1
|
Alves V, Zamith-Miranda D, Frases S, Nosanchuk JD. Fungal Metabolomics: A Comprehensive Approach to Understanding Pathogenesis in Humans and Identifying Potential Therapeutics. J Fungi (Basel) 2025; 11:93. [PMID: 39997385 PMCID: PMC11856446 DOI: 10.3390/jof11020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Metabolomics has emerged as a transformative tool in the study of microbes, including pathogenic fungi, facilitating the identification of unique metabolic profiles that elucidate their pathogenic mechanisms, host interactions, and treatment resistance. This review highlights key applications of metabolomics in understanding fungal metabolites essential for human virulence, such as mycotoxins produced by various fungal species, including Aspergillus fumigatus (gliotoxin, fumagillins) and Candida species (phenylethyl alcohol, TCA cycle metabolites), and secondary metabolites that contribute to pathogenicity. It also explores the metabolic adaptations of fungi in relation to drug resistance and biofilm formation, revealing alterations in key metabolic pathways during infection, as seen in C. albicans and C. auris. Furthermore, metabolomics aids in deciphering host-pathogen interactions, showcasing how fungi like Cryptococcus neoformans and Candida modify host metabolism to promote survival and evade immune responses. The study of antifungal resistance mechanisms has also benefited from metabolomic approaches, identifying specific metabolite patterns that signify resistance, such as in Candida albicans and Candidozyma (Candida) auris, and informing new therapeutic strategies. The integration of metabolomics with other omics technologies is paving the way for a comprehensive understanding of fungal biology and pathogenesis. Such multi-omics approaches are crucial for discovering new therapeutic targets and developing innovative antifungal treatments. Thus, the purpose of this review is to provide an overview of how metabolomics is revolutionizing our understanding of fungal pathogenesis, drug resistance, and host interactions, and to highlight its potential for identifying new therapeutic targets and improving antifungal strategies.
Collapse
Affiliation(s)
- Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro—FAPERJ, Rio de Janeiro 21040-360, Brazil
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
2
|
Wang X, Qu Q, Li Z, Lu S, Ferrandon D, Xi L. An unusual Toll/MyD88-mediated Drosophila host defence against Talaromyces marneffei. Fly (Austin) 2024; 18:2398300. [PMID: 39239739 PMCID: PMC11382710 DOI: 10.1080/19336934.2024.2398300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
Talaromycosis, caused by Talaromyces marneffei (T. marneffei, formerly known as Penicillium marneffei), is an opportunistic invasive mycosis endemic in tropical and subtropical areas of Asia with high mortality rate. Despite various infection models established to study the immunological interaction between T. marneffei and the host, the pathogenicity of this fungus is not yet fully understood. So far, Drosophila melanogaster, a well-established genetic model organism to study innate immunity, has not been used in related research on T. marneffei. In this study, we provide the initial characterization of a systemic infection model of T. marneffei in the D. melanogaster host. Survival curves and fungal loads were tested as well as Toll pathway activation was quantified by RT-qPCR of several antimicrobial peptide (AMP) genes including Drosomycin, Metchnikowin, and Bomanin Short 1. We discovered that whereas most wild-type flies were able to overcome the infection, MyD88 or Toll mutant flies failed to prevent fungal dissemination and proliferation and ultimately succumbed to this challenge. Unexpectedly, the induction of classical Toll pathway activation readouts, Drosomycin and Bomanin Short 1, by live or killed T. marneffei was quite limited in wild-type flies, suggesting that the fungus largely escapes detection by the systemic immune system. This unusual situation of a poor systemic activation of the Toll pathway and a strong susceptibility phenotype of MyD88/Toll might be accounted for by a requirement for this host defence in only specific tissues, a hypothesis that remains to be rigorously tested.
Collapse
Affiliation(s)
- Xiaoyue Wang
- Dermatology hospital, Southern Medical University, Guangzhou, China
| | - Qinglin Qu
- Dermatology hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Laboratory, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, China
| | - Zi Li
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Sha Lu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, UPR 9022 du CNRS, Strasbourg, France
| | - Liyan Xi
- Dermatology hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
He H, Cai L, Lin Y, Zheng F, Liao W, Xue X, Pan W. Advances in the understanding of talaromycosis in HIV-negative patients (especially in children and patients with hematological malignancies): A comprehensive review. Med Mycol 2024; 62:myae094. [PMID: 39289007 DOI: 10.1093/mmy/myae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/19/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
Talaromyces marneffei (T. marneffei) stands out as the sole thermobiphasic fungus pathogenic to mammals, including humans, within the fungal community encompassing Ascomycota, Eurotium, Eurotiumles, Fungiaceae, and Cyanobacteria. Thriving as a saprophytic fungus in its natural habitat, it transitions into a pathogenic yeast phase at the mammalian physiological temperature of 37°C. Historically, talaromycosis has been predominantly associated with human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS), classified among the three primary opportunistic infections linked with AIDS, alongside tuberculosis and cryptococcosis. As advancements are made in HIV/AIDS treatment and control measures, the incidence of talaromycosis co-infection with HIV is declining annually, whereas the population of non-HIV-infected talaromycosis patients is steadily increasing. These patients exhibit diverse risk factors such as various types of immunodeficiency, malignant tumors, autoimmune diseases, and organ transplantation, among others. Yet, a limited number of retrospective studies have centered on the clinical characteristics and risk factors of HIV-negative talaromycosis patients, especially in children and patients with hematological malignancies, resulting in an inadequate understanding of this patient cohort. Consequently, we conducted a comprehensive review encompassing the epidemiology, pathogenesis, risk factors, clinical manifestations, diagnosis, treatment, and prognosis of HIV-negative talaromycosis patients, concluding with a prospectus of the disease's frontier research direction. The aim is to enhance comprehension, leading to advancements in the diagnosis and treatment rates for these patients, ultimately improving their prognosis.
