1
|
Xie M, Fei D, Guang Y, Xue F, Xu J, Zhou Y. Role of Metabolomics and Metagenomics in the Replacement of the High-Concentrate Diet with a High-Fiber Diet for Growing Yushan Pigs. Animals (Basel) 2024; 14:2893. [PMID: 39409842 PMCID: PMC11475692 DOI: 10.3390/ani14192893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
The objective of this study was to investigate the regulatory effects of a high-fiber content feed on the productive performance, meat quality, and fat acid composition. A total of 18 120-day-old Yushan pigs with similar initial body weight were randomly allotted into high-concentrate diet (high energy, HE) and high-fiber diet (low energy, LE) treatments for the determination of regulatory effects on productive performance, meat quality, and fatty acid content. Further, blood metabolomic, gut microbiota, and liver energy-related gene expression measurements were used to investigate the underlying mechanisms. Results showed that the LE treatment significantly increased ADFI while decreasing carcass weight, fat percentage, and IMF. Metabolomic results showed that the high-fiber treatment significantly down-regulated metabolites that participated in lipid metabolism such as cyclic ADP-ribose and hippuric acid, while up-regulated metabolites were mainly enriched in nitrogen metabolism such as DL-arginine and propionylcarnitine (p < 0.05). Microbial results showed relative abundances of Lactobacillus and Bifidobacterium are significantly proliferated in the high-fiber feeding treatments (p < 0.05). Transcriptomic results showed that genes mainly enriched into the lipid metabolism are significantly up-regulated under the high-fiber dietary treatment (p < 0.05). Conclusion: higher dietary fiber significantly reduced dietary energy provision, effectively decreased the backfat and abdominal fat content of Yushan pigs through proliferating intestinal fiber-degradable bacteria, and up-regulating the hepatic lipolysis-related gene expression.
Collapse
Affiliation(s)
- Min Xie
- Key Laboratory of Agro-Product Quality and Safety of Jiangxi Province, Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (M.X.); (D.F.); (Y.G.)
| | - Dan Fei
- Key Laboratory of Agro-Product Quality and Safety of Jiangxi Province, Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (M.X.); (D.F.); (Y.G.)
| | - Yelan Guang
- Key Laboratory of Agro-Product Quality and Safety of Jiangxi Province, Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (M.X.); (D.F.); (Y.G.)
| | - Fuguang Xue
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Jun Xu
- Key Laboratory of Agro-Product Quality and Safety of Jiangxi Province, Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (M.X.); (D.F.); (Y.G.)
- Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yaomin Zhou
- Key Laboratory of Agro-Product Quality and Safety of Jiangxi Province, Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (M.X.); (D.F.); (Y.G.)
| |
Collapse
|
2
|
Kim GH, Kim JW, Kim J, Chae JP, Lee JS, Yoon SS. Genetic Analysis and Characterization of a Bacteriophage ØCJ19 Active against Enterotoxigenic Escherichia coli. Food Sci Anim Resour 2020; 40:746-757. [PMID: 32968727 PMCID: PMC7492175 DOI: 10.5851/kosfa.2020.e49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 01/21/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the major pathogenic
E. coli that causes diarrhea and edema in post-weaning
piglets. In this study, we describe the morphology and characteristics of
ØCJ19, a bacteriophage that infects ETEC, and performed genetic analysis.
Phage ØCJ19 belongs to the family Myoviridae. One-step
growth curve showed a latent phase of 5 min and burst size of approximately 20
phage particles/infected cell. Phage infectivity was stable for 2 h between
4°C and 55°C, and the phage was stable between pH 3 and 11.
Genetic analysis revealed that phage ØCJ19 has a total of 49,567 bases
and 79 open reading frames (ORFs). The full genomic sequence of phage
ØCJ19 showed the most similarity to an Escherichia
phage, vB_EcoS_ESCO41. There were no genes encoding lysogeny,
toxins, virulence factors, or antibiotic resistance in this phage, suggesting
that this phage can be used safely as a biological agent to control ETEC.
