1
|
Sun Q, Liang J, Zhang Q, Wang X, Zhao N, Meng F. Pharmacokinetics and Tissue Distribution of Itampolin A following Intragastric and Intravenous Administration in Rats Using Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2024; 29:2652. [PMID: 38893526 PMCID: PMC11173508 DOI: 10.3390/molecules29112652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Itampolin A, a natural brominated tyrosine alkaloid isolated from the sponge Iotrochota purpurea, has been shown to have good inhibitory effects in lung cancer cells as a p38α inhibitor. A simple, sensitive, and reliable ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been established, validated, and applied to the study of the pharmacokinetics and tissue distribution of itampolin A following intragastric and intravenous administration. Itampolin A and theophylline (internal standard, IS) were extracted by the simple protein precipitation technique using methanol as the precipitating solvent. Chromatographic separation was achieved by using the optimized mobile phase of a 0.1% formic acid aqueous solution and acetonitrile in the gradient elution mode. Itampolin A and IS were detected and quantified using positive electrospray ionization in the multiple reaction monitoring mode with transitions of m/z 863.9 → 569.1 for itampolin A and m/z 181.1 → 124.1 for IS, respectively. The assay exhibited a linear dynamic range of 1-1600 ng/mL for itampolin A in biological samples and the low limit of quantification was 1 ng/mL. Non-compartmental pharmacokinetic parameters indicated that itampolin A was well-absorbed into the systemic circulation and rapidly eliminated after administration. The apparent distribution volume of itampolin A was much higher after intragastric administration than that after intravenous administration. A tissue distribution study showed that itampolin A could be detected in different tissues and maintained a high concentration in the lung, which provided a material basis for its effective application in lung cancer. The pharmacokinetic process and tissue distribution characteristics of imtapolin A were expounded in this study, which can provide beneficial information for the further research and clinical application of itampolin A.
Collapse
Affiliation(s)
- Qi Sun
- School of Pharmacy, China Medical University, Shenyang 110122, China; (Q.S.); (Q.Z.); (X.W.)
| | - Jingwei Liang
- School of Pharmacy, Hainan Medical University, Haikou 570100, China;
| | - Qingyu Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China; (Q.S.); (Q.Z.); (X.W.)
| | - Xuezhen Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China; (Q.S.); (Q.Z.); (X.W.)
| | - Nan Zhao
- School of Pharmacy, China Medical University, Shenyang 110122, China; (Q.S.); (Q.Z.); (X.W.)
| | - Fanhao Meng
- School of Pharmacy, China Medical University, Shenyang 110122, China; (Q.S.); (Q.Z.); (X.W.)
| |
Collapse
|
2
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
3
|
Rankine-Wilson LI, Shapira T, Sao Emani C, Av-Gay Y. From infection niche to therapeutic target: the intracellular lifestyle of Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001041. [PMID: 33826491 PMCID: PMC8289223 DOI: 10.1099/mic.0.001041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is an obligate human pathogen killing millions of people annually. Treatment for tuberculosis is lengthy and complicated, involving multiple drugs and often resulting in serious side effects and non-compliance. Mtb has developed numerous complex mechanisms enabling it to not only survive but replicate inside professional phagocytes. These mechanisms include, among others, overcoming the phagosome maturation process, inhibiting the acidification of the phagosome and inhibiting apoptosis. Within the past decade, technologies have been developed that enable a more accurate understanding of Mtb physiology within its intracellular niche, paving the way for more clinically relevant drug-development programmes. Here we review the molecular biology of Mtb pathogenesis offering a unique perspective on the use and development of therapies that target Mtb during its intracellular life stage.