Collapse
Affiliation(s)
- Haiyang He
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Liuyang Cai
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yusong Lin
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Fangwei Zheng
- Department of Dermatology, Linping District Traditional Chinese Medicine Hospital, Hangzhou 311103, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xiaochun Xue
- Department of Pharmacy, No. 905 Hospital of PLA Navy, Shanghai 200052, China
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
4
|
Tan YP, Tsang CC, Chan KF, Fung SL, Kok KH, Lau SKP, Woo PCY. Differential innate immune responses of human macrophages and bronchial epithelial cells against Talaromyces marneffei. mSphere 2023; 8:e0025822. [PMID: 37695039 PMCID: PMC10597461 DOI: 10.1128/msphere.00258-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/11/2023] [Indexed: 09/12/2023] Open
Abstract
Talaromyces marneffei is a thermally dimorphic fungal pathogen endemic in Southeast Asia. As inhalation of airborne conidia is believed as the major infection route, airway epithelial cells followed by pulmonary macrophages are the first cell types which the fungus encounters inside the host. In this study, we established an in vitro infection model based on human peripheral blood-derived macrophages (hPBDMs) cultured with the supplementation of autologous plasma. Using this model, we determined the transcriptomic changes of hPBDMs in response to T. marneffei infection by quantitative real-time reverse-transcription polymerase chain reaction as well as high-throughput RNA sequencing. Results showed that T. marneffei infection could activate hPBDMs to the M1-like phenotype and trigger a potent induction of chemokine and pro-inflammatory cytokine production as well as the expression of other immunoregulatory genes. In contrast to hPBDMs, there was no detectable innate cytokine response against T. marneffei in human bronchial epithelial cells (hBECs). Using a green fluorescent protein-tagged T. marneffei strain and confocal microscopy, internalization of the fungus by hBECs was confirmed. Live cell imaging further demonstrated that the infected cells exhibited normal cellular physiology, especially that the process of cell division could be observed. Moreover, T. marneffei also survived better inside hBECs than hPBDMs. Our results illustrated a potential role of hBECs to serve as reservoir cells for T. marneffei to evade immunosurveillance by phagocytes, from which the fungus reactivates when the host immunity is weakened and causes infection. Such immunoevasion and reactivation may also help explain the long incubation period observed for talaromycosis, in particular the travel-related cases. IMPORTANCE Talaromyces marneffei is an important fungal pathogen especially in Southeast Asia. To understand the innate immune response to talaromycosis, a suitable infection model is needed. Here, we established an in vitro T. marneffei infection model using human peripheral blood-derived macrophages (hPBDMs). We then examined the transcriptomic changes of hPBDMs in response to T. marneffei infection with this model. We found that contact with T. marneffei could activate hPBDMs to the M1-like phenotype and induced mRNA expressions of five cytokines and eight immunoregulatory genes. Contrary to hPBDMs, such immunoresponse was not elicited in human bronchial epithelial cells (hBECs), despite normal physiology observed in infected cells. We also found that infected hBECs did not eliminate T. marneffei as efficiently as hPBDMs. Our observation suggested that hBECs may potentially serve as reservoir cells for T. marneffei to evade immunosurveillance. When the host immunity deteriorates later, then the fungus reactivates and causes infection.
Collapse
Affiliation(s)
- Yen-Pei Tan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Chi-Ching Tsang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- School of Medical and Health Sciences, Tung Wah College, Homantin, Hong Kong, China
| | - Ka-Fai Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Siu-Leung Fung
- Tuberculosis and Chest Medicine Unit, Grantham Hospital, Aberdeen, Hong Kong, China
| | - Kin-Hang Kok
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Susanna K. P. Lau
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Patrick C. Y. Woo
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- Doctoral Program in Translational Medicine and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
5
|
Wang F, Han R, Chen S. An Overlooked and Underrated Endemic Mycosis-Talaromycosis and the Pathogenic Fungus Talaromyces marneffei. Clin Microbiol Rev 2023; 36:e0005122. [PMID: 36648228 PMCID: PMC10035316 DOI: 10.1128/cmr.00051-22] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Talaromycosis is an invasive mycosis endemic in tropical and subtropical Asia and is caused by the pathogenic fungus Talaromyces marneffei. Approximately 17,300 cases of T. marneffei infection are diagnosed annually, and the reported mortality rate is extremely high (~1/3). Despite the devastating impact of talaromycosis on immunocompromised individuals, particularly HIV-positive persons, and the increase in reported occurrences in HIV-uninfected persons, diagnostic and therapeutic approaches for talaromycosis have received far too little attention worldwide. In 2021, scientists living in countries where talaromycosis is endemic raised a global demand for it to be recognized as a neglected tropical disease. Therefore, T. marneffei and the infectious disease induced by this fungus must be treated with concern. T. marneffei is a thermally dimorphic saprophytic fungus with a complicated mycological growth process that may produce various cell types in its life cycle, including conidia, hyphae, and yeast, all of which are associated with its pathogenicity. However, understanding of the pathogenic mechanism of T. marneffei has been limited until recently. To achieve a holistic view of T. marneffei and talaromycosis, the current knowledge about talaromycosis and research breakthroughs regarding T. marneffei growth biology are discussed in this review, along with the interaction of the fungus with environmental stimuli and the host immune response to fungal infection. Importantly, the future research directions required for understanding this serious infection and its causative pathogenic fungus are also emphasized to identify solutions that will alleviate the suffering of susceptible individuals worldwide.
