1
|
Saliha U, Tivendale KA, Noormohammadi AH, Shil P, Daly J, Omotainse OS, Arshad HU, Marenda MS. Nebulization as a more efficient method than atomizer for experimental reproduction of avian colibacillosis in young chickens. Avian Pathol 2022; 51:590-600. [PMID: 35950683 DOI: 10.1080/03079457.2022.2112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
ABSTRACTInfection and immunity studies involving genetically modified organisms (GMOs), such as gene knockout bacterial mutants require stringent physical containment to prevent the accidental spread of these organisms into the environment. Experimental respiratory tract infection models often require the animals, for example birds, to be transported several times between a negative pressure housing isolator and a bespoke aerosol exposure chamber under positive pressure. While the exposure chamber is sealed and fitted with HEPA filters, the repeated movements of infected animals and opening of the chamber can still pose a serious risk of breaching containment of the organism in the experimental facility. In the current study, the ability of two aerosol infection protocols that expose birds to avian pathogenic E. coli (APEC) aerosols directly within the housing isolator was evaluated. Young chicks were exposed to APEC E956 within the negative pressure housing isolators using either a nebulizer or an atomizer. Birds exposed twice (days 1 and 4) to aerosols of APEC E956 produced by the nebulizer developed a rapidly progressing disease mimicking field cases of avian colibacillosis. However, birds exposed to aerosols of APEC E956 produced by an atomizer, did not develop colibacillosis even after 3 exposures to APEC E956 on days 1, 4 and 7. Consequently, the current study reports the nebulizer was more efficacious in producing avian colibacillosis under stricter bacterial containment settings.
Collapse
Affiliation(s)
- Uneeb Saliha
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Kelly A Tivendale
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Amir H Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Pollob Shil
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - June Daly
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Oluwadamilola S Omotainse
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Hafiz U Arshad
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Marc S Marenda
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| |
Collapse
|
2
|
Rodriguez J, Price O, Jennings R, Creel A, Eaton S, Chesnutt J, McClellan G, Batni SR. A Novel Framework for Modeling Person-to-Person Transmission of Respiratory Diseases. Viruses 2022; 14:1567. [PMID: 35891547 PMCID: PMC9322782 DOI: 10.3390/v14071567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
From the beginning of the COVID-19 pandemic, researchers assessed the impact of the disease in terms of loss of life, medical load, economic damage, and other key metrics of resiliency and consequence mitigation; these studies sought to parametrize the critical components of a disease transmission model and the resulting analyses were informative but often lacked critical parameters or a discussion of parameter sensitivities. Using SARS-CoV-2 as a case study, we present a robust modeling framework that considers disease transmissibility from the source through transport and dispersion and infectivity. The framework is designed to work across a range of particle sizes and estimate the generation rate, environmental fate, deposited dose, and infection, allowing for end-to-end analysis that can be transitioned to individual and population health models. In this paper, we perform sensitivity analysis on the model framework to demonstrate how it can be used to advance and prioritize research efforts by highlighting critical parameters for further analyses.
Collapse
Affiliation(s)
- Jason Rodriguez
- Applied Research Associates, Inc. (ARA), 4300 San Mateo Blvd NE, Suite A220, Albuquerque, NM 87110, USA; (J.R.); (O.P.); (R.J.); (A.C.); (S.E.); (J.C.); (G.M.)
| | - Owen Price
- Applied Research Associates, Inc. (ARA), 4300 San Mateo Blvd NE, Suite A220, Albuquerque, NM 87110, USA; (J.R.); (O.P.); (R.J.); (A.C.); (S.E.); (J.C.); (G.M.)
| | - Rachel Jennings
- Applied Research Associates, Inc. (ARA), 4300 San Mateo Blvd NE, Suite A220, Albuquerque, NM 87110, USA; (J.R.); (O.P.); (R.J.); (A.C.); (S.E.); (J.C.); (G.M.)
| | - Amy Creel
- Applied Research Associates, Inc. (ARA), 4300 San Mateo Blvd NE, Suite A220, Albuquerque, NM 87110, USA; (J.R.); (O.P.); (R.J.); (A.C.); (S.E.); (J.C.); (G.M.)
