collapse
Affiliation(s)
- Livia Gerbasi Beraldo
- Department of Veterinary Pathology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Clarissa Araújo Borges
- Department of Veterinary Pathology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Renato Pariz Maluta
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Marita Vedovelli Cardozo
- Department of Veterinary Pathology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Fernando Antônio de Ávila
- Department of Veterinary Pathology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| |
Collapse
|
6
|
Tanabe RHS, Dias RCB, Orsi H, de Lira DRP, Vieira MA, dos Santos LF, Ferreira AM, Rall VLM, Mondelli AL, Gomes TAT, Camargo CH, Hernandes RT. Characterization of Uropathogenic Escherichia coli Reveals Hybrid Isolates of Uropathogenic and Diarrheagenic (UPEC/DEC) E. coli. Microorganisms 2022; 10:microorganisms10030645. [PMID: 35336220 PMCID: PMC8950336 DOI: 10.3390/microorganisms10030645] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Pathogenic Escherichia coli are divided into two groups: diarrheagenic (DEC) and extraintestinal pathogenic (ExPEC) E. coli. ExPEC causing urinary tract infections (UTIs) are termed uropathogenic E. coli (UPEC) and are the most common cause of UTIs worldwide. (2) Methods: Here, we characterized 112 UPEC in terms of phylogroup, serotype, the presence of virulence factor-encoding genes, and antimicrobial resistance. (3) Results: The majority of the isolates were assigned into the phylogroup B2 (41.07%), and the serogroups O6 (12.5%) and O25 (8.9%) were the most frequent. Five hybrid UPEC (4.5%), with markers from two DEC pathotypes, i.e., atypical enteropathogenic (aEPEC) and enteroaggregative (EAEC) E. coli, were identified, and designated UPEC/aEPEC (one isolate) and UPEC/EAEC (four isolates), respectively. Three UPEC/EAEC harbored genes from the pap operon, and the UPEC/aEPEC carried ibeA. The highest resistance rates were observed for ampicillin (46.4%) and trimethoprim/sulfamethoxazole (34.8%), while 99.1% of the isolates were susceptible to nitrofurantoin and/or fosfomycin. Moreover, 9.8% of the isolates were identified as Extended Spectrum β-Lactamase producers, including one hybrid UPEC/EAEC. (4) Conclusion: Our data reinforce that hybrid UPEC/DEC are circulating in the city of Botucatu, Brazil, as uropathogens. However, how and whether these combinations of genes influence their pathogenicity is a question that remains to be elucidated.
Collapse
Affiliation(s)
- Rodrigo H. S. Tanabe
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Regiane C. B. Dias
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Henrique Orsi
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Daiany R. P. de Lira
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Melissa A. Vieira
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Luís F. dos Santos
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo 01246-902, SP, Brazil; (L.F.d.S.); (C.H.C.)
| | - Adriano M. Ferreira
- Hospital das Clínicas da Faculdade de Medicina de Botucatu, Botucatu 18607-741, SP, Brazil;
| | - Vera L. M. Rall
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Alessandro L. Mondelli
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Estadual Paulista (UNESP), Botucatu 18618-970, SP, Brazil;
| | - Tânia A. T. Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina (UNIFESP-EPM), São Paulo 04023-062, SP, Brazil;
| | - Carlos H. Camargo
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo 01246-902, SP, Brazil; (L.F.d.S.); (C.H.C.)
| | - Rodrigo T. Hernandes
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
- Correspondence: ; Tel.: +55-14-3880-0446
| |
Collapse
|
7
|
Spano LC, Guerrieri CG, Volpini LPB, Schuenck RP, Goulart JP, Boina E, Recco CRN, Ribeiro-Rodrigues R, Dos Santos LF, Fumian TM. EHEC O111:H8 strain and norovirus GII.4 Sydney [P16] causing an outbreak in a daycare center, Brazil, 2019. BMC Microbiol 2021; 21:95. [PMID: 33781202 PMCID: PMC8008580 DOI: 10.1186/s12866-021-02161-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Background This study describes the investigation of an outbreak of diarrhea, hemorrhagic colitis (HC), and hemolytic uremic syndrome (HUS) at a daycare center in southeastern Brazil, involving fourteen children, six staff members, six family members, and one nurse. All bacterial and viral pathogens detected were genetically characterized. Results Two isolates of a strain of enterohemorrhagic Escherichia coli (EHEC) serotype O111:H8 were recovered, one implicated in a case of HUS and the other in a case of uncomplicated diarrhea. These isolates had a clonal relationship of 94% and carried the stx2a and eae virulence genes and the OI-122 pathogenicity island. The EHEC strain was determined to be a single-locus variant of sequence type (ST) 327. EHEC isolates were resistant to ofloxacin, doxycycline, tetracycline, ampicillin, and trimethoprim-sulfamethoxazole and intermediately resistant to levofloxacin and ciprofloxacin. Rotavirus was not detected in any samples, and norovirus was detected in 46.7% (14/30) of the stool samples, three of which were from asymptomatic staff members. The noroviruses were classified as the recombinant GII.4 Sydney [P16] by gene sequencing. Conclusion In this outbreak, it was possible to identify an uncommon stx2a + EHEC O111:H8 strain, and the most recent pandemic norovirus strain GII.4 Sydney [P16]. Our findings reinforce the need for surveillance and diagnosis of multiple enteric pathogens by public health authorities, especially during outbreaks. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02161-x.