Collapse
Affiliation(s)
- Fang Wang
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - RunHua Han
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shi Chen
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Department of Burn and Plastic Surgery, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
6
|
Sarkhel R, Apoorva S, Priyadarsini S, Sridhar HB, Bhure SK, Mahawar M. Malate synthase contributes to the survival of Salmonella Typhimurium against nutrient and oxidative stress conditions. Sci Rep 2022; 12:15979. [PMID: 36155623 PMCID: PMC9510125 DOI: 10.1038/s41598-022-20245-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
To survive and replicate in the host, S. Typhimurium have evolved several metabolic pathways. The glyoxylate shunt is one such pathway that can utilize acetate for the synthesis of glucose and other biomolecules. This pathway is a bypass of the TCA cycle in which CO2 generating steps are omitted. Two enzymes involved in the glyoxylate cycle are isocitrate lyase (ICL) and malate synthase (MS). We determined the contribution of MS in the survival of S. Typhimurium under carbon limiting and oxidative stress conditions. The ms gene deletion strain (∆ms strain) grew normally in LB media but failed to grow in M9 minimal media supplemented with acetate as a sole carbon source. However, the ∆ms strain showed hypersensitivity (p < 0.05) to hypochlorite. Further, ∆ms strain has been significantly more susceptible to neutrophils. Interestingly, several folds induction of ms gene was observed following incubation of S. Typhimurium with neutrophils. Further, ∆ms strain showed defective colonization in poultry spleen and liver. In short, our data demonstrate that the MS contributes to the virulence of S. Typhimurium by aiding its survival under carbon starvation and oxidative stress conditions.
Collapse
|
7
|
Talaromyces marneffei Infection: Virulence, Intracellular Lifestyle and Host Defense Mechanisms. J Fungi (Basel) 2022; 8:jof8020200. [PMID: 35205954 PMCID: PMC8880324 DOI: 10.3390/jof8020200] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
Talaromycosis (Penicilliosis) is an opportunistic mycosis caused by the thermally dimorphic fungus Talaromyces (Penicillium) marneffei. Similar to other major causes of systemic mycoses, the extent of disease and outcomes are the results of complex interactions between this opportunistic human pathogen and a host’s immune response. This review will highlight the current knowledge regarding the dynamic interaction between T. marneffei and mammalian hosts, particularly highlighting important aspects of virulence factors, intracellular lifestyle and the mechanisms of immune defense as well as the strategies of the pathogen for manipulating and evading host immune cells.
Collapse
|
8
|
Oliveira FCS, Pessoa WFB, Mares JH, Freire HPS, Souza EAD, Pirovani CP, Romano CC. Differentially expressed proteins in the interaction of Paracoccidioides lutzii with human monocytes. Rev Iberoam Micol 2021; 38:159-167. [PMID: 34802898 DOI: 10.1016/j.riam.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/17/2020] [Accepted: 09/22/2020] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Fungi of the genus Paracoccidioides are the etiological agents of paracoccidioidomycosis, a highly prevalent mycosis in Latin America. Infection in humans occurs by the inhalation of conidia, which later revert to the form of yeast. In this context, macrophages are positioned as an important line of defense, assisting in the recognition and presentation of antigens, as well as producing reactive oxygen species that inhibit fungal spreading. AIMS The objective of this study was to identify differentially expressed proteins during the interaction between Paracoccidioides lutzii Pb01 strain and human U937 monocytes. METHODS Two-dimensional electrophoresis, combined with mass spectrometry, was used to evaluate the differential proteomic profiles of the fungus P. lutzii (Pb01) interacting with U937 monocytes. RESULTS It was possible to identify 25 proteins differentially expressed by Pb01 alone and after interacting with U937 monocytes. Most of these proteins are directly associated with fungal metabolism for energy generation, such as glyceraldehyde-3-phosphate dehydrogenase, and intracellular adaptation to monocytes. Antioxidant proteins involved in the response to oxidative stress, such as peroxiredoxin, cytochrome, and peroxidase, were expressed in greater quantity in the interaction with monocytes, suggesting their association with survival mechanisms inside phagocytic cells. We also identified 12 proteins differentially expressed in monocytes before and after the interaction with the fungus; proteins involved in the reorganization of the cytoskeleton, such as vimentin, and proteins involved in the response to oxidative stress, such as glioxalase 1, were identified. CONCLUSIONS The results of this proteomic study of a P. lutzii isolate are novel, mimicking in vitro what occurs in human infections. In addition, the proteins identified may aid to understand fungal-monocyte interactions and the pathogenesis of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Flamélia Carla Silva Oliveira
- Department of Biological Sciences, Laboratory of Immunology, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Wallace Felipe Blohem Pessoa
- Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Joise Hander Mares
- Department of Physiology and Pathology - Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Herbert Pina Silva Freire
- Department of Biological Sciences, Laboratory of Immunology, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil; Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Ednara Almeida de Souza
- Department of Biological Sciences, Laboratory of Immunology, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil; Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Carla Cristina Romano
- Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil.
