1
|
Moradkasani S, Maurin M, Farrokhi AS, Esmaeili S. Development, Strategies, and Challenges for Tularemia Vaccine. Curr Microbiol 2024; 81:126. [PMID: 38564047 DOI: 10.1007/s00284-024-03658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Francisella tularensis is a facultative intracellular bacterial pathogen that affects both humans and animals. It was developed into a biological warfare weapon as a result. In this article, the current status of tularemia vaccine development is presented. A live-attenuated vaccine that was designed over 50 years ago using the less virulent F. tularensis subspecies holarctica is the only prophylactic currently available, but it has not been approved for use in humans or animals. Other promising live, killed, and subunit vaccine candidates have recently been developed and tested in animal models. This study will investigate some possible vaccines and the challenges they face during development.
Collapse
Affiliation(s)
- Safoura Moradkasani
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Max Maurin
- CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, Universite Grenoble Alpes, 38000, Grenoble, France
| | | | - Saber Esmaeili
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran.
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Ramaswamy S, Rasheed M, Morelli CF, Calvio C, Sutton BJ, Pastore A. The structure of PghL hydrolase bound to its substrate poly-γ-glutamate. FEBS J 2018; 285:4575-4589. [PMID: 30387270 PMCID: PMC6506827 DOI: 10.1111/febs.14688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/05/2018] [Accepted: 10/30/2018] [Indexed: 11/28/2022]
Abstract
The identification of new strategies to fight bacterial infections in view of the spread of multiple resistance to antibiotics has become mandatory. It has been demonstrated that several bacteria develop poly‐γ‐glutamic acid (γ‐PGA) capsules as a protection from external insults and/or host defence systems. Among the pathogens that shield themselves in these capsules are Bacillus anthracis, Francisella tularensis and several Staphylococcus strains. These are important pathogens with a profound influence on human health. The recently characterised γ‐PGA hydrolases, which can dismantle the γ‐PGA‐capsules, are an attractive new direction that can offer real hope for the development of alternatives to antibiotics, particularly in cases of multidrug resistant bacteria. We have characterised in detail the cleaving mechanism and stereospecificity of the enzyme PghL (previously named YndL) from Bacillus subtilis encoded by a gene of phagic origin and dramatically efficient in degrading the long polymeric chains of γ‐PGA. We used X‐ray crystallography to solve the three‐dimensional structures of the enzyme in its zinc‐free, zinc‐bound and complexed forms. The protein crystallised with a γ‐PGA hexapeptide substrate and thus reveals details of the interaction which could explain the stereospecificity observed and give hints on the catalytic mechanism of this class of hydrolytic enzymes.
Collapse
Affiliation(s)
- Sneha Ramaswamy
- The Randall Centre for Cell & Molecular Biophysics, King's College London, UK
| | - Masooma Rasheed
- The Wohl Institute, King's College London, UK.,UK Dementia Research Institute at King's College London, UK
| | | | - Cinzia Calvio
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Brian J Sutton
- The Randall Centre for Cell & Molecular Biophysics, King's College London, UK
| | - Annalisa Pastore
- The Wohl Institute, King's College London, UK.,UK Dementia Research Institute at King's College London, UK.,Department of Molecular Medicine, University of Pavia, Italy
| |
Collapse
|
3
|
Jia Q, Horwitz MA. Live Attenuated Tularemia Vaccines for Protection Against Respiratory Challenge With Virulent F. tularensis subsp. tularensis. Front Cell Infect Microbiol 2018; 8:154. [PMID: 29868510 PMCID: PMC5963219 DOI: 10.3389/fcimb.2018.00154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Francisella tularensis is the causative agent of tularemia and a Tier I bioterrorism agent. In the 1900s, several vaccines were developed against tularemia including the killed "Foshay" vaccine, subunit vaccines comprising F. tularensis protein(s) or lipoproteins(s) in an adjuvant formulation, and the F. tularensis Live Vaccine Strain (LVS); none were licensed in the U.S.A. or European Union. The LVS vaccine retains toxicity in humans and animals-especially mice-but has demonstrated efficacy in humans, and thus serves as the current gold standard for vaccine efficacy studies. The U.S.A. 2001 anthrax bioterrorism attack spawned renewed interest in vaccines against potential biowarfare agents including F. tularensis. Since live attenuated-but not killed or subunit-vaccines have shown promising efficacy and since vaccine efficacy against respiratory challenge with less virulent subspecies holarctica or F. novicida, or against non-respiratory challenge with virulent subsp. tularensis (Type A) does not reliably predict vaccine efficacy against respiratory challenge with virulent subsp. tularensis, the route of transmission and species of greatest concern in a bioterrorist attack, in this review, we focus on live attenuated tularemia vaccine candidates