1
|
Leite S, Cotias C, Rainha KC, Santos MG, Penna B, F Moraes RF, Harmanus C, Smits WK, Ferreira EDO. Prevalence of Clostridioides difficile in dogs (Canis familiaris) with gastrointestinal disorders in Rio de Janeiro. Anaerobe 2023; 83:102765. [PMID: 37573963 DOI: 10.1016/j.anaerobe.2023.102765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Clostridioides difficile infections (CDI) have a high morbidity and mortality rate and have always been considered a nosocomial disease. Nonetheless, the number of cases of community-acquired CDI is increasing, and new evidence suggests additional C. difficile reservoirs exist. Pathogenic C. difficile strains have been found in livestock, domestic animals, and meat, so a zoonotic transmission has been proposed. OBJECTIVE The goal of this study was to isolate C. difficile strains in dogs at a veterinary clinic in Rio de Janeiro, Brazil, and characterize clinical and pathological findings associated with lower gastrointestinal tract disorders. METHODS Fifty stool samples and biopsy fragments from dogs were obtained and cultured in the CDBA selective medium. All suggestive C. difficile colonies were confirmed by MALDI-TOF MS and PCR (tpi gene). Vancomycin, metronidazole, moxifloxacin, erythromycin, and rifampicin were tested for antibiotic susceptibility. Biofilm, motility assays, and a PCR for the toxins (tcdA, tcdB, and cdtB), as well as ribotyping, were also performed. RESULTS Blood samples and colonic biopsy fragments were examined in C. difficile positive dogs. Ten animals (20%) tested positive for C. difficile by using stool samples, but not from biopsy fragments. Most C. difficile strains were toxigenic: six were A+B+ belonging to RT106; two were A+B+ belonging to RT014/020; and two were A-B- belonging to RT010. All strains were biofilm producers. In the motility test, 40% of strains were as motile as the positive control, CD630 (RT012). In the disc diffusion test, two strains (RT010) were resistant to erythromycin and metronidazole; and another to metronidazole (RT014/020). In terms of C. difficile clinicopathological correlations, no statistically significant morphological changes, such as pseudomembranous and "volcano" lesions, were observed. Regarding hematological data, dogs positive for C. difficile had leucopenia (p = 0.02) and lymphopenia (p = 0.03). There was a significant correlation between senility and the presence of C. difficile in the dogs studied (p = 0,02). CONCLUSIONS Although C. difficile has not been linked to canine diarrheal disorders, it appears to be more common in dogs with intestinal dysfunctions. The isolation of ribotypes frequently involved in human CDI outbreaks around the world supports the theory of C. difficile zoonotic transmission.
Collapse
Affiliation(s)
- Suzana Leite
- Departmento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes -IMPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Universidade Santa Úrsula, Rio de Janeiro, Brazil
| | - Carlos Cotias
- H&Diagnóstico, Veterinary Diagnosis Center, Rio de Janeiro, Brazil
| | | | | | - Bruno Penna
- Departmento de Microbiologia e Parasitologia, Instituto de Biomedicina, Universidade Federal Fluminense- UFF, Niterói, Brazil
| | | | - Céline Harmanus
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Eliane de Oliveira Ferreira
- Departmento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes -IMPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Whole Genome Sequencing Evidences High Rates of Relapse in Clostridioides difficile Infection Caused by the Epidemic Ribotype 106. Appl Microbiol 2023. [DOI: 10.3390/applmicrobiol3010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An increasing prevalence and spread of Clostridioides difficile infection (CDI) caused by DH/NAP11/106/ST-42 has been observed worldwide, probably fostered by its great capacity to produce spores or by the higher resistance rates observed for some strains. Based on the results of our previous study where RT106 showed higher recurrence rates than other relevant ribotypes, a genetic analysis by whole-genome sequencing (WGS) of primary and recurrent RT106 isolates from ten patients was performed to determine whether the higher rate of recurrence associated with RT106 is due to relapses, caused by the same strain, or reinfections, caused by different strains. MLST profiles, resistance mutations, and phylogenetic relatedness were determined by comparative single nucleotide variant (SNV) analysis. All isolates were classified as ST42, and those belonging to the same patient were isogenic, with one exception; strains belonging to different patients were not with two exceptions, pointing to putative transmission events. Phylogenetic analysis also suggested the presence of similar local epidemic lineages associated with moxifloxacin resistance, except for one patient whose isolates clustered with different nonresistant US strains. Our results show that recurrent CDIs caused by RT06/ST42 are mainly due to relapses caused by the primary strains, showing the higher capacity of RT106/ST42 to persist and cause recurrences as compared to other ribotypes.