Collapse
Affiliation(s)
- Liliana Cruz Spano
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil.
| | | | - Lays Paula Bondi Volpini
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Ricardo Pinto Schuenck
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Elizabeth Boina
- State Health Secretariat, Central Public Health Laboratory, Vitoria, Espírito Santo, Brazil
| | | | - Rodrigo Ribeiro-Rodrigues
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil.,State Health Secretariat, Central Public Health Laboratory, Vitoria, Espírito Santo, Brazil
| | - Luís Fernando Dos Santos
- Adolfo Lutz Institute, Centre of Bacteriology, National Reference Laboratory for Escherichia coli Enteric Infections, São Paulo, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Jafari E, Mostaan S, Bouzari S. Characterization of Antimicrobial Susceptibility, Extended-Spectrum β-Lactamase Genes and Phylogenetic Groups of Enteropathogenic Escherichia coli Isolated from Patients with Diarrhea. Osong Public Health Res Perspect 2020; 11:327-333. [PMID: 33117638 PMCID: PMC7577383 DOI: 10.24171/j.phrp.2020.11.5.09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives Infectious diarrhea is one of the most common causes of pediatric death worldwide and enteropathogenic Escherichia coli (EPEC) is one of the main causes. There are 2 subgroups of EPEC, typical and atypical, based on the presence or absence of bundle forming pili (bfp), of which atypical EPEC is considered less virulent, but not less pathogenic. Antimicrobial resistance towards atypical EPEC among children is growing and is considered a major problem. In this study the pattern of antibiotic resistance in clinical isolates was determined. Methods Using 130 isolates, antibiotic resistance patterns and phenotypes were assessed, and genotypic profiles of extended spectrum β-lactamase (ESBL) production using disc diffusion and PCR was carried out. Phylogenetic groups were analyzed using quadruplex PCR. Results There were 65 E. coli isolates identified as atypical EPEC by PCR, among which the highest antibiotic resistance was towards ampicillin, followed by trimethoprim-sulfamethoxazole, and tetracycline. Multidrug resistance was detected in 44.6% of atypical EPEC isolates. Around 33% of isolates were determined to be extended spectrum β-lactamase producers, and in 90% of isolates, genes responsible for ESBL production could be detected. Moreover, the majority of atypical EPEC strains belonged to Group E, followed by Groups B1, B2 and C. Conclusion High rates of multidrug resistance and ESBL production among atypical EPEC isolates warrant periodical surveillance studies to select effective antibiotic treatment for patients. It is considered a critical step to manage antibiotic resistance by avoiding unnecessary prescriptions for antibiotics.
Collapse
Affiliation(s)
- Erfaneh Jafari
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Mostaan
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Bouzari
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Hernandes RT, Hazen TH, dos Santos LF, Richter TKS, Michalski JM, Rasko DA. Comparative genomic analysis provides insight into the phylogeny and virulence of atypical enteropathogenic Escherichia coli strains from Brazil. PLoS Negl Trop Dis 2020; 14:e0008373. [PMID: 32479541 PMCID: PMC7289442 DOI: 10.1371/journal.pntd.0008373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/11/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Background Atypical enteropathogenic Escherichia coli (aEPEC) are one of the most frequent intestinal E. coli pathotypes isolated from diarrheal patients in Brazil. Isolates of aEPEC contain the locus of enterocyte effacement, but lack the genes of the bundle-forming pilus of typical EPEC, and the Shiga toxin of enterohemorrhagic E. coli (EHEC). The objective of this study was to evaluate the phylogeny and the gene content of Brazilian aEPEC genomes compared to a global aEPEC collection. Methodology Single nucleotide polymorphism (SNP)-based phylogenomic analysis was used to compare 106 sequenced Brazilian aEPEC with 221 aEPEC obtained from other geographic origins. Additionally, Large-Scale BLAST Score Ratio was used to determine the shared versus unique gene content of the aEPEC studied. Principal Findings Phylogenomic analysis demonstrated the 106 Brazilian aEPEC were present in phylogroups B1 (47.2%, 50/106), B2 (23.6%, 25/106), A (22.6%, 24/106), and E (6.6%, 7/106). Identification of EPEC and EHEC phylogenomic lineages demonstrated that 42.5% (45/106) of the Brazilian aEPEC were in four of the previously defined lineages: EPEC10 (17.9%, 19/106), EPEC9 (10.4%, 11/106), EHEC2 (7.5%, 8/106) and EPEC7 (6.6%, 7/106). Interestingly, an additional 28.3% (30/106) of the Brazilian aEPEC were identified in five novel lineages: EPEC11 (14.2%, 15/106), EPEC12 (4.7%, 5/106), EPEC13 (1.9%, 2/106), EPEC14 (5.7%, 6/106) and EPEC15 (1.9%, 2/106). We identified 246 genes that were more frequent among the aEPEC isolates from Brazil compared to the global aEPEC collection, including espG2, espT and espC (P<0.001). Moreover, the nleF gene was more frequently identified among Brazilian aEPEC isolates obtained from diarrheagenic patients when compared to healthy subjects (69.7% vs 41.2%, P<0.05). Conclusion The current study demonstrates significant genomic diversity among aEPEC from Brazil, with the identification of Brazilian aEPEC isolates to five novel EPEC lineages. The greater prevalence of some virulence genes among Brazilian aEPEC genomes could be important to the specific virulence strategies used by aEPEC in Brazil to cause diarrheal disease. Atypical EPEC (aEPEC) is one of the most frequent diarrheagenic Escherichia coli pathotypes isolated from patients in Brazil and is associated with diarrheal outbreaks. This study is the first to sequence the genomes of a collection of aEPEC isolates from a South American country, Brazil, and compare their phylogenetic relationships and gene content with a global collection of aEPEC. This approach identified Brazilian aEPEC genomes in previously characterized EPEC/EHEC phylogenomic lineages and resulted in the identification of five novel EPEC phylogenomic lineages, designated EPEC11 to EPEC15. We also observed that virulence genes, such as espG2, espT and espC were more frequently identified among the Brazilian aEPEC genomes, demonstrating potential differences in the virulence repertoire of this pathogen in Brazil.
