1
|
Villa F, Marchandin H, Lavigne JP, Schuldiner S, Cellier N, Sotto A, Loubet P. Anaerobes in diabetic foot infections: pathophysiology, epidemiology, virulence, and management. Clin Microbiol Rev 2024; 37:e0014323. [PMID: 38819166 PMCID: PMC11391693 DOI: 10.1128/cmr.00143-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
SUMMARYDiabetic foot infections (DFI) are a public health problem worldwide. DFI are polymicrobial, biofilm-associated infections involving complex bacterial communities organized in functional equivalent pathogroups, all including anaerobes. Indeed, multiple pathophysiological factors favor the growth of anaerobes in this context. However, the prevalence, role, and contribution of anaerobes in wound evolution remain poorly characterized due to their challenging detection. Studies based on culture reviewed herein showed a weighted average of 17% of patients with anaerobes. Comparatively, the weighted average of patients with anaerobes identified by 16S rRNA gene sequencing was 83.8%. Culture largely underestimated not only the presence but also the diversity of anaerobes compared with cultivation-independent approaches but both methods showed that anaerobic Gram-negative bacilli and Gram-positive cocci were the most commonly identified in DFI. Anaerobes were more present in deeper lesions, and their detection was associated with fever, malodorous lesions, and ulcer depth and duration. More specifically, initial abundance of Peptoniphilus spp. was associated with ulcer-impaired healing, Fusobacterium spp. detection was significantly correlated with the duration of DFI, and the presence of Bacteroides spp. was significantly associated with amputation. Antimicrobial resistance of anaerobes in DFI remains slightly studied and warrants more consideration in the context of increasing resistance of the most frequently identified anaerobes in DFI. The high rate of patients with DFI-involving anaerobes, the increased knowledge on the species identified, their virulence factors, and their potential role in wound evolution support recommendations combining debridement and antibiotic therapy effective on anaerobes in moderate and severe DFI.
Collapse
Affiliation(s)
- Fanny Villa
- VBIC, INSERM U1047, Univ Montpellier, Service des Maladies Infectieuses et Tropicales, CHU Nîmes, Nîmes, France
| | - Hélène Marchandin
- HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène, Hospitalière, CHU Nîmes, Nîmes, France
| | - Jean-Philippe Lavigne
- VBIC, INSERM U1047, Univ Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, Nîmes, France
| | - Sophie Schuldiner
- VBIC, INSERM U1047, Univ Montpellier, Service des Maladies Métaboliques et Endocriniennes, CHU Nîmes, Nîmes, France
| | | | - Albert Sotto
- VBIC, INSERM U1047, Univ Montpellier, Service des Maladies Infectieuses et Tropicales, CHU Nîmes, Nîmes, France
| | - Paul Loubet
- VBIC, INSERM U1047, Univ Montpellier, Service des Maladies Infectieuses et Tropicales, CHU Nîmes, Nîmes, France
| |
Collapse
|
2
|
Yang X, Che T, Tian S, Zhang Y, Zheng Y, Zhang Y, Zhang X, Wu Z. A Living Microecological Hydrogel with Microbiota Remodeling and Immune Reinstatement for Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2400856. [PMID: 38744431 DOI: 10.1002/adhm.202400856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Dysregulated skin microbiota and compromised immune responses are the major etiological factors for non-healing diabetic wounds. Current antibacterial strategies fail to orchestrate immune responses and indiscriminately eradicate bacteria at the wound site, exacerbating the imbalance of microbiota. Drawing inspiration from the beneficial impacts that probiotics possess on microbiota, a living microecological hydrogel containing Lactobacillus plantarum and fructooligosaccharide (LP/FOS@Gel) is formulated to remodel dysregulated skin microbiota and reinstate compromised immune responses, cultivating a conducive environment for optimal wound healing. LP/FOS@Gel acts as an "evocator," skillfully integrating the skin microecology, promoting the proliferation of Lactobacillus, Ralstonia, Muribaculum, Bacillus, and Allobaculum, while eradicating colonized pathogenic bacteria. Concurrently, LP/FOS@Gel continuously generates lactic acid to elicit a reparative macrophage response and impede the activation of the nuclear factor kappa-B pathway, effectively alleviating inflammation. As an intelligent microecological system, LP/FOS@Gel reinstates the skin's sovereignty during the healing process and effectively orchestrates the harmonious dialogue between the host immune system and microorganisms, thereby fostering the healing of diabetic infectious wounds. These remarkable attributes render LP/FOS@Gel highly advantageous for pragmatic clinical applications.
Collapse
Affiliation(s)
- Xiaopeng Yang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Tingting Che
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Shasha Tian
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yuanyuan Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yin Zheng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| |
Collapse
|
3
|
Santamaría-Corral G, Aguilera-Correa JJ, Esteban J, García-Quintanilla M. Bacteriophage Therapy on an In Vitro Wound Model and Synergistic Effects in Combination with Beta-Lactam Antibiotics. Antibiotics (Basel) 2024; 13:800. [PMID: 39334975 PMCID: PMC11428794 DOI: 10.3390/antibiotics13090800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
One of the primary opportunistic pathogens that can cause a wide range of diseases is Pseudomonas aeruginosa. This microorganism can become resistant to practically every antibacterial currently in use, including beta-lactam antibiotics. Its ability to proliferate as biofilm has been linked to, among other things, the failure of antimicrobial therapies. Due to a variety of virulence factors and host immune system modifications, P. aeruginosa is one of the most significant and common bacteria that colonize wounds and burns. A novel therapeutic option for treating these multidrug-resistant (MDR) bacterial infections is the combination of antibiotics and bacteriophages. This approach has been linked to improved biofilm penetration, a decreased selection of antibiotic and bacteriophage resistance, and an enhanced antibacterial impact. Combining the F1Pa bacteriophage and beta-lactam antibiotics reduced the viability of the mature biofilm of MDR P. aeruginosa strains and suppressed bacterial growth in vitro. F1Pa critically reduced the amount of biofilm that MDR P. aeruginosa clinical strains formed in the in vitro wound model. These findings highlight the bacteriophage F1Pa's therapeutic potential as a prophylactic topical treatment against MDR pseudomonal infections in wounds and burns.
Collapse
Affiliation(s)
- Guillermo Santamaría-Corral
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - John Jairo Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Meritxell García-Quintanilla
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| |
Collapse
|
4
|
Silveira LL, Sarandy MM, Novaes RD, Morais-Santos M, Gonçalves RV. OxInflammation Affects Transdifferentiation to Myofibroblasts, Prolonging Wound Healing in Diabetes: A Systematic Review. Int J Mol Sci 2024; 25:8992. [PMID: 39201678 PMCID: PMC11354661 DOI: 10.3390/ijms25168992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Skin wounds, primarily in association with type I diabetes mellitus, are a public health problem generating significant health impacts. Therefore, identifying the main pathways/mechanisms involved in differentiating fibroblasts into myofibroblasts is fundamental to guide research into effective treatments. Adopting the PRISMA guidelines, this study aimed to verify the main pathways/mechanisms using diabetic murine models and analyze the advances and limitations of this area. The Medline (PubMed), Scopus, and Web of Science platforms were used for the search. The studies included were limited to those that used diabetic murine models with excisional wounds. Bias analysis and methodological quality assessments were undertaken using the SYRCLE bias risk tool. Eighteen studies were selected. The systematic review results confirm that diabetes impairs the transformation of fibroblasts into myofibroblasts by affecting the expression of several growth factors, most notably transforming growth factor beta (TGF-beta) and NLRP3. Diabetes also compromises pathways such as the SMAD, c-Jun N-terminal kinase, protein kinase C, and nuclear factor kappa beta activating caspase pathways, leading to cell death. Furthermore, diabetes renders the wound environment highly pro-oxidant and inflammatory, which is known as OxInflammation. As a consequence of this OxInflammation, delays in the collagenization process occur. The protocol details for this systematic review were registered with PROSPERO: CRD42021267776.
