1
|
Guevara-Lora I, Bras G, Juszczak M, Karkowska-Kuleta J, Gorecki A, Manrique-Moreno M, Dymek J, Pyza E, Kozik A, Rapala-Kozik M. Cecropin D-derived synthetic peptides in the fight against Candida albicans cell filamentation and biofilm formation. Front Microbiol 2023; 13:1045984. [PMID: 36713201 PMCID: PMC9880178 DOI: 10.3389/fmicb.2022.1045984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
The recent progressive increase in the incidence of invasive fungal infections, especially in immunocompromised patients, makes the search for new therapies crucial in the face of the growing drug resistance of prevalent nosocomial yeast strains. The latest research focuses on the active compounds of natural origin, inhibiting fungal growth, and preventing the formation of fungal biofilms. Antimicrobial peptides are currently the subject of numerous studies concerning effective antifungal therapy. In the present study, the antifungal properties of two synthetic peptides (ΔM3, ΔM4) derived from an insect antimicrobial peptide - cecropin D - were investigated. The fungicidal activity of both compounds was demonstrated against the yeast forms of Candida albicans, Candida tropicalis, and Candida parapsilosis, reaching a MFC99.9 in the micromolar range, while Candida glabrata showed greater resistance to these peptides. The scanning electron microscopy revealed a destabilization of the yeast cell walls upon treatment with both peptides; however, their effectiveness was strongly modified by the presence of salt or plasma in the yeast environment. The transition of C. albicans cells from yeast to filamentous form, as well as the formation of biofilms, was effectively reduced by ΔM4. Mature biofilm viability was inhibited by a higher concentration of this peptide and was accompanied by increased ROS production, activation of the GPX3 and SOD5 genes, and finally, increased membrane permeability. Furthermore, both peptides showed a synergistic effect with caspofungin in inhibiting the metabolic activity of C. albicans cells, and an additive effect was also observed for the mixtures of peptides with amphotericin B. The results indicate the possible potential of the tested peptides in the prevention and treatment of candidiasis.
Collapse
Affiliation(s)
- Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Andrzej Gorecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia
| | - Jakub Dymek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland,*Correspondence: Maria Rapala-Kozik,
| |
Collapse
|
2
|
Duan Z, Tong J, Zheng N, Zeng R, Liu Y, Li M. Interaction of Amiodarone with Azoles Against Aspergillus Planktonic Cells and Biofilms in vitro. Mycopathologia 2022; 187:517-526. [PMID: 36219382 DOI: 10.1007/s11046-022-00672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/15/2022] [Indexed: 10/17/2022]
Abstract
Aspergillus spp. is the most common clinical pathogen of invasive fungal infection with high mortality. Existing treatments for Aspergillus spp. infection are still inefficient and accompanied by drug resistance, so it is still urgent to find new treatment approaches. The antiarrhythmic drug amiodarone (AMD) has demonstrated antifungal activity against a range of fungi. This study evaluated the efficacy of AMD in combination with triazoles for Aspergillus spp. infection. We tested the combined effect of AMD and three triazole drugs, namely, itraconazole (ITR), voriconazole (VRC), and posaconazole (POS), on the planktonic cells and biofilms of 20 strains of Aspergillus spp. via a checkerboard microdilution assay derived from 96-well plate-based method. Our results reveal that the combination of AMD with ITR or POS against Aspergillus biofilms has synergistic fungicidal effects. By contrast, the combination of AMD with VRC exhibits no antagonistic and synergistic effects. In this way, the use of AMD in combination with ITR or POS could be an effective adjunctive treatment for Aspergillus spp. infection.
Collapse
Affiliation(s)
- Zhimin Duan
- Hospital for Skin Diseases (Institute of Dermatology), Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Jianbo Tong
- Department of Dermatology, The First Affiliated Hospital of Nanchang University and Institute of Dermatology, Jiangxi Academy of Clinical Medical Sciences, No. 17 Yongwaizheng Street, Nanchang, 330001, Jiangxi, China
| | - Nana Zheng
- Hospital for Skin Diseases (Institute of Dermatology), Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Rong Zeng
- Hospital for Skin Diseases (Institute of Dermatology), Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, Jiangsu, China.
| | - Yuzhen Liu
- Department of Dermatology, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, Jiangsu, China.
| | - Min Li
- Hospital for Skin Diseases (Institute of Dermatology), Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, Jiangsu, China. .,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
3
|
Barroso FD, da Silva LJ, Sá LG, da Silva CR, Neto JB, do Nascimento FB, Queiroz HA, Leitão AC, Cabral VP, Rodrigues DS, Barbosa AD, Cavalcanti BC, Morais MO, Júnior HV. Synergistic activity of dobutamine combined with azoles and its mechanism of action against strains of Candida glabrata. Future Microbiol 2022; 17:437-448. [PMID: 35285249 DOI: 10.2217/fmb-2020-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: To evaluate the antifungal effect of dobutamine against Candida glabrata as well as its synergism with azoles and its action on biofilm. Methods: The M27-A3 protocol and flow cytometry were used for elucidation of the possible mechanism of action. Results: The tested isolates presented MICs ranging from 2 to 32 μg/ml for dobutamine, with fungistatic effect. A total of 82% of the strains showed synergism with fluconazole, with 90% showing synergism with itraconazole. The effect on biofilm formation was nonsignificant. Cytometry tests showed that dobutamine induced mitochondrial depolarization. Conclusion: Dobutamine has an antifungal effect on strains of C. glabrata and synergistic activity with azoles. This effect is probably mediated by increased oxidative damage to the membrane.
Collapse
Affiliation(s)
- Fatima Dd Barroso
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Brazil
| | - Lisandra J da Silva
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Brazil
| | - Lívia Gav Sá
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Brazil.,Faculty of Biomedicine, Unichristus University Center, Fortaleza, Brazil
| | - Cecília R da Silva
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Brazil
| | - João Ba Neto
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Brazil.,Faculty of Biomedicine, Unichristus University Center, Fortaleza, Brazil
| | - Francisca Ba do Nascimento
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Brazil
| | - Helaine A Queiroz
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Brazil
| | - Amanda C Leitão
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Brazil
| | - Vitória Pf Cabral
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Brazil
| | - Daniel S Rodrigues
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Brazil
| | - Amanda D Barbosa
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Brazil
| | - Bruno C Cavalcanti
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 60430-276, Brazil
| | - Manoel O Morais
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 60430-276, Brazil
| | - Hélio Vn Júnior
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
4
|
Sun L, Liao K. The Effect of Honokiol on Ergosterol Biosynthesis and Vacuole Function in Candida albicans. J Microbiol Biotechnol 2020; 30:1835-1842. [PMID: 33263334 PMCID: PMC9728367 DOI: 10.4014/jmb.2008.08019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/16/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Ergosterol, an essential constituent of membrane lipids of yeast, is distributed in both the cell membrane and intracellular endomembrane components such as vacuoles. Honokiol, a major polyphenol isolated from Magnolia officinalis, has been shown to inhibit the growth of Candida albicans. Here, we assessed the effect of honokiol on ergosterol biosynthesis and vacuole function in C. albicans. Honokiol could decrease the ergosterol content and upregulate the expression of genes related with the ergosterol biosynthesis pathway. The exogenous supply of ergosterol attenuated the toxicity of honokiol against C. albicans. Honokiol treatment could induce cytosolic acidification by blocking the activity of the plasma membrane Pma1p H+-ATPase. Furthermore, honokiol caused abnormalities in vacuole morphology and function. Concomitant ergosterol feeding to some extent restored the vacuolar morphology and the function of acidification in cells treated by honokiol. Honokiol also disrupted the intracellular calcium homeostasis. Amiodarone attenuated the antifungal effects of honokiol against C. albicans, probably due to the activation of the calcineurin signaling pathway which is involved in honokiol tolerance. In conclusion, this study demonstrated that honokiol could inhibit ergosterol biosynthesis and decrease Pma 1p H+-ATPase activity, which resulted in the abnormal pH in vacuole and cytosol.