| |
Collapse
|
9
|
Williams RB, Lorenz MC. Multiple Alternative Carbon Pathways Combine To Promote Candida albicans Stress Resistance, Immune Interactions, and Virulence. mBio 2020; 11:e03070-19. [PMID: 31937647 PMCID: PMC6960290 DOI: 10.1128/mbio.03070-19] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 11/20/2022] Open
Abstract
The phagocytic cells of the innate immune system are an essential first line of antimicrobial defense, and yet Candida albicans, one of the most problematic fungal pathogens, is capable of resisting the stresses imposed by the macrophage phagosome, eventually resulting in the destruction of the phagocyte. C. albicans rapidly adapts to the phagosome by upregulating multiple alternative carbon utilization pathways, particularly those for amino acids, carboxylic acids, and N-acetylglucosamine (GlcNAc). Here, we report that C. albicans recognizes these carbon sources both as crucial nutrients and as independent signals in its environment. Even in the presence of glucose, each carbon source promotes increased resistance to a unique profile of stressors; lactate promotes increased resistance to osmotic and cell wall stresses, amino acids increased resistance to oxidative and nitrosative stresses, and GlcNAc increased resistance to oxidative stress and caspofungin, while all three alternative carbon sources have been shown to induce resistance to fluconazole. Moreover, we show mutants incapable of utilizing these carbon sources, in particular, strains engineered to be defective in all three pathways, are significantly attenuated in both macrophage and mouse models, with additive effects observed as multiple carbon pathways are eliminated, suggesting that C. albicans simultaneously utilizes multiple carbon sources within the macrophage phagosome and during disseminated candidiasis. Taking the data together, we propose that, in addition to providing energy to the pathogen within host environments, alternative carbon sources serve as niche-specific priming signals that allow C. albicans to recognize microenvironments within the host and to prepare for stresses associated with that niche, thus promoting host adaptation and virulence.IMPORTANCECandida albicans is a fungal pathogen and a significant cause of morbidity and mortality, particularly in people with defects, sometimes minor ones, in innate immunity. The phagocytes of the innate immune system, particularly macrophages and neutrophils, generally restrict this organism to its normal commensal niches, but C. albicans shows a robust and multifaceted response to these cell types. Inside macrophages, a key component of this response is the activation of multiple pathways for the utilization of alternative carbon sources, particularly amino acids, carboxylic acids, and N-acetylglucosamine. These carbon sources are key sources of energy and biomass but also independently promote stress resistance, induce cell wall alterations, and affect C. albicans interactions with macrophages. Engineered strains incapable of utilizing these alternative carbon pathways are attenuated in infection models. These data suggest that C. albicans recognizes nutrient composition as an indicator of specific host environments and tailors its responses accordingly.
Collapse
Affiliation(s)
- Robert B Williams
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School and the MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School and the MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
10
|
Chew SY, Chee WJY, Than LTL. The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies of Candida glabrata: perspectives from Candida albicans and Saccharomyces cerevisiae. J Biomed Sci 2019; 26:52. [PMID: 31301737 PMCID: PMC6626413 DOI: 10.1186/s12929-019-0546-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Carbon utilization and metabolism are fundamental to every living organism for cellular growth. For intracellular human fungal pathogens such as Candida glabrata, an effective metabolic adaptation strategy is often required for survival and pathogenesis. As one of the host defence strategies to combat invading pathogens, phagocytes such as macrophages constantly impose restrictions on pathogens' access to their preferred carbon source, glucose. Surprisingly, it has been reported that engulfed C. glabrata are able to survive in this harsh microenvironment, further suggesting alternative carbon metabolism as a potential strategy for this opportunistic fungal pathogen to persist in the host. MAIN TEXT In this review, we discuss alternative carbon metabolism as a metabolic adaptation strategy for the pathogenesis of C. glabrata. As the glyoxylate cycle is an important pathway in the utilization of alternative carbon sources, we also highlight the key metabolic enzymes in the glyoxylate cycle and its necessity for the pathogenesis of C. glabrata. Finally, we explore the transcriptional regulatory network of the glyoxylate cycle. CONCLUSION Considering evidence from Candida albicans and Saccharomyces cerevisiae, this review summarizes the current knowledge of the glyoxylate cycle as an alternative carbon metabolic pathway of C. glabrata.
