1
|
Aoki K, Komori K, Yamaguchi T, Harada S, Tsukada M, Murakami H, Tateda K. Tracking Antimicrobial Resistant Organisms Timely: a workflow validation study for successive core-genome SNP-based nosocomial transmission analysis. JAC Antimicrob Resist 2025; 7:dlaf069. [PMID: 40336530 PMCID: PMC12056608 DOI: 10.1093/jacamr/dlaf069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/18/2025] [Indexed: 05/09/2025] Open
Abstract
Background and Objectives Effective infection prevention and control (IPC) interventions in hospitals require timely information to determine the potential transmission of antimicrobial-resistant (AMR) organisms. We proposed and developed a successive core-genome SNP (cgSNP)-based phylogenetic analysis workflow, 'Tracking Antimicrobial Resistant Organisms Timely' (TAROT), using the Oxford Nanopore Technologies (ONT) sequencer for MRSA, and compared the results with those obtained using the Illumina sequencer. Methods We have developed a TAROT workflow for successive phylogenetic analysis using ONT data. We sequenced 34 MRSA strains isolated from Toho University Omori Medical Center using MinION (ONT) and MiSeq (Illumina). Each strain's ONT data were inputted into TAROT (TAROT-ONT), and successive cgSNP-based phylogenetic analyses were conducted. Illumina data were processed with a batched cgSNP-based phylogenetic analysis. Assembly-based analysis identified AMR genes, AMR mutations and virulence genes. Results MinION generated an average sequence depth of 262× for the ST8 reference genome within 3 h. TAROT-ONT successively generated 11 phylogenetic trees for 14 ST8 strains, 7 trees for 10 ST1 strains and 2 trees for 5 ST5 strains. Highly suspected transmission pairs (pairwise cgSNP< 5) were detected in trees #6 through #11 for ST8, trees #3, #5 and #7 for ST1, and tree #2 for ST5. Differences in pairwise cgSNP value between TAROT-ONT and Illumina ranged from zero to two within pairs with fewer than 20 cgSNPs using Illumina. TAROT-ONT bioinformatic analysis for each strain required 5-42 min. The identification of AMR genes, mutations and virulence genes showed high concordance between ONT and Illumina. Conclusions TAROT-ONT can facilitate effective IPC intervention for MRSA nosocomial transmissions by providing timely feedback through successive phylogenetic analyses based on cgSNPs.
Collapse
Affiliation(s)
- Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Kohji Komori
- Division of Collaborative Regional Infection Control, Department of Community Well-being, Toho University School of Medicine, Tokyo, Japan
| | - Tetsuo Yamaguchi
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Sohei Harada
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Mayumi Tsukada
- Department of Infection Prevention and Control, Toho University Omori Medical Center, Tokyo, Japan
| | - Hinako Murakami
- Department of Infection Prevention and Control, Toho University Omori Medical Center, Tokyo, Japan
- Department of Clinical Laboratory, Toho University Omori Medical Center, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
- Division of Collaborative Regional Infection Control, Department of Community Well-being, Toho University School of Medicine, Tokyo, Japan
- Department of Infection Prevention and Control, Toho University Omori Medical Center, Tokyo, Japan
- Department of Clinical Laboratory, Toho University Omori Medical Center, Tokyo, Japan
| |
Collapse
|
2
|
Patnaik A, Rai SK, Dhaked RK. Analytical techniques and molecular platforms for detection and surveillance of antimicrobial resistance: advancements of the past decade. 3 Biotech 2025; 15:108. [PMID: 40191453 PMCID: PMC11965067 DOI: 10.1007/s13205-025-04278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/16/2025] [Indexed: 04/09/2025] Open
Abstract
Developing countries have been able to control and minimise the mortality rates caused by pathogenic infections by ensuring affordable access to antibiotics. However, a large number of bacterial ailments are treated with wrong antibiotic prescription due to improper disease diagnosis. Apart from healthcare, antibiotics are also imprudently utilised in crop processing and animal husbandry. This unsupervised usage of antibiotics has propelled the generation of multidrug-resistant species of bacteria. Presently, several traditional antimicrobial susceptibility/resistance tests (AST/ART) are available; however, the accuracy and reproducibility of these tests are often debatable. Rigorous efforts are essential to develop techniques and methods which substantially decrease turnaround time for resistance screening. The present review has comprehensively incorporated the improvements in instrumentation and molecular methods for antimicrobial resistance studies. We have enlisted some innovative takes on conventional techniques such as isothermal calorimetry, Raman spectroscopy, mass spectrometry and microscopy. The contributions of modern molecular tools such as CRISPR-Cas, aptamers and Oxford-MinION sequencers have also been discussed. Persistent evolution has been observed towards adding innovation in diagnostic platforms for drug resistome screening, with the major attraction being the involvement of non-conventional analytical methods and technological improvements in existing setups. This review highlights these updates and provides a detailed account of principal developments in molecular methods for the testing of drug resistance in bacteria.