Collapse
Affiliation(s)
- Lingmei Sun
- Department of Pharmacology, Medical School of Southeast University, Nanjing 20009, P.R. China,Corresponding authors L.Sun Phone: +86-25-83272525 E-mail:
| | - Kai Liao
- Department of Pathology and Pathophysiology, Medical School of Southeast University, Nanjing 10009, P.R. China,K.Liao E-mail:
| |
Collapse
|
5
|
do Nascimento Dias J, de Souza Silva C, de Araújo AR, Souza JMT, de Holanda Veloso Júnior PH, Cabral WF, da Glória da Silva M, Eaton P, de Souza de Almeida Leite JR, Nicola AM, Albuquerque P, Silva-Pereira I. Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells. Sci Rep 2020; 10:10327. [PMID: 32587287 PMCID: PMC7316759 DOI: 10.1038/s41598-020-67041-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is a major cause of human infections, ranging from relatively simple to treat skin and mucosal diseases to systemic life-threatening invasive candidiasis. Fungal infections treatment faces three major challenges: the limited number of therapeutic options, the toxicity of the available drugs, and the rise of antifungal resistance. In this study, we demonstrate the antifungal activity and mechanism of action of peptides ToAP2 and NDBP-5.7 against planktonic cells and biofilms of C. albicans. Both peptides were active against C. albicans cells; however, ToAP2 was more active and produced more pronounced effects on fungal cells. Both peptides affected C. albicans membrane permeability and produced changes in fungal cell morphology, such as deformations in the cell wall and disruption of ultracellular organization. Both peptides showed synergism with amphotericin B, while ToAP2 also presents a synergic effect with fluconazole. Besides, ToAP2 (6.25 µM.) was able to inhibit filamentation after 24 h of treatment and was active against both the early phase and mature biofilms of C. albicans. Finally, ToAP2 was protective in a Galleria mellonella model of infection. Altogether these results point to the therapeutic potential of ToAP2 and other antimicrobial peptides in the development of new therapies for C. albicans infections.
Collapse
Affiliation(s)
- Jhones do Nascimento Dias
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Calliandra de Souza Silva
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Alyne Rodrigues de Araújo
- Biotechnology and Biodiversity Center Research, Biotec, Federal University of the Delta of Parnaíba, Parnaíba, Piauí, Brazil
| | - Jessica Maria Teles Souza
- Biotechnology and Biodiversity Center Research, Biotec, Federal University of the Delta of Parnaíba, Parnaíba, Piauí, Brazil
| | | | - Wanessa Felix Cabral
- Center for Research in Applied Morphology and Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Maria da Glória da Silva
- Center for Research in Applied Morphology and Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Peter Eaton
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal
| | | | | | | | - Ildinete Silva-Pereira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
6
|
In Vitro Interactions of Amphotericin B Combined with Non-antifungal Agents Against Rhodotorula mucilaginosa Strains. Mycopathologia 2019; 184:35-43. [DOI: 10.1007/s11046-019-0317-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
|
7
|
Li Y, Sun L, Lu C, Gong Y, Li M, Sun S. Promising Antifungal Targets Against Candida albicans Based on Ion Homeostasis. Front Cell Infect Microbiol 2018; 8:286. [PMID: 30234023 PMCID: PMC6131588 DOI: 10.3389/fcimb.2018.00286] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
In recent decades, invasive fungal infections have been increasing significantly, contributing to high incidences and mortality in immunosuppressed patients. Candida albicans (C. albicans) is the most prevalent opportunistic fungal pathogen in humans that can cause severe and often fatal bloodstream infections. Current antifungal agents have several limitations, including that only a small number of classes of antifungals are available, certain of which have severe toxicity and high cost. Moreover, the emergence of drug resistance is a new limitation to successful patient outcomes. Therefore, the development of antifungals with novel targets is an essential strategy for the efficient management of C. albicans infections. It is widely recognized that ion homeostasis is crucial for all living cells. Many studies have identified that ion-signaling and transduction networks are central to fungal survival by regulating gene expression, morphological transition, host invasion, stress response, and drug resistance. Dysregulation of ion homeostasis rapidly mediates cell death, forming the mechanistic basis of a growing number of compounds that elicit antifungal activity. Most of the potent antifungals have been widely used in the clinic, and certain of them have low toxicity, meaning that they may be expected to be used as antifungal drugs in the future. Hence, we briefly summarize the homeostasis regulation of several important ions, potential antifungal targets based on these ion-signaling networks, and antifungal compounds based on the disruption of ion homeostasis. This summary will help in designing effective drugs and identifying new targets for combating fungal diseases.
Collapse
Affiliation(s)
- Yiman Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Licui Sun
- Department of Pharmacy, Feicheng Mining Central Hospital, Feicheng, China
| | - Chunyan Lu
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Ying Gong
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Min Li
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
8
|
Alnajjar LM, Bulatova NR, Darwish RM. Evaluation of four calcium channel blockers as fluconazole resistance inhibitors in Candida glabrata. J Glob Antimicrob Resist 2018; 14:185-189. [PMID: 29665423 DOI: 10.1016/j.jgar.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/29/2018] [Accepted: 04/08/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the ability of four calcium channel blockers (CCBs), namely verapamil, diltiazem, nicardipine (NIC) and nifedipine (NIF), to enhance the susceptibility of Candida glabrata strains to fluconazole (FLC). METHODS Synergistic antifungal effects of the CCBs with FLC were examined by the chequerboard method, and fractional inhibitory concentration indices (FICIs) were determined. The time-kill curve method was used for the most promising combination to further evaluate the synergetic effects. RESULTS NIC showed an additive effect with FLC against FLC-resistant and FLC-susceptible-dose-dependent strains (DSY 565 and CBS 138) known to express efflux pumps, but not against FLC-susceptible strains. NIF exhibited an additive effect with FLC both by the chequerboard method (0.5<FICI<1) and time-kill curves (<2 log10 CFU/mL decrease in viable count). In addition, NIF had its own antifungal effect consistently against most of the strains used in this study, with minimum inhibitory concentrations (MICs) of 8μg/mL. CONCLUSIONS NIC showed an additive effect with FLC against FLC-resistant C. glabrata strains, most probably via efflux pump inhibition as demonstrated selectively in FLC-resistant strains with known efflux pumps. NIF displayed a promising antifungal effect alone as well as an additive effect with FLC against most of the strains.
