1
|
Elbehiry A, Marzouk E, Abalkhail A, Sindi W, Alzahrani Y, Alhifani S, Alshehri T, Anajirih NA, ALMutairi T, Alsaedi A, Alzaben F, Alqrni A, Draz A, Almuzaini AM, Aljarallah SN, Almujaidel A, Abu-Okail A. Pivotal role of Helicobacter pylori virulence genes in pathogenicity and vaccine development. Front Med (Lausanne) 2025; 11:1523991. [PMID: 39850097 PMCID: PMC11756510 DOI: 10.3389/fmed.2024.1523991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/13/2024] [Indexed: 01/25/2025] Open
Abstract
One of the most prevalent human infections is Helicobacter pylori (H. pylori), which affects more than half of the global population. Although H. pylori infections are widespread, only a minority of individuals develop severe gastroduodenal disorders. The global resistance of H. pylori to antibiotics has reached concerning levels, significantly impacting the effectiveness of treatment. Consequently, the development of vaccines targeting virulence factors may present a viable alternative for the treatment and prevention of H. pylori infections. This review aims to provide a comprehensive overview of the current understanding of H. pylori infection, with a particular focus on its virulence factors, pathophysiology, and vaccination strategies. This review discusses various virulence factors associated with H. pylori, such as cytotoxin-associated gene A (cagA), vacuolating cytotoxin gene (vacA), outer membrane proteins (OMPs), neutrophil-activated protein (NAP), urease (ure), and catalase. The development of vaccines based on these virulence characteristics is essential for controlling infection and ensuring long-lasting protection. Various vaccination strategies and formulations have been tested in animal models; however, their effectiveness and reproducibility in humans remain uncertain. Different types of vaccines, including vector-based vaccines, inactivated whole cells, genetically modified protein-based subunits, and multiepitope nucleic acid (DNA) vaccines, have been explored. While some vaccines have demonstrated promising results in murine models, only a limited number have been successfully tested in humans. This article provides a thorough evaluation of recent research on H. pylori virulence genes and vaccination methods, offering valuable insights for future strategies to address this global health challenge.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Eman Marzouk
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Wael Sindi
- Department of Population, Public and Environmental Health, General Administration of Health Services, Ministry of Defense, Riyadh, Saudi Arabia
| | - Yasir Alzahrani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Salem Alhifani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Turki Alshehri
- Department of Dental, Alhada Armed Forces Hospital, Taif, Saudi Arabia
| | - Nuha Abdulaziz Anajirih
- Department of Medical Emergency Services, Faculty of Health Sciences, Umm Al-Qura University, Al-Qunfudah, Saudi Arabia
| | - Turki ALMutairi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Ahmad Alsaedi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Abdullah Alqrni
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah, Saudi Arabia
| | - Abdelmaged Draz
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Sahar N. Aljarallah
- Department of Pharmacy Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Abdulrahman Almujaidel
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
2
|
Liang Z, Zhang C, Liu X, Yang K, Xiong Z, Liang B, Mai J, Xiao X, Liu J, Yang P, Xu D, Zhou Z. Neutrophil-activating protein in Bacillus spores inhibits casein allergy via TLR2 signaling. Front Immunol 2024; 15:1428079. [PMID: 39564136 PMCID: PMC11574345 DOI: 10.3389/fimmu.2024.1428079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024] Open
Abstract
Background Milk allergy commonly occurs in children, mainly caused by bovine-derived casein (CAS) protein. Neutrophil-activating protein (NAP) of Helicobacter pylori plays an immunomodulatory role with potential to suppress Th2-type immune responses. Bacillus subtilis (B. subtilis) spores are commonly used as oral vectors for drug delivery. Objective To investigate whether recombinantly expressed NAP on B. subtilis spores could be an effective treatment for CAS allergy in mouse. Methods After CAS sensitization, mice were orally administered B. subtilis spores expressing recombinant NAP for 6 weeks. Allergic symptoms and parameters were evaluated after CAS challenge oral gavage, including allergic inflammation, splenic cytokines, and serum-specific antibodies. Protein levels of Toll-like receptor 2 (TLR2) and c-JUN in the jejunum tissue were measured by western blot. Bone marrow-derived macrophages (BMDMs) were stimulated with inactivated NAP spores to measure the influence on cytokine profiles in vitro. Results NAP recombinant spore treatment significantly reduced allergic symptoms and intestinal inflammation. Interleukin-12 and interferon-gamma levels increased, whereas serum CAS-specific IgG1 and IgE levels decreased. TLR2 and c-JUN expression levels were elevated in the jejunal tissue. Inactivated NAP spores polarized BMDMs to the M1 phenotype and enhanced cytokine expression, which were inhibited by a TLR2 neutralizing antibody. Conclusion NAP offers a new strategy in the treatment of CAS allergy by inhibiting the Th2 response, while eliciting macrophages to promote Th1 immune responses.
Collapse
Affiliation(s)
- Zhuwei Liang
- Clinical Laboratory, Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong, China
- Clinical Laboratory, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine), Guangzhou, Guangdong, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Chao Zhang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Xiaoyu Liu
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Kaiyue Yang
- Clinical Laboratory, Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong, China
| | - Zhile Xiong
- Clinical Laboratory, Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong, China
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bingshao Liang
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jialiang Mai
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Clinical Laboratory, Foshan Maternity and Child Health Hospital, Foshan, Guangdong, China
| | - Xiaojun Xiao
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jie Liu
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Pingchang Yang
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Damo Xu
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Zhenwen Zhou
- Clinical Laboratory, Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Katsande PM, Nguyen VD, Nguyen TLP, Nguyen TKC, Mills G, Bailey DMD, Christie G, Hong HA, Cutting SM. Prophylactic immunization to Helicobacter pylori infection using spore vectored vaccines. Helicobacter 2023; 28:e12997. [PMID: 37314018 PMCID: PMC10909515 DOI: 10.1111/hel.12997] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Helicobacter pylori infection remains a major public health threat leading to gastrointestinal illness and increased risk of gastric cancer. Mostly affecting populations in developing countries no vaccines are yet available and the disease is controlled by antimicrobials which, in turn, are driving the emergence of AMR. MATERIALS AND METHODS We have engineered spores of Bacillus subtilis to display putative H. pylori protective antigens, urease subunit A (UreA) and subunit B (UreB) on the spore surface. Following oral dosing of mice with these spores, we evaluated immunity and colonization in animals challenged with H. pylori. RESULTS Oral immunization with spores expressing either UreA or UreB showed antigen-specific mucosal responses (fecal sIgA) including seroconversion and hyperimmunity. Following challenge, colonization by H. pylori was significantly reduced by up to 1-log. CONCLUSIONS This study demonstrates the utility of bacterial spores for mucosal vaccination to H. pylori infection. The heat stability and robustness of Bacillus spores coupled with their existing use as probiotics make them an attractive solution for either protection against H. pylori infection or potentially for therapy and control of active infection.