| | - Sarah Eaton
- Applied Research Associates, Inc. (ARA), 4300 San Mateo Blvd NE, Suite A220, Albuquerque, NM 87110, USA; (J.R.); (O.P.); (R.J.); (A.C.); (S.E.); (J.C.); (G.M.)
| | - Jennifer Chesnutt
- Applied Research Associates, Inc. (ARA), 4300 San Mateo Blvd NE, Suite A220, Albuquerque, NM 87110, USA; (J.R.); (O.P.); (R.J.); (A.C.); (S.E.); (J.C.); (G.M.)
| | - Gene McClellan
- Applied Research Associates, Inc. (ARA), 4300 San Mateo Blvd NE, Suite A220, Albuquerque, NM 87110, USA; (J.R.); (O.P.); (R.J.); (A.C.); (S.E.); (J.C.); (G.M.)
| | - Sweta R. Batni
- Defense Threat Reduction Agency (DTRA), 8725 John J. Kingman Road #6201, Fort Belvoir, VA 22060, USA
| |
Collapse
|
3
|
Utility of Three Nebulizers in Investigating the Infectivity of Airborne Viruses. Appl Environ Microbiol 2021; 87:e0049721. [PMID: 34085856 DOI: 10.1128/aem.00497-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laboratory-generated bioaerosols are widely used in aerobiology studies of viruses; however, few comparisons of alternative nebulizers exist. We compared aerosol production and virus survival for a Collison nebulizer, vibrating mesh nebulizer (VMN), and hydraulic spray atomizer (HSA). We also measured the dry size distribution of the aerosols produced and calculated the droplet sizes before evaporation and the dry size distribution from normal saline solution. Dry count median diameters of 0.11, 0.22, and 0.30 μm were found for normal saline from the Collison nebulizer, VMN, and HSA, respectively. The volume median diameters were 0.323, 1.70, and 1.30 μm, respectively. The effect of nebulization on the viability of two influenza A viruses (IAVs) (H1N1 and H3N2) and human rhinovirus 16 (HRV-16) was assessed by nebulization into an SKC BioSampler. The HSA had the least impact on surviving fractions (SFs) of H1N1 and H3N2 (89% ± 3% and 94% ± 2%, respectively), followed by the Collison nebulizer (83% ± 1% and 82% ± 2%, respectively). The VMN yielded SFs of 78% ± 2% and 76% ± 2%, respectively. Conversely, for HRV-16, the VMN produced higher SFs (87% ± 8%). Our findings indicate that there were no statistical differences between SFs of the viruses nebulized by these nebulizers. However, VMN produced higher aerosol concentrations within the airborne size range, making it more suitable where high aerosol mass production is required. IMPORTANCE Viral respiratory tract infections cause millions of lost days of work and physician visits globally, accounting for significant morbidity and mortality. Respiratory droplets and droplet nuclei from infected hosts are the potential carriers of such viruses within indoor environments. Laboratory-generated bioaerosols are applied in understanding the transmission and infection of viruses, modeling the physiological aspects of bioaerosol generation in a controlled environment. However, little comparative characterization exists for nebulizers used in infectious disease aerobiology, including Collison nebulizer, vibrating mesh nebulizer, and hydraulic spray atomizer. This study characterized the physical features of aerosols generated by laboratory nebulizers and their performance in producing aerosols at a size relevant to airborne transmission used in infectious disease aerobiology. We also determined the impact of nebulization mechanisms of these nebulizers on the viability of human respiratory viruses, including IAV H1N1, IAV H3N2, and HRV-16.