Collapse
Affiliation(s)
- Leonardo L. Silveira
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Brazil; (L.L.S.); (M.M.S.)
| | - Mariáurea M. Sarandy
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Brazil; (L.L.S.); (M.M.S.)
| | - Rômulo D. Novaes
- Department of Structural Biology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, Brazil;
| | - Mônica Morais-Santos
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Reggiani V. Gonçalves
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, Brazil
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| |
Collapse
|
5
|
Uberoi A, McCready-Vangi A, Grice EA. The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nat Rev Microbiol 2024; 22:507-521. [PMID: 38575708 DOI: 10.1038/s41579-024-01035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
The skin barrier protects the human body from invasion by exogenous and pathogenic microorganisms. A breach in this barrier exposes the underlying tissue to microbial contamination, which can lead to infection, delayed healing, and further loss of tissue and organ integrity. Delayed wound healing and chronic wounds are associated with comorbidities, including diabetes, advanced age, immunosuppression and autoimmune disease. The wound microbiota can influence each stage of the multi-factorial repair process and influence the likelihood of an infection. Pathogens that commonly infect wounds, such as Staphylococcus aureus and Pseudomonas aeruginosa, express specialized virulence factors that facilitate adherence and invasion. Biofilm formation and other polymicrobial interactions contribute to host immunity evasion and resistance to antimicrobial therapies. Anaerobic organisms, fungal and viral pathogens, and emerging drug-resistant microorganisms present unique challenges for diagnosis and therapy. In this Review, we explore the current understanding of how microorganisms present in wounds impact the process of skin repair and lead to infection through their actions on the host and the other microbial wound inhabitants.
Collapse
Affiliation(s)
- Aayushi Uberoi
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amelia McCready-Vangi
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Grice
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
7
|
Bonnet E, Maulin L, Senneville E, Castan B, Fourcade C, Loubet P, Poitrenaud D, Schuldiner S, Sotto A, Lavigne JP, Lesprit P. Clinical practice recommendations for infectious disease management of diabetic foot infection (DFI) - 2023 SPILF. Infect Dis Now 2024; 54:104832. [PMID: 37952582 DOI: 10.1016/j.idnow.2023.104832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
In march 2020, the International Working Group on the Diabetic Foot (IWGDF) published an update of the 2015 guidelines on the diagnosis and management of diabetic foot infection (DFI). While we (the French ID society, SPILF) endorsed some of these recommendations, we wanted to update our own 2006 guidelines and specifically provide informative elements on modalities of microbiological diagnosis and antibiotic treatment (especially first- and second-line regiments, oral switch and duration). The recommendations put forward in the present guidelines are addressed to healthcare professionals managing patients with DFI and more specifically focused on infectious disease management of this type of infection, which clearly needs a multidisciplinary approach. Staging of the severity of the infection is mandatory using the classification drawn up by the IWGDF. Microbiological samples should be taken only in the event of clinical signs suggesting infection in accordance with a strict preliminarily established protocol. Empirical antibiotic therapy should be chosen according to the IWGDF grade of infection and duration of the wound, but must always cover methicillin-sensitive Staphylococcus aureus. Early reevaluation of the patient is a fundamental step, and duration of antibiotic therapy can be shortened in many situations. When osteomyelitis is suspected, standard foot radiograph is the first-line imagery examination and a bone biopsy should be performed for microbiological documentation. Histological analysis of the bone sample is no longer recommended. High dosages of antibiotics are recommended in cases of confirmed osteomyelitis.
Collapse
Affiliation(s)
- E Bonnet
- Service des Maladies Infectieuses et Tropicales, CHU Toulouse-Purpan, 31059 Toulouse, France.
| | - L Maulin
- Maladies Infectieuses, CH du Pays d'Aix, 13100 Aix en Provence, France
| | - E Senneville
- Service Universitaire des Maladies Infectieuses, CH Dron, 59200 Tourcoing, France
| | - B Castan
- Service de Médecine Interne et Maladies Infectieuses, CH Périgueux, 24019 Périgueux, France
| | - C Fourcade
- Equipe Mobile d'Infectiologie, Clinique Pasteur, Clinavenir, 31300 Toulouse, France
| | - P Loubet
- Service des Maladies Infectieuses et Tropicales, CHU Caremeau, 30029 Nîmes, France
| | - D Poitrenaud
- Unité Fonctionnelle d'Infectiologie, CH Notre Dame de la Miséricorde, 20000 Ajaccio, France
| | - S Schuldiner
- Service des Maladies Métaboliques et Endocriniennes, CHU Caremeau, 30029 Nîmes, France
| | - A Sotto
- Service des Maladies Infectieuses et Tropicales, CHU Caremeau, 30029 Nîmes, France
| | - J P Lavigne
- Service de Microbiologie et Hygiène Hospitalière, CHU Caremeau, 30029 Nîmes, France
| | - P Lesprit
- Maladies Infectieuses, CHU Grenoble Alpes, 38043, Grenoble, France
| |
Collapse
|
8
|
Labens R, Raidal S, Borgen-Nielsen C, Pyecroft S, Pant SD, De Ridder T. Wound healing of experimental equine skin wounds and concurrent microbiota in wound dressings following topical propylene glycol gel treatment. Front Vet Sci 2023; 10:1294021. [PMID: 38155761 PMCID: PMC10752953 DOI: 10.3389/fvets.2023.1294021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/23/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Topical wound treatments rely on carrier formulations with little to no biological impact. The potential for a common vehicle, a propylene glycol (PG) gel, to affect wound healing measures including microbiota is not known. Microbiome characterization, based on next generation sequencing methods is typically performed on tissue or directly obtained wound fluid samples. The utility for primary wound dressings to characterize equine wound microbiota in the context of topical treatments is currently unknown. This investigation reports the topical effect of an 80% PG based gel on wound healing and microbiota in wound dressings. Methods Experiments were performed in six mature horses utilizing a surgical, distal limb wound model, histology of sequential wound biopsies, photographic wound measurements and microbiota profiling via 16s rRNA sequencing of wound dressing samples. Experimental wounds were surveyed for 42 days and either treated (Day 7, 14, 21 and 28; at 0.03 ml/cm2) or unexposed to the PG gel. Wound surface area, relative and absolute microbial abundances, diversity indices and histologic parameters were analyzed in the context of the experimental group (treatment; control) using qualitative or quantitative methods depending on data characteristics. Results Compared to controls, treatment slowed the wound healing rate (17.17 ± 4.27 vs. 18.56 ± 6.3 mm2/day), delayed the temporal decline of polymorphonucleated cells in wound beds and operational taxonomic units (OTU) in wound dressings and lowered alpha-diversity indices for microbiota in primary wound dressing. Relative abundances of OTUs were in line with those previously reported for equine wounds. Clinical outcomes 42 days post wounding were considered similar irrespective of PG gel exposure. Discussion Results highlight the potential for vehicle exposure to alter relevant wound outcome measures, imposing the need for stringent experimental control measures. Primary wound dressings may represent an alternate sample source for characterization of the wound microbiome alleviating the need for additional interventions. Further studies are warranted to contrast the microbiome in wound dressings against that present on wound surfaces to conclude on the validity of this approach.