Collapse
Affiliation(s)
- Rodrigo T. Hernandes
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Botucatu, SP, Brasil
- * E-mail:
| | - Tracy H. Hazen
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | | | - Taylor K. S. Richter
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jane M. Michalski
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David A. Rasko
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
10
|
Díaz-Jiménez D, García-Meniño I, Herrera A, García V, López-Beceiro AM, Alonso MP, Blanco J, Mora A. Genomic Characterization of Escherichia coli Isolates Belonging to a New Hybrid aEPEC/ExPEC Pathotype O153:H10-A-ST10 eae-beta1 Occurred in Meat, Poultry, Wildlife and Human Diarrheagenic Samples. Antibiotics (Basel) 2020; 9:antibiotics9040192. [PMID: 32316613 PMCID: PMC7235894 DOI: 10.3390/antibiotics9040192] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/20/2022] Open
Abstract
Different surveillance studies (2005–2015) in northwest Spain revealed the presence of eae-positive isolates of Escherichia coli O153:H10 in meat for human consumption, poultry farm, wildlife and human diarrheagenic samples. The aim of this study was to explore the genetic and genomic relatedness between human and animal/meat isolates, as well as the mechanism of its persistence. We also wanted to know whether it was a geographically restricted lineage, or whether it was also reported elsewhere. Conventional typing showed that 32 isolates were O153:H10-A-ST10 fimH54, fimAvMT78, traT and eae-beta1. Amongst these, 21 were CTX-M-32 or SHV-12 producers. The PFGE XbaI-macrorestriction comparison showed high similarity (>85%). The plasmidome analysis revealed a stable combination of IncF (F2:A-:B-), IncI1 (STunknown) and IncX1 plasmid types, together with non-conjugative Col-like plasmids. The core genome investigation based on the cgMLST scheme from EnteroBase proved close relatedness between isolates of human and animal origin. Our results demonstrate that a hybrid MDR aEPEC/ExPEC of the clonal group O153:H10-A-ST10 (CH11-54) is circulating in our region within different hosts, including wildlife. It seems implicated in human diarrhea via meat transmission, and in the spreading of ESBL genes (mainly of CTX-M-32 type). We found genomic evidence of a related hybrid aEPEC/ExPEC in at least one other country.
Collapse
Affiliation(s)
- Dafne Díaz-Jiménez
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
| | - Isidro García-Meniño
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
| | - Alexandra Herrera
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
| | - Vanesa García
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Ana María López-Beceiro
- Departamento de Anatomía, Produción Animal e Ciencias Clínicas Veterinarias, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain;
| | - María Pilar Alonso
- Unidade de Microbioloxía, Hospital Universitario Lucus Augusti (HULA), 27003 Lugo, Spain;
| | - Jorge Blanco
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
| | - Azucena Mora
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
- Correspondence: ; Tel.: +34-982822110
| |
Collapse
|
11
|
Type III Secretion Effectors with Arginine N-Glycosyltransferase Activity. Microorganisms 2020; 8:microorganisms8030357. [PMID: 32131463 PMCID: PMC7142665 DOI: 10.3390/microorganisms8030357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 01/31/2023] Open
Abstract
Type III secretion systems are used by many Gram-negative bacterial pathogens to inject proteins, known as effectors, into the cytosol of host cells. These virulence factors interfere with a diverse array of host signal transduction pathways and cellular processes. Many effectors have catalytic activities to promote post-translational modifications of host proteins. This review focuses on a family of effectors with glycosyltransferase activity that catalyze addition of N-acetyl-d-glucosamine to specific arginine residues in target proteins, leading to reduced NF-κB pathway activation and impaired host cell death. This family includes NleB from Citrobacter rodentium, NleB1 and NleB2 from enteropathogenic and enterohemorrhagic Escherichia coli, and SseK1, SseK2, and SseK3 from Salmonella enterica. First, we place these effectors in the general framework of the glycosyltransferase superfamily and in the particular context of the role of glycosylation in bacterial pathogenesis. Then, we provide detailed information about currently known members of this family, their role in virulence, and their targets.