Collapse
|
4
|
Bowling JD, O'Malley KJ, Klimstra WB, Hartman AL, Reed DS. A Vibrating Mesh Nebulizer as an Alternative to the Collison Three-Jet Nebulizer for Infectious Disease Aerobiology. Appl Environ Microbiol 2019; 85:e00747-19. [PMID: 31253680 PMCID: PMC6696971 DOI: 10.1128/aem.00747-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/23/2019] [Indexed: 11/20/2022] Open
Abstract
Experimental infection of animals with aerosols containing pathogenic agents is essential for an understanding of the natural history and pathogenesis of infectious disease as well as evaluation of potential treatments. We evaluated whether the Aeroneb nebulizer, a vibrating mesh nebulizer, would serve as an alternative to the Collison nebulizer, the "gold standard" for generating infectious bioaerosols. While the Collison possesses desirable properties that have contributed to its longevity in infectious disease aerobiology, concerns have lingered about the liquid volume and concentration of the infectious agent required to cause disease and the damage that jet nebulization causes to the agent. Fluorescein salt was added to the nebulizer contents to assess pathogen loss during aerosolization. Relative to fluorescein salt, loss of influenza virus during aerosolization was worse with the Collison than with the Aeroneb. Four other viruses also had superior aerosol performance with the Aeroneb. The Aeroneb did not improve the aerosol performance for a vegetative bacterium, Francisella tularensis Environmental parameters collected during the aerosol challenges indicated that the Aeroneb generated a higher relative humidity in exposure chambers while not affecting other environmental parameters. The aerosol mass median aerodynamic diameter (MMAD) was generally larger and more disperse for aerosols generated by the Aeroneb than what is seen with the Collison, but ≥80% of particles were within the range that would reach the lower respiratory tract and alveolar regions. The improved aerosol performance and generated particle size range suggest that for viral pathogens, the Aeroneb is a suitable alternative to the Collison three-jet nebulizer for use in experimental infection of animals.IMPORTANCE Respiratory infection by pathogens via aerosol remains a major concern for both natural disease transmission as well as intentional release of biological weapons. Critical to understanding the disease course and pathogenesis of inhaled pathogens are studies in animal models conducted under tightly controlled experimental settings, including the inhaled dose. The route of administration, particle size, and dose can affect disease progression and outcome. Damage to or loss of pathogens during aerosolization could increase the dose required to cause disease and could stimulate innate immune responses, altering outcome. Aerosol generators that reduce pathogen loss would be ideal. This study compares two aerosol generators to determine which is superior for animal studies. Aerosol research methods and equipment need to be well characterized to optimize the development of animal models for respiratory pathogens, including bioterrorism agents. This information will be critical for pivotal efficacy studies in animals to evaluate potential vaccines or treatments against these agents.
Collapse
Affiliation(s)
- Jennifer D Bowling
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine J O'Malley
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William B Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy L Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Bishop A, O'Sullivan C, Lane A, Butler Ellis M, Sellors W. Re-aerosolization ofBacillus thuringiensisspores from concrete and turf. Lett Appl Microbiol 2017; 64:364-369. [DOI: 10.1111/lam.12726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 11/27/2022]
Affiliation(s)
- A.H. Bishop
- School of Biological and Marine Sciences; University of Plymouth; Devon UK
- Dstl, Porton Down; Salisbury Wiltshire UK
| | | | - A. Lane
- Silsoe Spray Applications Unit; Silsoe Bedfordshire UK
| | | | | |
Collapse
|
6
|
Thomas RJ. Particle size and pathogenicity in the respiratory tract. Virulence 2013; 4:847-58. [PMID: 24225380 PMCID: PMC3925716 DOI: 10.4161/viru.27172] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 12/13/2022] Open
Abstract
Particle size dictates where aerosolized pathogens deposit in the respiratory tract, thereafter the pathogens potential to cause disease is influenced by tissue tropism, clearance kinetics and the host immunological response. This interplay brings pathogens into contact with a range of tissues spanning the respiratory tract and associated anatomical structures. In animal models, differential deposition within the respiratory tract influences infection kinetics for numerous select agents. Greater numbers of pathogens are required to infect the upper (URT) compared with the lower respiratory tract (LRT), and in comparison the URT infections are protracted with reduced mortality. Pathogenesis in the URT is characterized by infection of the URT lymphoid tissues, cervical lymphadenopathy and septicemia, closely resembling reported human infections of the URT. The olfactory, gastrointestinal, and ophthalmic systems are also infected in a pathogen-dependent manner. The relevant literature is reviewed with respect to particle size and infection of the URT in animal models and humans.