Collapse
Affiliation(s)
| | - Van Duy Nguyen
- Institute of Biotechnology and EnvironmentNha Trang UniversityNha TrangVietnam
| | | | - Thi Kim Cuc Nguyen
- Institute of Biotechnology and EnvironmentNha Trang UniversityNha TrangVietnam
| | - Gabrielle Mills
- Department of Chemical Engineering & BiotechnologyUniversity of CambridgeCambridgeUK
| | - David M. D. Bailey
- Department of Chemical Engineering & BiotechnologyUniversity of CambridgeCambridgeUK
| | - Graham Christie
- Department of Chemical Engineering & BiotechnologyUniversity of CambridgeCambridgeUK
| | - Huynh Anh Hong
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Simon M. Cutting
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| |
Collapse
|
4
|
Isticato R. Bacterial Spore-Based Delivery System: 20 Years of a Versatile Approach for Innovative Vaccines. Biomolecules 2023; 13:947. [PMID: 37371527 DOI: 10.3390/biom13060947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Mucosal vaccines offer several advantages over injectable conventional vaccines, such as the induction of adaptive immunity, with secretory IgA production at the entry site of most pathogens, and needle-less vaccinations. Despite their potential, only a few mucosal vaccines are currently used. Developing new effective mucosal vaccines strongly relies on identifying innovative antigens, efficient adjuvants, and delivery systems. Several approaches based on phages, bacteria, or nanoparticles have been proposed to deliver antigens to mucosal surfaces. Bacterial spores have also been considered antigen vehicles, and various antigens have been successfully exposed on their surface. Due to their peculiar structure, spores conjugate the advantages of live microorganisms with synthetic nanoparticles. When mucosally administered, spores expressing antigens have been shown to induce antigen-specific, protective immune responses. This review accounts for recent progress in the formulation of spore-based mucosal vaccines, describing a spore's structure, specifically the spore surface, and the diverse approaches developed to improve its efficiency as a vehicle for heterologous antigen presentation.
Collapse
Affiliation(s)
- Rachele Isticato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Naples, Italy
| |
Collapse
|
5
|
Zhang Y, Li X, Shan B, Zhang H, Zhao L. Perspectives from recent advances of Helicobacter pylori vaccines research. Helicobacter 2022; 27:e12926. [PMID: 36134470 DOI: 10.1111/hel.12926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/25/2022] [Accepted: 08/17/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is the main factor leading to some gastric diseases. Currently, H. pylori infection is primarily treated with antibiotics. However, with the widespread application of antibiotics, H. pylori resistance to antibiotics has also gradually increased year by year. Vaccines may be an alternative solution to clear H. pylori. AIMS By reviewing the recent progress on H. pylori vaccines, we expected it to lead to more research efforts to accelerate breakthroughs in this field. MATERIALS & METHODS We searched the research on H. pylori vaccine in recent years through PubMed®, and then classified and summarized these studies. RESULTS The study of the pathogenic mechanism of H. pylori has led to the development of vaccines using some antigens, such as urease, catalase, and heat shock protein (Hsp). Based on these antigens, whole-cell, subunit, nucleic acid, vector, and H. pylori exosome vaccines have been tested. DISCUSSION At present, researchers have developed many types of vaccines, such as whole cell vaccines, subunit vaccines, vector vaccines, etc. However, although some of these vaccines induced protective immunity in mouse models, only a few were able to move into human trials. We propose that mRNA vaccine may play an important role in preventing or treating H. pylori infection. The current study shows that we have developed various types of vaccines based on the virulence factors of H. pylori. However, only a few vaccines have entered human clinical trials. In order to improve the efficacy of vaccines, it is necessary to enhance T-cell immunity. CONCLUSION We should fully understand the pathogenic mechanism of H. pylori and find its core antigen as a vaccine target.
Collapse
Affiliation(s)
- Ying Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoya Li
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongtao Zhang
- University of Pennsylvania School of Medicine Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Chen C, Li YL, Lv FL, Xu LD, Huang YW. Surface Display of Peptides Corresponding to the Heptad Repeat 2 Domain of the Feline Enteric Coronavirus Spike Protein on Bacillus subtilis Spores Elicits Protective Immune Responses Against Homologous Infection in a Feline Aminopeptidase-N-Transduced Mouse Model. Front Immunol 2022; 13:925922. [PMID: 35837396 PMCID: PMC9273865 DOI: 10.3389/fimmu.2022.925922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
Although feline coronavirus (FCoV) infection is extremely common in cats, there are currently few effective treatments. A peptide derived from the heptad repeat 2 (HR2) domain of the coronavirus (CoV) spike protein has shown effective for inhibition of various human and animal CoVs in vitro, but further use of FCoV-HR2 in vivo has been limited by lack of practical delivery vectors and small animal infection model. To overcome these technical challenges, we first constructed a recombinant Bacillus subtilis (rBSCotB-HR2P) expressing spore coat protein B (CotB) fused to an HR2-derived peptide (HR2P) from a serotype II feline enteric CoV (FECV). Immunogenic capacity was evaluated in mice after intragastric or intranasal administration, showing that recombinant spores could trigger strong specific cellular and humoral immune responses. Furthermore, we developed a novel mouse model for FECV infection by transduction with its primary receptor (feline aminopeptidase N) using an E1/E3-deleted adenovirus type 5 vector. This model can be used to study the antiviral immune response and evaluate vaccines or drugs, and is an applicable choice to replace cats for the study of FECV. Oral administration of rBSCotB-HR2P in this mouse model effectively protected against FECV challenge and significantly reduced pathology in the digestive tract. Owing to its safety, low cost, and probiotic features, rBSCotB-HR2P is a promising oral vaccine candidate for use against FECV/FCoV infection in cats.
Collapse
Affiliation(s)
- Chu Chen
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ya-Li Li
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Fang-Li Lv
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Ling-Dong Xu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Yao-Wei Huang, ; Ling-Dong Xu,
| | - Yao-Wei Huang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- *Correspondence: Yao-Wei Huang, ; Ling-Dong Xu,
| |
Collapse
|
7
|
Garduño-González KA, Peña-Benavides SA, Araújo RG, Castillo-Zacarías C, Melchor-Martínez EM, Oyervides-Muñoz MA, Sosa-Hernández JE, Purton S, Iqbal HM, Parra-Saldívar R. Current challenges for modern vaccines and perspectives for novel treatment alternatives. J Drug Deliv Sci Technol 2022; 70:103222. [DOI: 10.1016/j.jddst.2022.103222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
de Almeida MEM, Alves KCS, de Vasconcelos MGS, Pinto TS, Glória JC, Chaves YO, Neves WLL, Tarragô AM, de Souza Neto JN, Astolfi-Filho S, Pontes GS, da Silva Balieiro AA, Isticato R, Ricca E, Mariúba LAM. Bacillus subtilis spores as delivery system for nasal Plasmodium falciparum circumsporozoite surface protein immunization in a murine model. Sci Rep 2022; 12:1531. [PMID: 35087102 PMCID: PMC8795416 DOI: 10.1038/s41598-022-05344-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022] Open
Abstract
Malaria remains a widespread public health problem in tropical and subtropical regions around the world, and there is still no vaccine available for full protection. In recent years, it has been observed that spores of Bacillus subtillis can act as a vaccine carrier and adjuvant, promoting an elevated humoral response after co-administration with antigens either coupled or integrated to their surface. In our study, B. subtillis spores from the KO7 strain were used to couple the recombinant CSP protein of P. falciparum (rPfCSP), and the nasal humoral-induced immune response in Balb/C mice was evaluated. Our results demonstrate that the spores coupled to rPfCSP increase the immunogenicity of the antigen, which induces high levels of serum IgG, and with balanced Th1/Th2 immune response, being detected antibodies in serum samples for 250 days. Therefore, the use of B. subtilis spores appears to be promising for use as an adjuvant in a vaccine formulation.
Collapse
Affiliation(s)
- Maria Edilene M de Almeida
- Programa de Pós-Graduação Stricto Sensu em Biologia Celular e Molecular do Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil.
