1
|
Khasawneh AI, Himsawi N, Sammour A, Safieh HA, Burayzat S, Al-Momani H, Alotaibi MR, Al Shboul S, Saleh T. Molecular characterization of human respiratory syncytial virus strains circulating among hospitalized children in Jordan. BMC Infect Dis 2024; 24:1347. [PMID: 39592984 PMCID: PMC11600855 DOI: 10.1186/s12879-024-10185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Human Respiratory Syncytial Virus (HRSV) is a primary cause of severe pediatric respiratory infections, particularly in infants and young children, often resulting in hospitalization. The virus possesses a high degree of mutagenic potential, contributing to significant antigenic diversity, which complicates immune responses and poses challenges for vaccine development and disease management. This study was conducted in Jordan from 2022 to 2023 to epidemiologically determine the prevalence and molecular characteristics of RSV. METHODS A total of 288 nasopharyngeal (NP) swabs were collected from hospitalized children at Prince Hamza Hospital, Amman, Jordan. All samples were screened for common viral and bacterial respiratory pathogens using PCR. A partial segment of the G gene of RSV was amplified for molecular characterization and phylogenetic tree analysis. RESULTS Viral and/or bacterial infection was identified in 71.9% (207/288) of the tested specimens. Among these, 35 samples (12.2%, 35/288) tested positive for RSV. Specific subgroup PCR analysis identified (25, 71.4%) RSV-A, (4, 11.4%) RSV-B, and (6, 17.1%) could not be identified using our set of primers. Phylogenetic tree analysis revealed that RSV-A ON1 and RSV-B BA9 genotype strains predominate in Jordan. We observed multiple substitutions in our studied sample which would drive variation in the level of antigenicity and pathogenicity of RSV. Glycosylation sites identified were consistent with previously reported studies. CONCLUSION This study provides updated epidemiological data on the strains circulating in Amman, Jordan and their molecular characteristics. Continuous RSV surveillance informs vaccine development, guides public health interventions, and enables timely administration of prophylactic treatments, reducing the burden of RSV-related illness.
Collapse
Affiliation(s)
- Ashraf I Khasawneh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| | - Nisreen Himsawi
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Ashraf Sammour
- Department of Anatomy, Physiology & Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Hazem Abu Safieh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Salma Burayzat
- Department of Pediatrics and Neonatology, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Hafez Al-Momani
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| |
Collapse
|
2
|
Holmdahl I, Bents SJ, Baker RE, Casalegno JS, Trovão NS, Park SW, Metcalf JE, Viboud C, Grenfell B. Differential impact of COVID-19 non-pharmaceutical interventions on the epidemiological dynamics of respiratory syncytial virus subtypes A and B. Sci Rep 2024; 14:14527. [PMID: 38914626 PMCID: PMC11196647 DOI: 10.1038/s41598-024-64624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/11/2024] [Indexed: 06/26/2024] Open
Abstract
Nonpharmaceutical interventions (NPIs) implemented during the COVID-19 pandemic have disrupted the dynamics of respiratory syncytial virus (RSV) on a global scale; however, the cycling of RSV subtypes in the pre- and post-pandemic period remains poorly understood. Here, we used a two subtype RSV model supplemented with epidemiological data to study the impact of NPIs on the two circulating subtypes, RSV-A and RSV-B. The model is calibrated to historic RSV subtype data from the United Kingdom and Finland and predicts a tendency for RSV-A dominance over RSV-B immediately following the implementation of NPIs. Using a global genetic dataset, we confirm that RSV-A has prevailed over RSV-B in the post-pandemic period, consistent with a higher R0 for RSV-A. With new RSV infant monoclonals and maternal and elderly vaccines becoming widely available, these results may have important implications for understanding intervention effectiveness in the context of disrupted subtype dynamics.