Comparative genomic analysis in terms of the tail fiber proteins could provide
genetic insight into host recognition and the relationship with other
coliphages. These results showed the possibility to improve food safety by
applying phage ØCJ19 to foods of animal origin contaminated with ETEC and
suggests that it could be the basis for establishing a safety management system
in the animal husbandry.
Collapse
Affiliation(s)
- Gyeong-Hwuii Kim
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea
| | - Jae-Won Kim
- Institute of Biotechnology, CJ CheilJedang, Suwon 16495, Korea
| | - Jaegon Kim
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea
| | - Jong Pyo Chae
- Institute of Biotechnology, CJ CheilJedang, Suwon 16495, Korea
| | - Jin-Sun Lee
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea
| | - Sung-Sik Yoon
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea
| |
Collapse
|
3
|
Rawat C, Sahoo NR, Wagh SS, Kumar P, Kumar S, Sonwane A, Qureshi S, Kumar A, Panigrahi M. Association of ACK1, TFRC polymorphism with diarrhoeagenic E. coli adhesion patterns and their jejunal expression profile in Indian Ghurrah pigs. 3 Biotech 2019; 9:422. [PMID: 31696027 DOI: 10.1007/s13205-019-1956-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022] Open
Abstract
A total of 9 SNPs located in TFRC and ACK1 genes of SSC13q41 genomic region were examined for their association with the adhesion pattern of native Indian pigs using local isolate of diarrhoeagenic E. coli. Phenotypic evaluation of adhesion pattern of 150 pigs revealed 116 animals positive for adhesion, whereas 34 animals had non-adhesive phenotype. Among the adhesive animals, 6, 87 and 23 pigs were strongly adhesive, weakly adhesive and adhesive, respectively. PCR-RFLP study revealed 8 polymorphic SNPs with low to moderate PIC ranging from 7.39 to 37.25% and low to high heterozygosities (8-70%). The loci g.291 C > T, rs81218930 C > T, rs318751568 C > T of TFRC and g.93222 C > A g.94600 C > T of ACK1 showed significant departure from HWE. The genotypic frequencies of the SNPs as well as the haplotypes did not differ significantly (P > 0.05) across the adhesion patterns except one SNP (ACK1-g.107371 A > C). Among the g.107371 A > C genotypes observed, CA was associated with non-adhesive phenotype. Furthermore, TFRC mRNA expression levels were found to be significantly (P < 0.05) different among various adhesive phenotypes, whereas that of ACK1 was significantly (P < 0.05) different between non-adhesive and adhesive groups. The significant association of SNP (ACK1-g.107371 A > C), which was also previously reported to influence ETECF4 mediated diarrhoea susceptibility, implicates its wider application in genetic control of piglet diarrhoea. Furthermore, the up-regulation of TFRC gene expression in adhesive group supports its proposed role in activation of immune cells against E. coli and intracellular iron transport.
Collapse
|
4
|
Resistance to ETEC F4/F18-mediated piglet diarrhoea: opening the gene black box. Trop Anim Health Prod 2019; 51:1307-1320. [PMID: 31127494 DOI: 10.1007/s11250-019-01934-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/15/2019] [Indexed: 01/08/2023]
Abstract
Diarrhoea, a significant problem in pig rearing industry affecting pre- and post-weaning piglets is caused by enterotoxigenic Escherichia coli (ETEC). The ETEC are classified as per the fimbriae types which are responsible for bacterial attachment with enterocytes and release of toxins causing diarrhoea. However, genetic difference exists for susceptibility to ETEC infection in piglets. The different phenotypes found in pigs determine their (pigs') susceptibility or resistance towards fimbrial subtypes/variants (F4ab, F4ac, F4ad and F18). Specific receptors are present on intestinal epithelium for attachment of these fimbriae, which do not express to same level in all animals. This differential expression is genetically determined and thus their genetic causes (may be putative candidate gene or mutations) render some animals resistant or susceptible to one or more fimbrial subtypes. Genetic linkage studies have revealed the mapping location of the receptor loci for the two most frequent variants F4ab and F4ac to SSC13q41 (i.e. q arm of 13th chromosome of Sus scrofa). Some SNPs have been identified in mucin gene family, transferring receptor gene, fucosyltransferase 1 gene and swine leucocyte antigen locus that are proposed to be linked mutations for resistance/susceptibility towards ETEC diarrhoea. However, owing to the variety of fimbrial types and subtypes, it would be difficult to identify a single causative mutation and the candidate loci may involve more number of genes/regions. In this review, we focus on the genetic mutations in genes involved in imparting resistance/susceptibility to F4 or F18 ETEC diarrhoea and possibilities to use them as marker for selection against susceptible animals.