tested against respiratory challenge with virulent Type A strains, including homologous vaccines derived from mutants of subsp. holarctica, F. novicida, and subsp. tularensis, and heterologous vaccines developed using viral or bacterial vectors to express F. tularensis immunoprotective antigens. We compare the virulence and efficacy of these vaccine candidates with that of LVS and discuss factors that can significantly impact the development and evaluation of live attenuated tularemia vaccines. Several vaccines meet what we would consider the minimum criteria for vaccines to go forward into clinical development-safety greater than LVS and efficacy at least as great as LVS, and of these, several meet the higher standard of having efficacy ≥LVS in the demanding mouse model of tularemia. These latter include LVS with deletions in purMCD, sodBFt , capB or wzy; LVS ΔcapB that also overexpresses Type VI Secretion System (T6SS) proteins; FSC200 with a deletion in clpB; the single deletional purMCD mutant of F. tularensis SCHU S4, and a heterologous prime-boost vaccine comprising LVS ΔcapB and Listeria monocytogenes expressing T6SS proteins.
Collapse
Affiliation(s)
- Qingmei Jia
- Division of Infectious Diseases, Department of Medicine, 37-121 Center for Health Sciences, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Marcus A. Horwitz
- Division of Infectious Diseases, Department of Medicine, 37-121 Center for Health Sciences, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
4
|
Tian D, Uda A, Park ES, Hotta A, Fujita O, Yamada A, Hirayama K, Hotta K, Koyama Y, Azaki M, Morikawa S. Evaluation of Francisella tularensis ΔpdpC as a candidate live attenuated vaccine against respiratory challenge by a virulent SCHU P9 strain of Francisella tularensis in a C57BL/6J mouse model. Microbiol Immunol 2018; 62:24-33. [PMID: 29171073 DOI: 10.1111/1348-0421.12555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
Francisella tularensis, which causes tularemia, is an intracellular gram-negative bacterium. F. tularensis has received significant attention in recent decades because of its history as a biological weapon. Thus, development of novel vaccines against tularemia has been an important goal. The attenuated F. tularensis strain ΔpdpC, in which the pathogenicity determinant protein C gene (pdpC) has been disrupted by TargeTron mutagenesis, was investigated as a potential vaccine candidate for tularemia in the present study. C57BL/6J mice immunized s.c. with 1 × 106 CFUs of ΔpdpC were challenged intranasally with 100× the median lethal dose (LD50 ) of a virulent SCHU P9 strain 21 days post immunization. Protection against this challenge was achieved in 38% of immunized C57BL/6J mice administered 100 LD50 of this strain. Conversely, all unimmunized mice succumbed to death 6 days post challenge. Survival rates were significantly higher in vaccinated than in unimmunized mice. In addition, ΔpdpC was passaged serially in mice to confirm its stable attenuation. Low bacterial loads persisted in mouse spleens during the first to tenth passages. No statistically significant changes in the number of CFUs were observed during in vivo passage of ΔpdpC. The inserted intron sequences for disrupting pdpC were completely maintained even after the tenth passage in mice. Considering the stable attenuation and intron sequences, it is suggested that ΔpdpC is a promising tularemia vaccine candidate.
Collapse
Affiliation(s)
- Deyu Tian
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.,Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Eun-Sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Akitoyo Hotta
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Osamu Fujita
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Akio Yamada
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Kazuhiro Hirayama
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Kozue Hotta
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Yuuki Koyama
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.,Major Track of Applied Veterinary Science, Doctoral Course of the United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Mika Azaki
- Department of Integrated Science in Physics and Biology College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya, Tokyo 156-8550, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.,Major Track of Applied Veterinary Science, Doctoral Course of the United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
5
|
Abstract
Francisella tularensis (Ft) is a gram-negative intercellular pathogen and category A biothreat agent. However, despite 15 years of strong government investment and intense research focused on the development of a US Food and Drug Administration-approved vaccine against Ft, the primary goal remains elusive. This article reviews research efforts focused on developing an Ft vaccine, as well as a number of important factors, some only recently recognized as such, which can significantly impact the development and evaluation of Ft vaccine efficacy. Finally, an assessment is provided as to whether a US Food and Drug Administration-approved Ft vaccine is likely to be forthcoming and the potential means by which this might be achieved.