Collapse
Affiliation(s)
- Inga Holmdahl
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Samantha J Bents
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.
| | - Rachel E Baker
- School of Public Health, Brown University, Providence, RI, USA
| | - Jean-Sebastien Casalegno
- Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Centre de Biologie Nord, Institut des Agents Infectieux, Laboratoire de Virologie, Lyon, France
| | | | - Sang Woo Park
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Bryan Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Ono T, Hashimoto K, Kume Y, Chishiki M, Okabe H, Sato M, Norito S, Aso J, Sada M, Mochizuki I, Mashiyama F, Ishibashi N, Suzuki S, Sakuma H, Suwa R, Kawase M, Takeda M, Shirato K, Kimura H, Hosoya M. Molecular Diversity of Human Respiratory Syncytial Virus before and during the COVID-19 Pandemic in Two Neighboring Japanese Cities. Microbiol Spectr 2023; 11:e0260622. [PMID: 37409937 PMCID: PMC10433803 DOI: 10.1128/spectrum.02606-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Human respiratory syncytial viruses (HRSVs) are divided into subgroups A and B, which are further divided based on the nucleotide sequence of the second hypervariable region (HVR) of the attachment glycoprotein (G) gene. Understanding the molecular diversity of HRSV before and during the coronavirus disease 2019 (COVID-19) pandemic can provide insights into the effects of the pandemic on HRSV dissemination and guide vaccine development. Here, we analyzed HRSVs isolated in Fukushima Prefecture from September 2017 to December 2021. Specimens from pediatric patients were collected at two medical institutions in neighboring cities. A phylogenetic tree based on the second HVR nucleotide sequences was constructed using the Bayesian Markov chain Monte Carlo method. HRSV-A (ON1 genotype) and HRSV-B (BA9 genotype) were detected in 183 and 108 specimens, respectively. There were differences in the number of HRSV strains within clusters prevalent at the same time between the two hospitals. The genetic characteristics of HRSVs in 2021 after the COVID-19 outbreak were similar to those in 2019. HRSVs within a cluster may circulate within a region for several years, causing an epidemic cycle. Our findings add to the existing knowledge of the molecular epidemiology of HRSV in Japan. IMPORTANCE Understanding the molecular diversity of human respiratory syncytial viruses during pandemics caused by different viruses can provide insights that can guide public health decisions and vaccine development.
Collapse
Affiliation(s)
- Takashi Ono
- Department of Pediatrics, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Koichi Hashimoto
- Department of Pediatrics, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Yohei Kume
- Department of Pediatrics, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Mina Chishiki
- Department of Pediatrics, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Hisao Okabe
- Department of Pediatrics, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Masatoki Sato
- Department of Pediatrics, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Sakurako Norito
- Department of Pediatrics, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Jumpei Aso
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Mitsuru Sada
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Izumi Mochizuki
- Department of Pediatrics, Ohara General Hospital, Fukushima, Fukushima, Japan
| | - Fumi Mashiyama
- Department of Pediatrics, Hoshi General Hospital, Koriyama, Fukushima, Japan
| | - Naohisa Ishibashi
- Department of Pediatrics, Ohara General Hospital, Fukushima, Fukushima, Japan
| | - Shigeo Suzuki
- Department of Pediatrics, Ohara General Hospital, Fukushima, Fukushima, Japan
| | - Hiroko Sakuma
- Department of Pediatrics, Hoshi General Hospital, Koriyama, Fukushima, Japan
| | - Reiko Suwa
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Miyuki Kawase
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Takeda
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuya Shirato
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirokazu Kimura
- Gunma Paz University, Graduate School of Health Sciences, Takasaki, Gunma, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, Fukushima Medical University, Fukushima, Fukushima, Japan
| |
Collapse
|
4
|
