1
|
Su Y, Meng J, Zhao M, Li C, Zhai S, Li Y, Chu P, Bian Z, Zhang K, Yang D, Jiang Z, Gou H, Xu C. Rapid detection of zoonotic Streptococcus suis serotype 2 and 14 by enzyme-activated probe fluorescence quantitative PCR method. BMC Vet Res 2024; 20:510. [PMID: 39511559 PMCID: PMC11542422 DOI: 10.1186/s12917-024-04361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Streptococcus suis serotypes 2 and 14 are the most common zoonotic strains, but previous identification methods made distinguish these two serotypes from other S. suis serotypes difficult. To effectively prevent and control them, there is an urgent need for a highly sensitive and specific method to identify these two serotypes. In this study, a fluorescent probe was designed for the single nucleotide polymorphism site at cpsK 483 of Streptococcus suis type 2 and type 14 compared with other serotypes, and an enzyme-activated probe quantitative PCR (EA-probe qPCR) method was established for the detection of Streptococcus suis type 2 and type 14 by combining with the specific hydrolysis characteristics of the RNase H2 enzyme. The results showed that the optimal probe concentration for this method was 0.5 µM and the optimal RNase H2 enzyme concentration was 25 mU.This method showed no reactivity with genomic DNA from Streptococcus suis strains 1/2, 5, 7, 9, 23, 28, 29, and 31, confirming its high specificity. And its sensitivity can reach 18.4 CFU. In addition, 19 clinical strains of Streptococcus suis type 2 or type 1/2 were tested. The results showed 100% agreement with the gene sequencing method. In conclusion, this method can meet the needs of accurate laboratory testing of Streptococcus suis serotypes 2 and 14 and has value for clinical prevention.
Collapse
Affiliation(s)
- Yaxing Su
- College of Veterinary Medicine, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jiajia Meng
- College of Veterinary Medicine, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Mingwei Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chunling Li
- Institute of Animal Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Shaolun Zhai
- Institute of Animal Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Yan Li
- Institute of Animal Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Pinpin Chu
- Institute of Animal Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Zhibiao Bian
- Institute of Animal Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Kunli Zhang
- Institute of Animal Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Dongxia Yang
- Institute of Animal Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Zhiyong Jiang
- Institute of Animal Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Hongchao Gou
- Institute of Animal Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, 510640, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.
- Guangdong Provincial Key Laboratory of Research on the Technology of Pig-breeding and Pig-disease Prevention, Guangzhou, 510640, China.
| | - Chenggang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Sadraeian M, Maleki R, Moraghebi M, Bahrami A. Phage Display Technology in Biomarker Identification with Emphasis on Non-Cancerous Diseases. Molecules 2024; 29:3002. [PMID: 38998954 PMCID: PMC11243120 DOI: 10.3390/molecules29133002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 07/14/2024] Open
Abstract
In recent years, phage display technology has become vital in clinical research. It helps create antibodies that can specifically bind to complex antigens, which is crucial for identifying biomarkers and improving diagnostics and treatments. However, existing reviews often overlook its importance in areas outside cancer research. This review aims to fill that gap by explaining the basics of phage display and its applications in detecting and treating various non-cancerous diseases. We focus especially on its role in degenerative diseases, inflammatory and autoimmune diseases, and chronic non-communicable diseases, showing how it is changing the way we diagnose and treat illnesses. By highlighting important discoveries and future possibilities, we hope to emphasize the significance of phage display in modern healthcare.
Collapse
Affiliation(s)
- Mohammad Sadraeian
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Reza Maleki
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Mahta Moraghebi
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Abasalt Bahrami
- Department of Chemistry and Biochemistry, Bioengineering, and Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Bornemann NN, Mayer L, Lacouture S, Gottschalk M, Baums CG, Strutzberg-Minder K. Invasive Bacterial Infections of the Musculoskeletal and Central Nervous System during Pig Rearing: Detection Frequencies of Different Pathogens and Specific Streptococcus suis Genotypes. Vet Sci 2024; 11:17. [PMID: 38250923 PMCID: PMC10820919 DOI: 10.3390/vetsci11010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Locomotor and central nervous system disorders occur during pig rearing, but there is no systematic recording of the different causative agents in Germany. Joint and meningeal swabs, kidneys, lungs, and eight different lymph nodes per pig were cultured, and isolated pathogens were identified using polymerase chain reactions (PCRs). The cps and pathotype of Streptococcus suis (S. suis) isolates were determined using multiplex-PCR. S. suis was the most important pathogen in the infected joints (70.8%) and meningeal swabs (85.4%) and was most frequently detected in both sites in suckling and weaning piglets. To elucidate the possible portal of entry of S. suis, eight different lymph nodes from 201 pigs were examined in a prospective study. S. suis was detected in all examined lymph nodes (n = 1569), including the mesenteric lymph nodes (15.8%; n = 121/765), with cps 9 (37.2%; n = 147) and cps 2 (24.3%; n = 96) being the most dominating cps types. In piglets with a systemic S. suis infection, different lymph nodes are frequently infected with the invasive S. suis strain, which does not help clarify the portal of entry for S. suis.
Collapse
Affiliation(s)
| | - Leonie Mayer
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany (C.G.B.)
| | - Sonia Lacouture
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.L.); (M.G.)
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.L.); (M.G.)
| | - Christoph Georg Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany (C.G.B.)
| | | |
Collapse
|
4
|
Del Pozo M, Uruén C. Laboratory Methods for Culture and Identification. Methods Mol Biol 2024; 2815:1-13. [PMID: 38884906 DOI: 10.1007/978-1-0716-3898-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
This chapter addresses the cultivation, identification, and characterization of Streptococcus suis. Here, we describe in detail the most used methodologies and expected results.