Collapse
Affiliation(s)
- Raju Sunagar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Sudeep Kumar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Brian J Franz
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Edmund J Gosselin
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| |
Collapse
|
6
|
Rowe HM, Huntley JF. From the Outside-In: The Francisella tularensis Envelope and Virulence. Front Cell Infect Microbiol 2015; 5:94. [PMID: 26779445 PMCID: PMC4688374 DOI: 10.3389/fcimb.2015.00094] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
Francisella tularensis is a highly-infectious bacterium that causes the rapid, and often lethal disease, tularemia. Many studies have been performed to identify and characterize the virulence factors that F. tularensis uses to infect a wide variety of hosts and host cell types, evade immune defenses, and induce severe disease and death. This review focuses on the virulence factors that are present in the F. tularensis envelope, including capsule, LPS, outer membrane, periplasm, inner membrane, secretion systems, and various molecules in each of aforementioned sub-compartments. Whereas, no single bacterial molecule or molecular complex single-handedly controls F. tularensis virulence, we review here how diverse bacterial systems work in conjunction to subvert the immune system, attach to and invade host cells, alter phagosome/lysosome maturation pathways, replicate in host cells without being detected, inhibit apoptosis, and induce host cell death for bacterial release and infection of adjacent cells. Given that the F. tularensis envelope is the outermost layer of the bacterium, we highlight herein how many of these molecules directly interact with the host to promote infection and disease. These and future envelope studies are important to advance our collective understanding of F. tularensis virulence mechanisms and offer targets for future vaccine development efforts.
Collapse
Affiliation(s)
- Hannah M Rowe
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| | - Jason F Huntley
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| |
Collapse
|
7
|
Martin-Garcia JM, Hansen DT, Zook J, Loskutov AV, Robida MD, Craciunescu FM, Sykes KF, Wachter RM, Fromme P, Allen JP. Purification and biophysical characterization of the CapA membrane protein FTT0807 from Francisella tularensis. Biochemistry 2014; 53:1958-70. [PMID: 24593131 PMCID: PMC3985703 DOI: 10.1021/bi401644s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
The capA gene (FTT0807)
from Francisella
tularensis subsp. tularensis SCHU S4 encodes a 44.4
kDa integral membrane protein composed of 403 amino acid residues
that is part of an apparent operon that encodes at least two other
membrane proteins, CapB, and CapC, which together play a critical
role in the virulence and pathogenesis of this bacterium. The capA gene was overexpressed in Escherichia
coli as a C-terminal His6-tagged fusion
with a folding reporter green fluorescent protein (frGFP). Purification
procedures using several detergents were developed for the fluorescing
and membrane-bound product, yielding approximately 30 mg of pure protein
per liter of bacterial culture. Dynamic light scattering indicated
that CapA-frGFP was highly monodisperse, with a size that was dependent
upon both the concentration and choice of detergent. Circular dichroism
showed that CapA-frGFP was stable over the range of 3–9 for
the pH, with approximately half of the protein having well-defined
α-helical and β-sheet secondary structure. The addition
of either sodium chloride or calcium chloride at concentrations producing
ionic strengths above 0.1 M resulted in a small increase of the α-helical
content and a corresponding decrease in the random-coil content. Secondary-structure
predictions on the basis of the analysis of the sequence indicate
that the CapA membrane protein has two transmembrane helices with
a substantial hydrophilic domain. The hydrophilic domain is predicted
to contain a long disordered region of 50–60 residues, suggesting
that the increase of α-helical content at high ionic strength
could arise because of electrostatic interactions involving the disordered
region. CapA is shown to be an inner-membrane protein and is predicted
to play a key cellular role in the assembly of polysaccharides.