Collapse
Affiliation(s)
- Lina M Alnajjar
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Queen Rania Street, 11942 Amman, Jordan
| | - Nailya R Bulatova
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Queen Rania Street, 11942 Amman, Jordan.
| | - Rula M Darwish
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Queen Rania Street, 11942 Amman, Jordan
| |
Collapse
|
9
|
Sradhanjali S, Yein B, Sharma S, Das S. In vitro synergy of natamycin and voriconazole against clinical isolates of Fusarium, Candida, Aspergillus and Curvularia spp. Br J Ophthalmol 2017; 102:142-145. [DOI: 10.1136/bjophthalmol-2017-310683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/23/2017] [Accepted: 08/21/2017] [Indexed: 11/04/2022]
Abstract
AimTo determine the minimum inhibitory concentrations (MICs) of voriconazole and natamycin, alone and in combination, against the clinical isolates of Fungus and to evaluate the synergy between the drugs in an experimental in vitro study.MethodsIn an experimental in vitro study, clinical isolates of Fusarium, Aspergillus, Candida and Curvularia spp were maintained on Sabouraud Dextrose Agar and used for the study. The MICs of natamycin and voriconazole, used alone and in combination, were evaluated by checkerboard microdilution technique based on the standard protocol proposed by the Clinical Laboratory Standards Institute. The interactions were assessed using the fractional inhibitory concentration (FIC) Index model.ResultsTested with all the clinical isolates, the MICs ranged between 0.125 and 8 µg/mL both for natamycin and voriconazole. In descending order, maximum synergism (FIC ≤0.5) was observed in Candida spp (33.3%) followed by Curvularia spp and Fusarium spp (23.1%). Synergism was least for Aspergillus spp (22.2%). However, at 61.5% (8/13), maximum additive effect (>0.5–1) was observed in Aspergillus spp and minimum (33.3%, 2/6) in Candida spp. Indifference (FIC value >1 and≤4) was observed in 22.2% (2/9) of Aspergillus spp, 15.4% (2/13) of Fusarium spp, 33.3% (2/6) of Candida spp and 23.1% (3/13) of Curvularia spp. No cases of antagonism (FIC >4) were observed.ConclusionsNatamycin and voriconazole in combination demonstrated more effective antifungal activity than single-use in vitro treatment in all species tested, which implies that these combinations may be helpful in treating fungal keratitis. There was no antagonism between these two drugs.
Collapse
|
10
|
Sun W, Wang D, Yu C, Huang X, Li X, Sun S. Strong synergism of dexamethasone in combination with fluconazole against resistant Candida albicans mediated by inhibiting drug efflux and reducing virulence. Int J Antimicrob Agents 2017; 50:399-405. [PMID: 28673609 DOI: 10.1016/j.ijantimicag.2017.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 11/24/2022]
Abstract
Candida albicans is the most commonly isolated Candida spp. in the clinic and its resistance to fluconazole (FLC) has been emerging rapidly. Combination therapy may be a potentially effective approach to combat drug resistance. In this study, the combination antifungal effects of dexamethasone (DXM) and FLC against resistant C. albicans in vitro were assayed using minimum inhibitory concentrations (MICs), sessile MICs and time-kill curves. The in vivo efficacy of this drug combination was evaluated using a Galleria mellonella model by determining survival rate, fungal burden and histological damage. In addition, the impact of DXM on efflux pump activity was investigated using a rhodamine 6G assay. Expression of CDR1, CDR2 and MDR1 was determined by real-time quantitative PCR, and extracellular phospholipase activity was detected by the egg yolk agar method to reveal the potential synergistic mechanism. The results showed that DXM potentiates the antifungal effect of FLC against resistant C. albicans strains both in vitro and in vivo, and the synergistic mechanism is related to inhibiting the efflux of drugs and reducing the virulence of C. albicans.
Collapse
Affiliation(s)
- Wenwen Sun
- School of Pharmaceutical Sciences, Taishan Medical University, Taian, Shandong Province, China
| | - Decai Wang
- School of Pharmaceutical Sciences, Taishan Medical University, Taian, Shandong Province, China
| | - Cuixiang Yu
- Respiration Medicine, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Xin Huang
- Pharmaceutical Department, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Xiuyun Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Shujuan Sun
- Pharmaceutical Department, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
11
|
Li X, Zhao Y, Huang X, Yu C, Yang Y, Sun S. Ambroxol Hydrochloride Combined with Fluconazole Reverses the Resistance of Candida albicans to Fluconazole. Front Cell Infect Microbiol 2017; 7:124. [PMID: 28439502 PMCID: PMC5383865 DOI: 10.3389/fcimb.2017.00124] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/27/2017] [Indexed: 12/24/2022] Open
Abstract
In this study, we found that ambroxol hydrochloride (128 μg/mL) exhibits synergistic antifungal effects in combination with fluconazole (2 μg/mL) against resistant planktonic Candida albicans (C. albicans) cells. This combination also exhibited synergistic effects against resistant C. albicans biofilms in different stages (4, 8, and 12 h) according to the microdilution method. In vitro data were further confirmed by the success of this combination in treating Galleria mellonella infected by resistant C. albicans. With respect to the synergistic mechanism, our result revealed that ambroxol hydrochloride has an effect on the drug transporters of resistant C. albicans, increasing the uptake and decreasing the efflux of rhodamine 6G, a fluorescent alternate of fluconazole. This is the first study to investigate the in vitro and in vivo antifungal effects, as well as the possible synergistic mechanism of ambroxol hydrochloride in combination with fluconazole against resistant C. albicans. The results show the potential role for this drug combination as a therapeutic alternative to treat resistant C. albicans and provide insights into the development of antifungal targets and new antifungal agents.