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil.
| | - Késsia Caroline Souza Alves
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Programa de Pós-Graduação em Biotecnologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | | | | | - Juliane Corrêa Glória
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Programa de Pós-Graduação em Biotecnologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Yury Oliveira Chaves
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Programa de Pós-Graduação Stricto Sensu em Biologia Parasitária do Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Walter Luiz Lima Neves
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, HEMOAM, Manaus, AM, Brazil
| | - Andrea Monteiro Tarragô
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal Do Amazonas (UFAM), Manaus, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, HEMOAM, Manaus, AM, Brazil
- Programa de Pós-Graduação Stricto Sensu em Ciências Aplicadas à Hematologia PPGH, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | - Júlio Nino de Souza Neto
- Centro de Apoio Multidisciplinar (CAM), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Spartaco Astolfi-Filho
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | | | - Antônio Alcirley da Silva Balieiro
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Programa de Pós-Graduação Stricto Sensu em Biologia Parasitária do Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Ezio Ricca
- Department of Biology, Federico II University, Naples, Italy
| | - Luis André M Mariúba
- Programa de Pós-Graduação Stricto Sensu em Biologia Celular e Molecular do Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil.
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil.
- Programa de Pós-Graduação em Biotecnologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal Do Amazonas (UFAM), Manaus, AM, Brazil.
| |
Collapse
|
9
|
Keikha M, Karbalaei M. Probiotics as the live microscopic fighters against Helicobacter pylori gastric infections. BMC Gastroenterol 2021; 21:388. [PMID: 34670526 PMCID: PMC8527827 DOI: 10.1186/s12876-021-01977-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is the causative agent of stomach diseases such as duodenal ulcer and gastric cancer, in this regard incomplete eradication of this bacterium has become to a serious concern. Probiotics are a group of the beneficial bacteria which increase the cure rate of H. pylori infections through various mechanisms such as competitive inhibition, co-aggregation ability, enhancing mucus production, production of bacteriocins, and modulating immune response. RESULT In this study, according to the received articles, the anti-H. pylori activities of probiotics were reviewed. Based on studies, administration of standard antibiotic therapy combined with probiotics plays an important role in the effective treatment of H. pylori infection. According to the literature, Lactobacillus casei, Lactobacillus reuteri, Lactobacillus rhamnosus GG, and Saccharomyces boulardii can effectively eradicate H. pylori infection. Our results showed that in addition to decrease gastrointestinal symptoms, probiotics can reduce the side effects of antibiotics (especially diarrhea) by altering the intestinal microbiome. CONCLUSION Nevertheless, antagonist activities of probiotics are H. pylori strain-specific. In general, these bacteria can be used for therapeutic purposes such as adjuvant therapy, drug-delivery system, as well as enhancing immune system against H. pylori infection.
Collapse
Affiliation(s)
- Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
10
|
Wang S, Ma J, Ji Q, Liu Q. Evaluation of an attenuated Listeria monocytogenes as a vaccine vector to control Helicobacter pylori infection. Immunol Lett 2021; 238:68-74. [PMID: 34363896 DOI: 10.1016/j.imlet.2021.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/29/2021] [Indexed: 12/01/2022]
Abstract
The increasing resistance of Helicobacter pylori (H. pylori) to antibiotics has limited the efficacy of antibiotic therapy in the treatment of H. pylori-associated gastric diseases. The vaccine as an alternative method is becoming a safe and effective way to address this problem. In previous studies, live vector vaccines have proved to be effective in controlling H. pylori infection. Attenuated Listeria monocytogenes (L. monocytogenes) is a potential candidate vector applied in clinical trials, which can deliver foreign antigens and induce a broad immune response. To further explore the effectiveness of L. monocytogenes as a vaccine vector against H. pylori, attenuated L. monocytogenes-based vaccine EGDeΔactA/inlB(EGDeAB)-MECU was constructed to secrete a multi-epitope chimeric antigen (MECU) containing multiple B cell epitopes from H. pylori antigens. EGDeAB-MECU could secrete MECU stably. After immunized by gavage and intravenous injection, both EGDeAB and EGDeAB-MECU could significantly decrease gastric H. pylori colonization and induce a high level of specific antibodies against H. pylori. In conclusion, attenuated L. monocytogenes had an immunotherapeutic effect on H. pylori-infected mice, indicating its further development as a promising candidate vaccine vector for the H. pylori vaccine.
Collapse
Affiliation(s)
- Shuying Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junfei Ma
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qianyu Ji
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
11
|
Sethi L, Kumari K, Dey N. Engineering of Plants for Efficient Production of Therapeutics. Mol Biotechnol 2021; 63:1125-1137. [PMID: 34398446 PMCID: PMC8365136 DOI: 10.1007/s12033-021-00381-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Plants are becoming useful platforms for recombinant protein production at present time. With the advancement of efficient molecular tools of genomics, proteomics, plants are now being used as a biofactory for production of different life saving therapeutics. Plant-based biofactory is an established production system with the benefits of cost-effectiveness, high scalability, rapid production, enabling post-translational modification, and being devoid of harmful pathogens contamination. This review introduces the main challenges faced by plant expression system: post-translational modifications, protein stability, biosafety concern and regulation. It also summarizes essential factors to be considered in engineering plants, including plant expression system, promoter, post-translational modification, codon optimization, and fusion tags, protein stabilization and purification, subcellular targeting, and making vaccines in an edible way. This review will be beneficial and informative to scholars and readers in the field of plant biotechnology.
Collapse
Affiliation(s)
- Lini Sethi
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India ,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi) 121001 India
| | - Khushbu Kumari
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India ,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi) 121001 India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India
| |
Collapse
|
12
|
The Role of Mucosal Immunity and Recombinant Probiotics in SARS-CoV2 Vaccine Development. Probiotics Antimicrob Proteins 2021; 13:1239-1253. [PMID: 33770348 PMCID: PMC7996120 DOI: 10.1007/s12602-021-09773-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 01/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), causing the 2019 novel coronavirus disease (COVID-19), was introduced by WHO (World Health Organization) as "pandemic" in March 2020. According to WHO, thus far (23 November 2020) 58,425,681 infected cases including 1,385,218 deaths have been reported worldwide. In order to reduce transmission and spread of this lethal virus, attempts are globally being made to develop an appropriate vaccine. Intending to neutralize pathogens at their initial entrance site, protective mucosal immunity is inevitably required. In SARS-CoV2 infection and transmission, respiratory mucosa plays a key role; hence, apparently mucosal vaccination could be a superior approach to elicit mucosal and systemic immune responses simultaneously. In this review, the advantages of mucosal vaccination to control COVID-19 infection, limitations, and outcomes of mucosal vaccines have been highlighted. Considering the gut microbiota dysregulation in COVID-19, we further provide evidences on utilization of recombinant probiotics, particularly lactic acid bacteria (LAB) as vaccine carrier. Their intrinsic immunomodulatory features, natural adjuvanticity, and feasible expression of relevant antigen in the mucosal surface make them more appealing as live cell factory. Among all available platforms, bioengineered probiotics are considered as the most affordable, most practical, and safest vaccination approach to halt this emerging virus.