Collapse
|
3
|
Solomon S, Stachel A, Kelly A, Mraz J, Aguilar P, Gardner J, Medefindt J, Horrocks A, Sterling S, Aguero-Rosenfeld M, Phillips M. The Evaluation of Electrolyzed Water, Sodium Dichloroisocyanurate and Peracetic Acid with Hydrogen Peroxide for the Disinfection of Patient Room Surfaces. Am J Infect Control 2022; 51:367-371. [PMID: 35777575 DOI: 10.1016/j.ajic.2022.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Sporicidal disinfectants are necessary to control Clostridioides difficile and Candida auris. Novel application methods such as electrostatic sprayers may increase disinfection effectiveness. We employed a standardized protocol to assess three sporicidal disinfectants: electrolyzed water (EW), sodium dichloroisocyanurate (NaDCC) and peracetic acid/hydrogen peroxide (PAA/H2O2). METHODS The study was conducted at two New York City hospitals (1,082 total beds) over an 18-month period. The three chemicals were applied by housekeeping personnel following the hospital protocol; the use of electrostatic sprayers was incorporated into EW and NaDCC. In randomly selected rooms, five surfaces were sampled for microbial colony counts after cleaning. Data analyses were performed using negative binomial logistic regression. RESULTS We collected 774 samples. NaDCC-disinfected surfaces had a lower mean colony count (14 CFU) compared to PAA/H2O2 (18 CFU, p=0.36) and EW (37 CFU, p<.001). PAA/H2O2 and EW had more samples with any growth (both p<.05) compared to NaDCC. NaDCC applied with wipes and an electrostatic sprayer had the lowest number of samples with no growth and <2.5 CFU/cm2 (difference not significant). CONCLUSIONS The use of NaDCC for surface disinfection resulted in the lowest bacterial colony counts on patient room high touch surfaces in our study.
Collapse
Affiliation(s)
- Sadie Solomon
- Department of Infection Prevention and Control, NYU Langone Health, New York NY, USA; Hospital Operations, NYU Langone Health, New York NY, USA
| | - Anna Stachel
- Department of Infection Prevention and Control, NYU Langone Health, New York NY, USA
| | - Anne Kelly
- Department of Infection Prevention and Control, NYU Langone Health, New York NY, USA
| | - Joe Mraz
- Building Services Department, NYU Langone Health, New York NY, USA
| | - Peter Aguilar
- Building Services Department, NYU Langone Health, New York NY, USA
| | - Julia Gardner
- Hospital Operations, NYU Langone Health, New York NY, USA
| | - Judith Medefindt
- Department of Infection Prevention and Control, NYU Langone Health, New York NY, USA
| | - Amy Horrocks
- Hospital Operations, NYU Langone Health, New York NY, USA
| | - Stephanie Sterling
- Department of Infection Prevention and Control, NYU Langone Health, New York NY, USA; Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York NY, USA
| | - Maria Aguero-Rosenfeld
- Department of Pathology, NYU Grossman School of Medicine, New York NY, USA; Clinical Laboratories, NYU Langone Health, New York NY, USA
| | - Michael Phillips
- Department of Infection Prevention and Control, NYU Langone Health, New York NY, USA; Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York NY, USA.
| |
Collapse
|
4
|
Jones JB, Liu L, Rank LA, Wetzel D, Woods EC, Biok N, Anderson SE, Lee MR, Liu R, Huth S, Sandhu BK, Gellman SH, McBride SM. Cationic Homopolymers Inhibit Spore and Vegetative Cell Growth of Clostridioides difficile. ACS Infect Dis 2021; 7:1236-1247. [PMID: 33739823 PMCID: PMC8130196 DOI: 10.1021/acsinfecdis.0c00843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A wide range of synthetic polymers have been explored for antimicrobial activity. These materials usually contain both cationic and hydrophobic subunits because these two characteristics are prominent among host-defense peptides. Here, we describe a series of nylon-3 polymers containing only cationic subunits and their evaluation against the gastrointestinal, spore-forming pathogen Clostridioides difficile. Despite their highly hydrophilic nature, these homopolymers showed efficacy against both the vegetative and spore forms of the bacterium, including an impact on C. difficile spore germination. The polymer designated P34 demonstrated the greatest efficacy against C. difficile strains, along with low propensities to lyse human red blood cells or intestinal epithelial cells. To gain insight into the mechanism of P34 action, we evaluated several cell-surface mutant strains of C. difficile to determine the impacts on growth, viability, and cell morphology. The results suggest that P34 interacts with the cell wall, resulting in severe cell bending and death in a concentration-dependent manner. The unexpected finding that nylon-3 polymers composed entirely of cationic subunits display significant activities toward C. difficile should expand the range of other polymers considered for antibacterial applications.
Collapse
Affiliation(s)
- Joshua B. Jones
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Lei Liu
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Daniela Wetzel
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Emily C. Woods
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Naomi Biok
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Myung-ryul Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Sean Huth
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Brindar K. Sandhu
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Samuel H. Gellman
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| |
Collapse
|
5
|
Carlson TJ, Blasingame D, Gonzales-Luna AJ, Alnezary F, Garey KW. Clostridioides difficile ribotype 106: A systematic review of the antimicrobial susceptibility, genetics, and clinical outcomes of this common worldwide strain. Anaerobe 2020; 62:102142. [PMID: 32007682 PMCID: PMC7153973 DOI: 10.1016/j.anaerobe.2019.102142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
Abstract
Clostridioides difficile typing is invaluable for the investigation of both institution-specific outbreaks as well as national surveillance. While the epidemic ribotype 027 (RT027) has received a significant amount of resources and attention, ribotype 106 (RT106) has become more prevalent throughout the past decade. The purpose of this systematic review was to comprehensively summarize the genetic determinants, antimicrobial susceptibility, epidemiology, and clinical outcomes of infection caused by RT106. A total of 68 articles published between 1999 and 2019 were identified as relevant to this review. Although initially identified in the United Kingdom in 1999, RT106 is now found worldwide and became the most prevalent strain in the United States in 2016. Current data indicate that RT106 harbors the tcdA and tcdB genes, lacks binary toxin genes, and does not contain any deletions in the tcdC gene, which differentiates it from other epidemic strains, including ribotypes 027 and 078. Interestingly, RT106 produces more spores than other strains, including RT027. Overall, RT106 is highly resistant to erythromycin, clindamycin, fluoroquinolones, and third-generation cephalosporins. However, the MIC90 in most studies are one to two fold dilutions below the epidemiologic cut-off values of metronidazole and vancomycin, suggesting both are acceptable treatment options from an in vitro perspective. The few clinical outcomes studies available concluded that RT106 causes less severe disease than RT027, but patients were significantly more likely to experience multiple CDI relapses when infected with a RT106 strain. Specific areas warranting future study include potential survival advantages provided by genetic elements as well as a more robust investigation of clinical outcomes associated with RT106.