Collapse
Affiliation(s)
| | - Cristina Uruén
- Unit of Microbiology and Immunology, Faculty of Veterinary, Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, IA2, Zaragoza, Spain
| |
Collapse
|
5
|
Rao J, Wei X, Li H, Zhang Z, Liu J, Lian M, Cao W, Yuan L, Dou B, Tian Y, Chen H, Li J, Bei W. Novel Multiplex PCR Assay and Its Application in Detecting Prevalence and Antibiotic Susceptibility of Porcine Respiratory Bacterial Pathogens in Guangxi, China. Microbiol Spectr 2023; 11:e0397122. [PMID: 36916923 PMCID: PMC10100844 DOI: 10.1128/spectrum.03971-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/27/2023] [Indexed: 03/15/2023] Open
Abstract
Porcine respiratory disease complex (PRDC) is a serious disease caused by multiple pathogens which inflicts huge economic losses on the pig industry. Investigating the epidemiology of porcine respiratory bacterial pathogens (PRBPs) in specific geographic areas and exploring the antibiotic susceptibility of local strains will contribute to the prevention and control of PRDC. However, the epidemiology of PRBPs in Guangxi Province remains unclear, and existing diagnostic methods have multiple limitations, such as high costs and the detection of only a single pathogen at a time. In this study, we developed a multiplex PCR assay for Streptococcus suis, Glaesserella parasuis, Actinobacillus pleuropneumoniae, Pasteurella multocida, and Mycoplasma hyopneumoniae, and investigated the prevalence of PRBPs in pigs with respiratory symptoms in Guangxi Province. The isolates from positive samples were subjected to susceptibility tests to 16 antibiotics. Our results indicated that of the 664 samples from pigs with respiratory symptoms, 433 (65.21%), 320 (48.19%), 282 (42.47%), 23 (3.46%), and 9 (1.36%), respectively, carried each of these 5 pathogens; 533 samples were positive; and 377 (56.78%) carried multiple pathogens simultaneously. The dominant PRBPs in pigs with respiratory symptoms in Guangxi province were S. suis, G. parasuis, and A. pleuropneumoniae, which frequently co-infected swine herds. Most of the isolates (A. pleuropneumoniae, G. parasuis, S. suis, and P. multocida) were sensitive to cefquinome, ceftiofur, trimethoprim-sulfamethoxazole (TMP-SMX), and tiamulin antibiotics. We developed a rapid specific multiplex PCR assay for PRBPs. Our findings provide new information on the epidemiology of PRBPs in Guangxi Province and offer a reference for developing drug targets against PRDC. IMPORTANCE Pigs are closely associated with humans as the most common food animals and the vectors of numerous pathogens. PRDC, caused by multiple pathogens, is a serious disease that can cause growth retardation in swine and even sudden death. Due to the droplet transmission of PRBP and the similar clinical signs of different pathogen infections, most pig farms struggle to identify and control PRBPs, leading to the abuse of antibiotics. In addition, some PRBPs have the potential to infect humans and threaten human health. Therefore, this study developed a multiplex PCR method targeting PRBPs, investigated the prevalence of these pathogens, and tested their antibiotic susceptibility. Our studies have important implications for public health safety and the development of the pig industry.
Collapse
Affiliation(s)
- Jing Rao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xinchen Wei
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huan Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhewei Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiahui Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengjie Lian
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Long Yuan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Beibei Dou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yanhong Tian
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
6
|
Liedel C, Mayer L, Einspanier A, Völker I, Ulrich R, Rieckmann K, Baums CG. A new S. suis serotype 3 infection model in pigs: lack of effect of buprenorphine treatment to reduce distress. BMC Vet Res 2022; 18:435. [PMID: 36510249 PMCID: PMC9743652 DOI: 10.1186/s12917-022-03532-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Streptoccocus suis (S. suis) is a major porcine pathogen causing meningitis, septicemia, arthritis and endocarditis. These diseases severely impair welfare of pigs. Experimental studies in pigs are important to better understand the pathogenesis and to identify protective antigens, as so far there is no vaccine available protecting against various serotypes (cps). Due to the severity of disease, application of appropriate refinement strategies in experimental S. suis infections is essential to reduce distress imposed on the piglets without jeopardizing the scientific output. The objectives of this study were to evaluate buprenorphine treatment as a refinement measure and serum cortisol levels as a distress read out parameter in a new S. suis cps3 infection model in pigs. RESULTS Intravenous application of 2 × 108 CFU of S. suis cps3 (sly+, mrp+) to 6-week-old piglets led to severe morbidity in approximately 50% of the animals. Main pathological findings included suppurative meningoencephalitis and arthritis as well as fibrinosuppurative endocarditis. Buprenorphine treatment (0.05 mg/kg every 8 h) did not prevent signs of severe pain, high clinical scores, moderate to severe pathologies or high levels of serum cortisol in single severely affected piglets. Significant differences in the course of leukocytosis, induction of specific antibodies and bactericidal immunity were not recorded between groups with or w/o buprenorphine treatment. Of note, clinically unobtrusive piglets showed serum cortisol levels at 2 and 5 days post infectionem (dpi) comparable to the levels prior to infection with cps3. Cortisol levels in serum were significantly increased in piglets euthanized due to severe disease in comparison to clinically unobtrusive pigs. CONCLUSIONS Different clinical courses and pathologies are induced after intravenous challenge of piglets with 2 × 108 CFU of this S. suis cps3 strain. The chosen protocol of buprenorphine application does not prevent severe distress in this infection model. Important parameters of the humoral immune response, such as the level of IgM binding to S. suis cps3, do not appear to be affected by buprenorphine treatment. Serum cortisol is a meaningful parameter to measure distress in piglets experimentally infected with S. suis and to evaluate refinement strategies. In this intravenous model, which includes close clinical monitoring and different humane endpoints, clinics and cortisol levels suggest convalescence in surviving piglets within 5 days following experimental infection.