Collapse
Affiliation(s)
- Jose M Martin-Garcia
- Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Live attenuated mutants of Francisella tularensis protect rabbits against aerosol challenge with a virulent type A strain. Infect Immun 2014; 82:2098-105. [PMID: 24614653 DOI: 10.1128/iai.01498-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Francisella tularensis, a Gram-negative bacterium, is the causative agent of tularemia. No licensed vaccine is currently available for protection against tularemia, although an attenuated strain, dubbed the live vaccine strain (LVS), is given to at-risk laboratory personnel as an investigational new drug (IND). In an effort to develop a vaccine that offers better protection, recombinant attenuated derivatives of a virulent type A strain, SCHU S4, were evaluated in New Zealand White (NZW) rabbits. Rabbits vaccinated via scarification with the three attenuated derivatives (SCHU S4 ΔguaBA, ΔaroD, and ΔfipB strains) or with LVS developed a mild fever, but no weight loss was detected. Twenty-one days after vaccination, all vaccinated rabbits were seropositive for IgG to F. tularensis lipopolysaccharide (LPS). Thirty days after vaccination, all rabbits were challenged with aerosolized SCHU S4 at doses ranging from 50 to 500 50% lethal doses (LD50). All rabbits developed fevers and weight loss after challenge, but the severity was greater for mock-vaccinated rabbits. The ΔguaBA and ΔaroD SCHU S4 derivatives provided partial protection against death (27 to 36%) and a prolonged time to death compared to results for the mock-vaccinated group. In contrast, LVS and the ΔfipB strain both prolonged the time to death, but there were no survivors from the challenge. This is the first demonstration of vaccine efficacy against aerosol challenge with virulent type A F. tularensis in a species other than a rodent since the original work with LVS in the 1960s. The ΔguaBA and ΔaroD SCHU S4 derivatives warrant further evaluation and consideration as potential vaccines for tularemia and for identification of immunological correlates of protection.
Collapse
|
9
|
Abstract
Our understanding of the virulence and pathogenesis of Francisella spp. has significantly advanced in recent years, including a new understanding that this organism can form biofilms. What is known so far about Francisella spp. biofilms is summarized here and future research questions are suggested. The molecular basis of biofilm production has begun to be studied, especially the role of extracellular carbohydrates and capsule, quorum sensing and two-component signaling systems. Further work has explored the contribution of amoebae, pili, outer-membrane vesicles, chitinases, and small molecules such as c-di-GMP to Francisella spp. biofilm formation. A role for Francisella spp. biofilm in feeding mosquito larvae has been suggested. As no strong role in virulence has been found yet, Francisella spp. biofilm formation is most likely a key mechanism for environmental survival and persistence. The significance and importance of Francisella spp.’s biofilm phenotype as a critical aspect of its microbial physiology is being developed. Areas for further studies include the potential role of Francisella spp. biofilms in the infection of mammalian hosts and virulence regulation.
Collapse
Affiliation(s)
- Monique L van Hoek
- School of Systems Biology and National Center for Biodefense and Infectious Diseases; George Mason University; Manassas, VA USA
| |
Collapse
|
10
|
Live attenuated tularemia vaccines: recent developments and future goals. Vaccine 2013; 31:3485-91. [PMID: 23764535 DOI: 10.1016/j.vaccine.2013.05.096] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/20/2013] [Accepted: 05/24/2013] [Indexed: 12/24/2022]
Abstract
In the aftermath of the 2001 anthrax attacks in the U.S., numerous efforts were made to increase the level of preparedness against a biological attack both in the US and worldwide. As a result, there has been an increase in research interest in the development of vaccines and other countermeasures against a number of agents with the potential to be used as biological weapons. One such agent, Francisella tularensis, has been the subject of a surge in the level of research being performed, leading to a substantial increase in knowledge of the pathogenic mechanisms of the organism and the induced immune responses. This information has facilitated the development of multiple new Francisella vaccine candidates. Herein we review the latest live attenuated F. tularensis vaccine efforts. Historically, live attenuated vaccines have demonstrated the greatest degree of success in protection against tularemia and the greatest promise in recent efforts to develop of a fully protective vaccine. This review summarizes recent live attenuated Francisella vaccine candidates and the lessons learned from those studies, with the goal of collating known characteristics associated with successful attenuation, immunogenicity, and protection.
Collapse
|
11
|
Ramond E, Gesbert G, Barel M, Charbit A. Proteins involved in Francisella tularensis survival and replication inside macrophages. Future Microbiol 2013; 7:1255-68. [PMID: 23075445 DOI: 10.2217/fmb.12.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Francisella tularensis, the etiological agent of tularemia, is a member of the γ-proteobacteria class of Gram-negative bacteria. This highly virulent bacterium can infect a large range of mammalian species and has been recognized as a human pathogen for a century. F. tularensis is able to survive in vitro in a variety of cell types. In vivo, the bacterium replicates mainly in infected macrophages, using the cytoplasmic compartment as a replicative niche. To successfully adapt to this stressful environment, F. tularensis must simultaneously: produce and regulate the expression of a series of dedicated virulence factors; adapt its metabolic needs to the nutritional context of the host cytosol; and control the innate immune cytosolic surveillance pathways to avoid premature cell death. We will focus here on the secretion or release of bacterial proteins in the host, as well as on the envelope proteins, involved in bacterial survival inside macrophages.