Collapse
|
5
|
Xu Z, Sun H, Zhang Z, Zhao Q, Olasege BS, Li Q, Yue Y, Ma P, Zhang X, Wang Q, Pan Y. Assessment of Autozygosity Derived From Runs of Homozygosity in Jinhua Pigs Disclosed by Sequencing Data. Front Genet 2019; 10:274. [PMID: 30984245 PMCID: PMC6448551 DOI: 10.3389/fgene.2019.00274] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
Abstract
Jinhua pig, a well-known Chinese indigenous breed, has evolved as a pig breed with excellent meat quality, greater disease resistance, and higher prolificacy. The reduction in the number of Jinhua pigs over the past years has raised concerns about inbreeding. Runs of homozygosity (ROH) along the genome have been applied to quantify individual autozygosity to improve the understanding of inbreeding depression and identify genes associated with traits of interest. Here, we investigated the occurrence and distribution of ROH using next-generation sequencing data to characterize autozygosity in 202 Jinhua pigs, as well as to identify the genomic regions with high ROH frequencies within individuals. The average inbreeding coefficient, based on ROH longer than 1 Mb, was 0.168 ± 0.052. In total, 18,690 ROH were identified in all individuals, among which shorter segments (1-5 Mb) predominated. Individual ROH autosome coverage ranged from 5.32 to 29.14% in the Jinhua population. On average, approximately 16.8% of the whole genome was covered by ROH segments, with the lowest coverage on SSC11 and the highest coverage on SSC17. A total of 824 SNPs (about 0.5%) and 11 ROH island regions were identified (occurring in over 45% of the samples). Genes associated with reproduction (HOXA3, HOXA7, HOXA10, and HOXA11), meat quality (MYOD1, LPIN3, and CTNNBL1), appetite (NUCB2) and disease resistance traits (MUC4, MUC13, MUC20, LMLN, ITGB5, HEG1, SLC12A8, and MYLK) were identified in ROH islands. Moreover, several quantitative trait loci for ham weight and ham fat thickness were detected. Genes in ROH islands suggested, at least partially, a selection for economic traits and environmental adaptation, and should be subject of future investigation. These findings contribute to the understanding of the effects of environmental and artificial selection in shaping the distribution of functional variants in the pig genome.
Collapse
Affiliation(s)
- Zhong Xu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Sun
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingbo Zhao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Babatunde Shittu Olasege
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiumeng Li
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Yue
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peipei Ma
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangzhe Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qishan Wang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchun Pan
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
6
|
Diseases of the Alimentary Tract. Vet Med (Auckl) 2017. [PMCID: PMC7167529 DOI: 10.1016/b978-0-7020-5246-0.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Sinha R, Sahoo NR, Kumar P, Qureshi S, Kumar A, Ravikumar GVPPS, Bhushan B. Comparative jejunal expression of MUC 13 in Indian native pigs differentially adhesive to diarrhoeagenic E. coli. JOURNAL OF APPLIED ANIMAL RESEARCH 2016. [DOI: 10.1080/09712119.2016.1267009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rebeka Sinha
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Nihar Ranjan Sahoo
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Pushpendra Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Salauddin Qureshi
- Standardization Division, Indian Veterinary Research Institute, Bareilly, India
| | - Amit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | | | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
8
|
Dubreuil JD, Isaacson RE, Schifferli DM. Animal Enterotoxigenic Escherichia coli. EcoSal Plus 2016; 7:10.1128/ecosalplus.ESP-0006-2016. [PMID: 27735786 PMCID: PMC5123703 DOI: 10.1128/ecosalplus.esp-0006-2016] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors: adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17, and F18 fimbriae. Once established in the animal small intestine, ETEC produce enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes: heat-labile toxins that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This review describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics, and the identification of potential new targets by genomics are presented in the context of animal ETEC.