Collapse
Affiliation(s)
- Shu Yih Chew
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Wallace Jeng Yang Chee
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
11
|
Feng J, Chen Z, He L, Xiao X, Chen C, Chu J, Mylonakis E, Xi L. AcuD Gene Knockout Attenuates the Virulence of Talaromyces marneffei in a Zebrafish Model. MYCOBIOLOGY 2019; 47:207-216. [PMID: 31448141 PMCID: PMC6691920 DOI: 10.1080/12298093.2019.1620975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 06/10/2023]
Abstract
Talaromyces marneffei is the only dimorphic species in its genus and causes a fatal systemic mycosis named talaromycosis. Our previous study indicated that knockdown of AcuD gene (encodes isocitrate lyase of glyoxylate bypass) of T. marneffei by RNA interference approach attenuated the virulence of T. marneffei, while the virulence of the AcuD knockout strains was not studied. In this study, T. marneffei-zebrafish infection model was successfully established through hindbrain microinjection with different amounts of T. marneffei yeast cells. After co-incubated at 28°C, the increasing T. marneffei inoculum doses result in greater larval mortality; and hyphae generation might be one virulence factor involved in T. marneffei-zebrafish infection. Moreover, the results demonstrated that the virulence of the ΔAcuD was significantly attenuated in this Zebrafish infection model.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiwen Chen
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liya He
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xing Xiao
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunmei Chen
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jieming Chu
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Liyan Xi
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Agrobacterium tumefaciens-mediated transformation: an efficient tool for targeted gene disruption in Talaromyces marneffei. World J Microbiol Biotechnol 2017; 33:183. [PMID: 28948456 DOI: 10.1007/s11274-017-2352-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 09/21/2017] [Indexed: 01/30/2023]
Abstract
Talaromyces marneffei causes life-threatening infections in immunocompromised hosts. An efficient tool for genetic manipulation of T. marneffei will allow for increased understanding of this thermally dimorphic fungus. Agrobacterium tumefaciens-mediated transformation (ATMT) was optimized for targeted gene disruption in T. marneffei using the plasmid pDHt/acuD::pyrG. Molecular analyses of transformants were performed by PCR, Southern blot and semi-quantitative RT-PCR. A. tumefaciens strain EHA105 was more efficient at transformation than strain AGL-1 in ATMT via solid co-cultivation. An A. tumefaciens:T. marneffei ratio of 1000:1 in an ATMT liquid co-cultivation led to a relatively high transformation efficiency of 90 transformants per 106 yeast cells. Using ATMT-mediated knockout mutagenesis, we successfully deleted the acuD gene in T. marneffei. PCR and Southern blot analysis confirmed that acuD was disrupted and that the foreign pyrG gene was integrated into T. marneffei. Semi-quantitative RT-PCR analysis further confirmed that pyrG was expressed normally. These results suggest that ATMT can be a potential platform for targeted gene disruption in T. marneffei and that liquid co-cultivation may provide new opportunities to develop clinical treatments.
Collapse
|
13
|
Adaptation to macrophage killing by Talaromyces marneffei. Future Sci OA 2017; 3:FSO215. [PMID: 28884011 PMCID: PMC5583664 DOI: 10.4155/fsoa-2017-0032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/03/2017] [Indexed: 01/09/2023] Open
Abstract
Talaromyces (Penicillium) marneffei is an important opportunistic fungal pathogen. It causes disseminated infection in immunocompromised patients especially in Southeast Asian countries. The pathogenicity of T. marneffei depends on the ability of the fungus to survive the killing process and replicate inside the macrophage. Major stresses inside the phagosome of macrophages are heat, oxidative substances and nutrient deprivation. The coping strategies of this pathogen with these stresses are under investigation. This paper summarizes factors relating to the stress responses that contribute to the intracellular survival of T. marneffei. These include molecules in the MAP signal transduction cascade, heat shock proteins, antioxidant enzymes and enzymes responsible in nutrient retrieval. There is speculation that the ability of T. marneffei to withstand these defenses plays an important role in its pathogenicity. Talaromyces marneffei is an important dimorphic fungus that causes disease in immunocompromised patients. The pathogenicity of T. marneffei depends on the ability of the fungus to survive the killing process and replicate inside the host macrophage cells. This paper summarizes factors relating to the stress responses that contribute to the intracellular survival of T. marneffei. There is speculation that the ability of T. marneffei to withstand these defenses plays an important role in its pathogenicity.
Collapse
|
14
|
Weerasinghe H, Payne M, Beard S, Andrianopoulos A. Organism-wide studies into pathogenicity and morphogenesis in Talaromyces marneffei. Future Microbiol 2016; 11:511-26. [PMID: 27073980 DOI: 10.2217/fmb.16.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Organism-wide approaches examining the genetic mechanisms controlling growth and proliferation have proven to be a powerful tool in the study of pathogenic fungi. For many fungal pathogens techniques to study transcription and protein expression are particularly useful, and offer insights into infection processes by these species. Here we discuss the use of approaches such as differential display, suppression subtractive hybridization, microarray, RNA-seq, proteomics, genetic manipulation and infection models for the AIDS-defining pathogen Talaromyces marneffei. Together these methods have broadened our understanding of the biological processes, and genes that underlie them, which are involved in switching between the saprophytic and pathogenic states of T. marneffei, the maintenance of these two specialized cell types and its ability to cause disease.