Collapse
|
13
|
Xiong Z, Mai J, Li F, Liang B, Yao S, Liang Z, Zhang C, Gao F, Ai X, Wang J, Long Y, Yang M, Gong S, Zhou Z. Oral administration of recombinant Bacillus subtilis spores expressing mutant staphylococcal enterotoxin B provides potent protection against lethal enterotoxin challenge. AMB Express 2020; 10:215. [PMID: 33315153 PMCID: PMC7734462 DOI: 10.1186/s13568-020-01152-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023] Open
Abstract
Pathogenicity of Staphylococcus aureus is induced by staphylococcal enterotoxin B (SEB). A mutant form of SEB (mSEB) is immunogenic as well as less toxic. Recombinant mSEB and SEB were expressed in pET28a prokaryotic plasmids. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels in mSEB-stimulated macrophages were lower than those in SEB-stimulated macrophages (p < 0.001, p < 0.01 respectively). Using CotC as a fusion protein, we constructed recombinant Bacillus subtilis spores expressing mSEB on the spore surface and evaluated their safety and protective efficacy via mouse models. Oral administration of mSEB-expressing spores increased SEB-specific IgA in feces and SEB-specific IgG1 and IgG2a in the sera, compared with mice in naïve and CotC spore-treated groups (p < 0.001, p < 0.01, p < 0.001 respectively). Six weeks following oral dosing of recombinant spores, significant differences were not found in the serum biochemical indices between the mSEB group and the naïve and CotC groups. Furthermore, oral administration of mSEB spores increased the survival rate by 33.3% in mice intraperitoneally injected with 5 µg of wild-type SEB plus 25 µg lipopolysaccharide (LPS). In summation, recombinant spores stably expressing mSEB were developed, and oral administration of such recombinant spores induced a humoral immune response and provided protection against SEB challenge in mice.
Collapse
|
14
|
Sahoo A, Mandal AK, Dwivedi K, Kumar V. A cross talk between the immunization and edible vaccine: Current challenges and future prospects. Life Sci 2020; 261:118343. [PMID: 32858038 PMCID: PMC7449231 DOI: 10.1016/j.lfs.2020.118343] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 01/25/2023]
Abstract
INTRODUCTION It is well known that immune system is highly specific to protect the body against various environmental pathogens. The concept of conventional vaccination has overcome the pandemic situation of several infectious diseases outbreak. AREA COVERED The recent idea of immunization through oral route (edible vaccine) is vital alternatives over conventional vaccines. Edible vaccines are composed of antigenic protein introduced into the plant cells which induce these altered plants to produce the encoded protein. Edible vaccine has no way of forming infection and safety is assured as it only composed of antigenic protein and is devoid of pathogenic genes. Edible vaccines have significant role in stimulating mucosal immunity as they come in contact with digestive tract lining. They are safe, cost-effective, easy-to-administer and have reduced manufacturing cost hence have a dramatic impact on health care in developing countries. EXPERT OPINION The edible vaccine might be the solution for the potential hazard associated with the parenteral vaccines. In this review we discuss the detailed study of pros, cons, mechanism of immune stimulation, various outbreaks that might be controlled by edible vaccines with the possible future research and applied application of edible vaccine.
Collapse
Affiliation(s)
- Ankit Sahoo
- Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higgbottom University of Agriculture Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India
| | - Ashok Kumar Mandal
- Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higgbottom University of Agriculture Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India
| | - Khusbu Dwivedi
- Department of Pharmaceutics, Shambhunath Institute of Pharmacy Jhalwa, Prayagraj, Uttar Pradesh 211015, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higgbottom University of Agriculture Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India.
| |
Collapse
|
15
|
Oral delivery of bacteria: Basic principles and biomedical applications. J Control Release 2020; 327:801-833. [DOI: 10.1016/j.jconrel.2020.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/05/2020] [Indexed: 12/18/2022]
|
16
|
Abstract
Vaccines are biological preparations that improve immunity to particular diseases and form an important innovation of 19th century research. It contains a protein that resembles a disease-causing microorganism and is often made from weak or killed forms of the microbe. Vaccines are agents that stimulate the body’s immune system to recognize the antigen. Now, a new form of vaccine was introduced which will have the power to mask the risk side of conventional vaccines. This type of vaccine was produced from plants which are genetically modified. In the production of edible vaccines, the gene-encoding bacterial or viral disease-causing agent can be incorporated in plants without losing its immunogenic property. The main mechanism of action of edible vaccines is to activate the systemic and mucosal immunity responses against a foreign disease-causing organism. Edible vaccines can be produced by incorporating transgene in to the selected plant cell. At present edible vaccine are developed for veterinary and human use. But the main challenge faced by edible vaccine is its acceptance by the population so that it is necessary to make aware the society about its use and benefits. When compared to other traditional vaccines, edible vaccines are cost effective, efficient and safe. It promises a better prevention option from diseases.
Collapse
Affiliation(s)
- Vrinda M Kurup
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences Healthcare, Education & Research, Kochi, Kerala, 682041, India
| | - Jaya Thomas
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences Healthcare, Education & Research, Kochi, Kerala, 682041, India.
| |
Collapse
|
17
|
Zhang DX, Kang YH, Zhan S, Zhao ZL, Jin SN, Chen C, Zhang L, Shen JY, Wang CF, Wang GQ, Shan XF, Qian AD. Effect of Bacillus velezensis on Aeromonas veronii-Induced Intestinal Mucosal Barrier Function Damage and Inflammation in Crucian Carp ( Carassius auratus). Front Microbiol 2019; 10:2663. [PMID: 31798571 PMCID: PMC6874145 DOI: 10.3389/fmicb.2019.02663] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/01/2019] [Indexed: 12/29/2022] Open
Abstract
Aeromonas veronii is an emerging aquatic pathogen causing hemorrhagic septicemia in humans and animals. Probiotic is an effective strategy for controlling enteric infections through reducing intestinal colonization by pathogens. Here we report that the consumption of Bacillus velezensis regulated the intestinal innate immune response and decreased the degree of intestinal inflammation damage caused by the A. veronii in Crucian carp. In this study, we isolated four strains of B. velezensis, named C-11, S-22, L-17 and S-14 from apparently healthy Crucian carp, which exerted a broad-spectrum antimicrobial activity inhibiting both Gram-positive and Gram-negative bacteria especially the fish pathogens. B. velezensis isolates showed typical Bacillus characteristics by endospore staining, physiological and biochemical test, enzyme activity analysis (amylase, protease, and lipase), and molecular identification. Here, Bacillus-containing dietary was orally administrated to Crucian carp for 8 weeks before A. veronii challenge. Immunological parameters and the expression of immune-related genes were measured at 2, 4, 6, 8, and 10 weeks post-administration. The results showed that B. velezensis was found to promote the increase in the phagocytic activities of peripheral blood leukocytes (PBLs) and head kidney leukocytes (HKLs), as well as the increase in interleukin 1β (IL-1β), IL-10 and tumor necrosis factor α (TNF-α) concentration of serum. Lysozyme levels (113.76 U/mL), ACP activity (25.32 U/mL), AKP activity (130.08 U/mL), and SOD activity (240.63 U/mL) were maximum (P < 0.05) in the B. velezensis C-11 treated group at 8 week. Our results showed that Crucian carp fed with the diet containing B. velezensis C-11 and S-22 developed a strong immune response with significantly higher (P < 0.05) levels of IgM in samples of serum, mucus of skin and intestine compared to B. velezensis L-17 and S-14 groups. Moreover, B. velezensis spores appeared to show no toxicity and damage in fish, which could inhabit the gut of Crucian carp. B. velezensis restrained up-regulation of pro-inflammation cytokines (IL-1β, IFN-γ, and TNF-α) mRNA levels in the intestine and head kidney at final stage of administration, and the expression of IL-10 was increased throughout the 10-week trial. A. veronii infection increased the population of inflammatory cells in the intestinal villi in the controls. In contrast, numerous goblet cells and few inflammatory cells infiltrated the mucosa in the B. velezensis groups after challenge with A. veronii. Compared with A. veronii group, B. velezensis could safeguard the integrity of intestinal villi. The highest post-challenge survival rate (75.0%) was recorded in B. velezensis C-11 group. The present data suggest that probiotic B. velezensis act as a potential gut-targeted therapy regimens to protecting fish from pathogenic bacteria infection. IMPORTANCE In this work, four Bacillus velezensis strains isolated from apparently healthy Crucian carp, which exhibited a broad-spectrum antibacterial activity especially the fish pathogens. Administration of B. velezensis induced the enhancement of the intestinal innate immune response through reducing intestinal colonization by pathogens. The isolation and characterization would help better understand probiotic can be recognized as an alternative of antimicrobial drugs protecting human and animal health.