Collapse
Affiliation(s)
- Carolin Liedel
- grid.9647.c0000 0004 7669 9786Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Leonie Mayer
- grid.9647.c0000 0004 7669 9786Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Almuth Einspanier
- grid.9647.c0000 0004 7669 9786Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Iris Völker
- grid.9647.c0000 0004 7669 9786Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, 04103 Leipzig, Germany
| | - Reiner Ulrich
- grid.9647.c0000 0004 7669 9786Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, 04103 Leipzig, Germany
| | - Karoline Rieckmann
- grid.9647.c0000 0004 7669 9786Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Christoph G. Baums
- grid.9647.c0000 0004 7669 9786Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Guéneau V, Plateau-Gonthier J, Arnaud L, Piard JC, Castex M, Briandet R. Positive biofilms to guide surface microbial ecology in livestock buildings. Biofilm 2022; 4:100075. [PMID: 35494622 PMCID: PMC9039864 DOI: 10.1016/j.bioflm.2022.100075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/12/2022] Open
Abstract
The increase in human consumption of animal proteins implies changes in the management of meat production. This is followed by increasingly restrictive regulations on antimicrobial products such as chemical biocides and antibiotics, used in particular to control pathogens that can spread zoonotic diseases. Aligned with the One Health concept, alternative biological solutions are under development and are starting to be used in animal production. Beneficial bacteria able to form positive biofilms and guide surface microbial ecology to limit microbial pathogen settlement are promising tools that could complement existing biosecurity practices to maintain the hygiene of livestock buildings. Although the benefits of positive biofilms have already been documented, the associated fundamental mechanisms and the rationale of the microbial composition of these new products are still sparce. This review provides an overview of the envisioned modes of action of positive biofilms used on livestock building surfaces and the resulting criteria for the selection of the appropriate microorganisms for this specific application. Limits and advantages of this biosecurity approach are discussed as well as the impact of such practices along the food chain, from farm to fork.
Collapse
Affiliation(s)
- Virgile Guéneau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Lallemand SAS, 31702, Blagnac, France
| | | | | | - Jean-Christophe Piard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
8
|
Meng J, Li C, Wang Y, Bian Z, Chu P, Zhai S, Yang D, Song S, Li Y, Jiang Z, Zhang K, Li Y, Gou H. Accelerated loop-mediated isothermal amplification method for the rapid detection of Streptococcus suis serotypes 2 and 14 based on single nucleotide polymorphisms. Front Cell Infect Microbiol 2022; 12:1034762. [PMID: 36439234 PMCID: PMC9691836 DOI: 10.3389/fcimb.2022.1034762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus suis serotypes 2 and 14 are the most prevalent zoonotic strains. The establishment of a sensitive and extremely accurate method for point-of-care testing for Streptococcus suis serotype 2 and 14 strains is highly desirable. In this study, a loop primer probe-introduced loop-mediated isothermal amplification assay was developed to differentiate Streptococcus suis serotypes 2 and 14 based on SNP (single nucleotide polymorphism). The specific fluorescent probes were designed for the SNP site specific for serotype 2 and 14 Streptococcus suis cpsK genes, and the loop primer probe-introduced loop-mediated isothermal amplification (LAMP) assay was developed using the specific cleavage properties of the RNase H2 enzyme. Rapid and efficient LAMP assays were realized through the use of loop forward primers and stem forward primers. The results showed that the amplification reaction can be performed efficiently at 59°C. The results can be real-time detected or judged using a smartphone and a 3D-printed visualization cassette. The sensitivity of the LAMP assay can reach 18.4 CFU within 40 minutes. The detection rate of the assay system was evaluated using 19 clinical samples with suspected Streptococcus suis infection, and the detection rate was consistent with the sequencing method, suggesting that the test is highly practical. The LAMP assay for Streptococcus suis serotypes 2 and 14 established in this study has strong specificity, high sensitivity, and simple operation, while the reaction can be performed at an isothermal temperature and is not dependent on complex instruments or professional operators, making it suitable for field testing.
Collapse
Affiliation(s)
- Jiajia Meng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chunling Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Yu Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhibiao Bian
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Pinpin Chu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Shaolun Zhai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Dongxia Yang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Yan Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Zhiyong Jiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Kunli Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Yugu Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- *Correspondence: Yugu Li, ; Hongchao Gou,
| | - Hongchao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
- *Correspondence: Yugu Li, ; Hongchao Gou,
| |
Collapse
|
9
|
Savcheniuk MO, Tarasov OA, Zakharova OM, Korniienko LY, Zotsenko VM, Tsarenko TM. Detection of Streptococcus suis using the optimized real-time polymerase chain reaction protocol. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The article presents the results of studies on the detection of Streptococcus suis by real-time polymerase chain reaction. Isolation and species identification of the studied isolates of streptococci was carried out according to morphological, cultural, biochemical and biological properties by conventional methods. The study of cultural characteristics of growth was carried out using conventional bacteriological methods on the brain heart infusion broth (BHI) and BHI agar with the addition of 5% sheep blood (blood BHI agar). To confirm biochemical properties as a confirmatory method, API 20 STREP test kit (bioMerieux, France) was used. In addition, to differentiate S. suis from the non-pathogenic species of streptococci, the hemolysis test was used. As a result of the studies, it was found that the use of the real-time PCR (polymerase chain reaction) method makes it possible to detect S. suis in an amount of 1 x 104 genome copies in the sample. All described validation parameters for the qualitative detection of S. suis DNA by real-time PCR meet international requirements, which guarantees accurate and reliable results. In Ukraine only a diagnostic test kit for convential PCR has been developed for the detection of swine streptococcosis. This approach is more time consuming and complex in comparison with the real-time PCR approach. We recommend that diagnostic laboratories implement this method in their practice. This will increase the number of effective diagnostic tools available to veterinarians on pig farms when they order laboratory tests. The high analytical sensitivity limit of a test is an essential parameter when screening is the focus, and obtaining false negative results causes a risk of the development of infection process among pig populations within infected herds. Our study showed that microbiological diagnostic methods to determine morphological and cultural properties can identify S. suis at the genus level. Determination of biochemical properties using the API 20 STREP test kit can be used to identify S. suis 1 and 2 serotypes. The conventional method and real-time PCR have 100% specificity and can be used to identify S. suis of different serotypes. Real-time PCR is a 2 to 4 times more sensitive limit than conventional PCR depending on the serotype being studied, and can be used to more accurately identify streptococcal DNA. It was found that the use of the real-time PCR method makes it possible to detect S. suis in an amount of 1 x 104 copies of the genome in the sample. Additionally, it was found that all the studied validation parameters of the qualitative method for determining S. suis DNA by real-time PCR meet international requirements, which guarantees accurate and reliable results.