Collapse
Affiliation(s)
- Elodie Ramond
- Faculté de Médecine Necker, Université Paris Descartes, 156 Rue de Vaugirard, 75730 Paris, Cedex 15, France
| | | | | | | |
Collapse
|
12
|
Subversion of host recognition and defense systems by Francisella spp. Microbiol Mol Biol Rev 2012; 76:383-404. [PMID: 22688817 DOI: 10.1128/mmbr.05027-11] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Francisella tularensis is a gram-negative intracellular pathogen and the causative agent of the disease tularemia. Inhalation of as few as 10 bacteria is sufficient to cause severe disease, making F. tularensis one of the most highly virulent bacterial pathogens. The initial stage of infection is characterized by the "silent" replication of bacteria in the absence of a significant inflammatory response. Francisella achieves this difficult task using several strategies: (i) strong integrity of the bacterial surface to resist host killing mechanisms and the release of inflammatory bacterial components (pathogen-associated molecular patterns [PAMPs]), (ii) modification of PAMPs to prevent activation of inflammatory pathways, and (iii) active modulation of the host response by escaping the phagosome and directly suppressing inflammatory pathways. We review the specific mechanisms by which Francisella achieves these goals to subvert host defenses and promote pathogenesis, highlighting as-yet-unanswered questions and important areas for future study.
Collapse
|
13
|
Ireland PM, LeButt H, Thomas RM, Oyston PCF. A Francisella tularensis SCHU S4 mutant deficient in γ-glutamyltransferase activity induces protective immunity: characterization of an attenuated vaccine candidate. MICROBIOLOGY-SGM 2011; 157:3172-3179. [PMID: 21852349 DOI: 10.1099/mic.0.052902-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Francisella tularensis is an intracellular pathogen which causes tularaemia. There is no licensed vaccine currently available for prophylaxis. The γ-glutamyl transpeptidase (GGT) encoded by the ggt gene has been shown to be important for the intracellular survival of F. tularensis. In this study we have constructed a ggt deletion mutant in the highly virulent F. tularensis strain SCHU S4. Characterization of the mutant strain confirmed the function of ggt, and confirmed the role of GGT in cysteine acquisition. The mutant strain was highly attenuated both in vitro and in vivo using murine models of infection. Moreover, we have demonstrated that the attenuated mutant is able to induce protective immunity against an F. tularensis SCHU S4 challenge, and thus may be a candidate for the development of an attenuated vaccine.
Collapse
Affiliation(s)
- Philip M Ireland
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Helen LeButt
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Rebecca M Thomas
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Petra C F Oyston
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
14
|
Su J, Asare R, Yang J, Nair MKM, Mazurkiewicz JE, Abu-Kwaik Y, Zhang JR. The capBCA Locus is Required for Intracellular Growth of Francisella tularensis LVS. Front Microbiol 2011; 2:83. [PMID: 21747799 PMCID: PMC3128946 DOI: 10.3389/fmicb.2011.00083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/07/2011] [Indexed: 12/18/2022] Open
Abstract
Francisella tularensis is the causative agent of tularemia and a category A bioterrorism agent. The molecular basis for the extreme virulence of F. tularensis remains unclear. Our recent study found that capBCA, three neighboring genes, are necessary for the infection of F. tularensis live vaccine strain (LVS) in a respiratory infection mouse model. We here show that the capBCA genes are necessary for in vivo growth of F. tularensis LVS in the lungs, spleens, and livers of BALB/c mice. Unmarked deletion of capBCA in type A strain Schu S4 resulted in significant attenuation in virulence although the level of the attenuation in Schu S4 was much less profound than in LVS. We further demonstrated that CapB protein is produced at a low level under the in vitro culture conditions, and capB alone is necessary for in vivo growth of F. tularensis LVS in the lungs of BALB/c mice. Finally, deletional mutations in capB alone or capBCA significantly impaired intracellular growth of F. tularensis LVS in cultured macrophages, thus suggesting that the capBCA genes are necessary for intracellular adaptation of F. tularensis. The requirement of this gene locus in intracellular adaption at least in part explains the significant attenuation of F. tularensis capBCA mutants in virulence.
