1
|
do Amarante VS, Campos JVF, de Souza TGV, de Castro YG, Godoy KMG, Silva ROS. Evaluation of the Potency of the First Commercial Vaccine for Clostridioides difficile Infection in Piglets and Comparison with the Humoral Response in Rabbits. Vaccines (Basel) 2025; 13:438. [PMID: 40432050 PMCID: PMC12115435 DOI: 10.3390/vaccines13050438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Clostridioides difficile is an anaerobic bacterium that causes disease in both animals and humans. Despite the known significance of this agent, there are no commercial vaccines available for humans, and only one immunogen is marketed for swine. However, no studies have evaluated this vaccine. BACKGROUND/OBJECTIVES Therefore, the aim of this study was to assess the potency of the first commercial vaccine for C. difficile infection in piglets and to compare the humoral response in rabbits and sows. METHODS Pregnant sows were divided into two groups: a vaccinated group (n = 12), receiving two doses before farrowing, according to the manufacturer's recommendation, and an unvaccinated control group (n = 6). Blood samples were taken from sows and also from piglets up to two days after birth. In addition, two groups of New Zealand rabbits (Oryctolagus cuniculus) received either a half-dose (G1) or a full-dose (G2) of the vaccine, with a control group receiving sterile saline (0.85%). Rabbits were vaccinated twice, 21 days apart, with blood samples collected before each dose and 14 days after the final dose. A serum neutralization assay in Vero cells was performed to evaluate the titers of neutralizing antibodies. RESULTS The vaccine demonstrated immunogenicity by stimulating the production of neutralizing antibodies in both rabbits and sows. Additionally, these antibodies were passively transferred to piglets through colostrum, reaching levels comparable to those found in sows. Furthermore, vaccinated rabbits developed antibody titers that do not significantly differ from those obtained in sows and piglets. CONCLUSIONS The tested vaccine can induce a humoral immune response against C. difficile A/B toxins in sows and these antibodies are passively transferred to neonatal piglets through colostrum. Also, the vaccination of rabbits might be a useful alternative for evaluating the potency of vaccines against C. difficile.
Collapse
Affiliation(s)
| | | | | | | | | | - Rodrigo Otávio Silveira Silva
- Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
2
|
Kuijper EJ, Gerding DN. The End of Toxoid Vaccine Development for Preventing Clostridioides difficile Infections? Clin Infect Dis 2024; 79:1512-1514. [PMID: 39178347 DOI: 10.1093/cid/ciae412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/10/2024] [Accepted: 08/21/2024] [Indexed: 08/25/2024] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Ed J Kuijper
- National Expertise Center for Clostridioides difficile Infections of Leiden University Center for Infectious Diseases, Leiden University Medical Centre (LUMC), Leiden, The Netherlands and Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Dale N Gerding
- Edward Hines, Jr, Veterans Affairs Hospital, Hines, Illinois, USA
| |
Collapse
|
3
|
Aminzadeh A, Hilgers L, Paul Platenburg P, Riou M, Perrot N, Rossignol C, Cauty A, Barc C, Jørgensen R. Immunogenicity and safety in rabbits of a Clostridioides difficile vaccine combining novel toxoids and a novel adjuvant. Vaccine 2024; 42:1582-1592. [PMID: 38336558 DOI: 10.1016/j.vaccine.2024.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Clostridioides difficile infection (CDI) is a serious healthcare-associated disease, causing symptoms such as diarrhea and pseudomembranous colitis. The major virulence factors responsible for the disease symptoms are two secreted cytotoxic proteins, TcdA and TcdB. A parenteral vaccine based on formaldehyde-inactivated TcdA and TcdB supplemented with alum adjuvant, has previously been investigated in humans but resulted in an insufficient immune response. In search for an improved response, we investigated a novel toxin inactivation method and a novel, potent adjuvant. Inactivation of toxins by metal-catalyzed oxidation (MCO) was previously shown to preserve neutralizing epitopes and to annihilate reversion to toxicity. The immunogenicity and safety of TcdA and TcdB inactivated by MCO and combined with a novel carbohydrate fatty acid monosulphate ester-based (CMS) adjuvant were investigated in rabbits. Two or three intramuscular immunizations generated high serum IgG and neutralizing antibody titers against both toxins. The CMS adjuvant increased antibody responses to both toxins while an alum adjuvant control was effective only against TcdA. Systemic safety was evaluated by monitoring body weight, body temperature, and analysis of red and white blood cell counts shortly after immunization. Local safety was assessed by histopathologic examination of the injection site at the end of the study. Body weight gain was constant in all groups. Body temperature increased up to 1 ˚C one day after the first immunization but less after the second or third immunization. White blood cell counts, and percentage of neutrophils increased one day after immunization with CMS-adjuvanted vaccines, but not with alum. Histopathology of the injection sites 42 days after the last injection did not reveal any abnormal tissue reactions. From this study, we conclude that TcdA and TcdB inactivated by MCO and combined with CMS adjuvant demonstrated promising immunogenicity and safety in rabbits and could be a candidate for a vaccine against CDI.
Collapse
Affiliation(s)
- Aria Aminzadeh
- Proxi Biotech ApS, Egeskellet 6, 2000 Frederiksberg, Denmark; Department of Science and Environment, University of Roskilde, 4000 Roskilde, Denmark
| | - Luuk Hilgers
- LiteVax BV, Akkersestraat 50, 4061BJ Ophemert, the Netherlands
| | | | - Mickaël Riou
- INRAE, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), Centre Val de Loire, 37380 Nouzilly, France
| | - Noémie Perrot
- INRAE, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), Centre Val de Loire, 37380 Nouzilly, France
| | - Christelle Rossignol
- INRAE-Université de Tours, UMR-1282 Infectiologie et Santé publique (ISP), équipe IMI, Centre Val de Loire, 37380 Nouzilly, France
| | - Axel Cauty
- INRAE, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), Centre Val de Loire, 37380 Nouzilly, France
| | - Céline Barc
- INRAE, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), Centre Val de Loire, 37380 Nouzilly, France
| | - René Jørgensen
- Proxi Biotech ApS, Egeskellet 6, 2000 Frederiksberg, Denmark; Department of Science and Environment, University of Roskilde, 4000 Roskilde, Denmark.
| |
Collapse
|
4
|
Root-Bernstein R. T-Cell Receptor Sequences Identify Combined Coxsackievirus- Streptococci Infections as Triggers for Autoimmune Myocarditis and Coxsackievirus- Clostridia Infections for Type 1 Diabetes. Int J Mol Sci 2024; 25:1797. [PMID: 38339075 PMCID: PMC10855694 DOI: 10.3390/ijms25031797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Recent research suggests that T-cell receptor (TCR) sequences expanded during human immunodeficiency virus and SARS-CoV-2 infections unexpectedly mimic these viruses. The hypothesis tested here is that TCR sequences expanded in patients with type 1 diabetes mellitus (T1DM) and autoimmune myocarditis (AM) mimic the infectious triggers of these diseases. Indeed, TCR sequences mimicking coxsackieviruses, which are implicated as triggers of both diseases, are statistically significantly increased in both T1DM and AM patients. However, TCRs mimicking Clostridia antigens are significantly expanded in T1DM, whereas TCRs mimicking Streptococcal antigens are expanded in AM. Notably, Clostridia antigens mimic T1DM autoantigens, such as insulin and glutamic acid decarboxylase, whereas Streptococcal antigens mimic cardiac autoantigens, such as myosin and laminins. Thus, T1DM may be triggered by combined infections of coxsackieviruses with Clostridia bacteria, while AM may be triggered by coxsackieviruses with Streptococci. These TCR results are consistent with both epidemiological and clinical data and recent experimental studies of cross-reactivities of coxsackievirus, Clostridial, and Streptococcal antibodies with T1DM and AM antigens. These data provide the basis for developing novel animal models of AM and T1DM and may provide a generalizable method for revealing the etiologies of other autoimmune diseases. Theories to explain these results are explored.