Collapse
|
10
|
Khantasup K, Tungwongjulaniam C, Theerawat R, Lamaisri T, Piyalikit K, Nuengjamnong C, Nuanualsuwan S. Cross-sectional risk assessment of zoonotic Streptococcus suis in pork and swine blood in Nakhon Sawan Province in northern Thailand. Zoonoses Public Health 2022; 69:625-634. [PMID: 35504855 DOI: 10.1111/zph.12951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
A cross-sectional study evaluated the risk of zoonotic Streptococcus suis (S. suis) illness from consuming raw pork and swine blood in Nakhon Sawan Province. A four-step risk assessment recommended by the Codex Alimentarius Commission was used to evaluate the risk along the pork supply chain. A total of 480 pork and swine blood samples were collected from the abattoir (n = 120) and retail (n = 360) during December 2020 and January 2021. Streptococcus suis in samples was enumerated using a culture-based technique and then confirmed by the biochemical and molecular technique. Streptococcus suis was serotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Two positive swine blood samples were contaminated with non-zoonotic S. suis serotype 23 at retail. In the case of all negative samples, the deterministic prevalence becomes zero and then the risk could not be estimated. Otherwise, the beta probability distribution was used to describe the probabilistic prevalence, while the maximum likelihood estimator was applied to estimate the upper limit of a probability distribution of concentration. The district averages of probabilistic prevalences of zoonotic S. suis in pork products at abattoir and retail were 9.9% and 4.1%, respectively. The district averages of concentrations of zoonotic S. suis in pork and blood samples from abattoir were 6.8 × 10-3 cfu/g and 6.83 cfu/ml and in pork and blood samples from retail were 2.3 × 10-3 cfu/g and 2.30 cfu/ml, respectively. The overall annual risk estimate per 100,000 population in pork and swine blood from abattoir and retail were 9.8 × 10-11 , 2.2 × 10-6 , 5.4 × 10-13 , and 8.3 × 10-8 . These risk estimates were negligible (<10-6 ) except for the annual risk estimate in swine blood from the abattoir. The results from this cross-sectional risk assessment should prompt the food safety regulator to cautiously sample by taking into account the duration of sampling and sample size.
Collapse
Affiliation(s)
- Kannika Khantasup
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence for Food and Water Risk Analysis (FAWRA), Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Ratana Theerawat
- Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Taweeshock Lamaisri
- Nakhon Sawan Provincial Livestock Office, Department of Livestock Development, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Kanjarat Piyalikit
- Nakhon Sawan Provincial Livestock Office, Department of Livestock Development, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Chackrit Nuengjamnong
- Center of Excellence for Food and Water Risk Analysis (FAWRA), Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Suphachai Nuanualsuwan
- Center of Excellence for Food and Water Risk Analysis (FAWRA), Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
PK-PD Modeling and Optimal Dosing Regimen of Acetylkitasamycin against Streptococcus suis in Piglets. Antibiotics (Basel) 2022; 11:antibiotics11020283. [PMID: 35203885 PMCID: PMC8868236 DOI: 10.3390/antibiotics11020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
Streptococcus suis (S. suis) causes severe respiratory diseases in pigs and is also an important pathogen causing hidden dangers to public health and safety. Acetylkitasamycin is a new macrolide agent that has shown good activity to Gram-positive cocci such as Streptococcus. The purpose of this study was to perform pharmacokinetic–pharmacodynamic (PK-PD) modeling to formulate a dosing regimen of acetylkitasamycin for treatment of S. suis and to decrease the emergence of acetylkitasamycin-resistant S. suis. The minimal inhibitory concentration (MIC) of 110 S. suis isolates was determined by broth micro dilution method. The MIC50 of the 55 sensitive S. suis isolates was 1.21 μg/mL. The strain HB1607 with MIC close to MIC50 and high pathogenicity was used for the PK-PD experiments. The MIC and MBC of HB1607 in both MH broth and pulmonary epithelial lining fluid (PELF) was 1 and 2 μg/mL, respectively. The liquid chromatography–tandem mass spectrometry (LC-MS/MS) method was used to determine the concentration change of acetylkitasamycin in piglet plasma and PELF after intragastric administration of a single dose of 50 mg/kg b.w. acetylkitasamycin. The PK parameters were calculated by WinNolin software. The PK data showed that the maximum concentration (Cmax), peak time (Tmax), and area under the concentration–time curve (AUC) were 9.84 ± 0.39 μg/mL, 4.27 ± 0.19 h and 248.58 ± 21.17 h·μg/mL, respectively. Integration of the in vivo PK data and ex vivo PD data, an inhibition sigmoid Emax equation was established. The dosing regimen of acetylkitasamycin for the treatment S. suis infection established as 33.12 mg/kg b.w. every 12 h for 3 days. This study provided a reasonable dosing regimen for a new drug used in clinical treatment, which can effectively be used to treat S. suis infection and slow down the generation of drug resistance.
Collapse
|
12
|
Jiang X, Zhu L, Zhan D. Development of a recombinase polymerase amplification assay for rapid detection of Streptococcus suis type 2 in nasopharyngeal swab samples. Diagn Microbiol Infect Dis 2021; 102:115594. [PMID: 34871933 DOI: 10.1016/j.diagmicrobio.2021.115594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022]
Abstract
Streptococcus suis serotype 2 (SS2), an emerging zoonotic pathogen, may induce severe infections and symptoms manifested as septicemia, meningitis and even death both in human and pigs. The aim of this article was to develop a new methodology as real-time recombinase polymerase amplification (RT-RPA) assay targeting cps2J gene for the detection of SS2 (or SS1/2). The sensitivity and reproducibility of RT-RPA results were evaluated and compared with a real-time quantitative PCR (RT-qPCR). The established RT-RPA reaction could be completed in 20 minutes with distinguishable specificity against the predominant S. suis infection serotypes of 3, 4, 5, 7, 9, 14, and 31. Lower detection limit for RT-RPA was 102 genomic DNA copies per reaction. The specimen performance of RT-RPA was tested in nasopharyngeal swab samples with the sensitivity and specificity as 97.5% and 100%, respectively. Thus, this RT-RPA method is a rapid and potential molecular diagnostic tool for SS2 detection.