Collapse
Affiliation(s)
| | - Tirosh Shapira
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Carine Sao Emani
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Yossef Av-Gay
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Binnewerg B, Schubert M, Voronkina A, Muzychka L, Wysokowski M, Petrenko I, Djurović M, Kovalchuk V, Tsurkan M, Martinovic R, Bechmann N, Fursov A, Ivanenko VN, Tabachnick KR, Smolii OB, Joseph Y, Giovine M, Bornstein SR, Stelling AL, Tunger A, Schmitz M, Taniya OS, Kovalev IS, Zyryanov GV, Guan K, Ehrlich H. Marine biomaterials: Biomimetic and pharmacological potential of cultivated Aplysina aerophoba marine demosponge. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110566. [PMID: 32228987 DOI: 10.1016/j.msec.2019.110566] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/28/2019] [Accepted: 12/15/2019] [Indexed: 12/31/2022]
Abstract
Marine demosponges of the Verongiida order are considered a gold-mine for bioinspired materials science and marine pharmacology. The aim of this work was to simultaneously isolate selected bromotyrosines and unique chitinous structures from A. aerophoba and to propose these molecules and biomaterials for possible application as antibacterial and antitumor compounds and as ready-to-use scaffolds for cultivation of cardiomyocytes, respectively. Among the extracted bromotyrosines, the attention has been focused on aeroplysinin-1 that showed interesting unexpected growth inhibition properties for some Gram-negative clinical multi-resistant bacterial strains, such as A. baumannii and K. pneumoniae, and on aeroplysinin-1 and on isofistularin-3 for their anti-tumorigenic activity. For both compounds, the effects are cell line dependent, with significant growth inhibition activity on the neuroblastoma cell line SH-SY5Y by aeroplysinin-1 and on breast cancer cell line MCF-7 by isofistularin-3. In this study, we also compared the cultivation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) on the A. aerophoba chitinous scaffolds, in comparison to chitin structures that were pre-coated with Geltrex™, an extracellular matrix mimetic which is used to enhance iPSC-CM adhesion. The iPSC-CMs on uncoated and pure chitin structures started contracting 24 h after seeding, with comparable behaviour observed on Geltrex-coated cell culture plates, confirming the biocompatibility of the sponge biomaterial with this cell type. The advantage of A. aerophoba is that this source organism does not need to be collected in large quantities to supply the necessary amount for further pre-clinical studies before chemical synthesis of the active compounds will be available. A preliminary analysis of marine sponge bioeconomy as a perspective direction for application of biomaterials and secondary bioactive metabolites has been finally performed for the first time.
Collapse
Affiliation(s)
- Björn Binnewerg
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden 01307, Germany
| | - Mario Schubert
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden 01307, Germany
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya 21018, Ukraine
| | - Liubov Muzychka
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kyiv 02094, Ukraine
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60-965, Poland; Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, Freiberg 09599, Germany.
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, Freiberg 09599, Germany
| | - Mirko Djurović
- Institute of Marine Biology, University of Montenegro, Kotor 85330, Montenegro
| | - Valentine Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, Vinnytsya 21018, Ukraine
| | - Mikhail Tsurkan
- Leibniz Institute of Polymer Research Dresden, Dresden 01069, Germany
| | - Rajko Martinovic
- Institute of Marine Biology, University of Montenegro, Kotor 85330, Montenegro
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Andriy Fursov
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, Freiberg 09599, Germany
| | - Viatcheslav N Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Konstantin R Tabachnick
- P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow 117997, Russia; International Institute of Biomineralogy GmbH, Freiberg 09599, Germany
| | - Oleg B Smolii
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kyiv 02094, Ukraine
| | - Yvonne Joseph
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, Freiberg 09599, Germany
| | - Marco Giovine
- Department of Sciences of Earth, Environment and Life, University of Genoa, Genova 16132, Italy
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; Diabetes and Nutritional Sciences Division, King's College London, London WC2R 2LS, UK
| | - Allison L Stelling
- Duke University Medical Center, Department of Biochemistry, Durham, NC, USA
| | - Antje Tunger
- National Center for Tumor Diseases, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Marc Schmitz
- National Center for Tumor Diseases, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Olga S Taniya
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg 620002, Russia; Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Yekaterinburg 620219, Russia
| | - Igor S Kovalev
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg 620002, Russia
| | - Grigory V Zyryanov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg 620002, Russia; Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Yekaterinburg 620219, Russia
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden 01307, Germany.
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, Freiberg 09599, Germany.
| |
Collapse
|
5
|
Andjouh S, Blache Y. Screening of bromotyramine analogues as antifouling compounds against marine bacteria. BIOFOULING 2016; 32:871-881. [PMID: 27450150 DOI: 10.1080/08927014.2016.1200562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
Rapid and efficient synthesis of 23 analogues inspired by bromotyramine derivatives, marine natural products, by means of CuSO4-catalysed [3+2] alkyne-azide cycloaddition is described. The final target was then assayed for anti-biofilm activity against three Gram-negative marine bacteria, Pseudoalteromonas ulvae (TC14), Pseudoalteromonas lipolytica (TC8) and Paracoccus sp. (4M6). Most of the synthesised bromotyramine/triazole derivatives are more active than the parent natural products Moloka'iamine (A) and 3,5-dibromo-4-methoxy-β-phenethylamine (B) against biofilm formation by the three bacterial strains. Some of these compounds were shown to act as non-toxic inhibitors of biofilm development with EC50 < 200 μM without any effect on bacterial growth even at high concentrations (200 μM).