Collapse
|
5
|
Campidelli C, Bruxelle JF, Collignon A, Péchiné S. Immunization Strategies Against Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:117-150. [PMID: 38175474 DOI: 10.1007/978-3-031-42108-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is an important healthcare but also a community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients, and to prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to elicit immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile, and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product, and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins, and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens and either toxins or colonization factors.
Collapse
Affiliation(s)
- Camille Campidelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Jean-François Bruxelle
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Anne Collignon
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Severine Péchiné
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
6
|
Odun-Ayo F, Reddy L. Potential Biomedical Applications of Modified Pectin as a Delivery System for Bioactive Substances. POLYSACCHARIDES 2023; 4:1-32. [DOI: 10.3390/polysaccharides4010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Pectin is a polysaccharide that has been recently gaining attention because it is renewable, inexpensive, biocompatible, degradable, non-toxic, non-polluting, and has mechanical integrity. The recent extraction techniques and modification to the structural property of pectin have led to the modified pectin whose chemical and surface functional groups yield galacturonic acid and galactose contents which are primarily responsible for its improved and better use in biomedical applications including drug delivery and thus producing high-value products. Major attention on modified pectin has been focused on the aspect of its bioactive functionalities that opposes cancer development. Nevertheless, modified pectin can be combined with a wide range of biopolymers with unique characteristics and activities which thus enhances its application in different areas. This has enabled the current applications of modified pectin through different approaches in addition to the prominent anti-cancer functional capabilities, which were reviewed. Furthermore, this paper highlights the potential of modified pectin as a delivery system of bioactive substances, its synergistic and prebiotic effects, gut microbiota effect and antiviral properties amongst other roles applicable in the biomedical and pharmaceutical industries.
Collapse
Affiliation(s)
- Frederick Odun-Ayo
- Department of Biotechnology and Consumer Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, District Six Campus, Cape Town 7530, South Africa
| | - Lalini Reddy
- Department of Biotechnology and Consumer Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, District Six Campus, Cape Town 7530, South Africa
| |
Collapse
|
7
|
Nibbering B, Gerding DN, Kuijper EJ, Zwittink RD, Smits WK. Host Immune Responses to Clostridioides difficile: Toxins and Beyond. Front Microbiol 2022; 12:804949. [PMID: 34992590 PMCID: PMC8724541 DOI: 10.3389/fmicb.2021.804949] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is often resistant to the actions of antibiotics to treat other bacterial infections and the resulting C. difficile infection (CDI) is among the leading causes of nosocomial infectious diarrhea worldwide. The primary virulence mechanism contributing to CDI is the production of toxins. Treatment failures and recurrence of CDI have urged the medical community to search for novel treatment options. Strains that do not produce toxins, so called non-toxigenic C. difficile, have been known to colonize the colon and protect the host against CDI. In this review, a comprehensive description and comparison of the immune responses to toxigenic C. difficile and non-toxigenic adherence, and colonization factors, here called non-toxin proteins, is provided. This revealed a number of similarities between the host immune responses to toxigenic C. difficile and non-toxin proteins, such as the influx of granulocytes and the type of T-cell response. Differences may reflect genuine variation between the responses to toxigenic or non-toxigenic C. difficile or gaps in the current knowledge with respect to the immune response toward non-toxigenic C. difficile. Toxin-based and non-toxin-based immunization studies have been evaluated to further explore the role of B cells and reveal that plasma cells are important in protection against CDI. Since the success of toxin-based interventions in humans to date is limited, it is vital that future research will focus on the immune responses to non-toxin proteins and in particular non-toxigenic strains.
Collapse
Affiliation(s)
- Britt Nibbering
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Dale N Gerding
- Department of Veterans Affairs, Research Service, Edward Hines Jr. VA Hospital, Hines, IL, United States
| | - Ed J Kuijper
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Romy D Zwittink
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Wiep Klaas Smits
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
8
|
Phanchana M, Harnvoravongchai P, Wongkuna S, Phetruen T, Phothichaisri W, Panturat S, Pipatthana M, Charoensutthivarakul S, Chankhamhaengdecha S, Janvilisri T. Frontiers in antibiotic alternatives for Clostridioides difficile infection. World J Gastroenterol 2021; 27:7210-7232. [PMID: 34876784 PMCID: PMC8611198 DOI: 10.3748/wjg.v27.i42.7210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/12/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile (C. difficile) is a gram-positive, anaerobic spore-forming bacterium and a major cause of antibiotic-associated diarrhea. Humans are naturally resistant to C. difficile infection (CDI) owing to the protection provided by healthy gut microbiota. When the gut microbiota is disturbed, C. difficile can colonize, produce toxins, and manifest clinical symptoms, ranging from asymptomatic diarrhea and colitis to death. Despite the steady-if not rising-prevalence of CDI, it will certainly become more problematic in a world of antibiotic overuse and the post-antibiotic era. C. difficile is naturally resistant to most of the currently used antibiotics as it uses multiple resistance mechanisms. Therefore, current CDI treatment regimens are extremely limited to only a few antibiotics, which include vancomycin, fidaxomicin, and metronidazole. Therefore, one of the main challenges experienced by the scientific community is the development of alternative approaches to control and treat CDI. In this Frontier article, we collectively summarize recent advances in alternative treatment approaches for CDI. Over the past few years, several studies have reported on natural product-derived compounds, drug repurposing, high-throughput library screening, phage therapy, and fecal microbiota transplantation. We also include an update on vaccine development, pre- and pro-biotics for CDI, and toxin antidote approaches. These measures tackle CDI at every stage of disease pathology via multiple mechanisms. We also discuss the gaps and concerns in these developments. The next epidemic of CDI is not a matter of if but a matter of when. Therefore, being well-equipped with a collection of alternative therapeutics is necessary and should be prioritized.