Collapse
Affiliation(s)
- T J Carlson
- High Point University Fred Wilson School of Pharmacy, High Point, NC, USA
| | - D Blasingame
- The University of Houston College of Pharmacy, Houston, TX, USA
| | | | - F Alnezary
- The University of Houston College of Pharmacy, Houston, TX, USA; Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Medinah, Saudi Arabia
| | - K W Garey
- The University of Houston College of Pharmacy, Houston, TX, USA.
| |
Collapse
|
6
|
Castro-Córdova P, Díaz-Yáñez F, Muñoz-Miralles J, Gil F, Paredes-Sabja D. Effect of antibiotic to induce Clostridioides difficile-susceptibility and infectious strain in a mouse model of Clostridioides difficile infection and recurrence. Anaerobe 2020; 62:102149. [PMID: 31940467 DOI: 10.1016/j.anaerobe.2020.102149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 02/08/2023]
Abstract
The anaerobic bacterium Clostridioides difficile is the leading cause of antibiotic-associated diarrhea that can culminate in life-threating colitis. During the C. difficile infection (CDI), C. difficile produces toxins that generate the clinical symptoms of the disease, and produce spores, which persist in the host during antibiotic treatment and can cause recurrent CDI (R-CDI). In this work, we aimed to compare three antibiotic regimens in the susceptibility of mice to CDI and R-CDI (i.e., antibiotic cocktail followed by clindamycin, 5 days of cefoperazone and 10 days of cefoperazone) with three different C. difficile isolates (i.e., strains 630; R20291, and VPI 10463). We observed that the severity of the clinical symptoms of CDI and R-CDI was dependent on the antibiotic treatment used to induce C. difficile-susceptibility, and that the three strains generated a different onset to diarrhea and weight loss in mice that were administrated with the same antibiotic treatment and which differed in comparison to the effect previously reported by other research groups. Our results suggest that, in our experimental conditions, in those animals treated with antibiotic cocktail followed by clindamycin, infection with strain R20291 had the highest diarrhea manifestation in comparison to strains 630 and VPI 10463. In animals treated with cefoperazone for 5 days, infection with strains R20291 or 630 had the highest diarrhea manifestation in comparison to VPI 10463, while in animals treated with cefoperazone for 10 days, infection with strain R20291 or VPI 10463, but not 630, had the highest diarrhea manifestation.
Collapse
Affiliation(s)
- Pablo Castro-Córdova
- Millennium Nucleus in the Biology of Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Microbiota-Host Interactions & Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Fernando Díaz-Yáñez
- Millennium Nucleus in the Biology of Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Microbiota-Host Interactions & Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Juan Muñoz-Miralles
- Microbiota-Host Interactions & Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Fernando Gil
- Millennium Nucleus in the Biology of Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Microbiota-Host Interactions & Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Daniel Paredes-Sabja
- Millennium Nucleus in the Biology of Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Microbiota-Host Interactions & Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
| |
Collapse
|
7
|
Moody LV, Miyamoto Y, Ang J, Richter PJ, Eckmann L. Evaluation of Peroxides and Chlorine Oxides as Disinfectants for Chemical Sterilization of Gnotobiotic Rodent Isolators. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2019; 58:558-568. [PMID: 31319899 PMCID: PMC6774453 DOI: 10.30802/aalas-jaalas-18-000130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/17/2018] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
Abstract
Gnotobiotic animal research has expanded markedly over the past decade. Although germ-free animals were first described more than 100 y ago, little evidence-based guidance is available on best operational procedures. A key aspect of gnotobiotic technology is the sterilization of animal enclosures, most commonly flexible vinyl film isolators. The objective of this study was to determine the most effective methods for chemical sterilization of gnotobiotic isolators and associated equipment. As test microbes, we used bacteria from 4 different accidental isolator contaminations that occurred in a gnotobiotic core facility. Identification by 16S ribotyping revealed facultative anaerobic firmicutes, including several Paenibacillus and Bacillus species, and obligate aerobic actinobacteria, namely Micrococcus luteus, among the contaminants. We selected 6 products commonly used for disinfecting hospital rooms, kitchens, and veterinary facilities to represent chlorine-oxide- and peroxide-based disinfectants and tested the hypothesis that these 2 classes are equally effective. However, evaluation of bactericidal and sporicidal activity in liquid cultures revealed that chlorine oxide-based disinfectants were more effective than peroxide-based disinfectants. In both groups, various products effectively sterilized gnotobiotic isolators by fogging in field tests, although bactericidal concentrations were markedly higher than those in suspension cultures, and effectiveness was contact-time-dependent. In addition, in both groups, some disinfectants were excessively corrosive to ferrous metals and acrylic. These results demonstrate that no single disinfectant has all desirable properties and that the different characteristics of disinfectants must be balanced during their selection. However, chlorine oxide-based disinfectants were generally more effective and less corrosive than peroxide-based products.