Collapse
Affiliation(s)
- Xiuyun Li
- School of Pharmaceutical Sciences, Shandong UniversityJinan, China
| | - Yuanhao Zhao
- Pharmaceutical Department, Qianfoshan Hospital Affiliated to Shandong UniversityJinan, China
| | - Xin Huang
- Pharmaceutical Department, Qianfoshan Hospital Affiliated to Shandong UniversityJinan, China
| | - Cuixiang Yu
- Respiration Medicine, Qianfoshan Hospital Affiliated to Shandong UniversityJinan, China
| | - Yilei Yang
- Pharmaceutical Department, Qianfoshan Hospital Affiliated to Shandong UniversityJinan, China
| | - Shujuan Sun
- Pharmaceutical Department, Qianfoshan Hospital Affiliated to Shandong UniversityJinan, China
| |
Collapse
|
12
|
Ramani K, Garg AV, Jawale CV, Conti HR, Whibley N, Jackson EK, Shiva SS, Horne W, Kolls JK, Gaffen SL, Biswas PS. The Kallikrein-Kinin System: A Novel Mediator of IL-17-Driven Anti-Candida Immunity in the Kidney. PLoS Pathog 2016; 12:e1005952. [PMID: 27814401 PMCID: PMC5096720 DOI: 10.1371/journal.ppat.1005952] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/25/2016] [Indexed: 11/19/2022] Open
Abstract
The incidence of life-threatening disseminated Candida albicans infections is increasing in hospitalized patients, with fatalities as high as 60%. Death from disseminated candidiasis in a significant percentage of cases is due to fungal invasion of the kidney, leading to renal failure. Treatment of candidiasis is hampered by drug toxicity, the emergence of antifungal drug resistance and lack of vaccines against fungal pathogens. IL-17 is a key mediator of defense against candidiasis. The underlying mechanisms of IL-17-mediated renal immunity have so far been assumed to occur solely through the regulation of antimicrobial mechanisms, particularly activation of neutrophils. Here, we identify an unexpected role for IL-17 in inducing the Kallikrein (Klk)-Kinin System (KKS) in C. albicans-infected kidney, and we show that the KKS provides significant renal protection in candidiasis. Microarray data indicated that Klk1 was upregulated in infected kidney in an IL-17-dependent manner. Overexpression of Klk1 or treatment with bradykinin rescued IL-17RA-/- mice from candidiasis. Therapeutic manipulation of IL-17-KKS pathways restored renal function and prolonged survival by preventing apoptosis of renal cells following C. albicans infection. Furthermore, combining a minimally effective dose of fluconazole with bradykinin markedly improved survival compared to either drug alone. These results indicate that IL-17 not only limits fungal growth in the kidney, but also prevents renal tissue damage and preserves kidney function during disseminated candidiasis through the KKS. Since drugs targeting the KKS are approved clinically, these findings offer potential avenues for the treatment of this fatal nosocomial infection.
Collapse
Affiliation(s)
- Kritika Ramani
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Abhishek V. Garg
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chetan V. Jawale
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Heather R. Conti
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Natasha Whibley
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sruti S. Shiva
- Vascular Medicine Institute, Dept. of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William Horne
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jay K. Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah L. Gaffen
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Partha S. Biswas
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
13
|
Liu S, Yue L, Gu W, Li X, Zhang L, Sun S. Synergistic Effect of Fluconazole and Calcium Channel Blockers against Resistant Candida albicans. PLoS One 2016; 11:e0150859. [PMID: 26986478 PMCID: PMC4795682 DOI: 10.1371/journal.pone.0150859] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/19/2016] [Indexed: 11/18/2022] Open
Abstract
Candidiasis has increased significantly recently that threatens patients with low immunity. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of fungal resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapy is one of the most widely used and effective strategy to alleviate this problem. In this paper, we were aimed to evaluate the combined antifungal effects of four CCBs (calcium channel blockers), amlodipine (AML), nifedipine (NIF), benidipine (BEN) and flunarizine (FNZ) with fluconazole against C. albicans by checkerboard and time-killing method. In addition, we determined gene (CCH1, MID1, CNA1, CNB1, YVC1, CDR1, CDR2 and MDR1) expression by quantitative PCR and investigated the efflux pump activity of resistant candida albicans by rhodamine 6G assay to reveal the potential mechanisms. Finally, we concluded that there was a synergy when fluconazole combined with the four tested CCBs against resistant strains, with fractional inhibitory concentration index (FICI) <0.5, but no interaction against sensitive strains (FICI = 0.56 ~ 2). The mechanism studies revealed that fluconazole plus amlodipine caused down-regulating of CNA1, CNB1 (encoding calcineurin) and YVC1 (encoding calcium channel protein in vacuole membrane).
Collapse
Affiliation(s)
- Shuyuan Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People’s Republic of China
- Department of Pharmacy, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, People’s Republic of China
| | - Longtao Yue
- Translational Medicine Research Centre, Qianfoshan Hospital Affiliated to Shandong University, Jinan, 250014, Shandong Province, People’s Republic of China
| | - Wenrui Gu
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People’s Republic of China
| | - Xiuyun Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People’s Republic of China
| | - Liuping Zhang
- School of Pharmaceutical Sciences, Taishan Medical University, taian, 271000, Shandong Province, People’s Republic of China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, 250014, Shandong Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
14
|
Cui J, Ren B, Tong Y, Dai H, Zhang L. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans. Virulence 2016; 6:362-71. [PMID: 26048362 DOI: 10.1080/21505594.2015.1039885] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Candida albicans, one of the pathogenic Candida species, causes high mortality rate in immunocompromised and high-risk surgical patients. In the last decade, only one new class of antifungal drug echinocandin was applied. The increased therapy failures, such as the one caused by multi-drug resistance, demand innovative strategies for new effective antifungal drugs. Synergistic combinations of antifungals and anti-virulence agents highlight the pragmatic strategy to reduce the development of drug resistant and potentially repurpose known antifungals, which bypass the costly and time-consuming pipeline of new drug development. Anti-virulence and synergistic combination provide new options for antifungal drug discovery by counteracting the difficulty or failure of traditional therapy for fungal infections.
Collapse
Affiliation(s)
- Jinhui Cui
- a CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology; Chinese Academy of Sciences ; Beijing , China
| | | | | | | | | |
Collapse
|
15
|
Shrestha SK, Fosso MY, Garneau-Tsodikova S. A combination approach to treating fungal infections. Sci Rep 2015; 5:17070. [PMID: 26594050 PMCID: PMC4655404 DOI: 10.1038/srep17070] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022] Open
Abstract
Azoles are antifungal drugs used to treat fungal infections such as candidiasis in humans. Their extensive use has led to the emergence of drug resistance, complicating antifungal therapy for yeast infections in critically ill patients. Combination therapy has become popular in clinical practice as a potential strategy to fight resistant fungal isolates. Recently, amphiphilic tobramycin analogues, C12 and C14, were shown to display antifungal activities. Herein, the antifungal synergy of C12 and C14 with four azoles, fluconazole (FLC), itraconazole (ITC), posaconazole (POS), and voriconazole (VOR), was examined against seven Candida albicans strains. All tested strains were synergistically inhibited by C12 when combined with azoles, with the exception of C. albicans 64124 and MYA-2876 by FLC and VOR. Likewise, when combined with POS and ITC, C14 exhibited synergistic growth inhibition of all C. albicans strains, except C. albicans MYA-2876 by ITC. The combinations of FLC-C14 and VOR-C14 showed synergistic antifungal effect against three C. albicans and four C. albicans strains, respectively. Finally, synergism between C12/C14 and POS were confirmed by time-kill and disk diffusion assays. These results suggest the possibility of combining C12 or C14 with azoles to treat invasive fungal infections at lower administration doses or with a higher efficiency.
Collapse
Affiliation(s)
- Sanjib K Shrestha
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Marina Y Fosso
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536-0596, USA
| | | |
Collapse
|
16
|
Zavrel M, White TC. Medically important fungi respond to azole drugs: an update. Future Microbiol 2015; 10:1355-73. [DOI: 10.2217/fmb.15.47] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The increased numbers of patients with compromised immune systems in the last three decades have increased the chances of life-threatening fungal infections. Numerous antifungal drugs have been developed in the last 20 years to treat these infections. The largest group, the azoles, inhibits the synthesis of fungal sterols. The use of these fungistatic azoles has subsequently led to the emergence of acquired azole resistance. The most common mechanisms that result in azole resistance include the overexpression or mutation of the azole target enzyme, and overexpression of drug transporters that are responsible for azole efflux from cells. Additional, less-frequent mechanisms have also been identified. Understanding azole resistance mechanisms is crucial for current antifungal treatment and for the future development of new treatment strategies.