Collapse
Affiliation(s)
- Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | | - Supapit Wongkuna
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tanaporn Phetruen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Wichuda Phothichaisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Supakan Panturat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Methinee Pipatthana
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sitthivut Charoensutthivarakul
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
9
|
Systematic Evaluation of Parameters Important for Production of Native Toxin A and Toxin B from Clostridioides difficile. Toxins (Basel) 2021; 13:toxins13040240. [PMID: 33801738 PMCID: PMC8066640 DOI: 10.3390/toxins13040240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
In the attempt to improve the purification yield of native toxin A (TcdA) and toxin B (TcdB) from Clostridioides difficile (C. difficile), we systematically evaluated culture parameters for their influence on toxin production. In this study, we showed that culturing C. difficile in a tryptone-yeast extract medium buffered in PBS (pH 7.5) that contained 5 mM ZnCl2 and 10 mM glucose supported the highest TcdB production, measured by the sandwich ELISA. These culture conditions were scalable into 5 L and 15 L dialysis tube cultures, and we were able to reach a TcdB concentration of 29.5 µg/mL of culture. Furthermore, we established a purification protocol for TcdA and TcdB using FPLC column chromatography, reaching purities of >99% for both toxins with a yield around 25% relative to the starting material. Finally, by screening the melting temperatures of TcdA and TcdB in various buffer conditions using differential scanning fluorimetry, we found optimal conditions for improving the protein stability during storage. The results of this study present a complete protocol for obtaining high amounts of highly purified native TcdA and TcdB from C. difficile.
Collapse
|
10
|
Karyal C, Hughes J, Kelly ML, Luckett JC, Kaye PV, Cockayne A, Minton NP, Griffin R. Colonisation Factor CD0873, an Attractive Oral Vaccine Candidate against Clostridioides difficile. Microorganisms 2021; 9:microorganisms9020306. [PMID: 33540694 PMCID: PMC7913071 DOI: 10.3390/microorganisms9020306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Clostridioides difficile is the main cause of health-care-associated infectious diarrhoea. Toxins, TcdA and TcdB, secreted by this bacterium damage colonic epithelial cells and in severe cases this culminates in pseudomembranous colitis, toxic megacolon and death. Vaccines in human trials have focused exclusively on the parenteral administration of toxin-based formulations. These vaccines promote toxin-neutralising serum antibodies but fail to confer protection from infection in the gut. An effective route to immunise against gut pathogens and stimulate a protective mucosal antibody response (secretory immunoglobulin A, IgA) at the infection site is the oral route. Additionally, oral immunisation generates systemic antibodies (IgG). Using this route, two different antigens were tested in the hamster model: The colonisation factor CD0873 and a TcdB fragment. Animals immunised with CD0873 generated a significantly higher titre of sIgA in intestinal fluid and IgG in serum compared to naive animals, which significantly inhibited the adherence of C. difficile to Caco-2 cells. Following challenge with a hypervirulent isolate, the CD0873-immunised group showed a mean increase of 80% in time to experimental endpoint compared to naïve animals. Survival and body condition correlated with bacterial clearance and reduced pathology in the cecum. Our findings advocate CD0873 as a promising oral vaccine candidate against C. difficile.
Collapse
Affiliation(s)
- Cansu Karyal
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (C.K.); (J.H.); (M.L.K.); (A.C.); (N.P.M.)
| | - Jaime Hughes
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (C.K.); (J.H.); (M.L.K.); (A.C.); (N.P.M.)
| | - Michelle L. Kelly
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (C.K.); (J.H.); (M.L.K.); (A.C.); (N.P.M.)
| | - Jeni C. Luckett
- The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK;
| | - Philip V. Kaye
- Department of Histopathology, Queen’s Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK;
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre (BRC), Nottingham NG7 2UH, UK
| | - Alan Cockayne
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (C.K.); (J.H.); (M.L.K.); (A.C.); (N.P.M.)
| | - Nigel P. Minton
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (C.K.); (J.H.); (M.L.K.); (A.C.); (N.P.M.)
| | - Ruth Griffin
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (C.K.); (J.H.); (M.L.K.); (A.C.); (N.P.M.)
- Correspondence: ; Tel.: +44-0115-7486120
| |
Collapse
|
11
|
Aminzadeh A, Tiwari MK, Mamah Mustapha SS, Navarrete SJ, Henriksen AB, Møller IM, Krogfelt KA, Bjerrum MJ, Jørgensen R. Detoxification of toxin A and toxin B by copper ion-catalyzed oxidation in production of a toxoid-based vaccine against Clostridioides difficile. Free Radic Biol Med 2020; 160:433-446. [PMID: 32860983 DOI: 10.1016/j.freeradbiomed.2020.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 02/04/2023]
Abstract
Clostridioides difficile infections (CDI) has emerged worldwide as a serious antimicrobial-resistant healthcare-associated disease resulting in diarrhea and pseudomembranous colitis. The two cytotoxic proteins, toxin A (TcdA) and toxin B (TcdB) are the major virulence factor responsible for the disease symptoms. We examined time-dependent oxidative detoxification of TcdA and TcdB using different molar ratios of protein:Cu2+:H2O2. The metal-catalyzed oxidation (MCO) reaction in molar ratios of 1:60:1000 for protein:Cu2+:H2O2 at pH 4.5 resulted in a significant 6 log10 fold reduction in cytotoxicity after 120-min incubation at 37 °C. Circular dichroism revealed that MCO-detoxified TcdA and TcdB had secondary and tertiary structural folds similar to the native proteins. The conservation of immunogenic epitopes of both proteins was tested using monoclonal antibodies in an ELISA, comparing our MCO-detoxification approach to a conventional formaldehyde-detoxification method. The oxidative detoxification of TcdA and TcdB led to an average 2-fold reduction in antibody binding relative to native proteins, whereas formaldehyde cross-linking resulted in 3-fold and 5-fold reductions, respectively. Finally, we show that mice immunized with a vaccine consisting of MCO-detoxified TcdA and TcdB were fully protected against disease symptoms and death following a C. difficile infection and elicited substantial serum IgG responses against both TcdA and TcdB. The results of this study present copper ion-catalyzed oxidative detoxification of toxic proteins as a method highly suitable for the rapid production of safe, immunogenic and irreversible toxoid antigens for future vaccine development and may have the potential for replacing cross-linking reagents like formaldehyde.
Collapse
Affiliation(s)
- Aria Aminzadeh
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark; University of Copenhagen, Department of Chemistry, Copenhagen, Denmark
| | | | | | | | | | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK, 4200, Slagelse, Denmark
| | | | | | - René Jørgensen
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark.
| |
Collapse
|
12
|
Matchett WE, Anguiano-Zarate S, Malewana GBR, Mudrick H, Weldy M, Evert C, Khoruts A, Sadowsky M, Barry MA. A Replicating Single-Cycle Adenovirus Vaccine Effective against Clostridium difficile. Vaccines (Basel) 2020; 8:vaccines8030470. [PMID: 32842679 PMCID: PMC7564163 DOI: 10.3390/vaccines8030470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 01/24/2023] Open
Abstract
Clostridium difficile causes nearly 500,000 infections and nearly 30,000 deaths each year in the U.S., which is estimated to cost $4.8 billion. C. difficile infection (CDI) arises from bacteria colonizing the large intestine and releasing two toxins, toxin A (TcdA) and toxin B (TcdB). Generating humoral immunity against C. difficile’s toxins provides protection against primary infection and recurrence. Thus, a vaccine may offer the best opportunity for sustained, long-term protection. We developed a novel single-cycle adenovirus (SC-Ad) vaccine against C. difficile expressing the receptor-binding domains from TcdA and TcdB. The single immunization of mice generated sustained toxin-binding antibody responses and protected them from lethal toxin challenge for up to 38 weeks. Immunized Syrian hamsters produced significant toxin-neutralizing antibodies that increased over 36 weeks. Single intramuscular immunization provided complete protection against lethal BI/NAP1/027 spore challenge 45 weeks later. These data suggest that this replicating vaccine may prove useful against CDI in humans.