Collapse
|
12
|
Maria Ferreira Cavalcanti A, Tavanelli Hernandes R, Harummyy Takagi E, Ernestina Cabílio Guth B, de Lima Ori É, Regina Schicariol Pinheiro S, Sueli de Andrade T, Louzada Oliveira S, Cecilia Cergole-Novella M, Rodrigues Francisco G, dos Santos LF. Virulence Profiling and Molecular Typing of Shiga Toxin-Producing E. coli (STEC) from Human Sources in Brazil. Microorganisms 2020; 8:microorganisms8020171. [PMID: 31991731 PMCID: PMC7074907 DOI: 10.3390/microorganisms8020171] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Since no recent data characterizing Shiga toxin-producing E. coli (STEC) from human infections in Brazil are available, the present study aimed to investigate serotypes, stx genotypes, and accessory virulence genes, and also to perform pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) of 43 STEC strains recovered from 2007 to 2017. Twenty-one distinct serotypes were found, with serotype O111:H8 being the most common. However, serotypes less frequently reported in human diseases were also found and included a hybrid STEC/ETEC O100:H25 clone. The majority of the strains carried stx1a as the sole stx genotype and were positive for the eae gene. Regarding the occurrence of 28 additional virulence genes associated with plasmids and pathogenicity islands, a diversity of profiles was found especially among the eae-harboring strains, which had combinations of markers composed of up to 12 distinct genes. Although PFGE analysis demonstrated genetic diversity between serotypes such as O157:H7, O111:H8, O26:H11, O118:H16, and O123:H2, high genetic relatedness was found for strains of serotypes O24:H4 and O145:H34. MLST allowed the identification of 17 distinct sequence types (STs) with ST 16 and 21 being the most common ones. Thirty-five percent of the strains studied were not typeable by the currently used MLST approach, suggesting new STs. Although STEC O111:H8 remains the leading serotype in Brazil, a diversity of other serotypes, some carrying virulence genes and belonging to STs incriminated as causing severe disease, were found in this study. Further studies are needed to determine whether they have any epidemiological relevance.
Collapse
Affiliation(s)
- Adriene Maria Ferreira Cavalcanti
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Rodrigo Tavanelli Hernandes
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, SP, Brasil; (R.T.H.); (S.L.O.)
| | - Elizabeth Harummyy Takagi
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Beatriz Ernestina Cabílio Guth
- Departamento de Microbiologia, Imunologia, Parasitologia, Escola Paulista de Medicina Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brasil;
| | - Érica de Lima Ori
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Sandra Regina Schicariol Pinheiro
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Tânia Sueli de Andrade
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Samara Louzada Oliveira
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, SP, Brasil; (R.T.H.); (S.L.O.)
| | - Maria Cecilia Cergole-Novella
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Gabriela Rodrigues Francisco
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Luís Fernando dos Santos
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
- Correspondence: ; Tel.: +55-11-3068-2896
| |
Collapse
|
13
|
The Complete Genome of the Atypical Enteropathogenic Escherichia coli Archetype Isolate E110019 Highlights a Role for Plasmids in Dissemination of the Type III Secreted Effector EspT. Infect Immun 2019; 87:IAI.00412-19. [PMID: 31358567 DOI: 10.1128/iai.00412-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a leading cause of moderate to severe diarrhea among young children in developing countries, and EPEC isolates can be subdivided into two groups. Typical EPEC (tEPEC) bacteria are characterized by the presence of both the locus of enterocyte effacement (LEE) and the plasmid-encoded bundle-forming pilus (BFP), which are involved in adherence and translocation of type III effectors into the host cells. Atypical EPEC (aEPEC) bacteria also contain the LEE but lack the BFP. In the current report, we describe the complete genome of outbreak-associated aEPEC isolate E110019, which carries four plasmids. Comparative genomic analysis demonstrated that the type III secreted effector EspT gene, an autotransporter gene, a hemolysin gene, and putative fimbrial genes are all carried on plasmids. Further investigation of 65 espT-containing E. coli genomes demonstrated that different espT alleles are associated with multiple plasmids that differ in their overall gene content from the E110019 espT-containing plasmid. EspT has been previously described with respect to its role in the ability of E110019 to invade host cells. While other type III secreted effectors of E. coli have been identified on insertion elements and prophages of the chromosome, we demonstrated in the current study that the espT gene is located on multiple unique plasmids. These findings highlight a role of plasmids in dissemination of a unique E. coli type III secreted effector that is involved in host invasion and severe diarrheal illness.
Collapse
|
14
|
Identification and characterization of atypical enteropathogenic and Shiga toxin-producing Escherichia coli isolated from ground beef and poultry breast purchased in Botucatu, Brazil. Braz J Microbiol 2019; 50:1099-1103. [PMID: 31187444 DOI: 10.1007/s42770-019-00101-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Atypical enteropathogenic (serotypes O4:H16, O8:H25, O68:H2, O105:H7, and OR:H25) and Shigatoxigenic (ONT:H46) Escherichia coli were isolated from samples of ground beef and poultry breast purchased in Botucatu, Brazil. Phenotypic and molecular characterization indicated the potential of these isolates to adhere to host epithelial cells and cause damage.
Collapse
|
15
|
Vieira MA, Dias RCB, Dos Santos LF, Rall VLM, Gomes TAT, Hernandes RT. Diversity of strategies used by atypical enteropathogenic Escherichia coli to induce attaching and effacing lesion in epithelial cells. J Med Microbiol 2019; 68:940-951. [PMID: 31107199 DOI: 10.1099/jmm.0.000998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE This study aimed to characterize 82 atypical enteropathogenic Escherichia coli (aEPEC) isolates, obtained from patients with diarrhea in Brazil, regarding their adherence patterns on HeLa cells and attaching and effacing (AE) lesion pathways. METHODOLOGY The adherence and fluorescence-actin staining (FAS) assays were performed using HeLa cells. AE lesion pathways were determined through the detection of tyrosine residue 474 (Y474) phosphorylation in the Tir protein, after its translocation to host cells, and by PCR assays for tir genotyping and detection of Tir-cytoskeleton coupling protein (tccP) genes. RESULTS Regarding the adherence pattern, determined in the presence of d-mannose, 12 isolates (14.6 %) showed the localized adherence (LA)-like pattern, 3 (3.7 %) the aggregative adherence pattern and 4 (4.9 %) a hybrid LA/diffuse adherence pattern. In addition, 36 (43.9 %) isolates displayed an undefined adherence, and 26 (31.7 %) were non-adherent (NA), while one (1.2 %) caused cell detachment. Among the 26 NA aEPEC isolates, 11 showed a type 1 pilus-dependent adherence in assays performed without d-mannose, while 15 remained NA. Forty-eight (58.5 %) aEPEC were able to trigger F-actin accumulation underneath adherent bacteria (FAS-positive), which is an important feature of AE lesions. The majority (58.3 %) of these used the Tir-Nck pathway, while 39.6 % may use both Tir-Nck and Tir-TccP pathways to induce AE lesions. CONCLUSION Our results reveal the diversity of strategies used by aEPEC isolates to interact with and damage epithelial host cells, thereby causing diarrheal diseases.