Collapse
Affiliation(s)
- LaTisha V Moody
- Animal Care Program, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Yukiko Miyamoto
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Jonathan Ang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Philip J Richter
- Animal Care Program, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Lars Eckmann
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California;,
| |
Collapse
|
8
|
Anonye BO, Hassall J, Patient J, Detamornrat U, Aladdad AM, Schüller S, Rose FRAJ, Unnikrishnan M. Probing Clostridium difficile Infection in Complex Human Gut Cellular Models. Front Microbiol 2019; 10:879. [PMID: 31114553 PMCID: PMC6503005 DOI: 10.3389/fmicb.2019.00879] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
Interactions of anaerobic gut bacteria, such as Clostridium difficile, with the intestinal mucosa have been poorly studied due to challenges in culturing anaerobes with the oxygen-requiring gut epithelium. Although gut colonization by C. difficile is a key determinant of disease outcome, precise mechanisms of mucosal attachment and spread remain unclear. Here, using human gut epithelial monolayers co-cultured within dual environment chambers, we demonstrate that C. difficile adhesion to gut epithelial cells is accompanied by a gradual increase in bacterial numbers. Prolonged infection causes redistribution of actin and loss of epithelial integrity, accompanied by production of C. difficile spores, toxins, and bacterial filaments. This system was used to examine C. difficile interactions with the commensal Bacteroides dorei, and interestingly, C. difficile growth is significantly reduced in the presence of B. dorei. Subsequently, we have developed novel models containing a myofibroblast layer, in addition to the epithelium, grown on polycarbonate or three-dimensional (3D) electrospun scaffolds. In these more complex models, C. difficile adheres more efficiently to epithelial cells, as compared to the single epithelial monolayers, leading to a quicker destruction of the epithelium. Our study describes new controlled environment human gut models that enable host-anaerobe and pathogen-commensal interaction studies in vitro.
Collapse
Affiliation(s)
- Blessing O. Anonye
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jack Hassall
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jamie Patient
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Usanee Detamornrat
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Afnan M. Aladdad
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Stephanie Schüller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
- Gut Health and Food Safety Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Felicity R. A. J. Rose
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Meera Unnikrishnan
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
9
|
Status of vaccine research and development for Clostridium difficile. Vaccine 2019; 37:7300-7306. [PMID: 30902484 DOI: 10.1016/j.vaccine.2019.02.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/21/2019] [Indexed: 12/15/2022]
Abstract
Clostridium difficile associated disease is fundamentally associated with dysbiosis of the gut microbiome as a consequence of antibiotic use. This is because this sporulating, obligate anaerobe germinates and proliferates rapidly in the dysbiotic gut, which is an indirect consequence of their use. During its growth, C. difficile produces two toxins, toxin A (TcdA) and toxin B (TcdB), which are responsible for the majority of clinical symptoms associated with the disease. Three parenterally delivered vaccines, based on detoxified or recombinant forms of these toxins, have undergone or are undergoing clinical trials. Each offers the opportunity to generate high titres of toxin neutralising antibodies. Whilst these data suggest these vaccines may reduce primary symptomatic disease, they do not in their current form reduce the capacity of the organism to persist and shed from the vaccinated host. The current progress of vaccine development is considered with advantages and limitations of each highlighted. In addition, several alternative approaches are described that seek to limit C. difficile germination, colonisation and persistence. It may yet prove that the most effective treatments to limit infection, disease and spread of the organism will require a combination of therapeutic approaches. The potential use and efficacy of these vaccines in low and middle income countries will be depend on the development of a cost effective vaccine and greater understanding of the distribution and extent of disease in these countries.
Collapse
|
10
|
Schwemmlein N, Pippel J, Gazdag EM, Blankenfeldt W. Crystal Structures of R-Type Bacteriocin Sheath and Tube Proteins CD1363 and CD1364 From Clostridium difficile in the Pre-assembled State. Front Microbiol 2018; 9:1750. [PMID: 30127773 PMCID: PMC6088184 DOI: 10.3389/fmicb.2018.01750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/13/2018] [Indexed: 12/26/2022] Open
Abstract
Diffocins are high-molecular-weight phage tail-like bacteriocins (PTLBs) that some Clostridium difficile strains produce in response to SOS induction. Similar to the related R-type pyocins from Pseudomonas aeruginosa, R-type diffocins act as molecular puncture devices that specifically penetrate the cell envelope of other C. difficile strains to dissipate the membrane potential and kill the attacked bacterium. Thus, R-type diffocins constitute potential therapeutic agents to counter C. difficile-associated infections. PTLBs consist of rigid and contractile protein complexes. They are composed of a baseplate, receptor-binding tail fibers and an inner needle-like tube surrounded by a contractile sheath. In the mature particle, the sheath and tube structure form a complex network comprising up to 200 copies of a sheath and a tube protein each. Here, we report the crystal structures together with small angle X-ray scattering data of the sheath and tube proteins CD1363 (39 kDa) and CD1364 (16 kDa) from C. difficile strain CD630 in a monomeric pre-assembly form at 1.9 and 1.5 Å resolution, respectively. The tube protein CD1364 displays a compact fold and shares highest structural similarity with a tube protein from Bacillus subtilis but is remarkably different from that of the R-type pyocin from P. aeruginosa. The structure of the R-type diffocin sheath protein, on the other hand, is highly conserved. It contains two domains, whereas related members such as bacteriophage tail sheath proteins comprise up to four, indicating that R-type PTLBs may represent the minimal protein required for formation of a complete sheath structure. Comparison of CD1363 and CD1364 with structures of PTLBs and related assemblies suggests that several conformational changes are required to form complete assemblies. In the sheath, rearrangement of the flexible N- and C-terminus enables extensive interactions between the other subunits, whereas for the tube, such contacts are primarily established by mobile α-helices. Together, our results combined with information from structures of homologous assemblies allow constructing a preliminary model of the sheath and tube assembly from R-type diffocin.