Collapse
Affiliation(s)
- Harshini Weerasinghe
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Michael Payne
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Sally Beard
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
15
|
Yang E, Chow WN, Wang G, Woo PCY, Lau SKP, Yuen KY, Lin X, Cai JJ. Signature gene expression reveals novel clues to the molecular mechanisms of dimorphic transition in Penicillium marneffei. PLoS Genet 2014; 10:e1004662. [PMID: 25330172 PMCID: PMC4199489 DOI: 10.1371/journal.pgen.1004662] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 08/11/2014] [Indexed: 12/16/2022] Open
Abstract
Systemic dimorphic fungi cause more than one million new infections each year, ranking them among the significant public health challenges currently encountered. Penicillium marneffei is a systemic dimorphic fungus endemic to Southeast Asia. The temperature-dependent dimorphic phase transition between mycelium and yeast is considered crucial for the pathogenicity and transmission of P. marneffei, but the underlying mechanisms are still poorly understood. Here, we re-sequenced P. marneffei strain PM1 using multiple sequencing platforms and assembled the genome using hybrid genome assembly. We determined gene expression levels using RNA sequencing at the mycelial and yeast phases of P. marneffei, as well as during phase transition. We classified 2,718 genes with variable expression across conditions into 14 distinct groups, each marked by a signature expression pattern implicated at a certain stage in the dimorphic life cycle. Genes with the same expression patterns tend to be clustered together on the genome, suggesting orchestrated regulations of the transcriptional activities of neighboring genes. Using qRT-PCR, we validated expression levels of all genes in one of clusters highly expressed during the yeast-to-mycelium transition. These included madsA, a gene encoding MADS-box transcription factor whose gene family is exclusively expanded in P. marneffei. Over-expression of madsA drove P. marneffei to undergo mycelial growth at 37°C, a condition that restricts the wild-type in the yeast phase. Furthermore, analyses of signature expression patterns suggested diverse roles of secreted proteins at different developmental stages and the potential importance of non-coding RNAs in mycelium-to-yeast transition. We also showed that RNA structural transition in response to temperature changes may be related to the control of thermal dimorphism. Together, our findings have revealed multiple molecular mechanisms that may underlie the dimorphic transition in P. marneffei, providing a powerful foundation for identifying molecular targets for mechanism-based interventions. Penicillium marneffei is a significant dimorphic fungal pathogen capable of causing lethal systemic infections. It grows in a yeast-like form at mammalian body temperature and a mold-like form at ambient temperature. The thermal dimorphism of P. marneffei is closely related to its virulence. In the present study, we re-sequenced the genome of P. marneffei using Illumina and PacBio sequencing technologies, and simultaneously assembled these newly sequenced reads in different lengths with previously obtained Sanger sequences. This hybrid assembly greatly improved the quality of the genome sequences. Next, we used RNA-seq to measure the global gene expression of P. marneffei at different phases and during dimorphic phase transitions. We found that 27% of genes showed signature expression patterns, suggesting that these genes function at different stages in the life cycle of P. marneffei. Moreover, genes with same expression patterns tend to be clustered together as neighbors to each other in the genome, suggesting an orchestrated transcriptional regulation for multiple neighboring genes. Over-expression of the MADS-box transcription factor, madsA, located in one of these clusters, confirms the function of this gene in driving the yeast-to-mycelia phase transition irrespective of the temperature cues. Our data also implies diverse roles of secreted proteins and non-coding RNAs in dimorphic transition in P. marneffei.
Collapse
Affiliation(s)
- Ence Yang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Wang-Ngai Chow
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Gang Wang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Patrick C. Y. Woo
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Susanna K. P. Lau
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
16
|
Sun J, Li X, Feng P, Zhang J, Xie Z, Song E, Xi L. RNAi-mediated silencing of fungal acuD gene attenuates the virulence of Penicillium marneffei. Med Mycol 2014; 52:167-78. [DOI: 10.1093/mmy/myt006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
17
|
Lau SKP, Tse H, Chan JSY, Zhou AC, Curreem SOT, Lau CCY, Yuen KY, Woo PCY. Proteome profiling of the dimorphic fungus Penicillium marneffei extracellular proteins and identification of glyceraldehyde-3-phosphate dehydrogenase as an important adhesion factor for conidial attachment. FEBS J 2013; 280:6613-26. [PMID: 24128375 DOI: 10.1111/febs.12566] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/26/2013] [Accepted: 10/04/2013] [Indexed: 12/18/2022]
Abstract
Despite being the most important thermal dimorphic fungus causing systemic mycosis in Southeast Asia, the pathogenic mechanisms of Penicillium marneffei remain largely unknown. By comparing the extracellular proteomes of P. marneffei in mycelial and yeast phases, we identified 12 differentially expressed proteins among which glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and heat shock protein 60 (HSP60) were found to be upregulated in mycelial and yeast phases respectively. Based on previous findings in other pathogens, we hypothesized that these two extracellular proteins may be involved in adherence during P. marneffei-host interaction. Using inhibition assays with recombinant GAPDH (rGAPDH) proteins and anti-rGAPDH sera, we demonstrated that adhesion of P. marneffei conidia to fibronectin and laminin was inhibited by rGAPDH or rabbit anti-rGAPDH serum in a dose-dependent manner. Similarly, a dose-dependent inhibition of conidial adherence to A549 pneumocytes by rGAPDH or rabbit anti-rGAPDH serum was observed, suggesting that P. marneffei GAPDH can mediate binding of conidia to human extracellular matrix proteins and pneumocytes. However, HSP60 did not exhibit similar inhibition on conidia adherence, and neither GAPDH norHSP60 exhibited inhibition on adherence to J774 or THP-1 macrophage cell lines. This report demonstrates GAPDH as an adherence factor in P. marneffei by mediating conidia adherence to host bronchoalveolar epithelium during the early establishment phase of infection.