Collapse
Affiliation(s)
- Xiaowu Jiang
- Medical School of Yichun University, Yichun, Jiangxi, China; Jiangxi Provincial Key Laboratory of Active Component of Natural Drugs, Poster-Doctoral Research Center, Jiangxi, China.
| | - Lexin Zhu
- Medical School of Yichun University, Yichun, Jiangxi, China
| | - Dongbo Zhan
- Medical School of Yichun University, Yichun, Jiangxi, China
| |
Collapse
|
13
|
Sulong P, Anudit N, Nuanualsuwan S, Mariela S, Khantasup K. Application of phage display technology for the production of antibodies against Streptococcus suis serotype 2. PLoS One 2021; 16:e0258931. [PMID: 34699547 PMCID: PMC8547629 DOI: 10.1371/journal.pone.0258931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis (S. suis) serotype 2 infection is a problem in the swine industry and responsible for most cases of human infection worldwide. Since current multiplex PCR cannot differentiate between serotypes 2 and 1/2, then serotype-specific antibodies (Abs) are required for serotype identification to confirm infection by serotype 2. This study aimed to generate Abs specific to S. suis serotype 2 by phage display from a human heavy chain variable domain (VH) antibody library. For biopanning, whole cells of S. suis serotype 2 were used as the target antigen. With increasing selection stringency, we could select the VH Abs that specifically bound to a S. suis serotype 2 surface antigen, which was identified as the capsular polysaccharide (CPS). From ELISA analysis, the specific phage clone 47B3 VH with the highest binding activity to S. suis serotype 2 was selected and shown to have no cross-reactivity with S. suis serotypes 1/2, 1, and 14 that shared a common epitope with serotype 2 and occasionally cause infections in human. Moreover, no cross-reactivity with other bacteria that can be found in septic blood specimens was also observed. Then, 47B3 VH was successfully expressed as soluble 47B3 VH in E. coli TG1. The soluble 47B3 VH crude extract was further tested for its binding ability in a dose-dependent ELISA assay. The results indicated that the activity of phage clone 47B3 was still retained even when the Ab occurred in the soluble form. A quellung reaction demonstrated that the soluble 47B3 VH Ab could show bioactivity by differentiation between S. suis serotypes 2 and 1/2. Thus, it will be beneficial to use this VH Ab in the diagnosis of disease or discrimination of S. suis serotypes Furthermore, the results described here could motivate the use of phage display VH platform to produce serotyping antibodies.
Collapse
Affiliation(s)
- Pattarawadee Sulong
- The Medical Microbiology Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Natsinee Anudit
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suphachai Nuanualsuwan
- Department of Veterinary Public Health, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand
- Food Risk Hub, Research Unit of Chulalongkorn University, Bangkok, Thailand
| | - Segura Mariela
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Kannika Khantasup
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Food Risk Hub, Research Unit of Chulalongkorn University, Bangkok, Thailand
- Vaccines and Therapeutic Proteins Research Group, the Special Task Force for Activating Research (STAR), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Direct Detection of Streptococcus suis from Cerebrospinal Fluid, Positive Hemoculture, and Simultaneous Differentiation of Serotypes 1, 1/2, 2, and 14 within Single Reaction. Pathogens 2021; 10:pathogens10080996. [PMID: 34451460 PMCID: PMC8401787 DOI: 10.3390/pathogens10080996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/26/2022] Open
Abstract
Streptococcus suis is an emerging zoonotic bacterium causing septicemia and meningitis in humans. Due to rapid disease progression, high mortality rate, and many underdiagnosed cases by time-consuming routine identification methods, alternative diagnostic testing is essential. Among 29 broadly accepted S. suis serotypes, serotypes 2 and 14 are high prevalent; however, many PCR assays showed an inability to differentiate serotype 2 from 1/2, and 1 from 14. In this study, we developed and validated a new multiplex PCR assay that facilitates the identification of only the 29 true serotypes of S. suis and simultaneously differentiates serotypes 1, 1/2, 2, and 14 within a single reaction. Importantly, the multiplex PCR could detect S. suis directly from positive hemocultures and CSF. The results revealed high sensitivity, specificity, and 100% accuracy with almost perfect agreement (κ = 1.0) compared to culture and serotyping methods. Direct detection enables a decrease in overall diagnosis time, rapid and efficient treatment, reduced fatality rates, and proficient disease control. This multiplex PCR offers a rapid, easy, and cost-effective method that can be applied in a routine laboratory. Furthermore, it is promising for developing point-of-care testing (POCT) for S. suis detection in the future.
Collapse
|
15
|
Wang J, Dong R, Zou P, Chen Y, Li N, Wang Y, Zhang T, Pan X. Identification of a Novel Linear B Cell Epitope on the Sao Protein of Streptococcus suis Serotype 2. Front Immunol 2020; 11:1492. [PMID: 32765516 PMCID: PMC7381117 DOI: 10.3389/fimmu.2020.01492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/08/2020] [Indexed: 12/02/2022] Open
Abstract
Surface antigen one (Sao) protein is a bacterial surface protein identified in the important zoonotic pathogen Streptococcus suis serotype 2 (S. suis 2) during an extensive search for functional proteins. The Sao protein is anchored to the bacterial cell wall by the LPVTG motif and is widely distributed in many S. suis serotypes. In this paper, we present the immunodominant epitope peptide of the Sao protein that is recognized by BALB/c antibodies against the Sao protein: 355SEKQMPSVVNENAVTPEKQMTNKENDNIET384 (location Sao355−384). To determine the core epitope recognized by antibodies, we prepared truncation peptide libraries. Analyses of the immunoreactivity of truncation peptides with anti-Sao355−384 serum revealed that the most immunoreactive sequence was 355SEKQMPSVVNENAVTPEK372 (location Sao355−372). Moreover, we observed that this core epitope also showed good specificity based on the ratio of reactivity with serum from S. suis–positive patients compared to serum from S. suis–negative patients. Our results point to the potential of using the Sao355−372 peptide in diagnostic assays to determine S. suis infection in humans.