Collapse
Affiliation(s)
- Nina Schwemmlein
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jan Pippel
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Emerich-Mihai Gazdag
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
11
|
Roshan N, Riley T, Hammer K. Effects of natural products on several stages of the spore cycle ofClostridium difficile in vitro. J Appl Microbiol 2018; 125:710-723. [DOI: 10.1111/jam.13889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/29/2018] [Accepted: 04/12/2018] [Indexed: 02/06/2023]
Affiliation(s)
- N. Roshan
- School of Biomedical Sciences (M504); The University of Western Australia; Crawley WA Australia
| | - T.V. Riley
- School of Biomedical Sciences (M504); The University of Western Australia; Crawley WA Australia
- Department of Microbiology; PathWest Laboratory Medicine; Queen Elizabeth II Medical Centre; Nedlands WA Australia
- School of Veterinary & Life Sciences; Murdoch University; Murdoch WA Australia
- School of Medical & Health Sciences; Edith Cowan University; Joondalup WA Australia
| | - K.A. Hammer
- School of Biomedical Sciences (M504); The University of Western Australia; Crawley WA Australia
| |
Collapse
|
12
|
Dembek M, Willing SE, Hong HA, Hosseini S, Salgado PS, Cutting SM. Inducible Expression of spo0A as a Universal Tool for Studying Sporulation in Clostridium difficile. Front Microbiol 2017; 8:1793. [PMID: 28983286 PMCID: PMC5613124 DOI: 10.3389/fmicb.2017.01793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/05/2017] [Indexed: 01/01/2023] Open
Abstract
Clostridium difficile remains a leading nosocomial pathogen, putting considerable strain on the healthcare system. The ability to form endospores, highly resistant to environmental insults, is key to its persistence and transmission. However, important differences exist between the sporulation pathways of C. difficile and the model Gram-positive organism Bacillus subtilis. Amongst the challenges in studying sporulation in C. difficile is the relatively poor levels of sporulation and high heterogeneity in the sporulation process. To overcome these limitations we placed Ptet regulatory elements upstream of the master regulator of sporulation, spo0A, generating a new strain that can be artificially induced to sporulate by addition of anhydrotetracycline (ATc). We demonstrate that this strain is asporogenous in the absence of ATc, and that ATc can be used to drive faster and more efficient sporulation. Induction of Spo0A is titratable and this can be used in the study of the spo0A regulon both in vitro and in vivo, as demonstrated using a mouse model of C. difficile infection (CDI). Insights into differences between the sporulation pathways in B. subtilis and C. difficile gained by study of the inducible strain are discussed, further highlighting the universal interest of this tool. The Ptet-spo0A strain provides a useful background in which to generate mutations in genes involved in sporulation, therefore providing an exciting new tool to unravel key aspects of sporulation in C. difficile.
Collapse
Affiliation(s)
- Marcin Dembek
- Institute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Stephanie E Willing
- School of Biological Sciences, Royal Holloway, University of LondonLondon, United Kingdom
| | - Huynh A Hong
- School of Biological Sciences, Royal Holloway, University of LondonLondon, United Kingdom
| | - Siamand Hosseini
- School of Biological Sciences, Royal Holloway, University of LondonLondon, United Kingdom
| | - Paula S Salgado
- Institute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Simon M Cutting
- School of Biological Sciences, Royal Holloway, University of LondonLondon, United Kingdom
| |
Collapse
|
13
|
The Phosphotransfer Protein CD1492 Represses Sporulation Initiation in Clostridium difficile. Infect Immun 2016; 84:3434-3444. [PMID: 27647869 DOI: 10.1128/iai.00735-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
The formation of spores is critical for the survival of Clostridium difficile outside the host gastrointestinal tract. Persistence of C. difficile spores greatly contributes to the spread of C. difficile infection (CDI), and the resistance of spores to antimicrobials facilitates the relapse of infection. Despite the importance of sporulation to C. difficile pathogenesis, the molecular mechanisms controlling spore formation are not well understood. The initiation of sporulation is known to be regulated through activation of the conserved transcription factor Spo0A. Multiple regulators influence Spo0A activation in other species; however, many of these factors are not conserved in C. difficile and few novel factors have been identified. Here, we investigated the function of a protein, CD1492, that is annotated as a kinase and was originally proposed to promote sporulation by directly phosphorylating Spo0A. We found that deletion of CD1492 resulted in increased sporulation, indicating that CD1492 is a negative regulator of sporulation. Accordingly, we observed increased transcription of Spo0A-dependent genes in the CD1492 mutant. Deletion of CD1492 also resulted in decreased toxin production in vitro and in decreased virulence in the hamster model of CDI. Further, the CD1492 mutant demonstrated effects on gene expression that are not associated with Spo0A activation, including lower sigD and rstA transcription, suggesting that this protein interacts with factors other than Spo0A. Altogether, the data indicate that CD1492 negatively affects sporulation and positively influences motility and virulence. These results provide further evidence that C. difficile sporulation is regulated differently from that of other endospore-forming species.