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, Research Centre of Infection and Immunology and Carol Yu Centre for Infection, University of Hong Kong, China; Department of Microbiology, University of Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Unraveling the molecular basis of temperature-dependent genetic regulation in Penicillium marneffei. EUKARYOTIC CELL 2013; 12:1214-24. [PMID: 23851338 DOI: 10.1128/ec.00159-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Penicillium marneffei is an opportunistic fungal pathogen endemic in Southeast Asia, causing lethal systemic infections in immunocompromised patients. P. marneffei grows in a mycelial form at the ambient temperature of 25°C and transitions to a yeast form at 37°C. The ability to alternate between the mycelial and yeast forms at different temperatures, namely, thermal dimorphism, has long been considered critical for the pathogenicity of P. marneffei, yet the underlying genetic mechanisms remain elusive. Here we employed high-throughput sequencing to unravel global transcriptional profiles of P. marneffei PM1 grown at 25 and 37°C. Among ∼11,000 protein-coding genes, 1,447 were overexpressed and 1,414 were underexpressed at 37°C. Counterintuitively, heat-responsive genes, predicted in P. marneffei through sequence comparison, did not tend to be overexpressed at 37°C. These results suggest that P. marneffei may take a distinct strategy of genetic regulation at the elevated temperature; the current knowledge concerning fungal heat response, based on studies of model fungal organisms, may not be applicable to P. marneffei. Our results further showed that the tandem repeat sequences (TRSs) are overrepresented in coding regions of P. marneffei genes, and TRS-containing genes tend to be overexpressed at 37°C. Furthermore, genomic sequences and expression data were integrated to characterize gene clusters, multigene families, and species-specific genes of P. marneffei. In sum, we present an integrated analysis and a comprehensive resource toward a better understanding of temperature-dependent genetic regulation in P. marneffei.
Collapse
|
19
|
Penicillium marneffei actin expression during phase transition, oxidative stress, and macrophage infection. Mol Biol Rep 2010; 38:2813-9. [PMID: 21088905 DOI: 10.1007/s11033-010-0427-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Penicillium marneffei is an opportunistic fungal pathogen that exhibits thermally regulated dimorphism. At 25°C, this fungus grows vegetatively as mycelia, but at 37°C or upon invasion of a host, a fission yeast form is established. Yet, despite increased numbers of molecular studies involving this fungus, the role of P. marneffei stress response-related proteins is not well characterized. Actin is one of the proteins that have been proposed to play a role not only in cell transition, but also in thermo-adaptation. Here, we report the isolation and characterization of the actin encoding gene, actA, from P. marneffei. Examination of the deduced amino acid sequence of the ActA protein revealed that it is closely related to Aspergillus nidulans and Aspergillus clavatus. Northern blot analysis of actin expression during the mycelium to yeast phase transition of P. marneffei showed that the actA transcripts were initially upregulated soon after shifting the incubation temperature from 25°C to 37°C, but subsequently decreased slightly and did not change during further growth or under stress conditions. When cultures were started with conidia, upregulation of actA gene was found to correlate with germ tube production at either 25°C or 37°C. However, the relative expression level of actA transcripts again showed no significant differences in different cell types (conidia, mycelium, and yeast cells) or during macrophage infection. These results suggest that actin may play an important role in the early stages of cellular development, but not in environmental stress responses.
Collapse
|
20
|
The transcription factor homolog CTF1 regulates {beta}-oxidation in Candida albicans. EUKARYOTIC CELL 2009; 8:1604-14. [PMID: 19700635 DOI: 10.1128/ec.00206-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Carbon starvation is one of the many stresses to which microbial pathogens are subjected while in the host. Pathways necessary for the utilization of alternative carbon sources, such as gluconeogenesis, the glyoxylate cycle, and beta-oxidation of fatty acids, have been shown to be required for full virulence in several systems, including the fungal pathogen Candida albicans. We have investigated the regulatory network governing alternative carbon metabolism in this organism through characterization of transcriptional regulators identified based on the model fungi, Saccharomyces cerevisiae and Aspergillus nidulans. C. albicans has homologs of the ScCAT8/AnFacB and ScADR1/AnAmdX transcription factors that regulate induction of genes encoding the proteins of gluconeogenesis, the glyoxylate cycle, and ethanol utilization. Surprisingly, C. albicans mutants lacking CAT8 or ADR1 have no apparent phenotypes and do not regulate genes for key enzymes of these pathways. Fatty acid degradation and peroxisomal biogenesis are controlled by nonhomologous regulators, OAF1/PIP2 in S. cerevisiae and FarA/FarB in A. nidulans; C. albicans is missing OAF1 and PIP2 and, instead, has a single homolog of the Far proteins, CTF1. We have shown that CTF1 is required for growth on lipids and for expression of genes necessary for beta-oxidation, such as FOX2. ctf1Delta/ctf1Delta (ctf1Delta/Delta) strains do not, however, show the pleiotropic phenotypes observed for fox2Delta/Delta mutants. The ctf1Delta/Delta mutant confers a mild attenuation in virulence, like the fox2Delta/Delta mutant. Thus, phenotypic and genotypic observations highlight important differences in the regulatory network for alternative carbon metabolism in C. albicans compared to the paradigms developed in other model fungi.