Collapse
Affiliation(s)
- Martin Zavrel
- University of Missouri-Kansas City, School of Biological Sciences, Division of Cell Biology & Biophysics, 5007 Rockhill Road, BSB 404, Kansas City, MO 64110, USA
| | - Theodore C White
- University of Missouri-Kansas City, School of Biological Sciences, Division of Cell Biology & Biophysics, 5007 Rockhill Road, BSB 404, Kansas City, MO 64110, USA
| |
Collapse
|
17
|
Kumar SN, Aravind SR, Sreelekha TT, Jacob J, Kumar BSD. Asarones from Acorus calamus in Combination with Azoles and Amphotericin B: A Novel Synergistic Combination to Compete Against Human Pathogenic Candida Species In Vitro. Appl Biochem Biotechnol 2015; 175:3683-95. [DOI: 10.1007/s12010-015-1537-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 02/04/2015] [Indexed: 11/28/2022]
|
18
|
Ramírez J, Rodríguez MV, Quiroga J, Abonia R, Sortino M, Zacchino SA, Insuasty B. Efficient Synthesis of Novel 3-Aryl-5-(4-chloro-2-morpholinothiazol-5-yl)-4,5-dihydro-1H-pyrazoles and Their Antifungal Activity Alone and in Combination with Commercial Antifungal Agents. Arch Pharm (Weinheim) 2014; 347:566-75. [DOI: 10.1002/ardp.201400084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Juan Ramírez
- Heterocyclic Compounds Research Group, Department of Chemistry; Universidad del Valle; Cali Colombia
| | - María Victoria Rodríguez
- Área Biología Vegetal, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
| | - Jairo Quiroga
- Heterocyclic Compounds Research Group, Department of Chemistry; Universidad del Valle; Cali Colombia
| | - Rodrigo Abonia
- Heterocyclic Compounds Research Group, Department of Chemistry; Universidad del Valle; Cali Colombia
| | - Maximiliano Sortino
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
| | - Susana A. Zacchino
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
| | - Braulio Insuasty
- Heterocyclic Compounds Research Group, Department of Chemistry; Universidad del Valle; Cali Colombia
| |
Collapse
|
19
|
Combination of fluconazole with non-antifungal agents: A promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int J Antimicrob Agents 2014; 43:395-402. [DOI: 10.1016/j.ijantimicag.2013.12.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/29/2022]
|
20
|
Abreu AC, Serra SC, Borges A, Saavedra MJ, Salgado AJ, Simões M. Evaluation of the best method to assess antibiotic potentiation by phytochemicals against Staphylococcus aureus. Diagn Microbiol Infect Dis 2014; 79:125-34. [PMID: 24717959 DOI: 10.1016/j.diagmicrobio.2014.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/18/2014] [Accepted: 03/02/2014] [Indexed: 01/20/2023]
Abstract
The increasing occurrence of bacterial resistance to antibiotics has now reached a critical level. Finding antibiotic coadjuvants capable to inhibit the bacterial resistance mechanisms would be a valuable mid-term solution, until new classes of antibiotics are discovered. Selected plant alkaloids were combined with 5 antibiotics against 10 Staphylococcus aureus strains, including strains expressing distinct efflux pumps and methicillin-resistant S. aureus strains. The efficacy of each combination was assessed using the microdilution checkerboard, time-kill, Etest, and disc diffusion methods. The cytotoxicity of the alkaloids was evaluated in a mouse fibroblast cell line. Potentiation was obtained in 6% of all 190 combinations, especially with the combination of: ciprofloxacin with reserpine (RES), pyrrolidine (PYR), and quinine (QUIN); tetracycline with RES; and erythromycin with PYR. The highest cytotoxicity values were found for QUIN (half maximal inhibitory concentration [IC50] = 25 ± 2.2 mg/L) and theophylline (IC50 = 100 ± 4.7 mg/L).
Collapse
Affiliation(s)
- Ana Cristina Abreu
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Sofia C Serra
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences,University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Anabela Borges
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal; CECAV, Centro de Ciência Animal e Veterinária, Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Maria José Saavedra
- CECAV, Centro de Ciência Animal e Veterinária, Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences,University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
21
|
Phaopongthai J, Wiyakrutta S, Meksuriyen D, Sriubolmas N, Suwanborirux K. Azole-synergistic anti-candidal activity of altenusin, a biphenyl metabolite of the endophytic fungus Alternaria alternata isolated from Terminalia chebula Retz. J Microbiol 2013; 51:821-8. [DOI: 10.1007/s12275-013-3189-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/15/2013] [Indexed: 10/25/2022]
|
22
|
Gao Y, Zhang C, Lu C, Liu P, Li Y, Li H, Sun S. Synergistic effect of doxycycline and fluconazole againstCandida albicansbiofilms and the impact of calcium channel blockers. FEMS Yeast Res 2013; 13:453-62. [PMID: 23577622 DOI: 10.1111/1567-1364.12048] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/25/2013] [Accepted: 04/05/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Yuan Gao
- School of Pharmaceutical Sciences; Shandong University; Jinan; Shandong Province; China
| | - Caiqing Zhang
- Department of Respiratory Medicine; Shandong Provincial Qianfoshan Hospital; Jinan; Shandong Province; China
| | - Chunyan Lu
- Department of Pharmacy; Shandong Provincial Qianfoshan Hospital; Jinan; Shandong Province; China
| | - Ping Liu
- School of Pharmaceutical Sciences; Shandong University; Jinan; Shandong Province; China
| | - Yan Li
- Department of Oncology; Shandong Provincial Qianfoshan Hospital; Jinan; Shandong Province; China
| | - Hui Li
- School of Pharmaceutical Sciences; Shandong University; Jinan; Shandong Province; China
| | - Shujuan Sun
- Department of Pharmacy; Shandong Provincial Qianfoshan Hospital; Jinan; Shandong Province; China
| |
Collapse
|
23
|
Shinde RB, Raut JS, Chauhan NM, Karuppayil SM. Chloroquine sensitizes biofilms of Candida albicans to antifungal azoles. Braz J Infect Dis 2013; 17:395-400. [PMID: 23602464 PMCID: PMC9428048 DOI: 10.1016/j.bjid.2012.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 11/18/2022] Open
Abstract
Biofilms formed by Candida albicans, a human pathogen, are known to be resistant to different antifungal agents. Novel strategies to combat the biofilm associated Candida infections like multiple drug therapy are being explored. In this study, potential of chloroquine to be a partner drug in combination with four antifungal agents, namely fluconazole, voriconazole, amphotericin B, and caspofungin, was explored against biofilms of C. albicans. Activity of various concentrations of chloroquine in combination with a particular antifungal drug was analyzed in a checkerboard format. Growth of biofilm in presence of drugs was analyzed by XTT-assay, in terms of relative metabolic activity compared to that of drug free control. Results obtained by XTT-metabolic assay were confirmed by scanning electron microscopy. The interactions between chloroquine and four antifungal drugs were determined by calculating fractional inhibitory concentration indices. Azole resistance in biofilms was reverted significantly (p < 0.05) in presence of 250 μg/mL of chloroquine, which resulted in inhibition of biofilms at very low concentrations of antifungal drugs. No significant alteration in the sensitivity of biofilms to caspofungin and amphotericin B was evident in combination with chloroquine. This study for the first time indicates that chloroquine potentiates anti-biofilm activity of fluconazole and voriconazole.