Collapse
Affiliation(s)
- Melissa A Vieira
- 1 Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP, Brazil
| | - Regiane C B Dias
- 1 Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP, Brazil
| | - Luís F Dos Santos
- 2 Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo SP, Brazil
| | - Vera L M Rall
- 1 Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP, Brazil
| | - Tânia A T Gomes
- 3 Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo SP, Brazil
| | - Rodrigo T Hernandes
- 1 Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
16
|
Host Range-Associated Clustering Based on Multilocus Variable-Number Tandem-Repeat Analysis, Phylotypes, and Virulence Genes of Atypical Enteropathogenic Escherichia coli Strains. Appl Environ Microbiol 2019; 85:AEM.02796-18. [PMID: 30658974 DOI: 10.1128/aem.02796-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/02/2019] [Indexed: 12/23/2022] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) strains (36 Japanese and 50 Bangladeshi) obtained from 649 poultry fecal samples were analyzed by molecular epidemiological methods. Clermont's phylogenetic typing showed that group A was more prevalent (58%, 50/86) than B1 (31%, 27/86). Intimin type β1, which is prevalent among human diarrheal patients, was predominant in both phylogroups B1 (81%, 22/27) and A (70%, 35/50). However, about 95% of B1-β1 strains belonged to virulence group I, and 77% of them were Japanese strains, while 17% (6/35) of A-β1 strains did. Multilocus variable-number tandem-repeat analysis (MLVA) distributed the strains into 52 distinct profiles, with Simpson's index of diversity (D) at 73%. When the data were combined with those of 142 previous strains from different sources, the minimum spanning tree formed five zones for porcine strains, poultry strains (excluding B1-β1), strains from healthy humans, bovine and human patient strains, and the B1-β1 poultry strains. Antimicrobial resistance to nalidixic acid was most common (74%) among the isolates. Sixty-eight percent of them demonstrated resistance to ≥3 antimicrobial agents, and most of them (91%) were from Bangladesh. The strains were assigned into two groups by hierarchical clustering. Correlation matrix analysis revealed that the virulence genes were negatively associated with antimicrobial resistance. The present study suggested that poultry, particularly Japanese poultry, could be another reservoir of aEPEC (phylogroup B1, virulence group I, and intimin type β1); however, poultry strains seem to be apart from patient strains that were closer to bovine strains. Bangladeshi aEPEC may be less virulent for humans but more resistant to antibiotics.IMPORTANCE Atypical enteropathogenic Escherichia coli (aEPEC) is a diarrheagenic type of E. coli, as it possesses the intimin gene (eae) for attachment and effacement on epithelium. Since aEPEC is ubiquitous even in developed countries, we previously used molecular epidemiological methods to discriminate aEPEC as a human pathogen. The present study assessed poultry as another source of human diarrheagenic aEPEC. Poultry could be the source of aEPEC (phylogroup B1, virulence group I, and intimin type β1) found among patient strains in Japan. However, the minimum spanning tree (MST) suggested that the strains from Japanese poultry were far from Japanese patient strains compared with the distance between bovine and patient strains. Bangladeshi avian strains seemed to be less diarrheagenic but are hazardous as a source of drug resistance genes.
Collapse
|
17
|
Arais LR, Barbosa AV, Andrade JRC, Gomes TAT, Asensi MD, Aires CAM, Cerqueira AMF. Zoonotic potential of atypical enteropathogenic Escherichia coli (aEPEC) isolated from puppies with diarrhoea in Brazil. Vet Microbiol 2018; 227:45-51. [PMID: 30473351 DOI: 10.1016/j.vetmic.2018.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 02/02/2023]
Abstract
Recent studies point atypical enteropathogenic Escherichia coli (aEPEC) to be an important agent in childhood diarrhoea in Brazil. aEPEC are commonly found in various animal species, including dogs. Although the true zoonotic risk remains unknown, some strains recovered from dogs present the same serotypes and carry the same virulence genes implicated in human disease. In this study, we compared the virulence and genetic relationship among a set of aEPEC strains previously isolated from diarrheic faeces from companion dogs and humans. A total of 17 strains, 12 from puppies and five from children, were studied. The strains were assessed for: (i) presence of virulence-associated genes (a total of 31 genes) using PCR assays; (ii) genetic relationship by Random Amplified Polymorphic DNA (RAPD), Multilocus Sequence Typing (MLST) and Pulsed-field Gel Electrophoresis (PFGE); and (iii) adherence pattern in intestinal Caco-2 cells. The occurrence of virulence genes was similar between the canine and human isolates presenting the same serotype. The fimbrial genes ecpA and fimH were the most frequently detected, followed by hcpA, tccP, tccP2, lpfA1, lpfA2, astA and toxB genes. Several nle genes were also detected, with one canine strain (O156:H- / ST327) showing all PAI O-122 genes investigated (efa-1, nleB, nleE and ent/espL2). Canine and human strains of the same serotype were grouped into a single cluster by RAPD and PFGE, in which the ST10 and ST206 were identified. Additionally, most of the strains exhibited a localized adherence-like phenotype when interacting with Caco-2 cells. The results showed that some canine aEPEC strains share virulence genes commonly found in human pathogenic strains. Moreover, strains of the same serotype, isolated from dogs and children, share virulence genes and are phylogenetically close, suggesting a potential zoonotic risk.