Collapse
|
14
|
Edwards AN, Karim ST, Pascual RA, Jowhar LM, Anderson SE, McBride SM. Chemical and Stress Resistances of Clostridium difficile Spores and Vegetative Cells. Front Microbiol 2016; 7:1698. [PMID: 27833595 PMCID: PMC5080291 DOI: 10.3389/fmicb.2016.01698] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile is a Gram-positive, sporogenic and anaerobic bacterium that causes a potentially fatal colitis. C. difficile enters the body as dormant spores that germinate in the colon to form vegetative cells that secrete toxins and cause the symptoms of infection. During transit through the intestine, some vegetative cells transform into spores, which are more resistant to killing by environmental insults than the vegetative cells. Understanding the inherent resistance properties of the vegetative and spore forms of C. difficile is imperative for the development of methods to target and destroy the bacterium. The objective of this study was to define the chemical and environmental resistance properties of C. difficile vegetative cells and spores. We examined vegetative cell and spore tolerances of three C. difficile strains, including 630Δerm, a 012 ribotype and a derivative of a past epidemic strain; R20291, a 027 ribotype and current epidemic strain; and 5325, a clinical isolate that is a 078 ribotype. All isolates were tested for tolerance to ethanol, oxygen, hydrogen peroxide, butanol, chloroform, heat and sodium hypochlorite (household bleach). Our results indicate that 630Δerm vegetative cells (630 spo0A) are more resistant to oxidative stress than those of R20291 (R20291 spo0A) and 5325 (5325 spo0A). In addition, 5325 spo0A vegetative cells exhibited greater resistance to organic solvents. In contrast, 630Δerm spores were more sensitive than R20291 or 5325 spores to butanol. Spores from all three strains exhibited high levels of resistance to ethanol, hydrogen peroxide, chloroform and heat, although R20291 spores were more resistant to temperatures in the range of 60-75°C. Finally, household bleach served as the only chemical reagent tested that consistently reduced C. difficile vegetative cells and spores of all tested strains. These findings establish conditions that result in vegetative cell and spore elimination and illustrate the resistance of C. difficile to common decontamination methods. These results further demonstrate that the vegetative cells and spores of various C. difficile strains have different resistance properties that may impact decontamination of surfaces and hands.
Collapse
Affiliation(s)
- Adrianne N Edwards
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Samiha T Karim
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Ricardo A Pascual
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Lina M Jowhar
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Sarah E Anderson
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| | - Shonna M McBride
- Emory Antibiotic Resistance Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta GA, USA
| |
Collapse
|
15
|
Synergistic efficacy of 405 nm light and chlorinated disinfectants for the enhanced decontamination of Clostridium difficile spores. Anaerobe 2015; 37:72-7. [PMID: 26708703 DOI: 10.1016/j.anaerobe.2015.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/13/2015] [Indexed: 01/05/2023]
Abstract
The ability of Clostridium difficile to form highly resilient spores which can survive in the environment for prolonged periods causes major contamination problems. Antimicrobial 405 nm light is being developed for environmental decontamination within hospitals, however further information relating to its sporicidal efficacy is required. This study aims to establish the efficacy of 405 nm light for inactivation of C. difficile vegetative cells and spores, and to establish whether spore susceptibility can be enhanced by the combined use of 405 nm light with low concentration chlorinated disinfectants. Vegetative cells and spore suspensions were exposed to increasing doses of 405 nm light (at 70-225 mW/cm(2)) to establish sensitivity. A 99.9% reduction in vegetative cell population was demonstrated with a dose of 252 J/cm(2), however spores demonstrated higher resilience, with a 10-fold increase in required dose. Exposures were repeated with spores suspended in the hospital disinfectants sodium hypochlorite, Actichlor and Tristel at non-lethal concentrations (0.1%, 0.001% and 0.0001%, respectively). Enhanced sporicidal activity was achieved when spores were exposed to 405 nm light in the presence of the disinfectants, with a 99.9% reduction achieved following exposure to 33% less light dose than required when exposed to 405 nm light alone. In conclusion, C. difficile vegetative cells and spores can be successfully inactivated using 405 nm light, the sporicidal efficacy can be significantly enhanced when exposed in the presence of low concentration chlorinated disinfectants. Further research may lead to the potential use of 405 nm light decontamination in combination with selected hospital disinfectants to enhance C. difficile cleaning and infection control procedures.
Collapse
|
16
|
CLINICAL AND EPIDEMIOLOGIC CONSIDERATIONS OF CLOSTRIDIUM DIFFICILE IN HARBOR SEALS (PHOCA VITULINA) AT A MARINE MAMMAL REHABILITATION CENTER. J Zoo Wildl Med 2015; 46:191-7. [PMID: 26056868 DOI: 10.1638/2014-0048r2.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Between 1998 and 2008, 15 cases of segmental to diffuse hemorrhagic to necrohemorrhagic enterocolitis were diagnosed in neonatal and weaned juvenile harbor seals (Phoca vitulina) presented from the Vancouver Aquarium Marine Mammal Rescue Centre for rehabilitation. Based on a combination of gross pathology, histopathology, bacterial isolation, and toxin testing, Clostridium difficile enterocolitis was diagnosed. Most pups were anorexic or inappetant and died acutely with few other premonitory signs. Due to ongoing clinical concerns and possible emergence of this pathogen at the facility, efforts to better characterize the disease and understand the epidemiology of C. difficile was initiated in 95 harbor seal pups presented for rehabilitation in a single stranding season. Fecal samples were collected on admission, following completion of antibiotic treatment, and also prerelease or postmortem. All samples were collected fresh and submitted either directly or stored frozen. Fecal samples were inoculated into selective media for culture and screened by enzyme-linked immunosorbant assay (ELISA) for C. difficile toxins A, B, or both. Results of the 95 seals in the study were as follows: on hospital admit 72 seals were sampled, 10 were culture positive, 12 were ELISA positive; following antibiotic therapy 46 seals were sampled noting three culture positive and nine ELISA positive; prior to release 58 seals were sampled noting zero culture positive and one ELISA positive; and on postmortem exam seven seals were sampled noting zero culture positive and two ELISA positive. Clostridium difficile was not deemed to be the cause of death in any of the animals. Although the exact mechanism of disease is unknown, this study suggests that C. difficile infection is not a significant cause of mortality and may be part of the normal flora in harbor seals undergoing rehabilitation. Morbidity and mortality from this bacterium can likely be minimized by judicious use of antibiotics, effective biosecurity-biocontainment protocols, and clean husbandry practices.