Collapse
|
24
|
Synergistic effects of amiodarone and fluconazole on Candida tropicalis resistant to fluconazole. Antimicrob Agents Chemother 2013; 57:1691-700. [PMID: 23357774 DOI: 10.1128/aac.00966-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
There have recently been significant increases in the prevalence of systemic invasive fungal infections. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of cross-resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapies have become one of the most widely used and effective strategies to alleviate this problem. Amiodarone (AMD) is classically used for the treatment of atrial fibrillation and is the drug of choice for patients with arrhythmia. Recent studies have shown broad antifungal activity of the drug when administered in combination with fluconazole (FLC). In the present study, we induced resistance to fluconazole in six strains of Candida tropicalis and evaluated potential synergism between fluconazole and amiodarone. The evaluation of drug interaction was determined by calculating the fractional inhibitory concentration and by performing flow cytometry. We conclude that amiodarone, when administered in combination with fluconazole, exhibits activity against strains of C. tropicalis that are resistant to fluconazole, which most likely occurs via changes in the integrity of the yeast cell membrane and the generation of oxidative stress, mitochondrial dysfunction, and DNA damage that could lead to cell death by apoptosis.
Collapse
|
25
|
Bagar T, Benčina M. Antiarrhythmic drug amiodarone displays antifungal activity, induces irregular calcium response and intracellular acidification of Aspergillus niger - amiodarone targets calcium and pH homeostasis of A. niger. Fungal Genet Biol 2012; 49:779-91. [PMID: 22906851 DOI: 10.1016/j.fgb.2012.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/18/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
Abstract
The rapidly developing resistance of fungi to antifungal drugs is a serious health problem. Today's drugs mainly target cell membrane composition and synthesis. Moreover, some of them have serious side effects. New antifungal drugs targeting different molecular pathways are necessary. Amiodarone, an FDA approved antiarrhythmic drug displays antifungal activity. It targets calcium and pH homeostasis. In concentrations above 25 μM, it inhibits the growth of the filamentous fungi Aspergillus niger. It triggers a biphasic calcium response accompanied by a high [Ca(2+)](c) resting level and an intracellular acidification from 7.5 to 6.0, both of which are concentration dependent. Both extracellular calcium and calcium from intracellular organelles are sources of the transient second cytosolic calcium peak, whose amplitude is 0.12 μM for cells treated with 0.1mM amiodarone. In P-type ATPase deficient A. niger strains pmrAΔ and pmcAΔ, the [Ca(2+)](c) resting level after amiodarone treatment is at least twice as high as that of the wild type, which correlates with fungal viability and hypersensitivity to amiodarone. A combination of amiodarone and amphotericin B is additive in terms of cell viability and cytosolic calcium influx. In contrast, a combination of azole drugs and amiodarone has a synergistic effect on the viability of fungi.
Collapse
Affiliation(s)
- Tanja Bagar
- Department of Biotechnology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | | |
Collapse
|
26
|
Campbell BC, Chan KL, Kim JH. Chemosensitization as a means to augment commercial antifungal agents. Front Microbiol 2012; 3:79. [PMID: 22393330 PMCID: PMC3289909 DOI: 10.3389/fmicb.2012.00079] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 02/15/2012] [Indexed: 11/13/2022] Open
Abstract
Antimycotic chemosensitization and its mode of action are of growing interest. Currently, use of antifungal agents in agriculture and medicine has a number of obstacles. Foremost of these is development of resistance or cross-resistance to one or more antifungal agents. The generally high expense and negative impact, or side effects, associated with antifungal agents are two further issues of concern. Collectively, these problems are exacerbated by efforts to control resistant strains, which can evolve into a treadmill of higher dosages for longer periods. This cycle in turn, inflates cost of treatment, dramatically. A further problem is stagnation in development of new and effective antifungal agents, especially for treatment of human mycoses. Efforts to overcome some of these issues have involved using combinations of available antimycotics (e.g., combination therapy for invasive mycoses). However, this approach has had inconsistent success and is often associated with a marked increase in negative side effects. Chemosensitization by natural compounds to increase effectiveness of commercial antimycotics is a somewhat new approach to dealing with the aforementioned problems. The potential for safe natural products to improve antifungal activity has been observed for over three decades. Chemosensitizing agents possess antifungal activity, but at insufficient levels to serve as antimycotics, alone. Their main function is to disrupt fungal stress response, destabilize the structural integrity of cellular and vacuolar membranes or stimulate production of reactive oxygen species, augmenting oxidative stress and apoptosis. Use of safe chemosensitizing agents has potential benefit to both agriculture and medicine. When co-applied with a commercial antifungal agent, an additive or synergistic interaction may occur, augmenting antifungal efficacy. This augmentation, in turn, lowers effective dosages, costs, negative side effects and, in some cases, countermands resistance.
Collapse
Affiliation(s)
- Bruce C. Campbell
- Plant Mycotoxin Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of AgricultureAlbany, CA, USA
| | - Kathleen L. Chan
- Plant Mycotoxin Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of AgricultureAlbany, CA, USA
| | - Jong H. Kim
- Plant Mycotoxin Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of AgricultureAlbany, CA, USA
| |
Collapse
|
27
|
Chang W, Li Y, Zhang L, Cheng A, Liu Y, Lou H. Retigeric Acid B Enhances the Efficacy of Azoles Combating the Virulence and Biofilm Formation of Candida albicans. Biol Pharm Bull 2012; 35:1794-801. [DOI: 10.1248/bpb.b12-00511] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, Shandong University
| | - Ying Li
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, Shandong University
| | - Li Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, Shandong University
| | - Aixia Cheng
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, Shandong University
| | - Yongqing Liu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, Shandong University
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, Shandong University
| |
Collapse
|
28
|
Kang K, Fong WP, Tsang PWK. Novel antifungal activity of purpurin against Candida species in vitro. Med Mycol 2010; 48:904-11. [PMID: 20392152 DOI: 10.3109/13693781003739351] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The antifungal activity of purpurin (1,2,4-trihydroxy-9,10-anthraquinone), a natural red anthraquinone pigment in madder root (Rubia tinctorum L.), was evaluated by a broth microdilution assay against a total of 24 Candida isolates representing six species. The minimum inhibitory concentration (MIC) range of purpurin was 1.28-5.12 μg/ml. Mechanistic studies using the rhodamine 6G extrusion assay indicated that purpurin inhibited the energy-dependent efflux pumps of the Candida isolates in a dose-dependent manner. Furthermore, purpurin demonstrated a dose-dependent depolarization of mitochondrial membrane potential, one of the biochemical checkpoints regulating cell death in eukaryotic cells, suggesting a possible linkage between purpurin antifungal mechanism and Candida apoptosis.