Collapse
Affiliation(s)
- J Daniel Dubreuil
- Faculté de Médecine Vétérinaire, Université de Montréal, Québec J2S 7C6, Canada
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - Dieter M Schifferli
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
9
|
Nguyen UV, Coddens A, Melkebeek V, Devriendt B, Goetstouwers T, Poucke MV, Peelman L, Cox E. High susceptibility prevalence for F4 + and F18 +Escherichia coli in Flemish pigs. Vet Microbiol 2016; 202:52-57. [PMID: 26822901 DOI: 10.1016/j.vetmic.2016.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/14/2015] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
F4 and/or F18 enterotoxigenic Escherichia coli (F4+/F18+ ETEC) are responsible for diarrhea while F18+ verotoxigenic E. coli (F18+ VTEC) cause edema disease in pigs. Both infections can result in severe economic losses, which are mainly the result of the medication, growth retardation and mortality. The susceptibility of piglets to these pathogens is determined by the presence of F4 and F18 receptors (F4R and F18R). Understanding the composition of the susceptibility phenotypes of pigs is useful for animal health and breeding management. This study aimed to determine the prevalence of the F4 ETEC susceptibility phenotypes and F18+E. coli susceptibility among Flemish pig breeds by using the in vitro villous adhesion assay. In this study, seven F4 ETEC susceptibility phenotypes were found, namely A (F4abR+,acR+,adR+; 59.16%), B (F4abR+,acR+,adR-; 6.28%), C (F4abR+,acR-,adR+; 2.62%), D (F4abR-,acR-,adR+; 6.28%), E (F4abR-,acR-,adR-; 24.08%), F (F4abR+,acR-,adR-; 1.05%) and G (F4abR-,acR+,adR-; 0.52%). F4ab and F4ac E. coli showed a stronger degree of adhesion to the intestinal villi (53.40% and 52.88% strong adhesion, respectively), compared to F4ad E. coli (43.46% strong adhesion). Furthermore, the correlation between F4ac and F4ab adhesion was higher (r=0.78) than between F4ac and F4ad adhesion (r=0.41) and between F4ab and F4ad adhesion (r=0.57). For F18+E. coli susceptibility, seven out of 82 pigs were F18R negative (8.54%), but only two of these seven pigs (2.44%) were also negative for F4R. As such, the chance to identify a pig that is positive for a F4 ETEC variant or F18+E. coli is 97.56%. Therefore, significant economic losses will arise due to F4+ and/or F18+E. coli infections in the Flemish pig population due to the high susceptibility prevalence.
Collapse
Affiliation(s)
- Ut V Nguyen
- Laboratory of Immunology, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Annelies Coddens
- Laboratory of Immunology, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Vesna Melkebeek
- Laboratory of Immunology, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Tiphanie Goetstouwers
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium.
| | - Mario Van Poucke
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium.
| | - Luc Peelman
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium.
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| |
Collapse
|
10
|
Goetstouwers T, Van Poucke M, Coddens A, Nguyen VU, Melkebeek V, Deforce D, Cox E, Peelman LJ. Variation in 12 porcine genes involved in the carbohydrate moiety assembly of glycosphingolipids does not account for differential binding of F4 Escherichia coli and their fimbriae. BMC Genet 2014; 15:103. [PMID: 25277275 PMCID: PMC4189734 DOI: 10.1186/s12863-014-0103-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 09/18/2014] [Indexed: 11/10/2022] Open
Abstract
Background Glycosphingolipids (GSLs) are important membrane components composed of a carbohydrate structure attached to a hydrophobic ceramide. They can serve as specific membrane receptors for microbes and microbial products, such as F4 Escherichia coli (F4 ETEC) and isolated F4 fimbriae. The aim of this study was to investigate the hypothesis that variation in genes involved in the assembly of the F4 binding carbohydrate moiety of GSLs (i.e. ARSA, B4GALT6, GAL3ST1, GALC, GBA, GLA, GLB1, GLB1L, NEU1, NEU2, UGCG, UGT8) could account for differential binding of F4 ETEC and their fimbriae. Results RT-PCR could not reveal any differential expression of the 12 genes in the jejunum of F4 receptor-positive (F4R+) and F4 receptor-negative (F4R-) pigs. Sequencing the complete open reading frame of the 11 expressed genes (NEU2 was not expressed) identified 72 mutations. Although some of them might have a structural effect, none of them could be associated with a F4R phenotype. Conclusion We conclude that no regulatory or structural variation in any of the investigated genes is responsible for the genetic susceptibility of pigs towards F4 ETEC. Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0103-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tiphanie Goetstouwers
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820, Merelbeke, Belgium.