Collapse
Affiliation(s)
- Raphael Labens
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
- QBiotics Group Ltd., Yungaburra, QLD, Australia
| | - Sharanne Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Cathrine Borgen-Nielsen
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Stephen Pyecroft
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA, Australia
| | - Sameer D. Pant
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| | | |
Collapse
|
9
|
Monaghan MG, Borah R, Thomsen C, Browne S. Thou shall not heal: Overcoming the non-healing behaviour of diabetic foot ulcers by engineering the inflammatory microenvironment. Adv Drug Deliv Rev 2023; 203:115120. [PMID: 37884128 DOI: 10.1016/j.addr.2023.115120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Diabetic foot ulcers (DFUs) are a devastating complication for diabetic patients that have debilitating effects and can ultimately lead to limb amputation. Healthy wounds progress through the phases of healing leading to tissue regeneration and restoration of the barrier function of the skin. In contrast, in diabetic patients dysregulation of these phases leads to chronic, non-healing wounds. In particular, unresolved inflammation in the DFU microenvironment has been identified as a key facet of chronic wounds in hyperglyceamic patients, as DFUs fail to progress beyond the inflammatory phase and towards resolution. Thus, control over and modulation of the inflammatory response is a promising therapeutic avenue for DFU treatment. This review discusses the current state-of-the art regarding control of the inflammatory response in the DFU microenvironment, with a specific focus on the development of biomaterials-based delivery strategies and their cargos to direct tissue regeneration in the DFU microenvironment.
Collapse
Affiliation(s)
- Michael G Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland; CÚRAM, Centre for Research in Medical Devices, National University of Ireland, H91 W2TY Galway, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Rajiv Borah
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Charlotte Thomsen
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Shane Browne
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland, H91 W2TY Galway, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
10
|
Campbell AE, McCready-Vangi AR, Uberoi A, Murga-Garrido SM, Lovins VM, White EK, Pan JTC, Knight SAB, Morgenstern AR, Bianco C, Planet PJ, Gardner SE, Grice EA. Variable staphyloxanthin production by Staphylococcus aureus drives strain-dependent effects on diabetic wound-healing outcomes. Cell Rep 2023; 42:113281. [PMID: 37858460 PMCID: PMC10680119 DOI: 10.1016/j.celrep.2023.113281] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 08/24/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
Strain-level variation in Staphylococcus aureus is a factor that contributes to disease burden and clinical outcomes in skin disorders and chronic wounds. However, the microbial mechanisms that drive these variable host responses are poorly understood. To identify mechanisms underlying strain-specific outcomes, we perform high-throughput phenotyping screens on S. aureus isolates cultured from diabetic foot ulcers. Isolates from non-healing wounds produce more staphyloxanthin, a cell membrane pigment. In murine diabetic wounds, staphyloxanthin-producing isolates delay wound closure significantly compared with staphyloxanthin-deficient isolates. Staphyloxanthin promotes resistance to oxidative stress and enhances bacterial survival in neutrophils. Comparative genomic and transcriptomic analysis of genetically similar clinical isolates with disparate staphyloxanthin phenotypes reveals a mutation in the sigma B operon, resulting in marked differences in stress response gene expression. Our work illustrates a framework to identify traits that underlie strain-level variation in disease burden and suggests more precise targets for therapeutic intervention in S. aureus-positive wounds.
Collapse
Affiliation(s)
- Amy E Campbell
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amelia R McCready-Vangi
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aayushi Uberoi
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sofía M Murga-Garrido
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Victoria M Lovins
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellen K White
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie Ting-Chun Pan
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon A B Knight
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexis R Morgenstern
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Colleen Bianco
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul J Planet
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Pediatrics and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sue E Gardner
- College of Nursing, University of Iowa, Iowa City, IA 52242, USA
| | - Elizabeth A Grice
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Mariani F, Galvan EM. Staphylococcus aureus in Polymicrobial Skinand Soft Tissue Infections: Impact of Inter-Species Interactionsin Disease Outcome. Antibiotics (Basel) 2023; 12:1164. [PMID: 37508260 PMCID: PMC10376372 DOI: 10.3390/antibiotics12071164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Polymicrobial biofilms provide a complex environment where co-infecting microorganisms can behave antagonistically, additively, or synergistically to alter the disease outcome compared to monomicrobial infections. Staphylococcus aureus skin and soft tissue infections (Sa-SSTIs) are frequently reported in healthcare and community settings, and they can also involve other bacterial and fungal microorganisms. This polymicrobial aetiology is usually found in chronic wounds, such as diabetic foot ulcers, pressure ulcers, and burn wounds, where the establishment of multi-species biofilms in chronic wounds has been extensively described. This review article explores the recent updates on the microorganisms commonly found together with S. aureus in SSTIs, such as Pseudomonas aeruginosa, Escherichia coli, Enterococcus spp., Acinetobacter baumannii, and Candida albicans, among others. The molecular mechanisms behind these polymicrobial interactions in the context of infected wounds and their impact on pathogenesis and antimicrobial susceptibility are also revised.
Collapse
Affiliation(s)
- Florencia Mariani
- Laboratorio de Patogénesis Bacteriana, Departamento de Investigaciones Bioquímicas y Farmacéuticas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Hidalgo 775, Buenos Aires C1405, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires A4400, Argentina
| | - Estela Maria Galvan
- Laboratorio de Patogénesis Bacteriana, Departamento de Investigaciones Bioquímicas y Farmacéuticas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Hidalgo 775, Buenos Aires C1405, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires A4400, Argentina
| |
Collapse
|
12
|
Phan S, Feng CH, Huang R, Lee ZX, Moua Y, Phung OJ, Lenhard JR. Relative Abundance and Detection of Pseudomonas aeruginosa from Chronic Wound Infections Globally. Microorganisms 2023; 11:1210. [PMID: 37317184 DOI: 10.3390/microorganisms11051210] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 06/16/2023] Open
Abstract
Pseudomonas aeruginosa is a difficult-to-treat pathogen that is frequently involved with chronic wound infections. Here, we conducted a literature search of world-wide studies published between 2005 and 2022 that described the microbiological profiles of chronic wound infections. For each continent, a hierarchy of pathogens was created to define the organisms that were most frequently isolated in each region. Except for South America, P. aeruginosa was the second most common organism in each major continent, with Staphylococcus aureus being the most abundant pathogen overall. When individual countries were evaluated, P. aeruginosa was the most frequently isolated organism in several Southeast Asia nations including India and Malaysia. P. aeruginosa was less commonly isolated from diabetic foot infections in North America, Europe, and Africa in comparison to other types of chronic wound infections. Additionally, the Levine wound swab technique may be a quick and painless way to isolate P. aeruginosa from wound infections, but the isolation of P. aeruginosa does not seem to be an informative predictor of the patient's clinical course. A multivariate risk assessment that accounts for the regional frequency of P. aeruginosa isolation may be an appropriate way to guide empiric management of chronic wound infections.