Collapse
Affiliation(s)
- Kai Kang
- Department of Biochemistry, The Chinese University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
29
|
Guo N, Ling G, Liang X, Jin J, Fan J, Qiu J, Song Y, Huang N, Wu X, Wang X, Deng X, Deng X, Yu L. In vitro synergy of pseudolaric acid B and fluconazole against clinical isolates of Candida albicans. Mycoses 2010; 54:e400-6. [PMID: 21910756 DOI: 10.1111/j.1439-0507.2010.01935.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Candida albicans is the most common fungal pathogen in humans. The emergence of resistance to azole antifungals has raised the issue of using such antifungals in combination to optimise therapeutic outcome. The objective of this study was to evaluate in vitro synergy of pseudolaric acid B (PAB) and fluconazole (FLC) against clinical isolates of C. albicans. The in vitro antifungal activity of PAB, a diterpene acid from Pseudolarix kaempferi Gordon, was evaluated alone and in combination with FLC against 22 FLC-resistant (FLC-R) and 12 FLC-susceptible (FLC-S) C. albicans using the chequerboard microdilution method and time-killing test assays. Synergism was observed in all 22 (100%) FLC-R strains tested as determined by both fractional inhibitory concentration index (FICI) with values ranging from 0.02 to 0.13 and bliss independence (BI) models. Synergism was observed in two of 12 (17%) FLC-S strains as determined by FICI model with values ranging from 0.25 to 0.5 and in three of 12 (18%) FLC-S strains as determined by BI model. For FLC-R strains, the drug concentrations of FLC and PAB, where synergistic interactions were found, ranged from 0.06 to 4 μg ml(-1) and 0.5 to 4 μg ml(-1) respectively. For FLC-S strains, the drug concentrations of FLC and PAB were 1-8 μg ml(-1) and 0.5-4 μg ml(-1) respectively. The BI model gave results consistent with FICI, but no antagonistic activity was observed in any of the strains tested. These interactions between PAB and FLC were confirmed using the time-killing test for the selected strains. Fluconazole and PAB exhibited a good synergism against azole-R isolates of C. albicans.
Collapse
Affiliation(s)
- Na Guo
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jin J, Guo N, Zhang J, Ding Y, Tang X, Liang J, Li L, Deng X, Yu L. The synergy of honokiol and fluconazole against clinical isolates of azole-resistant Candida albicans. Lett Appl Microbiol 2010; 51:351-7. [PMID: 20681969 DOI: 10.1111/j.1472-765x.2010.02900.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To evaluate the interaction of fluconazole (FLC) and honokiol (HNK) in vitro and vivo against azole-resistant (azole-R) clinical isolates of Candida albicans. METHODS AND RESULTS A checkerboard microdilution method was used to study the in vitro interaction of FLC and HNK in 24 azole-R clinical isolates of C. albicans. In vivo antifungal activity was performed to further analyse the interaction between FLC and HNK. In the in vitro study, synergism was observed in all 24 FLC-resistant strains tested as determined by fractional inhibitory concentration index (FICI), and in 22 strains by Delta E models. No antagonistic activity was observed in any of the strains tested. These positive interactions were also confirmed by using the time-killing test for the selected strain C. albicans YL371, which shows strong susceptible to the combination of HNK and FLC. In the in vivo study, the mice with candidiasis were treated successfully by a combination therapy of HNK with FLC, the results showed a decrease of the colony forming unit in infected and treated animals compared to the controls, at the conditions of the treatment used in this study. CONCLUSIONS Synergistic activity of HNK and FLC against clinical isolates of FLC-resistant C. albicans was observed in vitro and in vivo. SIGNIFICANCE AND IMPACT OF THE STUDY This report might provide a potential therapeutic method to overcome the problem of drug-resistance in C. albicans.
Collapse
Affiliation(s)
- J Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang YQ, Gamarra S, Garcia-Effron G, Park S, Perlin DS, Rao R. Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog 2010; 6:e1000939. [PMID: 20532216 PMCID: PMC2880581 DOI: 10.1371/journal.ppat.1000939] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/05/2010] [Indexed: 11/19/2022] Open
Abstract
Ergosterol is an important constituent of fungal membranes. Azoles inhibit ergosterol biosynthesis, although the cellular basis for their antifungal activity is not understood. We used multiple approaches to demonstrate a critical requirement for ergosterol in vacuolar H(+)-ATPase function, which is known to be essential for fungal virulence. Ergosterol biosynthesis mutants of S. cerevisiae failed to acidify the vacuole and exhibited multiple vma(-) phenotypes. Extraction of ergosterol from vacuolar membranes also inactivated V-ATPase without disrupting membrane association of its subdomains. In both S. cerevisiae and the fungal pathogen C. albicans, fluconazole impaired vacuolar acidification, whereas concomitant ergosterol feeding restored V-ATPase function and cell growth. Furthermore, fluconazole exacerbated cytosolic Ca(2+) and H(+) surges triggered by the antimicrobial agent amiodarone, and impaired Ca(2+) sequestration in purified vacuolar vesicles. These findings provide a mechanistic basis for the synergy between azoles and amiodarone observed in vitro. Moreover, we show the clinical potential of this synergy in treatment of systemic fungal infections using a murine model of Candidiasis. In summary, we demonstrate a new regulatory component in fungal V-ATPase function, a novel role for ergosterol in vacuolar ion homeostasis, a plausible cellular mechanism for azole toxicity in fungi, and preliminary in vivo evidence for synergism between two antifungal agents. New insights into the cellular basis of azole toxicity in fungi may broaden therapeutic regimens for patient populations afflicted with systemic fungal infections.
Collapse
Affiliation(s)
- Yong-Qiang Zhang
- The Johns Hopkins University School of Medicine of Baltimore, Maryland, United States of America
| | - Soledad Gamarra
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey, United States of America
| | - Guillermo Garcia-Effron
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey, United States of America
| | - Steven Park
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey, United States of America
| | - David S. Perlin
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey, United States of America
| | - Rajini Rao
- The Johns Hopkins University School of Medicine of Baltimore, Maryland, United States of America
| |
Collapse
|
32
|
Sharma M, Manoharlal R, Negi AS, Prasad R. Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Res 2010; 10:570-8. [PMID: 20528949 DOI: 10.1111/j.1567-1364.2010.00637.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We have shown previously that pure polyphenol curcumin I (CUR-I) shows antifungal activity against Candida species. By employing the chequerboard method, filter disc and time-kill assays, in the present study we demonstrate that CUR-I at non-antifungal concentration interacts synergistically with azoles and polyenes. For this, pure polyphenol CUR-I was tested for synergy with five azole and two polyene drugs - fluconazole (FLC), miconazole, ketoconazole (KTC), itraconazole (ITR), voriconazole (VRC), nystatin (NYS) and amphotericin B (AMB) - against 21 clinical isolates of Candida albicans with reduced antifungal sensitivity, as well as a drug-sensitive laboratory strain. Notably, there was a 10-35-fold drop in the MIC(80) values of the drugs when CUR-I was used in combination with azoles and polyenes, with fractional inhibitory concentration index (FICI) values ranging between 0.09 and 0.5. Interestingly, the synergistic effect of CUR-I with FLC and AMB was associated with the accumulation of reactive oxygen species, which could be reversed by the addition of an antioxidant such as ascorbic acid. Furthermore, the combination of CUR-I and FLC/AMB triggered apoptosis that could also be reversed by ascorbic acid. We provide the first evidence that pure CUR-I in combination with azoles and polyenes represents a novel therapeutic strategy to improve the activity of common antifungals.