Collapse
Affiliation(s)
- Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuan-Huan Kang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Sheng Zhan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ze-Lin Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Sheng-Nan Jin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chong Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jin-Yu Shen
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Gui-Qin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
18
|
Barros PPD, Rossoni RD, Ribeiro FDC, Silva MP, Souza CMD, Jorge AOC, Junqueira JC. Two sporulated Bacillus enhance immunity in Galleria mellonella protecting against Candida albicans. Microb Pathog 2019; 132:335-342. [PMID: 31100407 DOI: 10.1016/j.micpath.2019.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
The aim of this study was to evaluate the effects of Bacillus subtilis and Bacillus atrophaeus on Galleria mellonella immunity challenged by Candida albicans. Firstly, we analyzed the susceptibility of G. mellonella to bacilli (vegetative and sporulating forms). It was found that both vegetative and sporulating forms were not pathogenic to G. mellonella at a concentration of 1 × 104 cells/larva. Next, larvae were pretreated with two species of Bacillus, in the vegetative and sporulating forms, and then challenged with C. albicans. In addition, the gene expression of antimicrobial peptides (AMPs) such as Gallerimycin, Gloverin, Cecropin-D and Galiomicin was investigated. Survival rates increased in the Bacillus treated larvae compared with control larvae inoculated with C. albicans only. Cells and spores of Bacillus spp. upregulated Gloverin, Galiomicin and Gallerimycin genes in relation to the control group (PBS + PBS). When these larvae were infected with C. albicans, the group pretreated with spores of B. atrophaeus and B. subtilis showed a greater increase in expression of Galiomycin (49.08-fold and 13.50-fold) and Gallerimycin (27.88-fold and 68.15-fold), respectively, compared to the group infected with C. albicans only (p = 0.0001). After that, we investigated the effects of B. subtilis and B. atrophaeus on immune system of G. mellonella evaluating the number of hemocytes, quantification of melanization, cocoon formation and colony forming units (CFU) count. Hemocyte count increased in response to stimulation by Bacillus, and a higher increase was achieved when larvae were inoculated with B. subtilis spores (p = 0.0011). In the melanization assay, all groups tested demonstrated lower production of melanin compared to that in the phosphate-buffered saline (PBS) group. In addition, full cocoon formation was observed in all groups analyzed, which corresponded to a healthier wax worm. Hemolymph culture revealed higher growth of B. atrophaeus and B. subtilis in the groups inoculated with spores. We concluded that spores and cells of B. atrophaeus and B. subtilis stimulated the immune system of G. mellonella larvae and protected them of C. albicans infection.
Collapse
Affiliation(s)
- Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Felipe de Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Michelle Peneluppi Silva
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Cheyenne Marçal de Souza
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Antonio Olavo Cardoso Jorge
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| |
Collapse
|
19
|
Development of bacteria as diagnostics and therapeutics by genetic engineering. J Microbiol 2019; 57:637-643. [DOI: 10.1007/s12275-019-9105-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
|
20
|
Criscuolo E, Caputo V, Diotti RA, Sautto GA, Kirchenbaum GA, Clementi N. Alternative Methods of Vaccine Delivery: An Overview of Edible and Intradermal Vaccines. J Immunol Res 2019; 2019:8303648. [PMID: 30949518 PMCID: PMC6425294 DOI: 10.1155/2019/8303648] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 01/26/2023] Open
Abstract
Vaccines are recognized worldwide as one of the most important tools for combating infectious diseases. Despite the tremendous value conferred by currently available vaccines toward public health, the implementation of additional vaccine platforms is also of key importance. In fact, currently available vaccines possess shortcomings, such as inefficient triggering of a cell-mediated immune response and the lack of protective mucosal immunity. In this regard, recent work has been focused on vaccine delivery systems, as an alternative to injectable vaccines, to increase antigen stability and improve overall immunogenicity. In particular, novel strategies based on edible or intradermal vaccine formulations have been demonstrated to trigger both a systemic and mucosal immune response. These novel vaccination delivery systems offer several advantages over the injectable preparations including self-administration, reduced cost, stability, and elimination of a cold chain. In this review, the latest findings and accomplishments regarding edible and intradermal vaccines are described in the context of the system used for immunogen expression, their molecular features and capacity to induce a protective systemic and mucosal response.
Collapse
Affiliation(s)
- E. Criscuolo
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
| | - V. Caputo
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
- Pomona Ricerca S.r.l., Turin, Italy
| | - R. A. Diotti
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
- Pomona Ricerca S.r.l., Turin, Italy
| | - G. A. Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | | | - N. Clementi
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
| |
Collapse
|
21
|
Qureshi N, Li P, Gu Q. Probiotic therapy in Helicobacter pylori infection: a potential strategy against a serious pathogen? Appl Microbiol Biotechnol 2019; 103:1573-1588. [PMID: 30610283 DOI: 10.1007/s00253-018-09580-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022]
Abstract
Helicobacter pylori is a highly prevalent human pathogen responsible for chronic inflammation of the gastric tissues, gastroduodenal ulcers, and cancer. The treatment includes a pair of antibiotics with a proton pump inhibitor PPI. Despite the presence of different treatments, the infection rate is still increasing both in developed and developing states. The challenge of treatment failure is greatly due to the resistance of H. pylori to antibiotics and its side effects. Probiotics potential to cure H. pylori infection is well-documented. Probiotics combined with conventional treatment regime appear to have great potential in eradicating H. pylori infection, therefore, provide an excellent alternative approach to manage H. pylori load and its threatening disease outcome. Notably, anti-H. pylori activity of probiotics is strain specific,therefore establishing standard guidelines regarding the dose and formulation of individual strain is inevitable. This review is focused on probiotic's antagonism against H. pylori summarizing their three main potential aspects: their efficiency (i) as an alternative to H. pylori eradication treatment, (ii) as an adjunct to H. pylori eradication treatment and (iii) as a vaccine delivery vehicle.