Collapse
Affiliation(s)
- Lavicie R Arais
- Laboratório de Enteropatógenos, Microbiologia Veterinária e de Alimentos, Universidade Federal Fluminense, Professor Hernani Melo Street, 101, Niterói, RJ, 24210-130, Brazil
| | - André V Barbosa
- Laboratório de Enteropatógenos, Microbiologia Veterinária e de Alimentos, Universidade Federal Fluminense, Professor Hernani Melo Street, 101, Niterói, RJ, 24210-130, Brazil.
| | - João R C Andrade
- Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro. Prof., Manuel de Abreu Avenue, 444, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Botucatu Street, 862, São Paulo, SP, 04023-062, Brazil
| | - Marise D Asensi
- Laboratório de Pesquisa em Infecção Hospitalar, Fundação Oswaldo Cruz, Brasil Avenue, 4365, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Caio A M Aires
- Laboratório de Pesquisa em Infecção Hospitalar, Fundação Oswaldo Cruz, Brasil Avenue, 4365, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Aloysio M F Cerqueira
- Laboratório de Enteropatógenos, Microbiologia Veterinária e de Alimentos, Universidade Federal Fluminense, Professor Hernani Melo Street, 101, Niterói, RJ, 24210-130, Brazil
| |
Collapse
|
18
|
Peirano V, Bianco MN, Navarro A, Schelotto F, Varela G. Diarrheagenic Escherichia coli Associated with Acute Gastroenteritis in Children from Soriano, Uruguay. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2018; 2018:8387218. [PMID: 30515254 PMCID: PMC6234443 DOI: 10.1155/2018/8387218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/07/2018] [Accepted: 10/04/2018] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Acute diarrheal disease still deserves worldwide attention due to its high morbidity and mortality, especially in developing countries. While etiologic determination is not mandatory for management of all individual cases, it is needed for generating useful epidemiologic knowledge. Diarrheagenic Escherichia coli (DEC) are relevant enteropathogens, and their investigation requires specific procedures to which resources and training should be dedicated in reference laboratories. METHODOLOGY Following the hypothesis that enteric pathogens affecting children in towns located in the interior of Uruguay may be different from those found in Montevideo, we conducted a diagnostic survey on acute diarrheal disease in 83 children under 5 years of age from populations in the south of the country. RESULTS DEC pathotypes were the only bacterial pathogens found in diarrheal feces (20.48%), followed by rotavirus (14.45%) and enteric adenovirus (4.81%). Atypical EPEC (aEPEC) was the most frequent DEC pathotype identified, and unexpectedly, it was associated with bloody diarrheal cases. These patients were of concern and provided with early consultation, as were children who presented with vomiting, which occurred most frequently in rotavirus infections. aEPEC serotypes were diverse and different from those previously reported in Montevideo children within the same age group and different from serotypes identified in regional and international studies. Enteroinvasive (EIEC) O96 : H19, associated with large outbreaks in Europe, was also isolated from two patients. Antibiotic susceptibility of pathogenic bacteria identified in this study was higher than that observed in previous national studies, which had been mainly carried out in children from Montevideo. CONCLUSION The reduced number of detected species, the marked prevalence of aEPEC, the scarce resistance traits, and the diverse range of serotypes in the virulent DEC identified in this study confirm that differences exist between enteropathogens affecting children from interior towns of Uruguay and those circulating among children in Montevideo.
Collapse
Affiliation(s)
- Vivian Peirano
- Bacteriology and Virology Department, Hygiene Institute, Medicine Faculty, Universidad de la República, Uruguay
- Mercedes Hospital Laboratory, State Health Services Administration (ASSE), Uruguay
| | - María Noel Bianco
- Bacteriology and Virology Department, Hygiene Institute, Medicine Faculty, Universidad de la República, Uruguay
| | - Armando Navarro
- Public Health Department, Medicine Faculty, UNAM (Universidad Nacional Autónoma de Mexico), Mexico City, Mexico
| | - Felipe Schelotto
- Bacteriology and Virology Department, Hygiene Institute, Medicine Faculty, Universidad de la República, Uruguay
| | - Gustavo Varela
- Bacteriology and Virology Department, Hygiene Institute, Medicine Faculty, Universidad de la República, Uruguay
| |
Collapse
|
19
|
Torres AG, Amaral MM, Bentancor L, Galli L, Goldstein J, Krüger A, Rojas-Lopez M. Recent Advances in Shiga Toxin-Producing Escherichia coli Research in Latin America. Microorganisms 2018; 6:microorganisms6040100. [PMID: 30274180 PMCID: PMC6313304 DOI: 10.3390/microorganisms6040100] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/01/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Pathogenic Escherichia coli are known to be a common cause of diarrheal disease and a frequently occurring bacterial infection in children and adults in Latin America. Despite the effort to combat diarrheal infections, the south of the American continent remains a hot spot for infections and sequelae associated with the acquisition of one category of pathogenic E. coli, the Shiga toxin-producing E. coli (STEC). This review will focus on an overview of the prevalence of different STEC serotypes in human, animals and food products, focusing on recent reports from Latin America outlining the recent research progress achieved in this region to combat disease and endemicity in affected countries and to improve understanding on emerging serotypes and their virulence factors. Furthermore, this review will highlight the progress done in vaccine development and treatment and will also discuss the effort of the Latin American investigators to respond to the thread of STEC infections by establishing a multidisciplinary network of experts that are addressing STEC-associated animal, human and environmental health issues, while trying to reduce human disease. Regardless of the significant scientific contributions to understand and combat STEC infections worldwide, many significant challenges still exist and this review has focus in the Latin American efforts as an example of what can be accomplished when multiple groups have a common goal.