Collapse
|
7
|
Thomas RJ, Davies C, Nunez A, Hibbs S, Eastaugh L, Harding S, Jordan J, Barnes K, Oyston P, Eley S. Particle-size dependent effects in the Balb/c murine model of inhalational melioidosis. Front Cell Infect Microbiol 2012; 2:101. [PMID: 22919690 PMCID: PMC3417579 DOI: 10.3389/fcimb.2012.00101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/03/2012] [Indexed: 11/21/2022] Open
Abstract
Deposition of Burkholderia pseudomallei within either the lungs or nasal passages of the Balb/c murine model resulted in different infection kinetics. The infection resulting from the inhalation of B. pseudomallei within a 12 μm particle aerosol was prolonged compared to a 1 μm particle aerosol with a mean time-to-death (MTD) of 174.7 ± 14.9 h and 73.8 ± 11.3 h, respectively. Inhalation of B. pseudomallei within 1 μm or 12 μm particle aerosols resulted in a median lethal dose (MLD) of 4 and 12 cfu, respectively. The 12 μm particle inhalational infection was characterized by a marked involvement of the nasal mucosa and extension of bacterial colonization and inflammatory lesions from the olfactory epithelium through the olfactory nerves (or tracts) to the olfactory bulb (100%), culminating in abscessation of the brain (33%). Initial involvement of the upper respiratory tract lymphoid tissues (nasal-associated lymphoid tissue (NALT) and cervical lymph nodes) was observed in both the 1 and 12 μm particle inhalational infections (80-85%). Necrotising alveolitis and bronchiolitis were evident in both inhalational infections, however, lung pathology was greater after inhalation of the 1 μm particle aerosol with pronounced involvement of the mediastinal lymph node (50%). Terminal disease was characterized by bacteraemia in both inhalational infections with dissemination to the spleen, liver, kidneys, and thymus. Treatment with co-trimoxazole was more effective than treatment with doxycycline irrespective of the size of the particles inhaled. Doxycycline was more effective against the 12 μm particle inhalational infection as evidenced by increased time to death. However, both treatment regimes exhibited significant relapse when therapy was discontinued with massive enlargement and abscessation of the lungs, spleen, and cervical lymph nodes observed.
Collapse
Affiliation(s)
- Richard J Thomas
- Department of Biomedical Sciences, Defence Science and Technology Laboratory, Salisbury Wiltshire, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rayamajhi M, Redente EF, Condon TV, Gonzalez-Juarrero M, Riches DWH, Lenz LL. Non-surgical intratracheal instillation of mice with analysis of lungs and lung draining lymph nodes by flow cytometry. J Vis Exp 2011:2702. [PMID: 21587154 PMCID: PMC3280633 DOI: 10.3791/2702] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Phagocytic cells such as alveolar macrophages and lung dendritic cells (LDCs) continuously sample antigens from the alveolar spaces in the lungs. LDCs, in particular, are known to migrate to the lung draining lymph nodes (LDLNs) where they present inhaled antigens to T cells initiating an appropriate immune response to a variety of immunogens. To model interactions between the lungs and airborne antigens in mice, antigens can be administered intranasally, intratracheally or as aerosols. Delivery by each route involves distinct technical skills and limitations that need to be considered before designing an experiment. For example, intranasal and aerosolized exposure delivers antigens to both the lungs and the upper respiratory tract. Hence antigens can access the nasal associated lymphoid tissue (NALT), potentially complicating interpretation of the results. In addition, swallowing, sneezing and the breathing rate of the mouse may also lead to inconsistencies in the doses delivered. Although the involvement of the upper respiratory tract may be preferred for some studies, it can complicate experiments focusing on events specifically initiated in the lungs. In this setting, the intratracheal (i.t) route is preferable as it delivers test materials directly into the lungs and bypasses the NALT. Many i.t injection protocols involve either blind intubation of the trachea through the oral cavity or surgical exposure of the trachea to access the lungs. Herein, we describe a simple, consistent, non-surgical method for i.t instillation. The opening of the trachea is visualized using a laryngoscope and a bent gavage needle is then inserted directly into the trachea to deliver the innoculum. We also describe procedures for harvesting and processing of LDLNs and lungs for analysis of antigen trafficking by flow cytometry.
Collapse
Affiliation(s)
- Manira Rayamajhi
- Department of Immunology, University of Colorado School of Medicine, USA
| | | | | | | | | | | |
Collapse
|