Collapse
Affiliation(s)
| | - Yves Blache
- a MAPIEM , Université de Toulon , La Garde , France
| |
Collapse
|
6
|
Ramsey DM, Amirul Islam M, Turnbull L, Davis RA, Whitchurch CB, McAlpine SR. Psammaplysin F: A unique inhibitor of bacterial chromosomal partitioning. Bioorg Med Chem Lett 2013; 23:4862-6. [DOI: 10.1016/j.bmcl.2013.06.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 06/17/2013] [Accepted: 06/27/2013] [Indexed: 12/29/2022]
|
7
|
Tran TD, Pham NB, Fechner G, Hooper JNA, Quinn RJ. Bromotyrosine alkaloids from the Australian marine sponge Pseudoceratina verrucosa. JOURNAL OF NATURAL PRODUCTS 2013; 76:516-23. [PMID: 23489291 DOI: 10.1021/np300648d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Two new bromotyrosine alkaloids, pseudoceralidinone A (1) and aplysamine 7 (2), along with three known compounds were isolated from the Australian sponge Pseudoceratina verrucosa. Their structures were characterized by NMR and MS data and the synthetic route. Their cytotoxicity was evaluated against cancer cell lines (HeLa and PC3) and a noncancer cell line (NFF).
Collapse
Affiliation(s)
- Trong D Tran
- Eskitis Institute, Griffith University, Brisbane, Queensland 4111, Australia
| | | | | | | | | |
Collapse
|
8
|
Analysis of mutants disrupted in bacillithiol metabolism in Staphylococcus aureus. Biochem Biophys Res Commun 2013; 436:128-33. [PMID: 23618856 DOI: 10.1016/j.bbrc.2013.04.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/02/2013] [Indexed: 01/06/2023]
Abstract
Bacillithiol (BSH), an α-anomeric glycoside of l-cysteinyl-d-glucosaminyl-l-malate, is a major low molecular weight thiol found in low GC Gram-positive bacteria, such as Staphylococcus aureus. Like other low molecular weight thiols, BSH is likely involved in protection against a number of stresses. We examined S. aureus transposon mutants disrupted in each of the three genes associated with BSH biosynthesis. These mutants are sensitive to alkylating stress, oxidative stress, and metal stress indicating that BSH and BSH-dependent enzymes are involved in protection of S. aureus. We further demonstrate that BshB, a deacetylase involved in the second step of BSH biosynthesis, also acts as a BSH conjugate amidase and identify S. aureus USA 300 LAC 2626 as a BSH-S-transferase, which is able to conjugate chlorodinitrobenzene, cerulenin, and rifamycin to BSH.
Collapse
|
9
|
Paritala H, Carroll KS. New targets and inhibitors of mycobacterial sulfur metabolism. Infect Disord Drug Targets 2013; 13:85-115. [PMID: 23808874 PMCID: PMC4332622 DOI: 10.2174/18715265113139990022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/08/2013] [Indexed: 11/22/2022]
Abstract
The identification of new antibacterial targets is urgently needed to address multidrug resistant and latent tuberculosis infection. Sulfur metabolic pathways are essential for survival and the expression of virulence in many pathogenic bacteria, including Mycobacterium tuberculosis. In addition, microbial sulfur metabolic pathways are largely absent in humans and therefore, represent unique targets for therapeutic intervention. In this review, we summarize our current understanding of the enzymes associated with the production of sulfated and reduced sulfur-containing metabolites in Mycobacteria. Small molecule inhibitors of these catalysts represent valuable chemical tools that can be used to investigate the role of sulfur metabolism throughout the Mycobacterial lifecycle and may also represent new leads for drug development. In this light, we also summarize recent progress made in the development of inhibitors of sulfur metabolism enzymes.