Collapse
Affiliation(s)
- Jing Wang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Ruirui Dong
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Ping Zou
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yuejuan Chen
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Na Li
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yao Wang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Ting Zhang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Xiuzhen Pan
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China
| |
Collapse
|
16
|
Cheong Y, Oh C, Lee K, Cho KH. Survey of porcine respiratory disease complex-associated pathogens among commercial pig farms in Korea via oral fluid method. J Vet Sci 2018; 18:283-289. [PMID: 27586468 PMCID: PMC5639080 DOI: 10.4142/jvs.2017.18.3.283] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/12/2016] [Accepted: 08/26/2016] [Indexed: 11/20/2022] Open
Abstract
Oral fluid analysis for herd monitoring is of interest to the commercial pig production in Korea. The aim of this study was to investigate pathogen-positive rates and correlations among eight pathogens associated with porcine respiratory disease complex by analyzing oral fluid samples from 214 pig groups from 56 commercial farms. Samples collected by a rope-chewing method underwent reverse-transcriptase polymerase chain reaction (RT-PCR) or standard polymerase chain reaction (PCR) analysis, depending on the microorganism. Pathogens were divided into virus and bacteria groups. The former consisted of porcine reproductive and respiratory syndrome virus and porcine circovirus type 2 (PCV2), and the latter Pasteurella multocida, Haemophilus parasuis, Actinobacillus pleuropneumoniae, Mycoplasma hyopneumoniae (MHP), Mycoplasma hyorhinis, and Streptococcus suis (SS). All pathogens were detected more than once by PCR. Age-based analysis showed the PCR-positive rate increased with increasing age for PCV2 and MHP, whereas SS showed the opposite. Correlations between pathogens were assessed among 36 different pair combinations; only seven pairs showed statistically significant correlations. In conclusion, the oral fluid method could be a feasible way to detect various swine respiratory disease pathogens and, therefore, could complement current monitoring systems for respiratory diseases in the swine industry.
Collapse
Affiliation(s)
- Yeotaek Cheong
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Changin Oh
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Kunkyu Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Ki-Hyun Cho
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| |
Collapse
|
17
|
Dong W, zhu Y, Ma Y, Ma J, Zhang Y, Yuan L, Pan Z, Wu Z, Yao H. Multilocus sequence typing and virulence genotyping of Streptococcus suis serotype 9 isolates revealed high genetic and virulence diversity. FEMS Microbiol Lett 2017; 364:4209578. [DOI: 10.1093/femsle/fnx192] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 09/20/2017] [Indexed: 01/09/2023] Open
|
18
|
Devi M, Dutta JB, Rajkhowa S, Kalita D, Saikia GK, Das BC, Hazarika RA, Mahato G. Prevalence of multiple drug resistant Streptococcus suis in and around Guwahati, India. Vet World 2017; 10:556-561. [PMID: 28620262 PMCID: PMC5465772 DOI: 10.14202/vetworld.2017.556-561] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/07/2017] [Indexed: 11/16/2022] Open
Abstract
Aim: This study was conducted to determine the prevalence and antimicrobial susceptibility of Streptococcus suis and their resistance patterns isolated from both clinically healthy carriers and diseased pigs in and around Guwahati, Assam, India. Materials and Methods: A total of 497 samples were collected during October, 2012, to April, 2014, from clinically healthy (n=67) and diseased (n=230) pigs of varying age and either sex maintained under organized and unorganized farming systems. Samples were processed for isolation and identification of S. suis by biochemical characterization and polymerase chain reaction targeting the housekeeping gene glutamate dehydrogenase. In vitro antimicrobial susceptibility of the recovered isolates against nine antibiotic groups comprising 17 antimicrobial agents was studied by standard method. Results: Of the 497 samples examined, 7 (1.41%) isolates were confirmed to be S. suis of which 5 (1.87%) and 2 (0.87%) were derived from clinically healthy and diseased pigs, respectively. All the isolates were susceptible to gentamicin, amikacin, and erythromycin (100%) followed by the penicillin group and enrofloxacin (85.71%), ceftriaxone, doxycycline HCL, ofloxacin and chloramphenicol (71.43%), to kanamycin, clindamycin and co-trimoxazole (42.85%). The isolates showed least susceptibility to cefalexin, tetracycline and streptomycin (28.57%). All the five S. suis isolates from clinically healthy pigs were susceptible to penicillin G, amoxyclav, doxycycline HCl, gentamicin, amikacin and erythromycin, 80.00% isolates susceptible to ampicillin, enrofloxacin and ofloxacin, 60.00% to ceftriaxone, kanamycin and chloramphenicol, 40% to cefalexin, tetracycline, clindamycin and co-trimoxazole, respectively. Only 20.00% isolates were susceptible to streptomycin. Both the isolates recovered from diseased pigs were susceptible to ampicillin, ceftriaxone, gentamicin, amikacin, enrofloxacin, erythromycin, and clindamycin. On the other hand, both the isolates were resistant to cefalexin, tetracycline, doxycycline HCL, and kanamycin. Altogether five different resistance patterns (multi-drug resistance) were observed. Of the seven S. suis isolates, two isolates were susceptible to all the 17 antimicrobial agents, one isolate was resistant to four antimicrobial agents, two isolates to seven agents, one isolate to nine agents, and one isolate exhibited resistance to 14 antimicrobial agents. Conclusion: This study was conducted to determine the prevalence of S. suis in clinically healthy and diseased pigs and their antimicrobial susceptibility patterns. All the isolates were susceptible to gentamicin, amikacin and erythromycin, and most of them were resistant to cefalexin, tetracycline and streptomycin. Five different patterns of antimicrobial resistance (multi-drug resistance) were observed.