Collapse
Affiliation(s)
- William E. Matchett
- Virology and Gene Therapy (VGT) Graduate Program, Mayo Clinic, Rochester, MN 55905, USA;
| | | | | | - Haley Mudrick
- Molecular Pharmacology and Experimental Therapeutics (MPET) Graduate Program, Mayo Clinic, Rochester, MN 55905, USA;
| | - Melissa Weldy
- Inflammatory Bowel Program, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, MN 55454, USA; (M.W.); (C.E.); (A.K.); (M.S.)
- BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Clayton Evert
- Inflammatory Bowel Program, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, MN 55454, USA; (M.W.); (C.E.); (A.K.); (M.S.)
- BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Alexander Khoruts
- Inflammatory Bowel Program, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, MN 55454, USA; (M.W.); (C.E.); (A.K.); (M.S.)
- BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Michael Sadowsky
- Inflammatory Bowel Program, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, MN 55454, USA; (M.W.); (C.E.); (A.K.); (M.S.)
- BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Soil, Water, and Climate Department of Plant and Microbial Biology, University of Minnesota, University of Minnesota, St Paul, MN 55108, USA
| | - Michael A. Barry
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-266-9090
| |
Collapse
|
13
|
Immunogenicity and Protection from Receptor-Binding Domains of Toxins as Potential Vaccine Candidates for Clostridium difficile. Vaccines (Basel) 2019; 7:vaccines7040180. [PMID: 31717334 PMCID: PMC6963439 DOI: 10.3390/vaccines7040180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/05/2023] Open
Abstract
The receptor-binding domains (RBDs) located in toxin A and toxin B of Clostridium difficile are known to be nontoxic and immunogenic. We need to develop a new type vaccine based on RBDs. In this study, we expressed and purified recombinant proteins (named RBD-TcdA and RBD-TcdB) as vaccine candidates containing the RBDs of toxin A and toxin B, respectively, from the C. difficile reference strain VPI10463. The immunogenicity and protection of the vaccine candidates RBD-TcdA, RBD-TcdB, and RBD-TcdA/B was evaluated by ELISA and survival assays. The data indicated that mice immunized with all vaccine candidates displayed potent levels of RBD-specific serum IgG. Following intramuscular immunization of mice with RBD-TcdA and/or RBD-TcdB, these vaccine candidates triggered immune responses that protected mice compared to mice immunized with aluminum hydroxide alone. Taken together, the results of this study reveal that recombinant proteins containing RBDs of C. difficile toxins can be used for vaccine development. Additionally, we found that an RBD-TcdA/B vaccine can elicit a stronger humoral immune response and provide better immunoprotection than the univalent vaccines. This RBD vaccine candidate conferred significant protection against disease symptoms and death caused by toxins from a wild-type C. difficile strain.
Collapse
|
14
|
Cole LE, Li L, Jetley U, Zhang J, Pacheco K, Ma F, Zhang J, Mundle S, Yan Y, Barone L, Rogers C, Beltraminelli N, Quemeneur L, Kleanthous H, Anderson SF, Anosova NG. Deciphering the domain specificity of C. difficile toxin neutralizing antibodies. Vaccine 2019; 37:3892-3901. [PMID: 31122858 DOI: 10.1016/j.vaccine.2019.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/10/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022]
Abstract
Clostridium difficile infection (CDI) is the principal cause of nosocomial diarrhea and pseudomembranous colitis associated with antibiotic therapy. The pathological effects of CDI are primarily attributed to toxins A (TcdA) and B (TcdB). Adequate toxin-specific antibody responses are associated with asymptomatic carriage, whereas insufficient humoral responses are associated with recurrent CDI. While the data supporting the importance of anti-toxin antibodies are substantial, clarity about the toxin domain specificity of these antibodies is more limited. To investigate this matter, combinations of human mAbs targeting multiple domains of TcdB were assessed using toxin neutralization assays. These data revealed that a combination of mAbs specific to all major toxin domains had improved neutralizing potency when compared to equivalent concentrations of a single mAb or a combination of mAbs against one or two domains. The function and toxin domain binding specificity of serum antibodies elicited by immunization of hamsters with a toxoid vaccine candidate was also assessed. Immunization with a toxoid vaccine candidate provoked toxin neutralizing antibodies specific to multiple domains of both TcdA and TcdB. When assessed in a toxin neutralization assay, polyclonal sera displayed greater activity against elevated concentrations of toxins than equivalent concentrations of individual mAbs. These data suggest a potential benefit of any antibody based therapeutic or prophylactic treatment that targets multiple toxin domains.