Collapse
Affiliation(s)
| | - Kate S. Carroll
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, 33458, USA
| |
Collapse
|
10
|
Shearman JW, Myers RM, Beale TM, Brenton JD, Ley SV. Total syntheses of the bromotyrosine-derived natural products ianthelline, 5-bromoverongamine and JBIR-44. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Lebouvier N, Jullian V, Desvignes I, Maurel S, Parenty A, Dorin-Semblat D, Doerig C, Sauvain M, Laurent D. Antiplasmodial activities of homogentisic acid derivative protein kinase inhibitors isolated from a Vanuatu marine sponge Pseudoceratina sp. Mar Drugs 2009; 7:640-53. [PMID: 20098604 PMCID: PMC2810230 DOI: 10.3390/md7040640] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/17/2009] [Accepted: 11/23/2009] [Indexed: 11/17/2022] Open
Abstract
As part of our search for new antimalarial drugs in South Pacific marine sponges, we have looked for inhibitors of Pfnek-1, a specific protein kinase of Plasmodium falciparum. On the basis of promising activity in a preliminary screening, the ethanolic crude extract of a new species of Pseudoceratina collected in Vanuatu was selected for further investigation. A bioassay-guided fractionation led to the isolation of a derivative of homogentisic acid [methyl (2,4-dibromo-3,6-dihydroxyphenyl)acetate, 4a] which inhibited Pfnek-1 with an IC(50) around 1.8 muM. This product was moderately active in vitro against a FcB1 P. falciparum strain (IC(50) = 12 muM). From the same sponge, we isolated three known compounds [11,19-dideoxyfistularin-3 (1), 11-deoxyfistularin-3 (2) and dibromo-verongiaquinol (3)] which were inactive against Pfnek-1. Synthesis and biological evaluation of some derivatives of 4a are reported.
Collapse
Affiliation(s)
- Nicolas Lebouvier
- Laboratoire de Chimie, Université de la Nouvelle-Calédonie, BP R4, 98851 Nouméa cedex, New Caledonia; E-Mails:
(I.D.);
(A.P.)
| | - Valérie Jullian
- Laboratoire de Pharmacochimie des Substances Naturelles et Pharmacophores Redox, Université de Toulouse, UPS, UMR 152, 118, rte de Narbonne, F-31062 Toulouse cedex 9, France; E-Mails:
(V.J.);
(S.M.);
(M.S.);
(D.L.)
- Institut de Recherche pour le Développement (IRD); UMR 152, 118, rte de Narbonne, F-31062 Toulouse cedex 9, France
| | - Isabelle Desvignes
- Laboratoire de Chimie, Université de la Nouvelle-Calédonie, BP R4, 98851 Nouméa cedex, New Caledonia; E-Mails:
(I.D.);
(A.P.)
| | - Séverine Maurel
- Laboratoire de Pharmacochimie des Substances Naturelles et Pharmacophores Redox, Université de Toulouse, UPS, UMR 152, 118, rte de Narbonne, F-31062 Toulouse cedex 9, France; E-Mails:
(V.J.);
(S.M.);
(M.S.);
(D.L.)
- Institut de Recherche pour le Développement (IRD); UMR 152, 118, rte de Narbonne, F-31062 Toulouse cedex 9, France
| | - Arnaud Parenty
- Laboratoire de Chimie, Université de la Nouvelle-Calédonie, BP R4, 98851 Nouméa cedex, New Caledonia; E-Mails:
(I.D.);
(A.P.)
| | - Dominique Dorin-Semblat
- INSERM U609, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; E-Mails:
(D.D.-S.);
(C.D.)
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, Scotland, UK
| | - Christian Doerig
- INSERM U609, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; E-Mails:
(D.D.-S.);
(C.D.)
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, Scotland, UK
| | - Michel Sauvain
- Laboratoire de Pharmacochimie des Substances Naturelles et Pharmacophores Redox, Université de Toulouse, UPS, UMR 152, 118, rte de Narbonne, F-31062 Toulouse cedex 9, France; E-Mails:
(V.J.);
(S.M.);
(M.S.);
(D.L.)
- Institut de Recherche pour le Développement (IRD); UMR 152, 118, rte de Narbonne, F-31062 Toulouse cedex 9, France
| | - Dominique Laurent
- Laboratoire de Pharmacochimie des Substances Naturelles et Pharmacophores Redox, Université de Toulouse, UPS, UMR 152, 118, rte de Narbonne, F-31062 Toulouse cedex 9, France; E-Mails:
(V.J.);
(S.M.);
(M.S.);
(D.L.)