Collapse
Affiliation(s)
- Mrinalee Devi
- Department of Veterinary Epidemiology and Preventive Veterinary Medicine, College of Veterinary Science, AAU, Khanapara, Guwahati, Assam - 781 022, India
| | - Jyoti B Dutta
- Department of Veterinary Epidemiology and Preventive Veterinary Medicine, College of Veterinary Science, AAU, Khanapara, Guwahati, Assam - 781 022, India
| | - Swaraj Rajkhowa
- National Research Centre on Pig, ICAR, Rani, Kamrup, Assam - 781 131, India
| | - Dhireswar Kalita
- AICRP/MSP on Pigs, College of Veterinary Science, AAU, Khanapara, Guwahati, Assam - 781 022, India
| | - Girindra Kumar Saikia
- Department of Veterinary Microbiology, College of Veterinary Science, AAU, Khanapara, Guwahati, Assam - 781 022, India
| | - Bipin Chandra Das
- Department of Veterinary Epidemiology and Preventive Veterinary Medicine, College of Veterinary Science, AAU, Khanapara, Guwahati, Assam - 781 022, India
| | - Razibuddin Ahmed Hazarika
- Department of Veterinary Public Health, College of Veterinary Science, AAU, Khanapara, Guwahati, Assam - 781 022, India
| | - Gauranga Mahato
- Department of Veterinary Epidemiology and Preventive Veterinary Medicine, College of Veterinary Science, AAU, Khanapara, Guwahati, Assam - 781 022, India
| |
Collapse
|
19
|
Wang K, Wu Z, Yao H, Qiu Y, Lu C. Identification and Detection of Serotype-Specific Genes: Effective Serotyping of Streptococcus suis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Okura M, Osaki M, Nomoto R, Arai S, Osawa R, Sekizaki T, Takamatsu D. Current Taxonomical Situation of Streptococcus suis. Pathogens 2016; 5:pathogens5030045. [PMID: 27348006 PMCID: PMC5039425 DOI: 10.3390/pathogens5030045] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/09/2016] [Accepted: 06/20/2016] [Indexed: 12/31/2022] Open
Abstract
Streptococcus suis, a major porcine pathogen and an important zoonotic agent, is considered to be composed of phenotypically and genetically diverse strains. However, recent studies reported several “S. suis-like strains” that were identified as S. suis by commonly used methods for the identification of this bacterium, but were regarded as distinct species from S. suis according to the standards of several taxonomic analyses. Furthermore, it has been suggested that some S. suis-like strains can be assigned to several novel species. In this review, we discuss the current taxonomical situation of S. suis with a focus on (1) the classification history of the taxon of S. suis; (2) S. suis-like strains revealed by taxonomic analyses; (3) methods for detecting and identifying this species, including a novel method that can distinguish S. suis isolates from S. suis-like strains; and (4) current topics on the reclassification of S. suis-like strains.
Collapse
Affiliation(s)
- Masatoshi Okura
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
| | - Makoto Osaki
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
| | - Ryohei Nomoto
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5 Minatojima-Nakamachi, Chuo-ku, Kobe, Hyogo 650-0045, Japan.
| | - Sakura Arai
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Ro Osawa
- Organization for Advanced Science and Technology, Kobe University, 1-1 Rokko-dai, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Tsutomu Sekizaki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Daisuke Takamatsu
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.
| |
Collapse
|
21
|
Jiang X, Yang Y, Zhu L, Gu Y, Shen H, Shan Y, Li X, Wu J, Fang W. Live Streptococcus suis type 5 strain XS045 provides cross-protection against infection by strains of types 2 and 9. Vaccine 2016; 34:6529-6538. [PMID: 27349838 DOI: 10.1016/j.vaccine.2016.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 11/27/2022]
Abstract
Streptococcus suis is one of the common pathogens causing diseases in pigs and covers 35 serotypes with the type 2 strains being more pathogenic and zoonotic. Existing inactivated or subunit vaccines, in clinical use or under trial, could not provide cross protection against other serotypes. We identified a natural low-virulence S. suis type 5 strain XS045 as a live vaccine candidate because it is highly adhesive to the cultured HEp-2 cells, but with no apparent pathogenicity in mice and piglets. We further demonstrate that subcutaneous administration of the live XS045 strain to mice induced high antibody responses and was able to provide cross protection against challenges by a type 2 strain HA9801 (100% protection) and a type 9 strain JX13 (85% protection). Induction of high-titer antibodies with opsonizing activity as well as their cross-reactivity to surface proteins of the types 2 and 9 strains and anti-adhesion effect could be the mechanisms of cross protection. This is the first report that a live vaccine candidate S. suis type 5 strain could induce cross-protection against strains of types 2 and 9. This candidate strain is to be further examined for safety in pigs of different ages and breeds as well as for its protection against other serotypes or other strains of the type 2, a serotype of particular importance from public health concern.
Collapse
Affiliation(s)
- Xiaowu Jiang
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yunkai Yang
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Lexin Zhu
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yuanxing Gu
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Hongxia Shen
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Ying Shan
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiaoliang Li
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jiusheng Wu
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Weihuan Fang
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
22
|
Novel variant serotype of streptococcus suis isolated from piglets with meningitis. Appl Environ Microbiol 2014; 81:976-85. [PMID: 25416757 DOI: 10.1128/aem.02962-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is an emerging zoonotic pathogen causing severe infections in pigs and humans. In previous studies, 33 serotypes of S. suis have been identified using serum agglutination. Here, we describe a novel S. suis strain, CZ130302, isolated from an outbreak of acute piglet meningitis in eastern China. Strong pathogenicity of meningitis caused by strain CZ130302 was reproduced in the BALB/c mouse model. The strain showed a high fatality rate (8/10), higher than those for known virulent serotype 2 strains P1/7 (1/10) and 9801 (2/10). Cell adhesion assay results with bEnd.3 and HEp2 cells showed that CZ130302 was significantly close to P1/7 and 9801. Both the agglutination test and its complementary test showed that strain CZ130302 had no strong cross-reaction with the other 33 S. suis serotypes. The multiplex PCR assays revealed no specified bands for all four sets used to detect the other 33 serotypes. In addition, genetic analysis of the whole cps gene clusters of all serotypes was performed in this study. The results of comparative genomics showed that the cps gene cluster of CZ130302, which was not previously reported, showed no homology to the gene sequences of the other strains. Especially, the wzy, wzx, and acetyltransferase genes of strain CZ130302 are phylogenetically distinct from strains of the other 33 serotypes. Therefore, this study suggested that strain CZ130302 represents a novel variant serotype of S. suis (designated serotype Chz) which has a high potential to be virulent and associated with meningitis in animals.
Collapse
|
23
|
Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg Microbes Infect 2014; 3:e45. [PMID: 26038745 PMCID: PMC4078792 DOI: 10.1038/emi.2014.45] [Citation(s) in RCA: 492] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/18/2022]
Abstract
Streptococcus suis is an important pathogen causing economic problems in the pig
industry. Moreover, it is a zoonotic agent causing severe infections to people in close
contact with infected pigs or pork-derived products. Although considered sporadic in the
past, human S. suis infections have been reported during the last 45 years, with
two large outbreaks recorded in China. In fact, the number of reported human cases has
significantly increased in recent years. In this review, we present the worldwide
distribution of serotypes and sequence types (STs), as determined by multilocus sequence
typing, for pigs (between 2002 and 2013) and humans (between 1968 and 2013). The methods
employed for S. suis identification and typing, the current epidemiological
knowledge regarding serotypes and STs and the zoonotic potential of S. suis are
discussed. Increased awareness of S. suis in both human and veterinary diagnostic
laboratories and further establishment of typing methods will contribute to our knowledge
of this pathogen, especially in regions where complete and/or recent data is lacking. More
research is required to understand differences in virulence that occur among S.
suis strains and if these differences can be associated with specific serotypes or
STs.