| | - Mario Van Poucke
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820, Merelbeke, Belgium.
| | - Annelies Coddens
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Van Ut Nguyen
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Vesna Melkebeek
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium.
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Luc J Peelman
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820, Merelbeke, Belgium.
| |
Collapse
|
11
|
Goetstouwers T, Van Poucke M, Coppieters W, Nguyen VU, Melkebeek V, Coddens A, Van Steendam K, Deforce D, Cox E, Peelman LJ. Refined candidate region for F4ab/ac enterotoxigenic Escherichia coli susceptibility situated proximal to MUC13 in pigs. PLoS One 2014; 9:e105013. [PMID: 25137053 PMCID: PMC4138166 DOI: 10.1371/journal.pone.0105013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/15/2014] [Indexed: 11/19/2022] Open
Abstract
F4 enterotoxigenic Escherichia coli (F4 ETEC) are an important cause of diarrhea in neonatal and newly-weaned pigs. Based on the predicted differential O-glycosylation patterns of the 2 MUC13 variants (MUC13A and MUC13B) in F4ac ETEC susceptible and F4ac ETEC resistant pigs, the MUC13 gene was recently proposed as the causal gene for F4ac ETEC susceptibility. Because the absence of MUC13 on Western blot from brush border membrane vesicles of F4ab/acR+ pigs and the absence of F4ac attachment to immunoprecipitated MUC13 could not support this hypothesis, a new GWAS study was performed using 52 non-adhesive and 68 strong adhesive pigs for F4ab/ac ETEC originating from 5 Belgian farms. A refined candidate region (chr13: 144,810,100–144,993,222) for F4ab/ac ETEC susceptibility was identified with MUC13 adjacent to the distal part of the region. This candidate region lacks annotated genes and contains a sequence gap based on the sequence of the porcine GenomeBuild 10.2. We hypothesize that a porcine orphan gene or trans-acting element present in the identified candidate region has an effect on the glycosylation of F4 binding proteins and therefore determines the F4ab/ac ETEC susceptibility in pigs.
Collapse
Affiliation(s)
- Tiphanie Goetstouwers
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Mario Van Poucke
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Wouter Coppieters
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège (B34), Liège (Sart Tilman), Belgium
| | - Van Ut Nguyen
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Vesna Melkebeek
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Annelies Coddens
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katleen Van Steendam
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc J. Peelman
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Belgium
- * E-mail:
| |
Collapse
|
12
|
Gao Y, Rong Y, Wang Y, Xiong H, Huang X, Han F, Feng J, Wang Y. Expression pattern of porcine antimicrobial peptide PR-39 and its induction by enterotoxigenic Escherichia coli (ETEC) F4ac. Vet Immunol Immunopathol 2014; 160:260-5. [PMID: 24929581 DOI: 10.1016/j.vetimm.2014.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 04/27/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
Abstract
PR-39 is a gene-encoded, proline-arginine-rich porcine antimicrobial peptide with multiple biological functions. In the current study, the tissue-specific mRNA expression of PR-39 was investigated in Chinese Jinhua pigs, and the effect of enterotoxigenic Escherichia coli (ETEC) expressing F4ac (K88ac) fimbriae challenge on the mRNA expression of PR-39 in various tissues was compared between Jinhua and Landrace pigs. The three most stable expressed housekeeping genes were validated before evaluating PR-39 expression. PR-39 mRNA was predominantly expressed in the bone marrow compared with the spleen, thymus, MLN, liver and ileum. The ETEC F4ac challenge could up-regulate PR-39 mRNA expression in both Jinhua and Landrace pigs, but the changes were different between the two breeds. Jinhua pigs responded more strongly to ETEC F4ac challenge than did Landrace pigs, because the interaction between the breed and challenge significantly impact PR-39 mRNA in the thymus, liver and ileum. The PR-39 mRNA expression levels of challenged Jinhua pigs were significantly higher in the spleen, thymus, liver, ileum and MLN compared with challenged Landrace pigs. These differences in the mRNA expression of PR-39 could be a result of genetic differences in the resistance to ETEC F4ac infection between the two breeds, but this speculation requires further investigation.