Collapse
Affiliation(s)
- Nuzhat Qureshi
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| |
Collapse
|
22
|
Arora D, Sharma C, Jaglan S, Lichtfouse E. Live-Attenuated Bacterial Vectors for Delivery of Mucosal Vaccines, DNA Vaccines, and Cancer Immunotherapy. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [PMCID: PMC7123696 DOI: 10.1007/978-3-030-01881-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vaccines save millions of lives each year from various life-threatening infectious diseases, and there are more than 20 vaccines currently licensed for human use worldwide. Moreover, in recent decades immunotherapy has become the mainstream therapy, which highlights the tremendous potential of immune response mediators, including vaccines for prevention and treatment of various forms of cancer. However, despite the tremendous advances in microbiology and immunology, there are several vaccine preventable diseases which still lack effective vaccines. Classically, weakened forms (attenuated) of pathogenic microbes were used as vaccines. Although the attenuated microbes induce effective immune response, a significant risk of reversion to pathogenic forms remains. While in the twenty-first century, with the advent of genetic engineering, microbes can be tailored with desired properties. In this review, I have focused on the use of genetically modified bacteria for the delivery of vaccine antigens. More specifically, the live-attenuated bacteria, derived from pathogenic bacteria, possess many features that make them highly suitable vectors for the delivery of vaccine antigens. Bacteria can theoretically express any heterologous gene or can deliver mammalian expression vectors harboring vaccine antigens (DNA vaccines). These properties of live-attenuated microbes are being harnessed to make vaccines against several infectious and noninfectious diseases. In this regard, I have described the desired features of live-attenuated bacterial vectors and the mechanisms of immune responses manifested by live-attenuated bacterial vectors. Interestingly anaerobic bacteria are naturally attracted to tumors, which make them suitable vehicles to deliver tumor-associated antigens thus I have discussed important studies investigating the role of bacterial vectors in immunotherapy. Finally, I have provided important discussion on novel approaches for improvement and tailoring of live-attenuated bacterial vectors for the generation of desired immune responses.
Collapse
Affiliation(s)
- Divya Arora
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Chetan Sharma
- Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab India
| | - Sundeep Jaglan
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Eric Lichtfouse
- Aix Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, Aix en Provence, France
| |
Collapse
|
23
|
Vogt CM, Hilbe M, Ackermann M, Aguilar C, Eichwald C. Mouse intestinal microbiota reduction favors local intestinal immunity triggered by antigens displayed in Bacillus subtilis biofilm. Microb Cell Fact 2018; 17:187. [PMID: 30477481 PMCID: PMC6258259 DOI: 10.1186/s12934-018-1030-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/16/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND We previously engineered Bacillus subtilis to express an antigen of interest fused to TasA in a biofilm. B. subtilis has several properties such as sporulation, biofilm formation and probiotic ability that were used for the oral application of recombinant spores harboring Echinococcus granulosus paramyosin and tropomyosin immunogenic peptides that resulted in the elicitation of a specific humoral immune response in a dog model. RESULTS In order to advance our understanding of the research in oral immunization practices using recombinant B. subtilis spores, we describe here an affordable animal model. In this study, we show clear evidence indicating that a niche is required for B. subtilis recombinant spores to colonize the densely populated mice intestinal microbiota. The reduction of intestinal microbiota with an antibiotic treatment resulted in a positive elicitation of local humoral immune response in BALB/c mice after oral application of recombinant B. subtilis spores harboring TasA fused to E. granulosus (102-207) EgTrp immunogenic peptide. Our results were supported by a lasting prevalence of spores in mice feces up to 50 days after immunization and by the presence of specific secretory IgA, isolated from feces, against E. granulosus tropomyosin. CONCLUSIONS The reduction of mouse intestinal microbiota allowed the elicitation of a local humoral immune response in mice after oral application with spores of B. subtilis harboring immunogenic peptides against E. granulosus.
Collapse
Affiliation(s)
- Cédric M Vogt
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland
| | - Monika Hilbe
- Laboratory for Animal Model Pathology, Institute of Pathology, Vetsuisse, University of Zurich, Zurich, Switzerland
| | - Mathias Ackermann
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland
| | | | - Catherine Eichwald
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland.
| |
Collapse
|
24
|
Oral Immunization with Nontoxigenic Clostridium difficile Strains Expressing Chimeric Fragments of TcdA and TcdB Elicits Protective Immunity against C. difficile Infection in Both Mice and Hamsters. Infect Immun 2018; 86:IAI.00489-18. [PMID: 30150259 DOI: 10.1128/iai.00489-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022] Open
Abstract
The symptoms of Clostridium difficile infection (CDI) are attributed largely to two C. difficile toxins, TcdA and TcdB. Significant efforts have been devoted to developing vaccines targeting both toxins through parenteral immunization routes. However, C. difficile is an enteric pathogen, and mucosal/oral immunization would be particularly useful to protect the host against CDI, considering that the gut is the main site of disease onset and progression. Moreover, vaccines directed only against toxins do not target the cells and spores that transmit the disease. Previously, we constructed a chimeric vaccine candidate, mTcd138, comprised of the glucosyltransferase and cysteine proteinase domains of TcdB and the receptor binding domain of TcdA. In this study, to develop an oral vaccine that can target both C. difficile toxins and colonization/adhesion factors, we expressed mTcd138 in a nontoxigenic C. difficile (NTCD) strain, resulting in strain NTCD_mTcd138. Oral immunization with spores of NTCD_mTcd138 provided mice full protection against infection with a hypervirulent C. difficile strain, UK6 (ribotype 027). The protective strength and efficacy of NTCD_mTcd138 were further evaluated in the acute CDI hamster model. Oral immunization with spores of NTCD_mTcd138 also provided hamsters significant protection against infection with 2 × 104 UK6 spores, a dose 200-fold higher than the lethal dose of UK6 in hamsters. These results imply that the genetically modified, nontoxigenic C. difficile strain expressing mTcd138 may represent a novel mucosal vaccine candidate against CDI.
Collapse
|
25
|
Ozdemir T, Fedorec AJ, Danino T, Barnes CP. Synthetic Biology and Engineered Live Biotherapeutics: Toward Increasing System Complexity. Cell Syst 2018; 7:5-16. [DOI: 10.1016/j.cels.2018.06.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/31/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022]
|
26
|
Chen H, Ullah J, Jia J. Progress in Bacillus subtilis Spore Surface Display Technology towards Environment, Vaccine Development, and Biocatalysis. J Mol Microbiol Biotechnol 2017; 27:159-167. [DOI: 10.1159/000475177] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/30/2017] [Indexed: 11/19/2022] Open
Abstract
Spore surface display is the most desirable with enhanced effects, low cost, less time consuming and the most promising technology for environmental, medical, and industrial development. Spores have various applications in industry due to their ability to survive in harsh industrial processes including heat resistance, alkaline tolerance, chemical tolerance, easy recovery, and reusability. Yeast and bacteria, including gram-positive and -negative, are the most frequently used organisms for the display of various proteins (eukaryotic and prokaryotic), but unlike spores, they can rupture easily due to nutritive properties, susceptibility to heat, pH, and chemicals. Hence, spores are the best choice to avoid these problems, and they have various applications over nonspore formers due to amenability for laboratory purposes. Various strains of <i>Clostridium</i> and <i>Bacillus</i> are spore formers, but the most suitable choice for display is <i>Bacillus subtilis</i> because, according to the WHO, it is safe to humans and considered as “GRAS” (generally recognized as safe). This review focuses on the application of spore surface display towards industries, vaccine development, the environment, and peptide library construction, with cell surface display for enhanced protein expression and high enzymatic activity. Different vectors, coat proteins, and statistical analyses can be used for linker selection to obtain greater expression and high activity of the displayed protein.