Collapse
Affiliation(s)
- Sang Phan
- College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Cafrey He Feng
- College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Raymond Huang
- College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Zeng X Lee
- College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Yer Moua
- College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Olivia J Phung
- College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Justin R Lenhard
- College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| |
Collapse
|
13
|
Shojima N, Yamauchi T. Progress in genetics of type 2 diabetes and diabetic complications. J Diabetes Investig 2023; 14:503-515. [PMID: 36639962 PMCID: PMC10034958 DOI: 10.1111/jdi.13970] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
Type 2 diabetes results from a complex interaction between genetic and environmental factors. Precision medicine for type 2 diabetes using genetic data is expected to predict the risk of developing diabetes and complications and to predict the effects of medications and life-style intervention more accurately for individuals. Genome-wide association studies (GWAS) have been conducted in European and Asian populations and new genetic loci have been identified that modulate the risk of developing type 2 diabetes. Novel loci were discovered by GWAS in diabetic complications with increasing sample sizes. Large-scale genome-wide association analysis and polygenic risk scores using biobank information is making it possible to predict the development of type 2 diabetes. In the ADVANCE clinical trial of type 2 diabetes, a multi-polygenic risk score was useful to predict diabetic complications and their response to treatment. Proteomics and metabolomics studies have been conducted and have revealed the associations between type 2 diabetes and inflammatory signals and amino acid synthesis. Using multi-omics analysis, comprehensive molecular mechanisms have been elucidated to guide the development of targeted therapy for type 2 diabetes and diabetic complications.
Collapse
Affiliation(s)
- Nobuhiro Shojima
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Wang G, Lin Z, Li Y, Chen L, Reddy SK, Hu Z, Garza LA. Colonizing microbiota is associated with clinical outcomes in diabetic wound healing. Adv Drug Deliv Rev 2023; 194:114727. [PMID: 36758858 PMCID: PMC10163681 DOI: 10.1016/j.addr.2023.114727] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
With the development of society and the improvement of life quality, more than 500 million people are affected by diabetes. More than 10 % of people with diabetes will suffer from diabetic wounds, and 80 % of diabetic wounds will reoccur, so the development of new diabetic wound treatments is of great importance. The development of skin microbe research technology has gradually drawn people's attention to the complex relationship between microbes and diabetic wounds. Many studies have shown that skin microbes are associated with the outcome of diabetic wounds and can even be used as one of the indicators of wound prognosis. Skin microbes have also been found to have the potential to treat diabetic wounds. The wound colonization of different bacteria can exert opposing therapeutic effects. It is necessary to fully understand the skin microbes in diabetic wounds, which can provide valuable guidance for clinical diabetic wound treatment.
Collapse
Affiliation(s)
- Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| | - Zhen Lin
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Lu Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Sashank K Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - L A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| |
Collapse
|
15
|
Smythe P, Wilkinson HN. The Skin Microbiome: Current Landscape and Future Opportunities. Int J Mol Sci 2023; 24:3950. [PMID: 36835363 PMCID: PMC9963692 DOI: 10.3390/ijms24043950] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Our skin is the largest organ of the body, serving as an important barrier against the harsh extrinsic environment. Alongside preventing desiccation, chemical damage and hypothermia, this barrier protects the body from invading pathogens through a sophisticated innate immune response and co-adapted consortium of commensal microorganisms, collectively termed the microbiota. These microorganisms inhabit distinct biogeographical regions dictated by skin physiology. Thus, it follows that perturbations to normal skin homeostasis, as occurs with ageing, diabetes and skin disease, can cause microbial dysbiosis and increase infection risk. In this review, we discuss emerging concepts in skin microbiome research, highlighting pertinent links between skin ageing, the microbiome and cutaneous repair. Moreover, we address gaps in current knowledge and highlight key areas requiring further exploration. Future advances in this field could revolutionise the way we treat microbial dysbiosis associated with skin ageing and other pathologies.
Collapse
Affiliation(s)
- Paisleigh Smythe
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| | - Holly N. Wilkinson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| |
Collapse
|
16
|
Barshes NR, Clark NJ, Bidare D, Dudenhoeffer JH, Mindru C, Rodriguez-Barradas MC. Polymicrobial Foot Infection Patterns Are Common and Associated With Treatment Failure. Open Forum Infect Dis 2022; 9:ofac475. [PMID: 36267251 PMCID: PMC9578153 DOI: 10.1093/ofid/ofac475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/13/2022] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND That foot infections are predominately polymicrobial has long been recognized, but it is not clear if the various species co-occur randomly or in patterns. We sought nonrandom species co-occurrence patterns that might help better predict prognosis or guide antimicrobial selection. METHODS We analyzed tissue (bone, skin, and other soft tissue), fluid, and swab specimens collected from initial foot infection episodes during a 10-year period using a hospital registry. Nonrandom co-occurrence of microbial species was identified using simple pairwise co-occurrence rates adjusted for multiple comparisons, Markov and conditional random fields, and factor analysis. A historical cohort was used to validate pattern occurrence and identify clinical significance. RESULTS In total, 156 unique species were identified among the 727 specimens obtained from initial foot infection episodes in 694 patients. Multiple analyses suggested that Staphylococcus aureus is negatively associated with other staphylococci. Another pattern noted was the co-occurrence of alpha-hemolytic Streptococcus, Enterococcus fecalis, Klebsiella, Proteus, Enterobacter, or Escherichia coli, and absence of both Bacteroides and Corynebacterium. Patients in a historical cohort with this latter pattern had significantly higher risk-adjusted rates of treatment failure. CONCLUSIONS Several nonrandom microbial co-occurrence patterns are frequently seen in foot infection specimens. One particular pattern with many Proteobacteria species may denote a higher risk for treatment failure. Staphylococcus aureus rarely co-occurs with other staphylococci.