Collapse
Affiliation(s)
- Leah E Cole
- Sanofi Pasteur, Research North America, 38 Sidney Street, Cambridge, MA 02139, USA
| | - Lu Li
- Sanofi Pasteur, Research North America, 38 Sidney Street, Cambridge, MA 02139, USA
| | - Utsav Jetley
- Sanofi Pasteur, Research North America, 38 Sidney Street, Cambridge, MA 02139, USA; Momenta Pharmaceuticals, INC., Research, 675 W Kendall St, Cambridge, MA 02142, USA
| | - Jinrong Zhang
- Sanofi Pasteur, Research North America, 38 Sidney Street, Cambridge, MA 02139, USA
| | - Kristl Pacheco
- Sanofi Pasteur, Research North America, 38 Sidney Street, Cambridge, MA 02139, USA
| | - Fuqin Ma
- Sanofi Pasteur, Research North America, 38 Sidney Street, Cambridge, MA 02139, USA
| | - Jianxin Zhang
- Sanofi Pasteur, Research North America, 38 Sidney Street, Cambridge, MA 02139, USA
| | - Sophia Mundle
- Sanofi Pasteur, Research North America, 38 Sidney Street, Cambridge, MA 02139, USA
| | - Yanhua Yan
- Sanofi Pasteur, Research North America, 38 Sidney Street, Cambridge, MA 02139, USA
| | - Lucianna Barone
- Sanofi Pasteur, Research North America, 38 Sidney Street, Cambridge, MA 02139, USA; Harvard Vanguard Medical Associates, 230 Worcester Street, Wellesley, MA 02481, USA
| | - Christopher Rogers
- Sanofi Pasteur, Research North America, 38 Sidney Street, Cambridge, MA 02139, USA; Maine Medical Center, Department of Pediatrics, 22 Bramhall Street, Portland, ME 04102, USA
| | - Nicola Beltraminelli
- BliNK Biomedical SAS, R&D, Gerland Plaza Techsud, 70, rue Saint Jean de Dieu, 69007 Lyon, France
| | - Laurence Quemeneur
- Sanofi Pasteur, Research Europe, 1541, Avenue Marcel Mérieux, 68280 Marcy l'Etoile, France
| | - Harry Kleanthous
- Sanofi Pasteur, Research North America, 38 Sidney Street, Cambridge, MA 02139, USA
| | - Stephen F Anderson
- Sanofi Pasteur, Research North America, 38 Sidney Street, Cambridge, MA 02139, USA; Anokion US, Inc., Development and Analytics, 50 Hampshire Street, Cambridge, MA 02139, USA
| | - Natalie G Anosova
- Sanofi Pasteur, Research North America, 38 Sidney Street, Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
Bruxelle J, Tsapis N, Hoys S, Collignon A, Janoir C, Fattal E, Péchiné S. Protection against Clostridium difficile infection in a hamster model by oral vaccination using flagellin FliC-loaded pectin beads. Vaccine 2018; 36:6017-6021. [DOI: 10.1016/j.vaccine.2018.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/29/2018] [Accepted: 08/05/2018] [Indexed: 01/03/2023]
|
16
|
Clostridium difficile Toxoid Vaccine Candidate Confers Broad Protection against a Range of Prevalent Circulating Strains in a Nonclinical Setting. Infect Immun 2018; 86:IAI.00742-17. [PMID: 29632249 PMCID: PMC5964523 DOI: 10.1128/iai.00742-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/11/2018] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile infection (CDI) is a leading cause of nosocomial and antibiotic-associated diarrhea. A vaccine, based on formalin-inactivated toxins A and B purified from anaerobic cultures of C. difficile strain VPI 10463 (toxinotype 0), has been in development for the prevention of symptomatic CDI. We evaluated the breadth of protection conferred by this C. difficile toxoid vaccine in cross-neutralization assessments using sera from vaccinated hamsters against a collection of 165 clinical isolates. Hamster antisera raised against the C. difficile toxoid vaccine neutralized the cytotoxic activity of culture supernatants from several toxinotype 0 strains and heterologous strains from 10 different toxinotypes. Further assessments performed with purified toxins confirmed that vaccine-elicited antibodies can neutralize both A and B toxins from a variety of toxinotypes. In the hamster challenge model, the vaccine conferred significant cross-protection against disease symptoms and death caused by heterologous C. difficile strains from the most common phylogenetic clades, including the most prevalent toxinotypes.
Collapse
|
17
|
Immunization Strategies Against Clostridium difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:197-225. [PMID: 29383671 DOI: 10.1007/978-3-319-72799-8_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
C. difficile infection (CDI) is an important healthcare- but also community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients and prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to restore immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens, either toxins or colonization factors.
Collapse
|
18
|
Mucosal Antibodies to the C Terminus of Toxin A Prevent Colonization of Clostridium difficile. Infect Immun 2017; 85:IAI.01060-16. [PMID: 28167669 DOI: 10.1128/iai.01060-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/26/2017] [Indexed: 12/21/2022] Open
Abstract
Mucosal immunity is considered important for protection against Clostridium difficile infection (CDI). We show that in hamsters immunized with Bacillus subtilis spores expressing a carboxy-terminal segment (TcdA26-39) of C. difficile toxin A, no colonization occurs in protected animals when challenged with C. difficile strain 630. In contrast, animals immunized with toxoids showed no protection and remained fully colonized. Along with neutralizing toxins, antibodies to TcdA26-39 (but not to toxoids), whether raised to the recombinant protein or to TcdA26-39 expressed on the B. subtilis spore surface, cross-react with a number of seemingly unrelated proteins expressed on the vegetative cell surface or spore coat of C. difficile These include two dehydrogenases, AdhE1 and LdhA, as well as the CdeC protein that is present on the spore. Anti-TcdA26-39 mucosal antibodies obtained following immunization with recombinant B. subtilis spores were able to reduce the adhesion of C. difficile to mucus-producing intestinal cells. This cross-reaction is intriguing yet important since it illustrates the importance of mucosal immunity for complete protection against CDI.
Collapse
|
19
|
Fehér C, Soriano A, Mensa J. A Review of Experimental and Off-Label Therapies for Clostridium difficile Infection. Infect Dis Ther 2017; 6:1-35. [PMID: 27910000 PMCID: PMC5336415 DOI: 10.1007/s40121-016-0140-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 12/16/2022] Open
Abstract
In spite of increased awareness and the efforts taken to optimize Clostridium difficile infection (CDI) management, with the limited number of currently available antibiotics for C. difficile the halt of this increasing epidemic remains out of reach. There are, however, close to 80 alternative treatment methods with controversial anti-clostridial efficacy or in experimental phase today. Indeed, some of these therapies are expected to become acknowledged members of the recommended anti-CDI arsenal within the next few years. None of these alternative treatment methods can respond in itself to all the major challenges of CDI management, which are primary prophylaxis in the susceptible population, clinical cure of severe cases, prevention of recurrences, and forestallment of asymptomatic C. difficile carriage and in-hospital spread. Yet, the greater the variety of treatment choices on hand, the better combination strategies can be developed to reach these goals in the future. The aim of this article is to provide a comprehensive summary of these experimental and currently off-label therapeutic options.
Collapse
Affiliation(s)
- Csaba Fehér
- Department of Infectious Diseases, Hospital Clínic of Barcelona, Barcelona, Spain.
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clínic of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Josep Mensa
- Department of Infectious Diseases, Hospital Clínic of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
20
|
Secore S, Wang S, Doughtry J, Xie J, Miezeiewski M, Rustandi RR, Horton M, Xoconostle R, Wang B, Lancaster C, Kristopeit A, Wang SC, Christanti S, Vitelli S, Gentile MP, Goerke A, Skinner J, Strable E, Thiriot DS, Bodmer JL, Heinrichs JH. Development of a Novel Vaccine Containing Binary Toxin for the Prevention of Clostridium difficile Disease with Enhanced Efficacy against NAP1 Strains. PLoS One 2017; 12:e0170640. [PMID: 28125650 PMCID: PMC5268477 DOI: 10.1371/journal.pone.0170640] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infections (CDI) are a leading cause of nosocomial diarrhea in the developed world. The main virulence factors of the bacterium are the large clostridial toxins (LCTs), TcdA and TcdB, which are largely responsible for the symptoms of the disease. Recent outbreaks of CDI have been associated with the emergence of hypervirulent strains, such as NAP1/BI/027, many strains of which also produce a third toxin, binary toxin (CDTa and CDTb). These hypervirulent strains have been associated with increased morbidity and higher mortality. Here we present pre-clinical data describing a novel tetravalent vaccine composed of attenuated forms of TcdA, TcdB and binary toxin components CDTa and CDTb. We demonstrate, using the Syrian golden hamster model of CDI, that the inclusion of binary toxin components CDTa and CDTb significantly improves the efficacy of the vaccine against challenge with NAP1 strains in comparison to vaccines containing only TcdA and TcdB antigens, while providing comparable efficacy against challenge with the prototypic, non-epidemic strain VPI10463. This combination vaccine elicits high neutralizing antibody titers against TcdA, TcdB and binary toxin in both hamsters and rhesus macaques. Finally we present data that binary toxin alone can act as a virulence factor in animal models. Taken together, these data strongly support the inclusion of binary toxin in a vaccine against CDI to provide enhanced protection from epidemic strains of C. difficile.