Collapse
|
17
|
Blakney R, Gudnadottir U, Warrack S, O'Horo JC, Anderson M, Sethi A, Schmitz M, Wang J, Duster M, Ide E, Safdar N. The relationship between patient functional status and environmental contamination by Clostridium difficile: a pilot study. Infection 2015; 43:483-7. [PMID: 25869819 DOI: 10.1007/s15010-015-0770-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/20/2015] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Limited data exist on patient factors related to environmental contamination with Clostridium difficile. METHODS We evaluated the association between the functional status of patients with C. difficile infection (CDI) and environmental contamination with C. difficile. RESULTS Contamination of patient rooms was frequent and higher functional status was associated with contaminated surfaces remote from the bed. All but one environmental isolates matched the corresponding patient's stool isolate for the seven patients tested. CONCLUSION Functional status is a factor that influences environmental contamination with C. difficile. Future studies should evaluate strategies to reduce contamination in CDI patient rooms, taking into account the patient's functional status.
Collapse
Affiliation(s)
- Rebekah Blakney
- Department of Population Health Sciences, University of Wisconsin, 5221 MFCB, 1685 Highland Avenue, Madison, WI, 53705, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sjöberg M, Eriksson M, Andersson J, Norén T. Transmission of Clostridium difficile spores in isolation room environments and through hospital beds. APMIS 2014; 122:800-3. [PMID: 24475890 DOI: 10.1111/apm.12218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/10/2013] [Indexed: 11/30/2022]
Abstract
The aim of this study was to determine the dissemination of Clostridium difficile (CD) spores in a hospital setting where the potassium monopersulfate-based disinfectant Virkon™ was used for cleaning. In the initial part of the study, we sampled 16 areas of frequent patient contact in 10 patient rooms where a patient with CD infection (CDI) had been accommodated. In the second part of the study, we obtained samples from 10 patient beds after discharge of CDI patients, both before and after the beds were cleaned. In the first part, CDspores were isolated in only 30% of the rooms. In the second part, which focused on transmission to hospital beds, C. difficile was found in four of 10 beds either before or after cleaning. In conclusion, in both parts of the study, we demonstrated a moderate spread of CD spores to the environment despite routine cleaning procedures involving Virkon™.
Collapse
Affiliation(s)
- Maria Sjöberg
- Department of Infectious Diseases, Örebro University Hospital, Örebro, Sweden; School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | | | | | | |
Collapse
|
19
|
Poxton IR. The changing faces of Clostridium difficile: a personal reflection of the past 34 years. Anaerobe 2013; 24:124-7. [PMID: 23296302 DOI: 10.1016/j.anaerobe.2012.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/15/2012] [Indexed: 11/26/2022]
Abstract
Late in 1978 my boss gave me a folder with "Clostridium difficile (diffikilé)" written on it. Inside were a few recent and now classic papers by Bartlett, Larson and co. It was suggested that this might be an interesting research topic. So began a continuing adventure which has resulted in at least 50 publications from my group. Over the years we have made several important contributions to the field. Beginning in 1982 we showed that C. difficile was a common cause of community-acquired infection! During the next few years we did extensive structural studies on the bacterium. This culminated in 1984 with a fingerprinting study (by immunoblotting surface antigens), on Swedish strains supplied by Carl-Erik Nord, which was probably the first study to demonstrate that C. difficile was really an infectious agent. This was later reinforced with strains sent from Amsterdam by Ed Kuijper. Later in the 1980s, in a study of recurrent disease, we showed that ca. 50% of recurrences were due to infection with a different strain. During my term as chair of the European Study Group for C. difficile, we began to define the status of C. difficile infection (CDI) in Europe and develop guidance for diagnosis and treatment. Recently we utilised our extensive culture collection, with isolates from the 1970s to the present, to observe how epidemiology has been driven largely by antibiotic usage. We have now come full circle: in the early years C. difficile infection was caused by many different strains. Then in the period beginning in the 1990s, characterised by often-large outbreaks and poor infection control, disease was caused by a few endemic strains highlighted by the 027/NAP1/BI pandemic. Now in a much-improved local situation, we are seeing again that the majority of cases (largely sporadic) is caused by multiple types. Current studies range from molecular studies on toxin and spore production, immune responses, novel observations on CDI in children, to what is the best way of decontaminating the anaerobe laboratory.