Collapse
Affiliation(s)
- Neal R Barshes
- Correspondence: Neal R. Barshes, MD, MPH, Baylor College of Medicine/Michael E. DeBakey Veterans Affairs Medical Center, 2002 Holcombe Boulevard (OCL 112), Houston, TX 77030 ()
| | - Nicholas J Clark
- School of Veterinary Science, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Deeksha Bidare
- Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - J H Dudenhoeffer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Cezarina Mindru
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
- Infectious Disease Section, Department of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - Maria C Rodriguez-Barradas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
- Infectious Disease Section, Department of Medicine, One Baylor Plaza, Houston, Texas, USA
| |
Collapse
|
17
|
Wong JJ, Ho FK, Choo PY, Chong KKL, Ho CMB, Neelakandan R, Keogh D, Barkham T, Chen J, Liu CF, Kline KA. Escherichia coli BarA-UvrY regulates the pks island and kills Staphylococci via the genotoxin colibactin during interspecies competition. PLoS Pathog 2022; 18:e1010766. [PMID: 36067266 PMCID: PMC9481169 DOI: 10.1371/journal.ppat.1010766] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/16/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022] Open
Abstract
Wound infections are often polymicrobial in nature, biofilm associated and therefore tolerant to antibiotic therapy, and associated with delayed healing. Escherichia coli and Staphylococcus aureus are among the most frequently cultured pathogens from wound infections. However, little is known about the frequency or consequence of E. coli and S. aureus polymicrobial interactions during wound infections. Here we show that E. coli kills Staphylococci, including S. aureus, both in vitro and in a mouse excisional wound model via the genotoxin, colibactin. Colibactin biosynthesis is encoded by the pks locus, which we identified in nearly 30% of human E. coli wound infection isolates. While it is not clear how colibactin is released from E. coli or how it penetrates target cells, we found that the colibactin intermediate N-myristoyl-D-Asn (NMDA) disrupts the S. aureus membrane. We also show that the BarA-UvrY two component system (TCS) senses the environment created during E. coli and S. aureus mixed species interaction, leading to upregulation of pks island genes. Further, we show that BarA-UvrY acts via the carbon storage global regulatory (Csr) system to control pks expression. Together, our data demonstrate the role of colibactin in interspecies competition and show that it is regulated by BarA-UvrY TCS during interspecies competition. Wound infections are often polymicrobial in nature and are associated with poor disease prognoses. Escherichia coli and Staphylococcus aureus are among the top five most cultured pathogens from wound infections. However, little is known about the polymicrobial interactions between E. coli and S. aureus during wound infections. In this study, we show that E. coli kills S. aureus both in vitro and in a mouse excisional wound model via the genotoxin, colibactin. We also show that the BarA-UvrY two component system (TCS) regulates the pks island during this mixed species interaction, acting through the carbon storage global regulatory (Csr) system to control colibactin production. Together, our data demonstrate the role of colibactin in interspecies competition and show that it is regulated by BarA-UvrY TCS during interspecies competition.
Collapse
Affiliation(s)
- Jun Jie Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, Singapore
| | - Foo Kiong Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Pei Yi Choo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kelvin K. L. Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Nanyang Technological University Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Chee Meng Benjamin Ho
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ramesh Neelakandan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Damien Keogh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Timothy Barkham
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chuan Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
18
|
Microbial Interplay in Skin and Chronic Wounds. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022. [DOI: 10.1007/s40588-022-00180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Purpose of Review
Microbial infections in chronic wounds can often lead to lower-limb amputation, decrease in quality of life, and increase in mortality rate, and there is an unmet need to distinguish between pathogens and colonisers in these chronic wounds. Hence, identifying the composition of healthy skin microbiota, microbes associated with chronic wound and healing processes, and microbial interactions and host response in healing wounds vs. non-healing wounds can help us in formulating innovative individual-centric treatment protocols.
Recent Findings
This review highlights various metabolites and biomarkers produced by microbes that have been identified to modulate these interactions, particularly those involved in host–microbe and microbe–microbe communication. Further, considering that many skin commensals demonstrate contextual pathogenicity, we provide insights into promising initiatives in the wound microbiome research.
Summary
The skin microbiome is highly diverse and variable, and considering its importance remains to be a hotspot of medical investigations and research to enable us to prevent and treat skin disorders and chronic wound infections. This is especially relevant now considering that non-healing and chronic wounds are highly prevalent, generally affecting lower extremities as seen in diabetic foot ulcers, venous leg ulcers, and pressure ulcers. Pathogenic bacteria are purported to have a key role in deferring healing of wounds. However, the role of skin microflora in wound progression has been a subject of debate. In this review, we discuss biomarkers associated with chronic wound microenvironment along with the relevance of skin microflora and their metabolites in determining the chronicity of wounds.
Collapse
|
19
|
Fletcher J, Porter R, Boulton Z, Brown L, Knight B, Romanczuk L, Aiken S, Delury C, Michell S. In vitro efficacy of antibiotic loaded calcium sulfate beads (Stimulan Rapid Cure) against polymicrobial communities and individual bacterial strains derived from diabetic foot infections. J Med Microbiol 2022; 71. [PMID: 35604937 DOI: 10.1099/jmm.0.001517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Diabetic foot infection (DFI) is the main reason for diabetes-related hospitalisation and is a major cause of diabetes-related amputation. DFIs are often complicated by ischaemia in the affected limb, the presence of polymicrobial biofilms and increasingly the occurrence of antibiotic resistant bacteria.Hypothesis/Gap statement. Antibiotic loaded beads could inhibit the growth of polymicrobial DFI communities with differing compositions in vitro.Aim. This study investigates the in vitro efficacy of antibiotic loaded calcium sulfate beads (Stimulan Rapid Cure, Biocomposites Ltd., UK) against polymicrobial DFI communities and individual bacterial strains derived from DFIs.Methodology. Debrided tissue obtained from the base of infected diabetic foot ulcers was homogenised and spread over the surface of Columbia blood agar (CBA) and fastidious anaerobe agar (FAA) plates. Calcium sulfate beads containing a combination of vancomycin and gentamicin were then placed on the surface of the agar and following incubation, zones of inhibition (ZOI) were measured. For individual bacterial strains isolated from the infected tissue, calcium sulfate beads containing vancomycin, gentamicin, flucloxacillin or rifampicin and beads containing a combination of vancomycin and gentamicin or flucloxacillin and rifampicin were tested for their ability to inhibit growth.Results. Calcium sulfate beads loaded with a combination of vancomycin and gentamicin were able to inhibit bacterial growth from all polymicrobial tissue homogenates tested, with ZOI diameters ranging from 15 to 40 mm. In the case of individual bacterial strains, beads containing combinations of vancomycin and gentamicin or flucloxacillin and rifampicin were able to produce ZOI with Gram-positive facultatitive anaerobic strains such as Staphylococcus aureus and Enterococcus faecalis, Gram-negative facultative anaerobic strains such as Pseudomonas aeruginosa and obligate anaerobic strains such as Finegoldia magna even where acquired resistance to one of the antibiotics in the combination was evidenced.Conclusion. The local use of calcium sulfate beads containing a combination of two antibiotics demonstrated high efficacy against polymicrobial DFI communities and individual DFI bacterial strains in in vitro zone of inhibition tests. These results show promise for clinical application, but further research and clinical studies are required.
Collapse
Affiliation(s)
- Julie Fletcher
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Rob Porter
- Microbiology Department, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Zoe Boulton
- Macleod Diabetes and Endocrine Centre, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Laura Brown
- Macleod Diabetes and Endocrine Centre, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Bridget Knight
- National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Lidia Romanczuk
- National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Sean Aiken
- Biocomposites Ltd., Keele Science Park, Keele, Staffordshire, ST5 5NL, UK
| | - Craig Delury
- Biocomposites Ltd., Keele Science Park, Keele, Staffordshire, ST5 5NL, UK
| | - Stephen Michell
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
20
|
Abstract
One of the most prevalent complications of diabetes mellitus are diabetic foot ulcers (DFU). Diabetic foot ulcers represent a complex condition placing individuals at-risk for major lower extremity amputations and are an independent predictor of patient mortality. DFU heal poorly when standard of care therapy is applied. In fact, wound healing occurs only approximately 30% within 12 weeks and only 45% regardless of time when standard of care is utilized. Similarly, diabetic foot infections occur in half of all DFU and conventional microbiologic cultures can take several days to process before a result is known. DFU represent a significant challenge in this regard because DFU often demonstrate polymicrobial growth, become resistant to preferred antibiotic therapy, and do not inform providers about long-term prognosis. In addition, conventional culture yields may be affected by the timing of antibiotic administration and collection of tissue for analysis. This may lead to suboptimal antibiotic administration or debilitating amputations. The microbiome of DFU is a new frontier to better understand the interactions between host organisms and pathogenic ones. Newer molecular techniques are readily available to assist in analyzing the constituency of the microbiome of DFU. These emerging techniques have already been used to study the microbiome of DFU and have clinical implications that may alter standard of care practice in the near future. Here emerging molecular techniques that can provide clinicians with rapid DFU-related-information and help prognosticate outcomes in this vulnerable patient population are presented.