Collapse
Affiliation(s)
- Alfredo G Torres
- Department of Microbiology and Immunology, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Maria M Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina.
| | - Leticia Bentancor
- Laboratory of Genetic Engineering and Molecular Biology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Buenos Aires 1876, Argentina.
| | - Lucia Galli
- Instituto de Genética Veterinaria Ing. Fernando N. Dulout (UNLP-CONICET, La Plata), Facultad de Ciencias Veterinarias, La Plata 1900, Argentina.
| | - Jorge Goldstein
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Houssay, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina.
| | - Alejandra Krüger
- Centro de Investigación Veterinaria de Tandil (CONICET-CIC-UNCPBA), Facultad de Ciencias Veterinarias, Tandil 7000, Argentina.
| | - Maricarmen Rojas-Lopez
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Diarrhoeagenic Escherichia coli and Escherichia albertii in Brazil: pathotypes and serotypes over a 6-year period of surveillance. Epidemiol Infect 2018; 147:e10. [PMID: 30229714 PMCID: PMC6518528 DOI: 10.1017/s0950268818002595] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diarrhoeagenic Escherichia coli (DEC) is a leading cause of infectious diarrhoea worldwide. In recent years, Escherichia albertii has also been implicated as a cause of human enteric diseases. This study describes the occurrence of E. coli pathotypes and serotypes associated with enteric illness and haemolytic uremic syndrome (HUS) isolated in Brazil from 2011 to 2016. Pathotypes isolated included enteropathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC) and Shiga toxin-producing E. coli (STEC). PCR of stool enrichments for DEC pathotypes was employed, and E. albertii was also sought. O:H serotyping was performed on all DEC isolates. A total of 683 DEC and 10 E. albertii strains were isolated from 5047 clinical samples. The frequencies of DEC pathotypes were 52.6% (359/683) for EPEC, 32.5% for EAEC, 6.3% for ETEC, 4.4% for EIEC and 4.2% for STEC. DEC strains occurred in patients from 3 months to 96 years old, but EPEC, EAEC and STEC were most prevalent among children. Both typical and atypical isolates of EPEC and EAEC were recovered and presented great serotype heterogeneity. HUS cases were only associated with STEC serotype O157:H7. Two E. albertii isolates belonged to serogroup O113 and one had the stx2f gene. The higher prevalence of atypical EPEC in relation to EAEC in community-acquired diarrhoea in Brazil suggests a shift in the trend of DEC pathotypes circulation as previously EAEC predominated. This is the first report of E. albertii isolation from active surveillance. These results highlight the need of continuing DEC and E. albertii surveillance, as a mean to detect changes in the pattern of pathotypes and serotypes circulation and provide useful information for intervention and control strategies.
Collapse
|
21
|
Ingle DJ, Levine MM, Kotloff KL, Holt KE, Robins-Browne RM. Dynamics of antimicrobial resistance in intestinal Escherichia coli from children in community settings in South Asia and sub-Saharan Africa. Nat Microbiol 2018; 3:1063-1073. [PMID: 30127495 PMCID: PMC6787116 DOI: 10.1038/s41564-018-0217-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/09/2018] [Indexed: 11/30/2022]
Abstract
The dynamics of antimicrobial resistance (AMR) in developing countries are poorly understood, especially in community settings, due to a sparsity of data on AMR prevalence and genetics. We used a combination of phenotyping, genomics and antimicrobial usage data to investigate patterns of AMR amongst atypical enteropathogenic Escherichia coli (aEPEC) strains isolated from children younger than five years old in seven developing countries (four in sub-Saharan Africa and three in South Asia) over a three-year period. We detected high rates of AMR, with 65% of isolates displaying resistance to three or more drug classes. Whole-genome sequencing revealed a diversity of known genetic mechanisms for AMR that accounted for >95% of phenotypic resistance, with comparable rates amongst aEPEC strains associated with diarrhoea or asymptomatic carriage. Genetic determinants of AMR were associated with the geographic location of isolates, not E. coli lineage, and AMR genes were frequently co-located, potentially enabling the acquisition of multi-drug resistance in a single step. Comparison of AMR with antimicrobial usage data showed that the prevalence of resistance to fluoroquinolones and third-generation cephalosporins was correlated with usage, which was higher in South Asia than in Africa. This study provides much-needed insights into the frequency and mechanisms of AMR in intestinal E. coli in children living in community settings in developing countries.