Collapse
Affiliation(s)
- Yanhua Gao
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yili Rong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Youming Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Haitao Xiong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Xia Huang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Feifei Han
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Jie Feng
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yizhen Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, PR China.
| |
Collapse
|
13
|
Inheritance of porcine receptors for enterotoxigenic Escherichia coli with fimbriae F4ad and their relation to other F4 receptors. Animal 2014; 8:859-66. [PMID: 24725922 DOI: 10.1017/s1751731114000779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Enteric Escherichia coli infections are a highly relevant cause of disease and death in young pigs. Breeding genetically resistant pigs is an economical and sustainable method of prevention. Resistant pigs are protected against colonization of the intestine through the absence of receptors for the bacterial fimbriae, which mediate adhesion to the intestinal surface. The present work aimed at elucidation of the mode of inheritance of the F4ad receptor which according to former investigations appeared quite confusing. Intestines of 489 pigs of an experimental herd were examined by a microscopic adhesion test modified in such a manner that four small intestinal sites instead of one were tested for adhesion of the fimbrial variant F4ad. Segregation analysis revealed that the mixed inheritance model explained our data best. The heritability of the F4ad phenotype was estimated to be 0.7±0.1. There are no relations to the strong receptors for variants F4ab and F4ac. Targeted matings allowed the discrimination between two F4ad receptors, that is, a fully adhesive receptor (F4adRFA) expressed on all enterocytes and at all small intestinal sites, and a partially adhesive receptor (F4adRPA) variably expressed at different sites and often leading to partial bacterial adhesion. In pigs with both F4ad receptors, the F4adRPA receptor is masked by the F4adRFA. The hypothesis that F4adRFA must be encoded by at least two complementary or epistatic dominant genes is supported by the Hardy-Weinberg equilibrium statistics. The F4adRPA receptor is inherited as a monogenetic dominant trait. A comparable partially adhesive receptor for variant F4ab (F4abRPA) was also observed but the limited data did not allow a prediction of the mode of inheritance. Pigs were therefore classified into one of eight receptor phenotypes: A1 (F4abRFA/F4acR+/F4adRFA); A2 (F4abRFA/F4acR+/F4adRPA); B (F4abRFA/F4acR+/F4adR-); C1 (F4abRPA/F4acR-/F4adRFA); C2 (F4abRPA/F4acR-/F4adRPA); D1 (F4abR-/F4acR-/F4adRFA); D2 (F4abR-/F4acR-/F4adRPA); E (F4abR-/F4acR-/F4adR-).