Collapse
Affiliation(s)
- Brian M. Schmidt
- Michigan Medicine, Department of
Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, Ann Arbor,
MI, USA
- Brian M. Schmidt, DPM, Assistant Professor,
Department of Internal Medicine, Division of Metabolism, Endocrinology, and
Diabetes, University of Michigan Medical School, 24 Frank Lloyd Wright Drive,
Lobby C, Ann Arbor, MI 48106, USA.
| |
Collapse
|
21
|
Nor Azlan AYH, Katas H, Mohamad Zin N, Fauzi MB. Dual Action Gels Containing DsiRNA Loaded Gold Nanoparticles: Augmenting Diabetic Wound Healing by Promoting Angiogenesis and Inhibiting Infection. Eur J Pharm Biopharm 2021; 169:78-90. [PMID: 34582971 DOI: 10.1016/j.ejpb.2021.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/08/2021] [Accepted: 09/20/2021] [Indexed: 11/19/2022]
Abstract
Hyperglycemia induces the prostaglandin transporter (PGT) gene overexpression, leading to poor vascularization and wound healing. Dicer substrate small interfering RNA (DsiRNA) and gold nanoparticles (AuNPs) co-loaded into PF127 gel was developed to overcome the disturbance and infections. The AuNPs were biosynthesized using cold and hot water extracts of Lignosus rhinocerotis (abbreviated CLRE and HLRE, respectively). The wound healing efficacy of a PF127 gel containing DsiRNA-AuNPs-CLRE and -HLRE (assigned as F2 and F3, respectively) was evaluated in a diabetes-induced Wistar rat model. The F2 (DC) and F3 (DH) treated groups revealed a faster wound closure (92.67 ± 3.4% and 85.1 ± 7.3%, respectively) than the positive control (commercial gel, DTI)(74.9 ± 13.3%). DH and DC groups presented an increased blood vessel density, along with decreased inflammatory cells. In comparison to positive control, higher prostaglandin E2 (PGE2) (495 ±79 and 50 ±121 pg/mL, for DC and DH group, respectively), vascular endothelial growth factor (VEGF) (49 ±15 and 38 ±3 pg/mL, for DC and DH group, respectively) and VEGF-A levels were detected in both groups (DC and DH), indicating the effectiveness of DsiRNA in enhancing PGE2 production and vascularization. On evaluating microbiomes adhered to the wound areas, Gram-positive bacteria Staphylococcus and Corynebacterium, as well as Gram-negative Pseudomonas, Rodentibacter, and Acinetobacter, were found to be sensitive to the gel. Collectively, the gel was confirmed as a promising dressing for diabetic wound therapy, warranting further studies for clinical use.
Collapse
Affiliation(s)
- Ahmad Yasser Hamdi Nor Azlan
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia; Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 3, Jalan Greentown, 30450 Ipoh, Perak, Malaysia
| | - Haliza Katas
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| | - Noraziah Mohamad Zin
- Center For Diagnostic, Therapeutic and Investigative Studies, Faculty of Helath Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Cheras, Malaysia
| |
Collapse
|
22
|
Cheong JZA, Johnson CJ, Wan H, Liu A, Kernien JF, Gibson ALF, Nett JE, Kalan LR. Priority effects dictate community structure and alter virulence of fungal-bacterial biofilms. THE ISME JOURNAL 2021; 15:2012-2027. [PMID: 33558690 PMCID: PMC8245565 DOI: 10.1038/s41396-021-00901-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Polymicrobial biofilms are a hallmark of chronic wound infection. The forces governing assembly and maturation of these microbial ecosystems are largely unexplored but the consequences on host response and clinical outcome can be significant. In the context of wound healing, formation of a biofilm and a stable microbial community structure is associated with impaired tissue repair resulting in a non-healing chronic wound. These types of wounds can persist for years simmering below the threshold of classically defined clinical infection (which includes heat, pain, redness, and swelling) and cycling through phases of recurrent infection. In the most severe outcome, amputation of lower extremities may occur if spreading infection ensues. Here we take an ecological perspective to study priority effects and competitive exclusion on overall biofilm community structure in a three-membered community comprised of strains of Staphylococcus aureus, Citrobacter freundii, and Candida albicans derived from a chronic wound. We show that both priority effects and inter-bacterial competition for binding to C. albicans biofilms significantly shape community structure on both abiotic and biotic substrates, such as ex vivo human skin wounds. We further show attachment of C. freundii to C. albicans is mediated by mannose-binding lectins. Co-cultures of C. freundii and C. albicans trigger the yeast-to-hyphae transition, resulting in a significant increase in neutrophil death and inflammation compared to either species alone. Collectively, the results presented here facilitate our understanding of fungal-bacterial interactions and their effects on host-microbe interactions, pathogenesis, and ultimately, wound healing.
Collapse
Affiliation(s)
- J Z Alex Cheong
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Chad J Johnson
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Hanxiao Wan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Aiping Liu
- Department of Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - John F Kernien
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Angela L F Gibson
- Department of Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Jeniel E Nett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
23
|
Schmidt BM, Erb-Downward J, Ranjan P, Dickson R. Metagenomics to Identify Pathogens in Diabetic Foot Ulcers and the Potential Impact for Clinical Care. Curr Diab Rep 2021; 21:26. [PMID: 34152440 DOI: 10.1007/s11892-021-01391-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW Diabetes mellitus may affect every third adult American by 2050, and about one-third will develop a diabetic foot ulcer (DFU) during their lifetime. The current standard of care results in healing of less than 50% of all DFUs. Many individuals with DFU develop limb-threatening infection which place them at risk for additional morbidity and mortality. We review research associated with culture-independent next-generation sequencing techniques pertaining to diabetic foot ulcers and their potential for clinical application. RECENT FINDINGS Diabetic foot ulcers are a growing problem and clinicians are limited by their reliance on conventional culture. Metagenomic sequencing technology provides an unparalleled viewpoint of the polymicrobial constituency of DFU. The microbiome techniques used to study the microbial constituency of DFU may offer insight to improve care for these patients, but without standardized approaches in research based on real-world clinical practices, a significant knowledge gap will remain.