Collapse
|
24
|
|
25
|
Kerdsin A, Akeda Y, Hatrongjit R, Detchawna U, Sekizaki T, Hamada S, Gottschalk M, Oishi K. Streptococcus suis serotyping by a new multiplex PCR. J Med Microbiol 2014; 63:824-830. [PMID: 24696517 DOI: 10.1099/jmm.0.069757-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A multiplex PCR was developed to detect all true serotypes of Streptococcus suis. This multiplex PCR was composed of four reaction sets. The first set identified nine serotypes (serotypes 1/2, 1, 2, 3, 7, 9, 11, 14 and 16), the second set identified eight serotypes (serotypes 4, 5, 8, 12, 18, 19, 24 and 25), the third set identified seven serotypes (serotypes 6, 10, 13, 15, 17, 23 and 31), and the last set identified five serotypes (serotypes 21, 27, 28, 29 and 30). This assay correctly detected serotypes 2, 5, 14 and 24 in human isolates, and serotypes 1, 2, 1/2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, 19, 24, 28 and 31 in pig isolates from Thailand. No cross-reaction was observed with other bacterial species. Our multiplex PCR was able to simultaneously amplify a DNA mixture of reference Streptococcus suis serotypes. This assay should be useful for serotype surveillance of human and pig isolates of Streptococcus suis.
Collapse
Affiliation(s)
- Anusak Kerdsin
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Yukihiro Akeda
- Laboratory of Clinical Research on Infectious Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Rujirat Hatrongjit
- Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Unchaya Detchawna
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Tsutomu Sekizaki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Hamada
- Thailand-Japan Research Collaboration Center for Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | - Kazunori Oishi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
- Laboratory of Clinical Research on Infectious Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
26
|
Development of multiplex PCR assays for the identification of the 33 serotypes of Streptococcus suis. PLoS One 2013; 8:e72070. [PMID: 23951285 PMCID: PMC3739753 DOI: 10.1371/journal.pone.0072070] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
Streptococcussuis is an important zoonotic agent causing severe diseases in pigs and humans. To date, 33 serotypes of S. suis have been identified based on antigenic differences in the capsular polysaccharide. The capsular polysaccharide synthesis (cps) locus encodes proteins/enzymes that are responsible for capsular production and variation in the capsule structures are the basis of S. suis serotyping. Multiplex and/or simplex PCR assays have been developed for 15 serotypes based on serotype-specific genes in the cps gene cluster. In this study, we developed a set of multiplex PCR (mPCR) assays to identify the 33 currently known S. suis serotypes. To identify serotype-specific genes for mPCR, the entire genomes of reference strains for the 33 serotypes were sequenced using whole genome high-throughput sequencing, and the cps gene clusters from these strains were identified and compared. We developed a set of 4 mPCR assays based on the polysaccharide polymerase gene wzy, one of the serotype-specific genes. The assays can identify all serotypes except for two pairs of serotypes: 1 and 14, and 2 and 1/2, which have no serotype-specific genes between them. The first assay identifies 12 serotypes (serotypes 1 to 10, 1/2, and 14) that are the most frequently isolated from diseased pigs and patients; the second identifies 10 serotypes (serotypes 11 to 21 except 14); the third identifies the remaining 11 serotypes (serotypes 22 to 31, and 33); and the fourth identifies a new cps cluster of S. suis discovered in this study in 16 isolates that agglutinated with antisera for serotypes 29 and 21. The multiplex PCR assays developed in this study provide a rapid and specific method for molecular serotyping of S. suis.
Collapse
|
27
|
First report of the multiresistance gene cfr in Streptococcus suis. Antimicrob Agents Chemother 2013; 57:4061-3. [PMID: 23733472 DOI: 10.1128/aac.00713-13] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The multiresistance gene cfr was identified for the first time in streptococci, namely, in porcine Streptococcus suis isolate S10. The cfr gene was detected on the ~100-kb plasmid pStrcfr, where it was bracketed by two copies of the novel insertion sequence ISEnfa5, located in the same orientation. The detection of a cfr- and ISEnfa5-containing amplicon by inverse PCR suggests that ISEnfa5 may play a role in the dissemination of cfr.
Collapse
|
28
|
Genetic analysis of capsular polysaccharide synthesis gene clusters from all serotypes of Streptococcus suis: potential mechanisms for generation of capsular variation. Appl Environ Microbiol 2013; 79:2796-806. [PMID: 23416996 DOI: 10.1128/aem.03742-12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis strains are classified into 35 serotypes on the basis of the antigenicity of their capsular polysaccharides (CPs). CP synthesis genes are known to be clustered on the chromosome (cps gene cluster). The entire cps gene clusters of S. suis have so far been sequenced in 15 serotypes and found to be located between orfZ and aroA. In this study, to provide comprehensive information about S. suis CPs, we sequenced the entire cps gene clusters of the remaining serotypes and analyzed the complete set of S. suis cps gene clusters. Among the 35 cps gene clusters, 22 were located between orfZ and aroA, whereas the other 13 were flanked by other gene(s) on the chromosomes, and the chromosomal locus was classified into five patterns. By clustering analysis, the predicted products of cps genes found in the 35 serotypes were assigned into 291 homology groups, and all serotypes possessed a serotype-specific gene, except for serotypes 1, 2, 1/2, and 14. Because of the presence of genes encoding flippase (wzx) and polymerase (wzy), CPs of all serotypes were thought to be synthesized by the Wzx/Wzy pathway. Our data also implied the possibility of the transfer of the entire or partial cps gene clusters among S. suis strains, as well as the influence of spontaneous mutations in a single gene or a few genes on the antigenicity of some serotypes. Accumulation of these gene transfers and small-scale mutations may have generated the antigenic diversity of S. suis CPs.
Collapse
|