Collapse
Affiliation(s)
- Ian R Poxton
- Medical Microbiology, University of Edinburgh College of Medicine and Veterinary Medicine, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
20
|
Effect of hospital disinfectants on spores of clinical Brazilian Clostridium difficile strains. Anaerobe 2013; 22:121-2. [DOI: 10.1016/j.anaerobe.2013.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 04/12/2013] [Accepted: 04/14/2013] [Indexed: 01/09/2023]
|
21
|
Hancox LR, Le Bon M, Dodd CER, Mellits KH. Inclusion of detergent in a cleaning regime and effect on microbial load in livestock housing. Vet Rec 2013; 173:167. [PMID: 23839725 PMCID: PMC3756521 DOI: 10.1136/vr.101392] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Determining effective cleaning and disinfection regimes of livestock housing is vital to improving the health of resident animals and reducing zoonotic disease. A cleaning regime consisting of scraping, soaking with or without detergent (treatment and control), pressure washing, disinfection and natural drying was applied to multiple pig pens. After each cleaning stage, samples were taken from different materials and enumerated for total aerobic count (TAC) and Enterobacteriaceae (ENT). Soaking with detergent (Blast-Off, Biolink) caused significantly greater reductions of TAC and ENT on metal, and TAC on concrete, compared with control. Disinfection effect (Virkon S, DuPont) was not significantly associated with prior detergent treatment. Disinfection significantly reduced TAC and ENT on concrete and stock board but not on metal. Twenty-four hours after disinfection TAC and ENT on metal and stock board were significantly reduced, but no significant reductions occurred in the subsequent 96 hours. Counts on concrete did not significantly reduce during the entire drying period (120 hours). Detergent and disinfectant have varying bactericidal effects according to the surface and bacterial target; however, both can significantly reduce microbial numbers so should be used during cleaning, with a minimum drying period of 24 hours, to lower bacterial counts effectively.
Collapse
Affiliation(s)
- L R Hancox
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | | | | | | |
Collapse
|
22
|
Role of the environment in the transmission of Clostridium difficile in health care facilities. Am J Infect Control 2013; 41:S105-10. [PMID: 23622740 DOI: 10.1016/j.ajic.2012.12.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/15/2012] [Accepted: 12/18/2012] [Indexed: 12/30/2022]
Abstract
Recent data demonstrate that the contaminated hospital surface environment plays a key role in the transmission of Clostridium difficile. Enhanced environmental cleaning of rooms housing Clostridium difficile-infected patients is warranted, and, if additional studies demonstrate a benefit of "no-touch" methods (eg, ultraviolet irradiation, hydrogen peroxide systems), their routine use should be considered.
Collapse
|
23
|
Rutala WA, Weber DJ. Role of the hospital environment in disease transmission, with a focus on Clostridium difficile. ACTA ACUST UNITED AC 2013. [DOI: 10.1071/hi12057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Humphreys PN, Finan P, Rout S, Hewitt J, Thistlethwaite P, Barnes S, Pilling S. A systematic evaluation of a peracetic-acid-based high performance disinfectant. J Infect Prev 2013. [DOI: 10.1177/1757177413476125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The importance of environmental contamination in the spread of healthcare associated infections (HAI) has generated a need for high performance disinfectants. Currently chlorine-based disinfectants are the products of choice, a position reflected in UK guidance. The aim of this research was to evaluate a peracetic acid (PAA) generating disinfectant to determine if it provided a realistic alternative to commonly used chlorine-based disinfectants. The European standards framework was employed in this study and enhanced where appropriate by reducing the contact times, increasing the organic and microbial challenge, and changing the organisms involved. When tested against bacteria and spores PAA provided similar or better performance than currently employed levels of chlorine. This was particularly the case in the presence of an organic challenge or dried surface contamination. The chlorine disinfectants only demonstrated superior performance in the case of fungal spores. These results suggest that PAA generating products provide an effective alternative to chlorine-based products up to 10,000 ppm free available chlorine. These products have superior performance in situations with spore borne, surface contamination and high organic challenge. In cases where filamentous fungi are a concern, high levels of PAA (>5,000 ppm) would be required to match the performance of chlorine based disinfectants.
Collapse
Affiliation(s)
- Paul N Humphreys
- Hygiene and Disinfection Centre, School of Applied Science, University of Huddersfield, Huddersfield, HD6 3SW, UK
| | | | - Simon Rout
- Hygiene and Disinfection Centre, School of Applied Science, University of Huddersfield, Huddersfield, HD6 3SW, UK
| | - James Hewitt
- Hygiene and Disinfection Centre, School of Applied Science, University of Huddersfield, Huddersfield, HD6 3SW, UK
| | - Peter Thistlethwaite
- Hygiene and Disinfection Centre, School of Applied Science, University of Huddersfield, Huddersfield, HD6 3SW, UK
| | - Sophie Barnes
- Hygiene and Disinfection Centre, School of Applied Science, University of Huddersfield, Huddersfield, HD6 3SW, UK
| | - Sally Pilling
- Hygiene and Disinfection Centre, School of Applied Science, University of Huddersfield, Huddersfield, HD6 3SW, UK
| |
Collapse
|
25
|
Poxton IR, Rupnik M. International Clostridium
difficile Symposium 2010 – Special Issue. J Med Microbiol 2011; 60:1055-1056. [DOI: 10.1099/jmm.0.033985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ian R. Poxton
- Medical Microbiology, Centre for Infectious Diseases, University of Edinburgh College of Medicine and Veterinary Medicine, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Maja Rupnik
- University of Maribor, Faculty of Medicine; Center of Excellence CIPKEBIP, Ljubljana; Institute of Public Health Maribor, Centre for Microbiology, Prvomajska 1, 2000 Maribor, Slovenia
| |
Collapse
|