Collapse
|
21
|
Dunn MF, Ramírez-Trujillo JA, Hernández-Lucas I. Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. MICROBIOLOGY-SGM 2009; 155:3166-3175. [PMID: 19684068 DOI: 10.1099/mic.0.030858-0] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The glyoxylate cycle is an anaplerotic pathway of the tricarboxylic acid (TCA) cycle that allows growth on C(2) compounds by bypassing the CO(2)-generating steps of the TCA cycle. The unique enzymes of this route are isocitrate lyase (ICL) and malate synthase (MS). ICL cleaves isocitrate to glyoxylate and succinate, and MS converts glyoxylate and acetyl-CoA to malate. The end products of the bypass can be used for gluconeogenesis and other biosynthetic processes. The glyoxylate cycle occurs in Eukarya, Bacteria and Archaea. Recent studies of ICL- and MS-deficient strains as well as proteomic and transcriptional analyses show that these enzymes are often important in human, animal and plant pathogenesis. These studies have extended our understanding of the metabolic pathways essential for the survival of pathogens inside the host and provide a more complete picture of the physiology of pathogenic micro-organisms. Hopefully, the recent knowledge generated about the role of the glyoxylate cycle in virulence can be used for the development of new vaccines, or specific inhibitors to combat bacterial and fungal diseases.
Collapse
Affiliation(s)
- M F Dunn
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - J A Ramírez-Trujillo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
22
|
Monteiro JP, Clemons KV, Mirels LF, Coller JA, Wu TD, Shankar J, Lopes CR, Stevens DA. Genomic DNA microarray comparison of gene expression patterns in Paracoccidioides brasiliensis mycelia and yeasts in vitro. MICROBIOLOGY-SGM 2009; 155:2795-2808. [PMID: 19406900 DOI: 10.1099/mic.0.027441-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Paracoccidioides brasiliensis is a thermally dimorphic fungus, and causes the most prevalent systemic mycosis in Latin America. Infection is initiated by inhalation of conidia or mycelial fragments by the host, followed by further differentiation into the yeast form. Information regarding gene expression by either form has rarely been addressed with respect to multiple time points of growth in culture. Here, we report on the construction of a genomic DNA microarray, covering approximately 25 % of the genome of the organism, and its utilization in identifying genes and gene expression patterns during growth in vitro. Cloned, amplified inserts from randomly sheared genomic DNA (gDNA) and known control genes were printed onto glass slides to generate a microarray of over 12,000 elements. To examine gene expression, mRNA was extracted and amplified from mycelial or yeast cultures grown in semi-defined medium for 5, 8 and 14 days. Principal components analysis and hierarchical clustering indicated that yeast gene expression profiles differed greatly from those of mycelia, especially at earlier time points, and that mycelial gene expression changed less than gene expression in yeasts over time. Genes upregulated in yeasts were found to encode proteins shown to be involved in methionine/cysteine metabolism, respiratory and metabolic processes (of sugars, amino acids, proteins and lipids), transporters (small peptides, sugars, ions and toxins), regulatory proteins and transcription factors. Mycelial genes involved in processes such as cell division, protein catabolism, nucleotide biosynthesis and toxin and sugar transport showed differential expression. Sequenced clones were compared with Histoplasma capsulatum and Coccidioides posadasii genome sequences to assess potentially common pathways across species, such as sulfur and lipid metabolism, amino acid transporters, transcription factors and genes possibly related to virulence. We also analysed gene expression with time in culture and found that while transposable elements and components of respiratory pathways tended to increase in expression with time, genes encoding ribosomal structural proteins and protein catabolism tended to sharply decrease in expression over time, particularly in yeast. These findings expand our knowledge of the different morphological forms of P. brasiliensis during growth in culture.
Collapse
Affiliation(s)
- Jomar Patrício Monteiro
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, CA, USA.,Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA.,California Institute for Medical Research, San Jose, CA, USA.,Genetics Department, Biosciences Institute, UNESP, Botucatu, SP, Brazil
| | - Karl V Clemons
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA.,Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, CA, USA.,California Institute for Medical Research, San Jose, CA, USA
| | - Laurence F Mirels
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA.,Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, CA, USA.,California Institute for Medical Research, San Jose, CA, USA
| | - John A Coller
- Stanford Functional Genomics Facility, Stanford University, Stanford, CA, USA
| | - Thomas D Wu
- Bioinformatics Department, Genentech, Inc., South San Francisco, CA, USA
| | - Jata Shankar
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA.,Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, CA, USA.,California Institute for Medical Research, San Jose, CA, USA
| | - Catalina R Lopes
- Genetics Department, Biosciences Institute, UNESP, Botucatu, SP, Brazil
| | - David A Stevens
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA.,Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, CA, USA.,California Institute for Medical Research, San Jose, CA, USA
| |
Collapse
|