Collapse
Affiliation(s)
- Susan Secore
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Su Wang
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Julie Doughtry
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Jinfu Xie
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Matt Miezeiewski
- Eurofins Laboratories, Lancaster, Pennsylvania, United States of America
| | - Richard R. Rustandi
- Vaccine Analytical Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Melanie Horton
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Rachel Xoconostle
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Bei Wang
- Vaccine Drug Product Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Catherine Lancaster
- Vaccine Analytical Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Adam Kristopeit
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Sheng-Ching Wang
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Sianny Christanti
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Salvatore Vitelli
- Vaccine Analytical Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Marie-Pierre Gentile
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Aaron Goerke
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Julie Skinner
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Erica Strable
- Vaccine Drug Product Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - David S. Thiriot
- Vaccine Drug Product Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Jean-Luc Bodmer
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Jon H. Heinrichs
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| |
Collapse
|
21
|
Ghose C, Eugenis I, Edwards AN, Sun X, McBride SM, Ho DD. Immunogenicity and protective efficacy of Clostridium difficile spore proteins. Anaerobe 2015; 37:85-95. [PMID: 26688279 DOI: 10.1016/j.anaerobe.2015.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/28/2015] [Accepted: 12/03/2015] [Indexed: 12/20/2022]
Abstract
Clostridium difficile is a spore-forming, anaerobic, Gram-positive organism that is the leading cause of antibiotic-associated infectious diarrhea, commonly known as C. difficile infection (CDI). C. difficile spores play an important role in the pathogenesis of CDI. Spore proteins, especially those that are surface-bound may play an essential role in the germination, colonization and persistence of C. difficile in the human gut. In our current study, we report the identification of two surface-bound spore proteins, CdeC and CdeM that may be utilized as immunization candidates against C. difficile. These spore proteins are immunogenic in mice and are able to protect mice against challenge with C. difficile UK1, a clinically-relevant 027/B1/NAP1 strain. These spore proteins are also able to afford high levels of protection against challenge with C. difficile 630Δerm in golden Syrian hamsters. This unprecedented study shows the vaccination potential of C. difficile spore exosporium proteins.
Collapse
Affiliation(s)
| | | | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani School of Medicine, University of South Florida, Tampa, FL, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, New York, NY, USA; Rockefeller University, New York, NY, USA
| |
Collapse
|
22
|
Lübbert C, John E, von Müller L. Clostridium difficile infection: guideline-based diagnosis and treatment. DEUTSCHES ARZTEBLATT INTERNATIONAL 2015; 111:723-31. [PMID: 25404529 DOI: 10.3238/arztebl.2014.0723] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/14/2014] [Accepted: 08/14/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Clostridium difficile (C. difficile) is the pathogen that most commonly causes nosocomial and antibiotic-associated diarrheal disease. Optimized algorithms for diagnosis, treatment, and hygiene can help lower the incidence, morbidity, and mortality of C. difficile infection (CDI). METHODS This review is based on pertinent articles that were retrieved by a selective search in PubMed for recommendations on diagnosis and treatment(up to March 2014), with particular attention to the current epidemiological situation in Germany. RESULTS The incidence of CDI in Germany is 5 to 20 cases per 100,000 persons per year. In recent years, a steady increase in severe, reportable cases of CDI has been observed, and the highly virulent epidemic strain Ribotype 027 has spread across nearly the entire country. For therapeutic and hygiene management, it is important that the diagnosis be made as early as possible with a sensitive screening test, followed by a confirmatory test for the toxigenic infection. Special disinfection measures are needed because of the formation of spores. The treatment of CDI is evidence-based; depending on the severity of the infection, it is treated orally with metronidazole, or else with vancomycin or fidaxomicin. Fulminant infections and recurrences call for specifically adapted treatment modalities. Treatment with fecal bacteria (stool transplantation) is performed in gastroenterological centers that have experience with this form of treatment after multiple failures of drug treatment for recurrent infection. For critically ill patients, treatment is administered by an interdisciplinary team and consists of early surgical intervention in combination with drug treatment. A therapeutic algorithm developed on the basis of current guidelines and recommendations enables risk-adapted, individualized treatment. CONCLUSION The growing clinical and epidemiological significance of CDI compels a robust implementation of multimodal diagnostic, therapeutic, and hygienic standards. In the years to come, anti-toxin antibodies, toxoid vaccines, and focused bacterial therapy will be developed as new treatment strategies for CDI.
Collapse
Affiliation(s)
- Christoph Lübbert
- Division of Infectious Diseases and Tropical Medicine, Department of Gastroenterology and Rheumatology, Department of Internal Medicine, Neurology and Dermatology, Leipzig University Hospital, Department of General, Visceral and Vascular Surgery, University Hospital of Halle (Saale), Institute of Medical Microbiology and Hygiene, Saarland University Medical Center, National Advisory Laboratory for Clostridium difficile
| | | | | |
Collapse
|
23
|
Huang JH, Wu CW, Lien SP, Leng CH, Hsiao KN, Liu SJ, Chen HW, Siu LK, Chong P. Recombinant lipoprotein-based vaccine candidates against C. difficile infections. J Biomed Sci 2015; 22:65. [PMID: 26245825 PMCID: PMC4527207 DOI: 10.1186/s12929-015-0171-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/29/2015] [Indexed: 12/18/2022] Open
Abstract
Background Opportunistically nosocomial infections in hospitalized patients are often related to Clostridium difficile infections (CDI) due to disruption of the intestinal micro-flora by antibiotic therapies during hospitalization. Clostridial exotoxins A and B (TcdA and TcdB) specifically bind to unknown glycoprotein(s) in the host intestine, disrupt the intestinal barrier leading to acute inflammation and diarrhea. The C-terminal receptor binding domain of TcdA (A-rRBD) has been shown to elicit antibody responses that neutralize TcdA toxicity in Vero cell cytotoxicity assays, but not effectively protect hamsters against a lethal dose challenge of C. difficile spores. To develop an effective recombinant subunit vaccine against CDI, A-rRBD was lipidated (rlipoA-RBD) as a rational design to contain an intrinsic adjuvant, a toll-like receptor 2 agonist and expressed in Escherichia coli. Results The purified rlipoA-RBD was characterized immunologically and found to have the following properties: (a) mice, hamsters and rabbits vaccinated with 3 μg of rlipoA-RBD produced strong antibody responses that neutralized TcdA toxicity in Vero cell cytotoxicity assays; furthermore, the neutralization titer was comparable to those obtained from antisera immunized either with 10 μg of TcdA toxoid or 30 μg of A-rRBD; (b) rlipoA-RBD elicited immune responses and protected mice from TcdA challenge, but offered insignificant protection (10 to 20 %) against C. difficile spores challenge in hamster models; (c) only rlipoA-RBD formulated with B-rRBD consistently confers protection (90 to 100 %) in the hamster challenge model; and (d) rlipoA-RBD was found to be 10-fold more potent than A-rRBD as an adjuvant to enhancing immune responses against a poor antigen such as ovalbumin. Conclusion These results indicate that rlipoA-RBD formulated with B-rRBD could be an excellent vaccine candidate for preclinical studies and future clinical trials.