Influence of Sex on Respiratory Syncytial Virus Genotype Infection Frequency and Nasopharyngeal Microbiome. J Virol 2023; 97:e0147222. [PMID: 36815771 PMCID: PMC10062153 DOI: 10.1128/jvi.01472-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Respiratory syncytial virus (RSV) has a significant health burden in children, older adults, and the immunocompromised. However, limited effort has been made to identify emergence of new RSV genotypes' frequency of infection and how the combination of nasopharyngeal microbiome and viral genotypes impact RSV disease outcomes. In an observational cohort designed to capture the first infant RSV infection, we employed multi-omics approaches to sequence 349 RSV complete genomes and matched nasopharyngeal microbiomes, during which the 2012/2013 season was dominated by RSV-A, whereas 2013 and 2014 was dominated by RSV-B. We found non-G-72nt-duplicated RSV-A strains were more frequent in male infants (P = 0.02), whereas G-72nt-duplicated genotypes (which is ON1 lineage) were seen equally in both males and females. DESeq2 testing of the nasal microbiome showed Haemophilus was significantly more abundant in infants with RSV-A infection compared to infants with RSV-B infection (adjusted P = 0.002). In addition, the broad microbial clustering of the abundant genera was significantly associated with infant sex (P = 0.03). Overall, we show sex differences in infection by RSV genotype and host nasopharyngeal microbiome, suggesting an interaction between host genetics, virus genotype, and associated nasopharyngeal microbiome. IMPORTANCE Respiratory syncytial virus (RSV) is one of the leading causes of lower respiratory tract infections in young children and is responsible for high hospitalization rates and morbidity in infants and the elderly. To understand how the emergence of RSV viral genotypes and viral-respiratory microbiome interactions contribute to infection frequency and severity, we utilized an observational cohort designed to capture the first infant RSV infection we employed multi-omics approaches to sequence 349 RSV complete genomes and matched nasopharyngeal microbiomes. We found non-G-72nt-duplicated RSV-A genotypes were more frequent in male infants, whereas G-72nt-duplicated RSV-A strains (ON1 lineage) were seen equally in both males and females. Microbiome analysis show Haemophilus was significantly more abundant in infants with RSV-A compared to infants with RSV-B infection and the microbial clustering of the abundant genera was associated with infant sex. Overall, we show sex differences in RSV genotype-nasopharyngeal microbiome, suggesting an interaction host genetics-virus-microbiome interaction.
Collapse
|
5
|
Goya S, Lucion MF, Shilts MH, Juárez MDV, Gentile A, Mistchenko AS, Viegas M, Das SR. Evolutionary dynamics of respiratory syncytial virus in Buenos Aires: Viral diversity, migration, and subgroup replacement. Virus Evol 2023; 9:vead006. [PMID: 36880065 PMCID: PMC9985318 DOI: 10.1093/ve/vead006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/25/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
Globally, the human respiratory syncytial virus (RSV) is one of the major causes of lower respiratory tract infections (LRTIs) in children. The scarcity of complete genome data limits our understanding of RSV spatiotemporal distribution, evolution, and viral variant emergence. Nasopharyngeal samples collected from hospitalized pediatric patients from Buenos Aires tested positive for RSV LRTI during four consecutive outbreaks (2014-2017) were randomly subsampled for RSV complete genome sequencing. Phylodynamic studies and viral population characterization of genomic variability, diversity, and migration of viruses to and from Argentina during the study period were performed. Our sequencing effort resulted in one of the largest collections of RSV genomes from a given location (141 RSV-A and 135 RSV-B) published so far. RSV-B was dominant during the 2014-2016 outbreaks (60 per cent of cases) but was abruptly replaced by RSV-A in 2017, with RSV-A accounting for 90 per cent of sequenced samples. A significant decrease in RSV genomic diversity-represented by both a reduction in genetic lineages detected and the predominance of viral variants defined by signature amino acids-was observed in Buenos Aires in 2016, the year prior to the RSV subgroup predominance replacement. Multiple introductions to Buenos Aires were detected, some with persistent detection over seasons, and also, RSV was observed to migrate from Buenos Aires to other countries. Our results suggest that the decrease in viral diversity may have allowed the dramatic predominance switch from RSV-B to RSV-A in 2017. The immune pressure generated against circulating viruses with limited diversity during a given outbreak may have created a fertile ground for an antigenically divergent RSV variant to be introduced and successfully spread in the subsequent outbreak. Overall, our RSV genomic analysis of intra- and inter-outbreak diversity provides an opportunity to better understand the epochal evolutionary dynamics of RSV.