- Institut de Recherche pour le Développement (IRD); UMR 152, 118, rte de Narbonne, F-31062 Toulouse cedex 9, France
| |
Collapse
|
12
|
Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol Mol Biol Rev 2008; 72:471-94. [PMID: 18772286 DOI: 10.1128/mmbr.00008-08] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycothiol (MSH; AcCys-GlcN-Ins) is the major thiol found in Actinobacteria and has many of the functions of glutathione, which is the dominant thiol in other bacteria and eukaryotes but is absent in Actinobacteria. MSH functions as a protected reserve of cysteine and in the detoxification of alkylating agents, reactive oxygen and nitrogen species, and antibiotics. MSH also acts as a thiol buffer which is important in maintaining the highly reducing environment within the cell and protecting against disulfide stress. The pathway of MSH biosynthesis involves production of GlcNAc-Ins-P by MSH glycosyltransferase (MshA), dephosphorylation by the MSH phosphatase MshA2 (not yet identified), deacetylation by MshB to produce GlcN-Ins, linkage to Cys by the MSH ligase MshC, and acetylation by MSH synthase (MshD), yielding MSH. Studies of MSH mutants have shown that the MSH glycosyltransferase MshA and the MSH ligase MshC are required for MSH production, whereas mutants in the MSH deacetylase MshB and the acetyltransferase (MSH synthase) MshD produce some MSH and/or a closely related thiol. Current evidence indicates that MSH biosynthesis is controlled by transcriptional regulation mediated by sigma(B) and sigma(R) in Streptomyces coelicolor. Identified enzymes of MSH metabolism include mycothione reductase (disulfide reductase; Mtr), the S-nitrosomycothiol reductase MscR, the MSH S-conjugate amidase Mca, and an MSH-dependent maleylpyruvate isomerase. Mca cleaves MSH S-conjugates to generate mercapturic acids (AcCySR), excreted from the cell, and GlcN-Ins, used for resynthesis of MSH. The phenotypes of MSH-deficient mutants indicate the occurrence of one or more MSH-dependent S-transferases, peroxidases, and mycoredoxins, which are important targets for future studies. Current evidence suggests that several MSH biosynthetic and metabolic enzymes are potential targets for drugs against tuberculosis. The functions of MSH in antibiotic-producing streptomycetes and in bioremediation are areas for future study.
Collapse
|
13
|
Jothivasan VK, Hamilton CJ. Mycothiol: synthesis, biosynthesis and biological functions of the major low molecular weight thiol in actinomycetes. Nat Prod Rep 2008; 25:1091-117. [PMID: 19030604 DOI: 10.1039/b616489g] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Actinomycetes produce mycothiol as their major low molecular weight thiol, which parallels the functions of glutathione found in prokaryotes and most Gram-negative bacteria. This review covers progress that has so far been made in terms of its distribution, biosynthesis and metabolic functions, as well as chemical syntheses of mycothiol and alternative substrates and inhibitors of mycothiol biosynthesis and mycothiol-dependent enzymes. 152 references are cited.
Collapse
|
14
|
Berlinck RGS, Burtoloso ACB, Kossuga MH. The chemistry and biology of organic guanidine derivatives. Nat Prod Rep 2008; 25:919-54. [DOI: 10.1039/b507874c] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Abstract
The pseudodisaccharide mycothiol is present in millimolar levels as the dominant thiol in most species of Actinomycetales. The primary role of mycothiol is to maintain the intracellular redox homeostasis. As such, it acts as an electron acceptor/donor and serves as a cofactor in detoxification reactions for alkylating agents, free radicals and xenobiotics. In addition, like glutathione, mycothiol may be involved in catabolic processes with an essential role for growth on recalcitrant chemicals such as aromatic compounds. Following a little over a decade of research since the discovery of mycothiol in 1994, we summarize the current knowledge about the role of mycothiol as an enzyme cofactor and consider possible mycothiol-dependent enzymes.
Collapse
Affiliation(s)
- Mamta Rawat
- Department of Biology, California State University - Fresno, Fresno, California 93704, USA.
| | | |
Collapse
|