Collapse
|
14
|
Schroyen M, Stinckens A, Verhelst R, Niewold T, Buys N. The search for the gene mutations underlying enterotoxigenic Escherichia coli F4ab/ac susceptibility in pigs: a review. Vet Res 2012; 43:70. [PMID: 23061722 PMCID: PMC3499147 DOI: 10.1186/1297-9716-43-70] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 09/27/2012] [Indexed: 11/16/2022] Open
Abstract
Diarrhoea due to enterotoxigenic Escherichia coli with fimbriae F4 (ETEC-F4) is an important problem in neonatal and just weaned piglets and hence for the pig farming industry. There is substantial evidence for a genetic basis for susceptibility to ETEC-F4 since not all piglets suffer from diarrhoea after an ETEC-F4 infection. It is assumed that the wild boar was originally ETEC-F4 resistant and that susceptibility towards ETEC arose after domestication. There are different phenotypes in the pig determined by which of the three existing F4 variants (F4ab, F4ac or F4ad) they are susceptible or resistant for. This suggests that several F4 receptors exist, expressed individually or in combination with each other on the brush border of the piglet’s small intestine. As such, the mucin-type glycoproteins (IMTGP) are described as F4ab/ac receptors, while the intestinal neutral glycospingolipid (IGLad) is proposed as an F4ad receptor. GP74 is a putative F4ab receptor. However, the specific genes that encode for the susceptibility are not yet known. In the past decades, linkage analyses revealed that the loci encoding for the receptor(s) for the two most frequent variants F4ab and F4ac were mapped to the 13th chromosome of the pig (Sus scrofa 13, SSC13). After fine mapping, the region of interest was mapped between two microsatellite markers, Sw207 and S0075, and interesting candidate genes surfaced. Numerous SNP analyses and a few expression studies on the three MUC-genes (MUC4, MUC13 and MUC20) and the transferrin receptor gene (TFRC) as well as on some other positional candidate genes have been performed in order to find the causative mutation for the ETEC-F4ab/ac receptor(s). However, until today, the exact mutation causing susceptibility to ETEC-F4 remains unknown.
Collapse
Affiliation(s)
- Martine Schroyen
- Department Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001, Heverlee, Belgium.
| | | | | | | | | |
Collapse
|
15
|
Ren J, Yan X, Ai H, Zhang Z, Huang X, Ouyang J, Yang M, Yang H, Han P, Zeng W, Chen Y, Guo Y, Xiao S, Ding N, Huang L. Susceptibility towards enterotoxigenic Escherichia coli F4ac diarrhea is governed by the MUC13 gene in pigs. PLoS One 2012; 7:e44573. [PMID: 22984528 PMCID: PMC3440394 DOI: 10.1371/journal.pone.0044573] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 08/03/2012] [Indexed: 11/18/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) F4ac is a major determinant of diarrhea and mortality in neonatal and young pigs. Susceptibility to ETEC F4ac is governed by the intestinal receptor specific for the bacterium and is inherited as a monogenic dominant trait. To identify the receptor gene (F4acR), we first mapped the locus to a 7.8-cM region on pig chromosome 13 using a genome scan with 194 microsatellite markers. A further scan with high density markers on chromosome 13 refined the locus to a 5.7-cM interval. Recombination breakpoint analysis defined the locus within a 2.3-Mb region. Further genome-wide mapping using 39,720 informative SNPs revealed that the most significant markers were proximal to the MUC13 gene in the 2.3-Mb region. Association studies in a collection of diverse outbred populations strongly supported that MUC13 is the most likely responsible gene. We characterized the porcine MUC13 gene that encodes two transcripts: MUC13A and MUC13B. Both transcripts have the characteristic PTS regions of mucins that are enriched in distinct tandem repeats. MUC13B is predicated to be heavily O-glycosylated, forming the binding site of the bacterium; while MUC13A does not have the O-glycosylation binding site. Concordantly, 127 independent pigs homozygous for MUC13A across diverse breeds are all resistant to ETEC F4ac, and all 718 susceptible animals from the broad breed panel carry at least one MUC13B allele. Altogether, we conclude that susceptibility towards ETEC F4ac is governed by the MUC13 gene in pigs. The finding has an immediate translation into breeding practice, as it allows us to establish an efficient and accurate diagnostic test for selecting against susceptible animals. Moreover, the finding improves our understanding of mucins that play crucial roles in defense against enteric pathogens. It revealed, for the first time, the direct interaction between MUC13 and enteric bacteria, which is poorly understood in mammals.