Collapse
Affiliation(s)
- Danielle J Ingle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Myron M Levine
- Departments of Pediatrics and Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Karen L Kotloff
- Departments of Pediatrics and Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- London School of Hygiene and Tropical Medicine, London, UK
| | - Roy M Robins-Browne
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| |
Collapse
|
22
|
Cavalcante PA, Prata MMG, Medeiros PHQS, Alves da Silva AV, Quetz JS, Reyes MAV, Rodrigues TS, Santos AKS, Ribeiro SA, Veras HN, Bona MD, Amaral MSMG, Rodrigues FAP, Lima IFN, Havt A, Lima AAM. Intestinal cell migration damage induced by enteropathogenic Escherichia coli strains. ACTA ACUST UNITED AC 2018; 51:e7423. [PMID: 30066727 PMCID: PMC6065879 DOI: 10.1590/1414-431x20187423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/24/2018] [Indexed: 01/27/2023]
Abstract
Epithelial cell migration is an essential response to enteric pathogens such as enteropathogenic Escherichia coli (EPEC). This study aimed to investigate the effects of EPEC infection on intestinal epithelial cell migration in vitro, as well as the involvement of type III secretion system (T3SS) and Rho GTPases. Crypt intestinal epithelial cells (IEC-6) were infected with EPEC strains (E2348/69, ΔescF, and the LDI001 strain isolated from a malnourished Brazilian child) and commensal E. coli HS. Wound migration and cell death assays were performed at different time-points. Transcription and expression of Rho GTPases were evaluated using real-time PCR and western blotting. Overall, EPEC E2348/69 reduced migration and increased apoptosis and necrosis levels compared to EPEC LDI001 and E. coli HS strains. Moreover, EPEC LDI001 impaired cell migration at a higher level than E. coli HS and increased necrosis after 24 hours compared to the control group. The different profiles of virulence genes between the two wild-type EPEC strains, characterized by the absence of espL and nleE genes in the LDI001, might explain the phenotypic results, playing significant roles on cell migration impairment and cell death-related events. Moreover, the type III secretion system is determinant for the inhibition of intestinal epithelial cell migration by EPEC 2348/69, as its deletion prevented the effect. Active Rac1 concentrations were increased in E2348/69 and LDI001-infected cells, while the T3SS-deficient strain did not demonstrate this activation. This study contributes with valuable insight to characterize the mechanisms involved in the impairment of intestinal cell migration induced by EPEC.
Collapse
Affiliation(s)
- P A Cavalcante
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M M G Prata
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - P H Q S Medeiros
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A V Alves da Silva
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - J S Quetz
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M A V Reyes
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - T S Rodrigues
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A K S Santos
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - S A Ribeiro
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - H N Veras
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M D Bona
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M S M G Amaral
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - F A P Rodrigues
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - I F N Lima
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A Havt
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A A M Lima
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
23
|
Molecular characterization of diarrheagenic Escherichia coli isolated from vegetables in Argentina. Int J Food Microbiol 2017; 261:57-61. [DOI: 10.1016/j.ijfoodmicro.2017.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 11/22/2022]
|
24
|
Ristori CA, Rowlands REG, Martins CG, Barbosa ML, Dos Santos LF, Jakabi M, de Melo Franco BDG. Assessment of Consumer Exposure to Salmonella spp., Campylobacter spp., and Shiga Toxin-Producing Escherichia coli in Meat Products at Retail in the City of Sao Paulo, Brazil. Foodborne Pathog Dis 2017; 14:447-453. [PMID: 28475359 DOI: 10.1089/fpd.2016.2270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Meat products may be vehicles of bacterial pathogens to humans, and Salmonella spp., Campylobacter spp., and Shiga toxin-producing Escherichia coli (STEC) are the most relevant. The aim of this study was to generate data on prevalence of these three pathogens in 552 samples of meat products (hot dogs, pork sausages, raw ground beef, and raw chicken legs) sold at retail in the city of Sao Paulo, Brazil. Salmonella spp. was detected in 5.8% (32/552) of samples, comprising pork sausages 62.5% (20/32) and chicken legs 37.5% (12/32). The counts of Salmonella spp. were low, ranging from < 0.3 to 9.3 × 10 most probable number per gram and the most frequent serovars were Salmonella Typhimurium (28.1%), Salmonella I 4,[5],12:i:- (15.6%), Salmonella Enteritidis (12.5%), Salmonella Derby, and Salmonella Brandenburg (9.4%). Campylobacter spp. was detected in 33 samples (6.0%), comprising chicken legs (82%) and ground beef (18%). All samples were negative for STEC. These results suggest that meat products when subjected to inadequate cooking and/or cross-contamination with other products ready for consumption can lead to occurrence of outbreaks, highlighting the risks associated with them.
Collapse
Affiliation(s)
| | | | | | - Maria Luisa Barbosa
- 1 Food Microbiology Laboratory, Food Center Adolfo Lutz Institute , Sao Paulo, Brazil
| | | | - Miyoko Jakabi
- 1 Food Microbiology Laboratory, Food Center Adolfo Lutz Institute , Sao Paulo, Brazil
| | | |
Collapse
|
25
|
Gomes TAT, Elias WP, Scaletsky ICA, Guth BEC, Rodrigues JF, Piazza RMF, Ferreira LCS, Martinez MB. Diarrheagenic Escherichia coli. Braz J Microbiol 2016; 47 Suppl 1:3-30. [PMID: 27866935 PMCID: PMC5156508 DOI: 10.1016/j.bjm.2016.10.015] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.
Collapse
Affiliation(s)
- Tânia A T Gomes
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil.
| | - Waldir P Elias
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Isabel C A Scaletsky
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Beatriz E C Guth
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Juliana F Rodrigues
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Roxane M F Piazza
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Luís C S Ferreira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Marina B Martinez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, São Paulo, SP, Brazil
| |
Collapse
|