Collapse
Affiliation(s)
- Jingliang Su
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Rexford Asare
- Department of Microbiology and Immunology, College of MedicineLouisville, KY, USA
| | - Jun Yang
- Center for Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, USA
| | | | | | - Yousef Abu-Kwaik
- Department of Microbiology and Immunology, College of MedicineLouisville, KY, USA
| | - Jing-Ren Zhang
- Center for Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, USA
- Center for Infectious Disease Research, School of Medicine, Tsinghua UniversityBeijing, China
| |
Collapse
|
15
|
Bandara AB, Champion AE, Wang X, Berg G, Apicella MA, McLendon M, Azadi P, Snyder DS, Inzana TJ. Isolation and mutagenesis of a capsule-like complex (CLC) from Francisella tularensis, and contribution of the CLC to F. tularensis virulence in mice. PLoS One 2011; 6:e19003. [PMID: 21544194 PMCID: PMC3081320 DOI: 10.1371/journal.pone.0019003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 03/24/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Francisella tularensis is a category-A select agent and is responsible for tularemia in humans and animals. The surface components of F. tularensis that contribute to virulence are not well characterized. An electron-dense capsule has been postulated to be present around F. tularensis based primarily on electron microscopy, but this specific antigen has not been isolated or characterized. METHODS AND FINDINGS A capsule-like complex (CLC) was effectively extracted from the cell surface of an F. tularensis live vaccine strain (LVS) lacking O-antigen with 0.5% phenol after 10 passages in defined medium broth and growth on defined medium agar for 5 days at 32°C in 7% CO₂. The large molecular size CLC was extracted by enzyme digestion, ethanol precipitation, and ultracentrifugation, and consisted of glucose, galactose, mannose, and Proteinase K-resistant protein. Quantitative reverse transcriptase PCR showed that expression of genes in a putative polysaccharide locus in the LVS genome (FTL_1432 through FTL_1421) was upregulated when CLC expression was enhanced. Open reading frames FTL_1423 and FLT_1422, which have homology to genes encoding for glycosyl transferases, were deleted by allelic exchange, and the resulting mutant after passage in broth (LVSΔ1423/1422_P10) lacked most or all of the CLC, as determined by electron microscopy, and CLC isolation and analysis. Complementation of LVSΔ1423/1422 and subsequent passage in broth restored CLC expression. LVSΔ1423/1422_P10 was attenuated in BALB/c mice inoculated intranasally (IN) and intraperitoneally with greater than 80 times and 270 times the LVS LD₅₀, respectively. Following immunization, mice challenged IN with over 700 times the LD₅₀ of LVS remained healthy and asymptomatic. CONCLUSIONS Our results indicated that the CLC may be a glycoprotein, FTL_1422 and -FTL_1423 were involved in CLC biosynthesis, the CLC contributed to the virulence of F. tularensis LVS, and a CLC-deficient mutant of LVS can protect mice against challenge with the parent strain.
Collapse
Affiliation(s)
- Aloka B. Bandara
- Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Anna E. Champion
- Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Xiaoshan Wang
- Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Gretchen Berg
- Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Michael A. Apicella
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Molly McLendon
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - D. Scott Snyder
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Thomas J. Inzana
- Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Zogaj X, Klose KE. Genetic manipulation of francisella tularensis. Front Microbiol 2011; 1:142. [PMID: 21607086 PMCID: PMC3095392 DOI: 10.3389/fmicb.2010.00142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 12/14/2010] [Indexed: 12/20/2022] Open
Abstract
Francisella tularensis is a facultative intracellular pathogen that causes the disease tularemia. F. tularensis subsp. tularensis causes the most severe disease in humans and has been classified as a Category A select agent and potential bioweapon. There is currently no vaccine approved for human use, making genetic manipulation of this organism critical to unraveling the genetic basis of pathogenesis and developing countermeasures against tularemia. The development of genetic techniques applicable to F. tularensis have lagged behind those routinely used for other bacteria, primarily due to lack of research and the restricted nature of the biocontainment required for studying this pathogen. However, in recent years, genetic techniques, such as transposon mutagenesis and targeted gene disruption, have been developed, that have had a dramatic impact on our understanding of the genetic basis of F. tularensis virulence. In this review, we describe some of the methods developed for genetic manipulation of F. tularensis.
Collapse
Affiliation(s)
- Xhavit Zogaj
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio San Antonio, TX, USA
| | | |
Collapse
|