Collapse
|
27
|
Dong H, Huang Y, Yao S, Liang B, Long Y, Xie Y, Mai J, Gong S, Zhou Z. The recombinant fusion protein of cholera toxin B and neutrophil-activating protein expressed on Bacillus subtilis spore surface suppresses allergic inflammation in mice. Appl Microbiol Biotechnol 2017; 101:5819-5829. [PMID: 28608279 DOI: 10.1007/s00253-017-8370-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 12/28/2022]
Abstract
The neutrophil-activating protein of Helicobacter pylori (HP-NAP) has been identified as a modulator with anti-Th2 inflammation activity, and cholera toxin B (CTB) is a mucosal adjuvant that can also induce antigen tolerance. In this study, we constructed a CTB-NAP fusion protein on the surface of Bacillus subtilis spore and evaluate the efficiency of oral administration of the recombinant CTB-NAP spores in preventing asthma in mice. Oral administration of recombinant CTB or CTB-NAP spores significantly decreased serum ovalbumin (OVA)-specific IgE (p < 0.001) and increased fecal IgA (p < 0.01) compared to the treatment with non-recombinant spores. Oral administration of recombinant CTB or CTB-NAP spores induced IL-10 and IFN-γ expression and reduced IL-4 levels in bronchoalveolar lavage fluid (BALF). Moreover, CTB and CTB-NAP spores reduced the eosinophils in BALF and inflammatory cell infiltration in the lungs. Furthermore, CD4+CD25+Foxp3+ Tregs in splenocytes were significantly increased in mice treated with recombinant CTB or CTB-NAP spores. The number of CD4+CD25+Foxp3+ Tregs caused by CTB-NAP was higher than that by CTB alone. Our study indicated that B. subtilis spores with surface expression of subunit CTB or CTB-NAP could inhibit OVA-induced allergic inflammation in mice. The attenuated inflammation was attributed to the induction of CD4+CD25+Foxp3+ Tregs and IgA. Moreover, the fusion protein CTB-NAP demonstrated a better efficiency than CTB alone in inhibiting the inflammation.
Collapse
Affiliation(s)
- Hui Dong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- The First Women and Children's Hospital of Huizhou, Huizhou, 516000, China
| | - Yanmei Huang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Shuwen Yao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Bingshao Liang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yan Long
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yongqiang Xie
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Jialiang Mai
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Sitang Gong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Zhenwen Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
28
|
Chua KJ, Kwok WC, Aggarwal N, Sun T, Chang MW. Designer probiotics for the prevention and treatment of human diseases. Curr Opin Chem Biol 2017; 40:8-16. [PMID: 28478369 DOI: 10.1016/j.cbpa.2017.04.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/04/2017] [Accepted: 04/13/2017] [Indexed: 12/24/2022]
Abstract
Various studies have shown the beneficial effects of probiotics in humans. The use of synthetic biology to engineer programmable probiotics that specifically targets cancer, infectious agents, or other metabolic diseases has gained much interest since the last decade. Developments made in synthetic probiotics as therapeutics within the last three years will be discussed in this review.
Collapse
Affiliation(s)
- Koon Jiew Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
| | - Wee Chiew Kwok
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
| | - Nikhil Aggarwal
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
| | - Tao Sun
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore.
| |
Collapse
|
29
|
Tang Z, Sun H, Chen T, Lin Z, Jiang H, Zhou X, Shi C, Pan H, Chang O, Ren P, Yu J, Li X, Xu J, Huang Y, Yu X. Oral delivery of Bacillus subtilis spores expressing cysteine protease of Clonorchis sinensis to grass carp (Ctenopharyngodon idellus): Induces immune responses and has no damage on liver and intestine function. FISH & SHELLFISH IMMUNOLOGY 2017; 64:287-296. [PMID: 28323213 DOI: 10.1016/j.fsi.2017.03.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 06/06/2023]
Abstract
Clonorchis sinensis (C. sinensis) is a fish-borne trematode. Human can be infected by ingestion of C. sinensis metacercariae parasitized in grass carp (Ctenopharyngodon idella). For induction of effective oral immune responses, spores of Bacillus subtilis (B. subtilis) WB600 were utilized as vehicle to delivery CsCP (cysteine protease of C. sinensis) cooperated with CotC (B.s-CotC-CP), one of coat proteins, to the gastrointestinal tract. After routine culture of 8-12 h in LB medium, B. subtilis containing CotC-CsCP was transferred into the sporulation culture medium. SDS-PAGE, western blotting and the growth curve indicated that the best sporulation time of recombinant WB600 was 24-30 h at 37 °C with continuous shaking (250 rpm). Grass carp were fed with three levels of B.s-CotC-CP (1 × 106, 1 × 107, and 1 × 108 CFU g-1) incorporated in the basal pellets diet. The commercial pellets or supplemented with spores just expressing CotC (1 × 107 CFU g-1) were served as control diet. Our results showed that grass carp orally immunized with the feed-based B.s-CotC-CP developed a strong specific immune response with significantly (P < 0.05) higher levels of IgM in samples of serum, bile, mucus of surface and intestinal compared to the control groups. Abundant colonization spores expressing CsCP were found in hindgut that is conducive to absorption and presentation of antigen. Moreover, B. subtilis spores appeared to show no sign of toxicity or damage in grass carp. Our cercariae challenge experiments suggested that oral administration of spores expressing CsCP could develop an effective protection against C. sinensis in fish body. Therefore, this study demonstrated that the feed-based recombinant spores could trigger high levels of mucosal and humoral immunity, and would be a promising candidate vaccine against C. sinensis metacercariae formation in freshwater fish.
Collapse
Affiliation(s)
- Zeli Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Hengchang Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - TingJin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Zhipeng Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Hongye Jiang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Xinyi Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Houjun Pan
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Ouqin Chang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Pengli Ren
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Jinyun Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Jin Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China.
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China.
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
30
|
Szatraj K, Szczepankowska AK, Chmielewska-Jeznach M. Lactic acid bacteria - promising vaccine vectors: possibilities, limitations, doubts. J Appl Microbiol 2017; 123:325-339. [PMID: 28295939 PMCID: PMC7166332 DOI: 10.1111/jam.13446] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/16/2017] [Accepted: 03/03/2017] [Indexed: 01/18/2023]
Abstract
Gram‐positive, nonpathogenic lactic acid bacteria (LAB) are considered to be promising candidates for the development of novel, safe production and delivery systems of heterologous proteins. Recombinant LAB strains were shown to elicit specific systemic and mucosal immune responses against selected antigens. For this reason, this group of bacteria is considered as a potential replacement of classical, often pathogenic, attenuated microbial carriers. Mucosal administration of recombinant LAB, especially via the best explored and universal oral route, offers many advantages in comparison to systemic inoculation, and is attractive from the immunological and practical point of view. Research aimed at designing efficient, mucosally applied vaccines in combination with improved immunization efficiency, monitoring of in vivo antigen production, determination of optimal dose for vaccination, strain selection and characterization is a priority in modern vaccinology. This paper summarizes and organizes the available knowledge on the application of LAB as live oral vaccine vectors. It constitutes a valuable source of general information for researchers interested in mucosal vaccine development and constructing LAB strains with vaccine potential.