Collapse
Affiliation(s)
- Jui-Hsin Huang
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan. .,Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan.
| | - Chia-Wei Wu
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan.
| | - Shu-Pei Lien
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan.
| | - Chih-Hsiang Leng
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan.
| | - Kuang-Nan Hsiao
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan.
| | - Shih-Jen Liu
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan.
| | - Hsin-Wei Chen
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan.
| | - Leung-Kei Siu
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan.
| | - Pele Chong
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan. .,Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan. .,Graduate Institute of Immunology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
24
|
Wang YK, Yan YX, Kim HB, Ju X, Zhao S, Zhang K, Tzipori S, Sun X. A chimeric protein comprising the glucosyltransferase and cysteine proteinase domains of toxin B and the receptor binding domain of toxin A induces protective immunity against Clostridium difficile infection in mice and hamsters. Hum Vaccin Immunother 2015; 11:2215-22. [PMID: 26036797 PMCID: PMC4635733 DOI: 10.1080/21645515.2015.1052352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Clostridium difficile is the major cause of hospital-acquired infectious diarrhea and colitis in developed countries. The pathogenicity of C. difficile is mainly mediated by the release of 2 large potent exotoxins, toxin A (TcdA) and toxin B (TcdB), both of which require neutralization to prevent disease occurrence. We have generated a novel chimeric protein, designated mTcd138, comprised of the glucosyltransferase and cysteine proteinase domains of TcdB and the receptor binding domain of TcdA and expressed it in Bacillus megaterium. To ensure that mTcd138 is atoxic, 2 point mutations were introduced to the glucosyltransferase domain of TcdB, which essentially eliminates toxicity of mTcd138. Parenteral immunizations of mice and hamsters with mTcd138 induced protective antibodies to both toxins and provided protection against infection with the hyper-virulent C. difficile strain UK6.
Collapse
Affiliation(s)
- Yuan-Kai Wang
- a Department of Infectious Diseases and Global Health ; Tufts University Cummings School of Veterinary Medicine ; North Grafton , MA USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
A Combination of Three Fully Human Toxin A- and Toxin B-Specific Monoclonal Antibodies Protects against Challenge with Highly Virulent Epidemic Strains of Clostridium difficile in the Hamster Model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:711-25. [PMID: 25924765 DOI: 10.1128/cvi.00763-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/21/2015] [Indexed: 12/21/2022]
Abstract
Clostridium difficile infection (CDI) is the principal cause of nosocomial diarrhea and pseudomembranous colitis associated with antibiotic therapy. Recent increases in the number of outbreaks attributed to highly virulent antibiotic-resistant strains underscore the importance of identifying efficacious alternatives to antibiotics to control this infection. CDI is mediated by two large exotoxins, toxins A and B. Strong humoral toxin-specific immune responses are associated with recovery and a lack of disease recurrence, whereas insufficient humoral responses are associated with recurrent CDI. Multiple approaches targeting these toxins, including intravenous immunoglobulin, neutralizing polymers, active vaccines, and, most recently, monoclonal antibodies (MAbs), have been explored, with various degrees of success. In this study, we describe the characterization of the first MAbs isolated from healthy human donors using a high-throughput B-cell cloning strategy. The MAbs were selected based on their ability to inhibit the actions of toxins A and B in vitro and because of their in vivo efficacy in a hamster challenge model. A potent 2-MAb cocktail was identified and then further potentiated by the addition of a second anti-toxin B MAb. This 3-MAb combination protected animals against mortality and also reduced the severity and duration of diarrhea associated with challenge with highly virulent strains of C. difficile toxinotypes 0 and III. This highly efficacious cocktail consists of one MAb specific to the receptor binding domain of toxin A and two MAbs specific to nonoverlapping regions of the glucosyltransferase domain of toxin B. This MAb combination offers great potential as a nonantibiotic treatment for the prevention of recurrent CDI.
Collapse
|
26
|
Zhang S, Xing P, Guo G, Liu H, Lin D, Dong C, Li M, Feng D. Development of microbeads of chicken yolk antibodies against Clostridium difficile toxin A for colonic-specific delivery. Drug Deliv 2015; 23:1940-7. [PMID: 25799315 DOI: 10.3109/10717544.2015.1022836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The incidence of Clostridium difficile infection has increased in Western world in the past 10 years, similar infection rates are also reported in developing countries such as China. Current antibiotics treatments have recurrence rates between 15% and 30%. IgY antibodies against toxin A of C. difficile could protect animal models from the challenge of lethal dose of C. difficile spores. However, IgY is sensitive to the low pH environment of the stomach and proteinases in the intestine. The objective of this study was to prepare colonic-specific delivery system of toxin A antigen-specific IgY to block the recognition of toxin A to the colon mucosa cells. Egg-laying hens were immunized with purified C. difficile toxin A C-terminal domain for 3 times, then egg IgY against the recombinant ToxA-C protein was purified from immunized egg yolk and frozen dried. IgY-loaded microbeads were prepared using mini fluid bed system; the loading efficiency was 21%. The pH and temperature stabilities of the microbeads were assayed. The IgY-loaded microbeads coated with 35% Eudragit S100 had colonic-specific IgY release specificity both in vitro and in vivo, the colonic-specific release of biological active IgY was 87.5% in the rat. Our study provides a new option for the biological treatment C. difficile infection.