Collapse
Affiliation(s)
- Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
- * E-mail: (LH); (JR)
| | - Xueming Yan
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, People’s Republic of China
| | - Huashui Ai
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Zhiyan Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Xiang Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Jing Ouyang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Ming Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Huaigu Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Pengfei Han
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Weihong Zeng
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Yijie Chen
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Yuanmei Guo
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Shijun Xiao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Nengshui Ding
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
- * E-mail: (LH); (JR)
| |
Collapse
|
16
|
Ouyang J, Zeng W, Ren J, Yan X, Zhang Z, Yang M, Han P, Huang X, Ai H, Huang L. Association of B3GNT5 polymorphisms with susceptibility to ETEC F4ab/ac in the white Duroc × Erhualian intercross and 15 outbred pig breeds. Biochem Genet 2011; 50:19-33. [PMID: 21956797 DOI: 10.1007/s10528-011-9454-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 05/12/2011] [Indexed: 11/29/2022]
Abstract
The B3GNT5 gene is a candidate for the F4ab/ac receptor conferring susceptibility to enterotoxigenic Escherichia coli (ETEC) F4ab/ac in pigs. In this study, we screened mutations in the complete coding region of the porcine B3GNT5 gene and identified four SNPs in the 3' untranslated regions. We genotyped the four SNPs across a large-scale White Duroc × Chinese Erhualian F2 resource population (total F2 = 755) and 292 purebred piglets representing 15 Chinese and Western breeds. We found that the g.1476G→A locus and haplotypes [A;T;G;T] and [A;G;G;T] had significant association with susceptibility to ETEC F4ac in the resource population. None of the B3GNT5 polymorphisms and haplotypes was associated with susceptibility to ETEC F4ab/ac in outbred piglets. This result, together with other reports, supports the conclusion that B3GNT5 is not the responsible gene encoding the ETEC F4ab/ac receptors.
Collapse
Affiliation(s)
- Jing Ouyang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
de la Fé Rodríguez PY, Coddens A, Del Fava E, Cortiñas Abrahantes J, Shkedy Z, Maroto Martin LO, Cruz Muñoz E, Duchateau L, Cox E, Goddeeris BM. High prevalence of F4+ and F18+ Escherichia coli in Cuban piggeries as determined by serological survey. Trop Anim Health Prod 2011; 43:937-46. [PMID: 21234677 DOI: 10.1007/s11250-011-9786-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2011] [Indexed: 11/28/2022]
Abstract
Little information is available on the prevalence of swine enteropathogens in Cuba where diarrheic diseases are responsible for 31% and 37% of the total mortality during the neonatal and postweaning periods. F4+ and F18+ enterotoxigenic Escherichia coli and F18+ verotoxigenic E. coli induce diarrhea and edematous disease in pigs, but their distribution has never been thoroughly studied in the Cuban swine population. Therefore, the present study estimated the prevalence of F4- and F18-specific antibodies in sera of 1,044 6-month-old gilts distributed in 34 piggeries spread over the Cuban territory. For the data analysis, which included the optical density of individual samples tested by ELISA, random-effects models and a mixture model in R (package "mixAK"; Komárek, Computational Statistics and Data Analysis 53:3932-3947, 2009) were fitted. Low, moderate, and high levels of F4-specific antibodies were found in 67.6%, 26.8%, and 5.6% of the gilts, while 66.4% and 33.6% of gilts showed low and high levels of F18-specific antibodies. Hereby, we show that F4+ and F18+ E. coli are highly prevalent as potential enteropathogens in Cuban piggeries.
Collapse
|
18
|
Yan X, Huang X, Ren J, Ouyang J, Yang M, Han P, Huang L. Adhesion phenotypes of pigs of Chinese and Western breeds and a White Duroc-Erhualian crossbreed with regard to susceptibility to enterotoxigenicEscherichia coliwith fimbrial adhesins K99, 987P, and F41. Am J Vet Res 2011; 72:80-4. [DOI: 10.2460/ajvr.72.1.80] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Ji H, Ren J, Yan X, Huang X, Zhang B, Zhang Z, Huang L. The porcine MUC20 gene: molecular characterization and its association with susceptibility to enterotoxigenic Escherichia coli F4ab/ac. Mol Biol Rep 2010; 38:1593-601. [DOI: 10.1007/s11033-010-0268-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 09/02/2010] [Indexed: 01/30/2023]
|