Collapse
Affiliation(s)
- K Szatraj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - A K Szczepankowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - M Chmielewska-Jeznach
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
31
|
Zhou S, Huang Y, Liang B, Dong H, Yao S, Chen Y, Xie Y, Long Y, Gong S, Zhou Z. Systemic and mucosal pre-administration of recombinant Helicobacter pylori neutrophil-activating protein prevents ovalbumin-induced allergic asthma in mice. FEMS Microbiol Lett 2017; 364:fnw288. [PMID: 28087613 DOI: 10.1093/femsle/fnw288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/18/2016] [Accepted: 01/11/2017] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Previous epidemiologic studies have demonstrated an inverse association between Helicobacter pylori infection and the frequency of allergic asthma. The neutrophil-activating protein (NAP) of H. pylori has been identified as a modulator possessing anti-Th2 inflammation activity. Here, we sought to determine whether systemic or mucosal pre-administration of recombinant H. pylori NAP (rNAP) could prevent ovalbumin (OVA)-induced allergic asthma in mice. METHODS Mice were exposed to purified rNAP through intraperitoneal injection or inhalation and then sensitized with OVA. Following a challenge with aerosolized OVA, the bronchoalveolar lavage fluid (BALF) cell count, lung tissue histology, BALF cytokines and serum IgE were evaluated. RESULTS Both intraperitoneal injection and inhalation of rNAP prior to OVA sensitization significantly reduced eosinophil accumulation and inflammatory infiltration in lung tissue in OVA-induced asthma mice; eosinophils were reduced in the BALF of rNAP-treated mice. In addition, IL-4 and IL-13 levels were lower (P < 0.01), IL-10 and IFN-γ levels were higher (P < 0.01) and IgE serum levels were lower (P < 0.01) in the treated groups compared to the control group. CONCLUSIONS Systemic and mucosal pre-administration of rNAP could suppress the development of OVA-induced asthma in mice; rNAP may be utilized as part of novel strategies for the prevention or treatment of allergic diseases.
Collapse
Affiliation(s)
- Shuai Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China.,Translational Medicine Center, Guangdong Women and Children Hospital, No. 521 Xingnan Avenue, Panyu district, Guangzhou, Guangdong 511400, People's Republic of China
| | - Yanmei Huang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China
| | - Bingshao Liang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China
| | - Hui Dong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China
| | - Shuwen Yao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China
| | - Yinshuang Chen
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China
| | - Yongqiang Xie
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China
| | - Yan Long
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China
| | - Sitang Gong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China
| | - Zhenwen Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China
| |
Collapse
|
32
|
Wang H, Wang Y, Yang R. Recent progress in Bacillus subtilis spore-surface display: concept, progress, and future. Appl Microbiol Biotechnol 2017; 101:933-949. [PMID: 28062973 DOI: 10.1007/s00253-016-8080-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 12/16/2022]
Abstract
With the increased knowledge on spore structure and advances in biotechnology engineering, the newly developed spore-surface display system confers several inherent advantages over other microbial cell-surface display systems including enhanced stability and high safety. Bacillus subtilis is the most commonly used Bacillus species for spore-surface display. The expression of heterologous antigen or protein on the surface of B. subtilis spores has now been practiced for over a decade with noteworthy success. As an update and supplement to other previous reviews, we comprehensively summarize recent studies in the B. subtilis spore-surface display technique. We focus on its benefits as well as the critical factors affecting its display efficiency and offer suggestions for the future success of this field.
Collapse
Affiliation(s)
- He Wang
- Jiyang College, Zhejiang Agriculture and Forestry University, Zhuji, Zhejiang, 311800, China.
| | - Yunxiang Wang
- Jiyang College, Zhejiang Agriculture and Forestry University, Zhuji, Zhejiang, 311800, China
| | - Ruijin Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
33
|
Zhou Z, Dong H, Huang Y, Yao S, Liang B, Xie Y, Long Y, Mai J, Gong S. Recombinant Bacillus subtilis spores expressing cholera toxin B subunit and Helicobacter pylori urease B confer protection against H. pylori in mice. J Med Microbiol 2017; 66:83-89. [DOI: 10.1099/jmm.0.000404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Zhenwen Zhou
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou,Guangdong 510120, PR China
| | - Hui Dong
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou,Guangdong 510120, PR China
| | - Yanmei Huang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou,Guangdong 510120, PR China
| | - Shuwen Yao
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou,Guangdong 510120, PR China
| | - Bingshao Liang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou,Guangdong 510120, PR China
| | - Yongqiang Xie
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou,Guangdong 510120, PR China
| | - Yan Long
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou,Guangdong 510120, PR China
| | - Jialiang Mai
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou,Guangdong 510120, PR China
| | - Sitang Gong
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou,Guangdong 510120, PR China
| |
Collapse
|
34
|
Stasiłojć M, Hinc K, Peszyńska-Sularz G, Obuchowski M, Iwanicki A. Recombinant Bacillus subtilis Spores Elicit Th1/Th17-Polarized Immune Response in a Murine Model of Helicobacter pylori Vaccination. Mol Biotechnol 2016; 57:685-91. [PMID: 25779639 PMCID: PMC4503858 DOI: 10.1007/s12033-015-9859-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Current progress in research on vaccines against Helicobacter pylori emphasizes the significance of eliciting the Th1/Th17-polarized immune response. Such polarization can be achieved by selection of appropriate antigen and adjuvant. In this study, we wanted to check the polarization of the immune response elicited by UreB protein of Helicobacter acinonychis delivered by recombinant Bacillus subtilis spores upon oral immunization. B. subtilis spores presenting fragment of UreB protein and able to express entire UreB in vegetative cells after germination were orally administered to mice along with aluminum hydroxide or recombinant spores presenting IL-2 as an adjuvant. The pattern of cytokines secreted by sensitized splenocytes assessed by the cytometric bead array clearly indicated polarization of the immune response toward both Th1 and Th17 in mice immunized with the use of above-mentioned adjuvants. Obtained result is promising regarding the usage of recombinant spores in formulations of vaccines against H. pylori and line up with the current state of research emphasizing the key role of appropriate adjuvants.
Collapse
Affiliation(s)
- Małgorzata Stasiłojć
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | | | | | | | | |
Collapse
|
35
|
Kumar M, Yadav AK, Verma V, Singh B, Mal G, Nagpal R, Hemalatha R. Bioengineered probiotics as a new hope for health and diseases: an overview of potential and prospects. Future Microbiol 2016; 11:585-600. [PMID: 27070955 DOI: 10.2217/fmb.16.4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite the use of microorganisms as therapeutics for over a century, the scientific and clinical admiration of their potential is a recent phenomenon. Genome sequencing and genetic engineering has enabled researchers to develop novel strategies, such as bioengineered probiotics or pharmabiotics, which may become a therapeutic strategy. Bioengineered probiotics with multiple immunogenic or antagonistic properties could be a viable option to improve human health. The bacteria are tailored to deliver drugs, therapeutic proteins or gene therapy vectors with precision and a higher degree of site specificity than conventional drug administration regimes. This article provides an overview of methodological concepts, thereby encouraging research and interest in this topic, with the ultimate goal of using designer probiotics as therapeutics in clinical practice.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Clinical Microbiology & Immunology, National Institute of Nutrition, ICMR Hyderabad, India
| | - Ashok Kumar Yadav
- Department of Clinical Microbiology & Immunology, National Institute of Nutrition, ICMR Hyderabad, India
| | - Vinod Verma
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Gorakh Mal
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Ravinder Nagpal
- Probiotics Research Laboratory, Graduate School of Medicine, Juntendo University, Tokyo
| | - Rajkumar Hemalatha
- Department of Clinical Microbiology & Immunology, National Institute of Nutrition, ICMR Hyderabad, India
| |
Collapse
|
36
|
Rosales-Mendoza S, Angulo C, Meza B. Food-Grade Organisms as Vaccine Biofactories and Oral Delivery Vehicles. Trends Biotechnol 2016; 34:124-136. [DOI: 10.1016/j.tibtech.2015.11.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022]
|