Collapse
Affiliation(s)
- Stephanie Goya
- Virology Laboratory, Ricardo Gutiérrez Children’s Hospital, Gallo 1330, Buenos Aires 1425, Argentina
- National Scientific and Technical Research Council, Godoy Cruz 2290, Buenos Aires 1425, Argentina
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Ave S, Nashville, TN 37232, USA
| | - Maria Florencia Lucion
- Department of Epidemiology, Ricardo Gutiérrez Children’s Hospital, Gallo 1330, Buenos Aires 1425, Argentina
| | - Meghan H Shilts
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Ave S, Nashville, TN 37232, USA
| | - María del Valle Juárez
- Department of Epidemiology, Ricardo Gutiérrez Children’s Hospital, Gallo 1330, Buenos Aires 1425, Argentina
| | - Angela Gentile
- Department of Epidemiology, Ricardo Gutiérrez Children’s Hospital, Gallo 1330, Buenos Aires 1425, Argentina
| | - Alicia S Mistchenko
- Virology Laboratory, Ricardo Gutiérrez Children’s Hospital, Gallo 1330, Buenos Aires 1425, Argentina
| | - Mariana Viegas
- Virology Laboratory, Ricardo Gutiérrez Children’s Hospital, Gallo 1330, Buenos Aires 1425, Argentina
- National Scientific and Technical Research Council, Godoy Cruz 2290, Buenos Aires 1425, Argentina
| | - Suman R Das
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Ave S, Nashville, TN 37232, USA
- Department Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Ave S, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Salimi V, Viegas M, Trento A, Agoti CN, Anderson LJ, Avadhanula V, Bahl J, Bont L, Brister JR, Cane PA, Galiano M, Graham BS, Hatcher EL, Hellferscee O, Henke DM, Hirve S, Jackson S, Keyaerts E, Kragten-Tabatabaie L, Lindstrom S, Nauwelaers I, Nokes DJ, Openshaw PJ, Peret TC, Piedra PA, Ramaekers K, Rector A, Trovão NS, von Gottberg A, Zambon M, Zhang W, Williams TC, Barr IG, Buchholz UJ. Proposal for Human Respiratory Syncytial Virus Nomenclature below the Species Level. Emerg Infect Dis 2021; 27:1-9. [PMID: 34013862 PMCID: PMC8153853 DOI: 10.3201/eid2706.204608] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is the leading viral cause of serious pediatric respiratory disease, and lifelong reinfections are common. Its 2 major subgroups, A and B, exhibit some antigenic variability, enabling HRSV to circulate annually. Globally, research has increased the number of HRSV genomic sequences available. To ensure accurate molecular epidemiology analyses, we propose a uniform nomenclature for HRSV-positive samples and isolates, and HRSV sequences, namely: HRSV/subgroup identifier/geographic identifier/unique sequence identifier/year of sampling. We also propose a template for submitting associated metadata. Universal nomenclature would help researchers retrieve and analyze sequence data to better understand the evolution of this virus.