Collapse
Affiliation(s)
- Brian M Schmidt
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
- University of Michigan Medical School, 24 Frank Lloyd Wright Drive Lobby C, Ann Arbor, MI, 48109, USA.
| | - John Erb-Downward
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Piyush Ranjan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Robert Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Integrative Research in Critical Care, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Kunimitsu M, Kataoka Y, Nakagami G, Weller CD, Sanada H. Factors related to the composition and diversity of wound microbiota investigated using culture-independent molecular methods: a scoping review. Drug Discov Ther 2021; 15:78-86. [PMID: 33952764 DOI: 10.5582/ddt.2021.01036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
All open wounds are often colonized by commensal microbes as a loss of skin can provide a ready portal of entry for microorganisms. Although the wound microbiota is known to be associated with wound infection and with delayed healing, the factors related to the formations of wound microbiota contributing to such poor clinical outcomes are not clear and have not led to effective infection prevention interventions. This review aimed to scope the factors related to the composition and diversity of wound microbiota that have been investigated using culture-independent molecular methods. Original articles on wound microbiota published from January 1986 to February 2020 were included in this review. Thirty-one articles met the inclusion criteria and were grouped according to wound types: chronic, acute, and animal model wounds. The factors identified were categorized according to patient characteristics, wound characteristics, treatment, and sampling. Although some studies reported the effect size of the factors, the values were small. No studies elucidated the mechanism of wound microbiota formation. The results of this scoping review highlight that the factors associated with the diversity of wound microbiota are poorly understood and that further studies are needed.
Collapse
Affiliation(s)
- Mao Kunimitsu
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yukie Kataoka
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Carolina D Weller
- School of Nursing and Midwifery, Monash University, Melbourne, Australia
| | - Hiromi Sanada
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Abstract
Human skin functions as a physical, chemical, and immune barrier against the external environment while also providing a protective niche for its resident microbiota, known as the skin microbiome. Cooperation between the microbiota, host skin cells, and the immune system is responsible for maintenance of skin health, and a disruption to this delicate balance, such as by pathogen invasion or a breach in the skin barrier, may lead to impaired skin function. Human skin functions as a physical, chemical, and immune barrier against the external environment while also providing a protective niche for its resident microbiota, known as the skin microbiome. Cooperation between the microbiota, host skin cells, and the immune system is responsible for maintenance of skin health, and a disruption to this delicate balance, such as by pathogen invasion or a breach in the skin barrier, may lead to impaired skin function. In this minireview, we describe the role of the microbiome in microbe, host, and immune interactions under distinct skin states, including homeostasis, tissue repair, and wound infection. Furthermore, we highlight the growing number of diverse microbial metabolites and products that have been identified to mediate these interactions, particularly those involved in host-microbe communication and defensive symbiosis. We also address the contextual pathogenicity exhibited by many skin commensals and provide insight into future directions in the skin microbiome field.
Collapse
|
26
|
Polk C, Sampson MM, Roshdy D, Davidson LE. Skin and Soft Tissue Infections in Patients with Diabetes Mellitus. Infect Dis Clin North Am 2020; 35:183-197. [PMID: 33303332 DOI: 10.1016/j.idc.2020.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skin and soft tissue infections are common in diabetics. Diabetic foot infection usually results from disruption of the skin barrier, trauma, pressure, or ischemic wounds. These wounds may become secondarily infected or lead to development of adjacent soft tissue or deeper bone infection. Clinical assessment and diagnosis of these conditions using a multidisciplinary management approach, including careful attention to antibiotic selection, lead to the best outcomes in patient care.
Collapse
Affiliation(s)
- Christopher Polk
- Division of Infectious Diseases, Department of Medicine, Atrium Health, Charlotte, NC, USA
| | - Mindy M Sampson
- Division of Infectious Diseases, Department of Medicine, Atrium Health, Charlotte, NC, USA
| | - Danya Roshdy
- Antimicrobial Support Network, Division of Pharmacy, Atrium Health, 1000 Blythe Boulevard, Charlotte, NC 28203, USA
| | - Lisa E Davidson
- Division of Infectious Diseases, Department of Medicine, Atrium Health, 1540 Garden Terrace, Suite 211, Charlotte, NC 28203, USA.
| |
Collapse
|
27
|
Liu C, Ponsero AJ, Armstrong DG, Lipsky BA, Hurwitz BL. The dynamic wound microbiome. BMC Med 2020; 18:358. [PMID: 33228639 PMCID: PMC7685579 DOI: 10.1186/s12916-020-01820-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFUs) account for the majority of all limb amputations and hospitalizations due to diabetes complications. With 30 million cases of diabetes in the USA and 500,000 new diagnoses each year, DFUs are a growing health problem. Diabetes patients with limb amputations have high postoperative mortality, a high rate of secondary amputation, prolonged inpatient hospital stays, and a high incidence of re-hospitalization. DFU-associated amputations constitute a significant burden on healthcare resources that cost more than 10 billion dollars per year. Currently, there is no way to identify wounds that will heal versus those that will become severely infected and require amputation. MAIN BODY Accurate identification of causative pathogens in diabetic foot ulcers is a critical component of effective treatment. Compared to traditional culture-based methods, advanced sequencing technologies provide more comprehensive and unbiased profiling on wound microbiome with a higher taxonomic resolution, as well as functional annotation such as virulence and antibiotic resistance. In this review, we summarize the latest developments in defining the microbiology of diabetic foot ulcers that have been unveiled by sequencing technologies and discuss both the future promises and current limitations of these approaches. In particular, we highlight the temporal patterns and system dynamics in the diabetic foot microbiome monitored and measured during wound progression and medical intervention, and explore the feasibility of molecular diagnostics in clinics. CONCLUSION Molecular tests conducted during weekly office visits to clean and examine DFUs would allow clinicians to offer personalized treatment and antibiotic therapy. Personalized wound management could reduce healthcare costs, improve quality of life for patients, and recoup lost productivity that is important not only to the patient, but also to healthcare payers and providers. These efforts could also improve antibiotic stewardship and control the rise of "superbugs" vital to global health.
Collapse
Affiliation(s)
- Chunan Liu
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Alise J Ponsero
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - David G Armstrong
- Department of Surgery, Southwestern Academic Limb Salvage Alliance (SALSA), Keck School of Medicine of University of Southern California, Los Angeles, USA
| | - Benjamin A Lipsky
- Department of Medicine, University of Washington, Seattle, WA, USA.,Division of Medical Sciences, Green Templeton College, University of Oxford, Oxford, UK
| | - Bonnie L Hurwitz
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA. .,BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
28
|
Buch PJ, Chai Y, Goluch ED. Bacterial chatter in chronic wound infections. Wound Repair Regen 2020; 29:106-116. [PMID: 33047459 DOI: 10.1111/wrr.12867] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/07/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022]
Abstract
One of the hallmark characteristics of chronic diabetic wounds is the presence of biofilm-forming bacteria. Bacteria encapsulated in a biofilm may coexist as a polymicrobial community and communicate with each other through a phenomenon termed quorum sensing (QS). Here, we describe the QS circuits of bacterial species commonly found in chronic diabetic wounds. QS relies on diffusion of signaling molecules and the local concentration changes of these molecules that bacteria experience in wounds. These biochemical signaling pathways play a role not only in biofilm formation and virulence but also in wound healing. They are, therefore, key to understanding the distinctive nature of these infections. While several in vivo and in vitro models exist to study QS in wounds, there has been limited progress in understanding the interplay between QS molecules and host factors that contribute to wound healing. Lastly, we examine the potential of targeting QS for both diagnosis and therapeutic intervention purposes.