Collapse
Affiliation(s)
- Shumin Zhang
- a School of Pharmceutical Sciences, Shandong Binzhou Medical College , Shandong Province , China
| | - Pingping Xing
- b School of Pharmceutical Sciences, Yantai University , Shandong Province , China , and
| | - Guiping Guo
- b School of Pharmceutical Sciences, Yantai University , Shandong Province , China , and
| | - Hong Liu
- c Center of Biotechnology, Shandong Bioasis Biotechnology Park , Shandong Province , China
| | - Donghai Lin
- b School of Pharmceutical Sciences, Yantai University , Shandong Province , China , and
| | - Chuangchuang Dong
- c Center of Biotechnology, Shandong Bioasis Biotechnology Park , Shandong Province , China
| | - Min Li
- c Center of Biotechnology, Shandong Bioasis Biotechnology Park , Shandong Province , China
| | - Dongxiao Feng
- a School of Pharmceutical Sciences, Shandong Binzhou Medical College , Shandong Province , China .,c Center of Biotechnology, Shandong Bioasis Biotechnology Park , Shandong Province , China
| |
Collapse
|
27
|
Guo S, Yan W, McDonough SP, Lin N, Wu KJ, He H, Xiang H, Yang M, Moreira MAS, Chang YF. The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model. Vaccine 2015; 33:1586-95. [DOI: 10.1016/j.vaccine.2015.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/26/2015] [Accepted: 02/04/2015] [Indexed: 01/05/2023]
|
28
|
Mathur H, Rea MC, Cotter PD, Ross RP, Hill C. The potential for emerging therapeutic options for Clostridium difficile infection. Gut Microbes 2015; 5:696-710. [PMID: 25564777 PMCID: PMC4615897 DOI: 10.4161/19490976.2014.983768] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Clostridium difficile is mainly a nosocomial pathogen and is a significant cause of antibiotic-associated diarrhea. It is also implicated in the majority of cases of pseudomembranous colitis. Recently, advancements in next generation sequencing technology (NGS) have highlighted the extent of damage to the gut microbiota caused by broad-spectrum antibiotics, often resulting in C. difficile infection (CDI). Currently the treatment of choice for CDI involves the use of metronidazole and vancomycin. However, recurrence and relapse of CDI, even after rounds of metronidazole/vancomycin administration is a problem that must be addressed. The efficacy of alternative antibiotics such as fidaxomicin, rifaximin, nitazoxanide, ramoplanin and tigecycline, as well as faecal microbiota transplantation has been assessed and some have yielded positive outcomes against C. difficile. Some bacteriocins have also shown promising effects against C. difficile in recent years. In light of this, the potential for emerging treatment options and efficacy of anti-C. difficile vaccines are discussed in this review.
Collapse
Key Words
- ATCC, American Type Culture Collection
- CDI, Clostridium difficile infection
- CdtLoc, binary toxin locus
- Clostridium difficile
- DNA, deoxyribonucleic acid
- DPC, Dairy Products Collection
- ESCMID, European Society of Clinical Microbiology and Infectious Diseases
- ETEC, enterotoxigenic E. coli
- FDA, Food and Drug Administration
- FMT, faecal microbiota transplantation
- GIT, gastrointestinal tract
- HIV, human immunodeficiency virus
- IDSA, Infectious Diseases Society of America
- IgG, immunoglobulin G
- LTA, lipoteichoic acid
- M21V, methionine to valine substitution at residue 21
- MIC, minimum inhibitory concentration
- NGS, next generation sequencing
- NVB, Novacta Biosystems Ltd
- PMC, pseudomembranous colitis
- PaLoc, pathogenicity locus
- R027, ribotype 027
- RBD
- RBS, ribosome binding site
- RNA, ribonucleic acid
- SHEA, Society for Healthcare Epidemiology of America
- V15F, valine to phenylalanine substitution at residue 15
- antibiotics
- faecal microbiota transplantation
- receptor binding domain
- toxins
- vaccines
Collapse
Affiliation(s)
- Harsh Mathur
- School of Microbiology; University College Cork; Cork, Ireland,Teagasc Food Research Center; Moorepark; Fermoy, Ireland
| | - Mary C Rea
- Teagasc Food Research Center; Moorepark; Fermoy, Ireland,Alimentary Pharmabiotic Center; University College Cork; Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Center; Moorepark; Fermoy, Ireland,Alimentary Pharmabiotic Center; University College Cork; Cork, Ireland,Correspondence to: Colin Hill; ; Paul D Cotter;
| | - R Paul Ross
- Alimentary Pharmabiotic Center; University College Cork; Cork, Ireland,College of Science; Engineering and Food Science; University College Cork; Cork, Ireland
| | - Colin Hill
- School of Microbiology; University College Cork; Cork, Ireland,Alimentary Pharmabiotic Center; University College Cork; Cork, Ireland,Correspondence to: Colin Hill; ; Paul D Cotter;
| |
Collapse
|
29
|
Mizrahi A, Collignon A, Péchiné S. Passive and active immunization strategies against Clostridium difficile infections: State of the art. Anaerobe 2014; 30:210-9. [DOI: 10.1016/j.anaerobe.2014.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/07/2014] [Accepted: 07/18/2014] [Indexed: 02/04/2023]
|
30
|
Heinrichs JH, Therien AG. Prevention of Clostridium difficile infections—The role of vaccines and therapeutic immunoglobulins. SEMINARS IN COLON AND RECTAL SURGERY 2014. [DOI: 10.1053/j.scrs.2014.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Leuzzi R, Adamo R, Scarselli M. Vaccines against Clostridium difficile. Hum Vaccin Immunother 2014; 10:1466-77. [PMID: 24637887 DOI: 10.4161/hv.28428] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile infection (CDI) is recognized as a major cause of nosocomial diseases ranging from antibiotic related diarrhea to fulminant colitis. Emergence during the last 2 decades of C. difficile strains associated with high incidence, severity and lethal outcomes has increased the challenges for CDI treatment. A limited number of drugs have proven to be effective against CDI and concerns about antibiotic resistance as well as recurring disease solicited the search for novel therapeutic strategies. Active vaccination provides the attractive opportunity to prevent CDI, and intense research in recent years led to development of experimental vaccines, 3 of which are currently under clinical evaluation. This review summarizes recent achievements and remaining challenges in the field of C. difficile vaccines, and discusses future perspectives in view of newly-identified candidate antigens.
Collapse
|
32
|
Spencer J, Leuzzi R, Buckley A, Irvine J, Candlish D, Scarselli M, Douce GR. Vaccination against Clostridium difficile using toxin fragments: Observations and analysis in animal models. Gut Microbes 2014; 5:225-32. [PMID: 24637800 PMCID: PMC4063849 DOI: 10.4161/gmic.27712] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Clostridium difficile is a major cause of antibiotic associated diarrhea. Recently, we have shown that effective protection can be mediated in hamsters through the inclusion of specific recombinant fragments from toxin A and B in a systemically delivered vaccine. Interestingly while neutralizing antibodies to the binding domains of both toxin A and B are moderately protective, enhanced survival is observed when fragments from the glucosyltransferase region of toxin B replace those from the binding domain of this toxin. In this addendum, we discuss additional information that has been derived from such vaccination studies. This includes observations on efficacy and cross-protection against different ribotypes mediated by these vaccines and the challenges that remain for a vaccine which prevents clinical symptoms but not colonization. The use and value of vaccination both in the prevention of infection and for treatment of disease relapse will be discussed.
Collapse
Affiliation(s)
- Janice Spencer
- Institute of Infection, Immunity, and Inflammation; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow, UK
| | | | - Anthony Buckley
- Institute of Infection, Immunity, and Inflammation; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow, UK
| | - June Irvine
- Institute of Infection, Immunity, and Inflammation; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow, UK
| | - Denise Candlish
- Institute of Infection, Immunity, and Inflammation; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow, UK
| | | | - Gillian R Douce
- Institute of Infection, Immunity, and Inflammation; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow, UK,Correspondence to: Gillian R Douce,
| |
Collapse
|