Collapse
|
7
|
Kamau E, Otieno JR, Lewa CS, Mwema A, Murunga N, Nokes DJ, Agoti CN. Evolution of respiratory syncytial virus genotype BA in Kilifi, Kenya, 15 years on. Sci Rep 2020; 10:21176. [PMID: 33273687 PMCID: PMC7712891 DOI: 10.1038/s41598-020-78234-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/20/2020] [Indexed: 01/12/2023] Open
Abstract
Respiratory syncytial virus (RSV) is recognised as a leading cause of severe acute respiratory disease and deaths among infants and vulnerable adults. Clinical RSV isolates can be divided into several known genotypes. RSV genotype BA, characterised by a 60-nucleotide duplication in the G glycoprotein gene, emerged in 1999 and quickly disseminated globally replacing other RSV group B genotypes. Continual molecular epidemiology is critical to understand the evolutionary processes maintaining the success of the BA viruses. We analysed 735 G gene sequences from samples collected from paediatric patients in Kilifi, Kenya, between 2003 and 2017. The virus population comprised of several genetically distinct variants (n = 56) co-circulating within and between epidemics. In addition, there was consistent seasonal fluctuations in relative genetic diversity. Amino acid changes increasingly accumulated over the surveillance period including two residues (N178S and Q180R) that mapped to monoclonal antibody 2D10 epitopes, as well as addition of putative N-glycosylation sequons. Further, switching and toggling of amino acids within and between epidemics was observed. On a global phylogeny, the BA viruses from different countries form geographically isolated clusters suggesting substantial localized variants. This study offers insights into longitudinal population dynamics of a globally endemic RSV genotype within a discrete location.
Collapse
Affiliation(s)
- Everlyn Kamau
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Kilifi, Kenya.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - James R Otieno
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Kilifi, Kenya
- Fogarty International Center, NIH, Bethesda, MD, USA
| | - Clement S Lewa
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Kilifi, Kenya
| | - Anthony Mwema
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Kilifi, Kenya
| | - Nickson Murunga
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Kilifi, Kenya
| | - D James Nokes
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Kilifi, Kenya
- School of Life Sciences and Zeeman Institute (SBIDER), University of Warwick, Coventry, UK
| | - Charles N Agoti
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Kilifi, Kenya
- School of Health and Human Sciences, Pwani University, Kilifi, Kenya
| |
Collapse
|
8
|
Kamau E, Otieno JR, Murunga N, Oketch JW, Ngoi JM, de Laurent ZR, Mwema A, Nyiro JU, Agoti CN, Nokes DJ. Genomic epidemiology and evolutionary dynamics of respiratory syncytial virus group B in Kilifi, Kenya, 2015-17. Virus Evol 2020; 6:veaa050. [PMID: 32913665 PMCID: PMC7474930 DOI: 10.1093/ve/veaa050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) circulates worldwide, occurring seasonally in communities, and is a leading cause of acute respiratory illness in young children. There is paucity of genomic data from purposively sampled populations by which to investigate evolutionary dynamics and transmission patterns of RSV. Here we present an analysis of 295 RSV group B (RSVB) genomes from Kilifi, coastal Kenya, sampled from individuals seeking outpatient care in nine health facilities across a defined geographical area (∼890 km2), over two RSV epidemics between 2015 and 2017. RSVB diversity was characterized by multiple virus introductions into the area and co-circulation of distinct genetic clusters, which transmitted and diversified locally with varying frequency. Increase in relative genetic diversity paralleled seasonal virus incidence. Importantly, we identified a cluster of viruses that emerged in the 2016/17 epidemic, carrying distinct amino-acid signatures including a novel nonsynonymous change (K68Q) in antigenic site ∅ in the Fusion protein. RSVB diversity was additionally marked by signature nonsynonymous substitutions that were unique to particular genomic clusters, some under diversifying selection. Our findings provide insights into recent evolutionary and epidemiological behaviors of RSVB, and highlight possible emergence of a novel antigenic variant, which has implications on current prophylactic strategies in development.
Collapse
Affiliation(s)
- Everlyn Kamau
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James R Otieno
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Nickson Murunga
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - John W Oketch
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Joyce M Ngoi
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Zaydah R de Laurent
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Anthony Mwema
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Joyce U Nyiro
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Charles N Agoti
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,School of Health and Human Sciences, Pwani University, Kilifi, Kenya
| | - D James Nokes
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,School of Life Sciences and Zeeman Institute (SBIDER), University of Warwick, Coventry, UK
| |
Collapse
|