Collapse
Affiliation(s)
- Monika Sharma
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | |
Collapse
|
33
|
Guo N, Wu X, Yu L, Liu J, Meng R, Jin J, Lu H, Wang X, Yan S, Deng X. In vitroandin vivointeractions between fluconazole and allicin against clinical isolates of fluconazole-resistantCandida albicansdetermined by alternative methods. ACTA ACUST UNITED AC 2010; 58:193-201. [DOI: 10.1111/j.1574-695x.2009.00620.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Guo N, Liu J, Wu X, Bi X, Meng R, Wang X, Xiang H, Deng X, Yu L. Antifungal activity of thymol against clinical isolates of fluconazole-sensitive and -resistant Candida albicans. J Med Microbiol 2009; 58:1074-1079. [DOI: 10.1099/jmm.0.008052-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Thymol (THY) was found to have in vitro antifungal activity against 24 fluconazole (FLC)-resistant and 12 FLC-susceptible clinical isolates of Candida albicans, standard strain ATCC 10231 and one experimentally induced FLC-resistant C. albicans S-1. In addition, synergism was observed for clinical isolates of C. albicans with combinations of THY–FLC and THY–amphotericin B (AMB) evaluated by the chequerboard microdilution method. The interaction intensity was determined by spectrophotometry for the chequerboard assay, and the nature of the interactions was assessed using two non-parametric approaches [fractional inhibitory concentration index (FICI) and ΔE models]. The interaction between THY–FLC or THY–AMB in FLC-resistant and -susceptible strains of C. albicans showed a high percentage of synergism by the FICI method and the ΔE method. The ΔE model gave results consistent with FICI, and no antagonistic action was observed in the strains tested.
Collapse
Affiliation(s)
- Na Guo
- Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Jingbo Liu
- Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China
| | - Xiuping Wu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xingming Bi
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Rizeng Meng
- Jilin Entry–Exit Inspection and Quarantine Bureau, Changchun 130062, PR China
| | - Xuelin Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Hua Xiang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Lu Yu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, PR China
| |
Collapse
|
35
|
Kang K, Wong KS, Jayampath Seneviratne C, Samaranayake LP, Fong WP, Tsang PWK. In vitro synergistic effects of metergoline and antifungal agents against Candida krusei. Mycoses 2009; 53:495-9. [DOI: 10.1111/j.1439-0507.2009.01747.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Kolecka A, Krauke Y, Bujdakova H, Sychrova H. Subinhibitory concentrations of fluconazole increase the intracellular sodium content in both fluconazole-resistant and -sensitiveCandida albicansstrains. Can J Microbiol 2009; 55:605-10. [DOI: 10.1139/w09-009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fluconazole-sensitive (SC 5314) and -resistant (clinical isolate 1173) Candida albicans strains were compared in terms of their osmotolerance and tolerance to toxic sodium cations. The two strains did not differ in their tolerance to high osmotic pressure in general but exhibited distinct sensitivities to sodium cations. Although the fluconazole-resistant 1173 strain contained, under all conditions tested, significantly lower intracellular amounts of Na+, it was much more sodium sensitive than the SC 5314 strain. The addition of subinhibitory concentrations of fluconazole to media supplemented with NaCl significantly influenced the growth of both strains and resulted in substantially elevated intracellular sodium concentrations compared with growth in medium containing NaCl but no fluconazole.
Collapse
Affiliation(s)
- Anna Kolecka
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University, Mlynska dolina B-2, Bratislava, Slovakia
- Department of Membrane Transport, Institute of Physiology AS CR, v.v.i, Videnska 1083, 140 00 Prague 4, Czech Republic
| | - Yannick Krauke
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University, Mlynska dolina B-2, Bratislava, Slovakia
- Department of Membrane Transport, Institute of Physiology AS CR, v.v.i, Videnska 1083, 140 00 Prague 4, Czech Republic
| | - Helena Bujdakova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University, Mlynska dolina B-2, Bratislava, Slovakia
- Department of Membrane Transport, Institute of Physiology AS CR, v.v.i, Videnska 1083, 140 00 Prague 4, Czech Republic
| | - Hana Sychrova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University, Mlynska dolina B-2, Bratislava, Slovakia
- Department of Membrane Transport, Institute of Physiology AS CR, v.v.i, Videnska 1083, 140 00 Prague 4, Czech Republic
| |
Collapse
|
37
|
Maresova L, Muend S, Zhang YQ, Sychrova H, Rao R. Membrane hyperpolarization drives cation influx and fungicidal activity of amiodarone. J Biol Chem 2008; 284:2795-2802. [PMID: 19054772 DOI: 10.1074/jbc.m806693200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cationic amphipathic drugs, such as amiodarone, interact preferentially with lipid membranes to exert their biological effect. In the yeast Saccharomyces cerevisiae, toxic levels of amiodarone trigger a rapid influx of Ca(2+) that can overwhelm cellular homeostasis and lead to cell death. To better understand the mechanistic basis of antifungal activity, we assessed the effect of the drug on membrane potential. We show that low concentrations of amiodarone (0.1-2 microm) elicit an immediate, dose-dependent hyperpolarization of the membrane. At higher doses (>3 microm), hyperpolarization is transient and is followed by depolarization, coincident with influx of Ca(2+) and H(+) and loss in cell viability. Proton and alkali metal cation transporters play reciprocal roles in membrane polarization, depending on the availability of glucose. Diminishment of membrane potential by glucose removal or addition of salts or in pma1, tok1Delta, ena1-4Delta, or nha1Delta mutants protected against drug toxicity, suggesting that initial hyperpolarization was important in the mechanism of antifungal activity. Furthermore, we show that the link between membrane hyperpolarization and drug toxicity is pH-dependent. We propose the existence of pH- and hyperpolarization-activated Ca(2+) channels in yeast, similar to those described in plant root hair and pollen tubes that are critical for cell elongation and growth. Our findings illustrate how membrane-active compounds can be effective microbicidals and may pave the way to developing membrane-selective agents.
Collapse
Affiliation(s)
- Lydie Maresova
- Department of Membrane Transport, Institute of Physiology, Academy of Sciences CR, Prague, Czech Republic
| | - Sabina Muend
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Yong-Qiang Zhang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hana Sychrova
- Department of Membrane Transport, Institute of Physiology, Academy of Sciences CR, Prague, Czech Republic
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
| |
Collapse
|