Collapse
Affiliation(s)
- Pranali J Buch
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Edgar D Goluch
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA.,Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Biofilms in Diabetic Foot Ulcers: Significance and Clinical Relevance. Microorganisms 2020; 8:microorganisms8101580. [PMID: 33066595 PMCID: PMC7602394 DOI: 10.3390/microorganisms8101580] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022] Open
Abstract
Foot infections are the main disabling complication in patients with diabetes mellitus. These infections can lead to lower-limb amputation, increasing mortality and decreasing the quality of life. Biofilm formation is an important pathophysiology step in diabetic foot ulcers (DFU)-it plays a main role in the disease progression and chronicity of the lesion, the development of antibiotic resistance, and makes wound healing difficult to treat. The main problem is the difficulty in distinguishing between infection and colonization in DFU. The bacteria present in DFU are organized into functionally equivalent pathogroups that allow for close interactions between the bacteria within the biofilm. Consequently, some bacterial species that alone would be considered non-pathogenic, or incapable of maintaining a chronic infection, could co-aggregate symbiotically in a pathogenic biofilm and act synergistically to cause a chronic infection. In this review, we discuss current knowledge on biofilm formation, its presence in DFU, how the diabetic environment affects biofilm formation and its regulation, and the clinical implications.
Collapse
|
30
|
Tipton CD, Wolcott RD, Sanford NE, Miller C, Pathak G, Silzer TK, Sun J, Fleming D, Rumbaugh KP, Little TD, Phillips N, Phillips CD. Patient genetics is linked to chronic wound microbiome composition and healing. PLoS Pathog 2020; 16:e1008511. [PMID: 32555671 PMCID: PMC7302439 DOI: 10.1371/journal.ppat.1008511] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
The clinical importance of microbiomes to the chronicity of wounds is widely appreciated, yet little is understood about patient-specific processes shaping wound microbiome composition. Here, a two-cohort microbiome-genome wide association study is presented through which patient genomic loci associated with chronic wound microbiome diversity were identified. Further investigation revealed that alternative TLN2 and ZNF521 genotypes explained significant inter-patient variation in relative abundance of two key pathogens, Pseudomonas aeruginosa and Staphylococcus epidermidis. Wound diversity was lowest in Pseudomonas aeruginosa infected wounds, and decreasing wound diversity had a significant negative linear relationship with healing rate. In addition to microbiome characteristics, age, diabetic status, and genetic ancestry all significantly influenced healing. Using structural equation modeling to identify common variance among SNPs, six loci were sufficient to explain 53% of variation in wound microbiome diversity, which was a 10% increase over traditional multiple regression. Focusing on TLN2, genotype at rs8031916 explained expression differences of alternative transcripts that differ in inclusion of important focal adhesion binding domains. Such differences are hypothesized to relate to wound microbiomes and healing through effects on bacterial exploitation of focal adhesions and/or cellular migration. Related, other associated loci were functionally enriched, often with roles in cytoskeletal dynamics. This study, being the first to identify patient genetic determinants for wound microbiomes and healing, implicates genetic variation determining cellular adhesion phenotypes as important drivers of infection type. The identification of predictive biomarkers for chronic wound microbiomes may serve as risk factors and guide treatment by informing patient-specific tendencies of infection. Chronic, or non-healing, wounds represent a costly burden to patients, and bacterial infection of wounds is an important driver of chronicity. A variety of bacterial species often occur in chronic wounds, but it is unknown why certain species are observed in some wound infections and not others. In this study, genetic variation of wound clinic patients was compared to the bacteria observed in their infected wounds. Through these comparisons, genetic variation in the TLN2 and ZNF521 genes was found to be associated with both the number of bacteria observed in wounds and the abundance of common pathogens (primarily Pseudomonas aeruginosa and Staphylococcus epidermidis). Moreover, Pseudomonas infected wounds were found to have fewer species present and wounds with fewer species were slower to heal. Furthermore, patient genes associated with microbiomes commonly encode proteins known to be important for cellular structures important to healing and to which bacteria directly interact. Experimental investigation of one such gene, TLN2, identified genotype-dependent differences in the expression of functionally different versions of TLN2 that is hypothesized to shape differences in cellular adhesion structures. Finally, a new statistical approach is presented in which patient biomarkers are used to predict the number of species observed during infection. Overall, our results describe how patient genetic variation influence the types of bacteria likely to infect an individual as well as influence healing.
Collapse
Affiliation(s)
- Craig D Tipton
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America.,RTL Genomics, Lubbock, Texas, United States of America
| | - Randall D Wolcott
- Southwest Regional Wound Care Center, Lubbock, Texas, United States of America
| | - Nicholas E Sanford
- Southwest Regional Wound Care Center, Lubbock, Texas, United States of America
| | - Clint Miller
- Southwest Regional Wound Care Center, Lubbock, Texas, United States of America
| | - Gita Pathak
- Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Talisa K Silzer
- Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Jie Sun
- Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Derek Fleming
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America.,Burn Center of Excellence, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Todd D Little
- Department of Educational Psychology, Texas Tech University, Lubbock, Texas, United States of America.,Optentia Research Focus Area, North West University, Vanderbijlpark, South Africa
| | - Nicole Phillips
- Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Caleb D Phillips
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America.,Natural Science Research Laboratory, Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
31
|
Min KR, Galvis A, Baquerizo Nole KL, Sinha R, Clarke J, Kirsner RS, Ajdic D. Association between baseline abundance of Peptoniphilus, a Gram-positive anaerobic coccus, and wound healing outcomes of DFUs. PLoS One 2020; 15:e0227006. [PMID: 31978071 PMCID: PMC6980618 DOI: 10.1371/journal.pone.0227006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/09/2019] [Indexed: 12/31/2022] Open
Abstract
Diabetic foot ulcers (DFUs) lead to nearly 100,000 lower limb amputations annually in the United States. DFUs are colonized by complex microbial communities, and infection is one of the most common reasons for diabetes-related hospitalizations and amputations. In this study, we examined how DFU microbiomes respond to initial sharp debridement and offloading and how the initial composition associates with 4 week healing outcomes. We employed 16S rRNA next generation sequencing to perform microbial profiling on 50 samples collected from 10 patients with vascularized neuropathic DFUs. Debrided wound samples were obtained at initial visit and after one week from two DFU locations, wound bed and wound edge. Samples of the foot skin outside of the wounds were also collected for comparison. We showed that DFU wound beds are colonized by a greater number of distinct bacterial phylotypes compared to the wound edge or skin outside the wound. However, no significant microbiome diversity changes occurred at the wound sites after one week of standard care. Finally, increased initial abundance of Gram-positive anaerobic cocci (GPAC), especially Peptoniphilus (p < 0.05; n = 5 subjects), was associated with impaired healing; thus, GPAC's abundance could be a predictor of the wound-healing outcome.
Collapse
Affiliation(s)
- Kyung R. Min
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Adriana Galvis
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Katherine L. Baquerizo Nole
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Rohita Sinha
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jennifer Clarke
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Dragana Ajdic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|