Collapse
Affiliation(s)
- Abhinandan Patnaik
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474002 MP India
| | - Sharad Kumar Rai
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474002 MP India
| | - Ram Kumar Dhaked
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474002 MP India
| |
Collapse
|
3
|
Cipriani G, Helmersen K, Mazzon RR, Wagner G, Aamot HV, Ferreira FA. Evaluation of whole-genome sequencing protocols for detection of antimicrobial resistance, virulence factors and mobile genetic elements in antimicrobial-resistant bacteria. J Med Microbiol 2025; 74:001990. [PMID: 40105741 PMCID: PMC11923095 DOI: 10.1099/jmm.0.001990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/28/2025] [Indexed: 03/20/2025] Open
Abstract
Introduction. Antimicrobial resistance (AMR) poses a critical threat to global health, underscoring the need for rapid and accurate diagnostic tools. Methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae (ESBL-Kp) are listed among the World Health Organization's priority pathogens.Hypothesis. A rapid nanopore-based protocol can accurately and efficiently detect AMR genes, virulence factors (VFs) and mobile genetic elements (MGEs) in MRSA and ESBL-Kp, offering performance comparable to or superior to traditional sequencing methods.Aim. Evaluate whole-genome sequencing (WGS) protocols for detecting AMR genes, VFs and MGEs in MRSA and ESBL-Kp, to identify the most accurate and efficient tool for pathogen profiling.Methodology. Five distinct WGS protocols, including a rapid nanopore-based protocol (ONT20h) and four slower sequencing methods, were evaluated for their effectiveness in detecting genetic markers. The protocols' performances were compared across AMR genes, VFs and MGEs. Additionally, phenotypic antimicrobial susceptibility testing was performed to assess concordance with the genomic findings.Results. Compared to four slower sequencing protocols, the rapid nanopore-based protocol (ONT20h) demonstrated comparable or superior performance in AMR gene detection and equivalent VF identification. Although MGE detection varied among protocols, ONT20h showed a high level of agreement with phenotypic antimicrobial susceptibility testing.Conclusion. The findings highlight the potential of rapid WGS as a valuable tool for clinical microbiology, enabling timely implementation of infection control measures and informed therapeutic decisions. However, further studies are required to optimize the clinical application of this technology, considering costs, availability of bioinformatics tools and quality of reference databases.
Collapse
Affiliation(s)
- Gabriel Cipriani
- Bacterial Molecular Genetics Laboratory (GeMBac), Department of Microbiology, Immunology, and Parasitology, Biological Sciences Center, Universidade Federal de Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Trindade, Postal Code 88040-960, Florianópolis, SC, Brazil
| | - Karin Helmersen
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital and University of Oslo, Lørenskog, Norway
| | - Ricardo Ruiz Mazzon
- Bacterial Molecular Genetics Laboratory (GeMBac), Department of Microbiology, Immunology, and Parasitology, Biological Sciences Center, Universidade Federal de Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Trindade, Postal Code 88040-960, Florianópolis, SC, Brazil
| | - Glauber Wagner
- Bioinformatics Laboratory, Department of Microbiology, Immunology, and Parasitology, Biological Sciences Center, Campus Universitário Reitor João David Ferreira Lima, Trindade, Postal Code 88040-960, Florianópolis, SC, Brazil
| | - Hege Vangstein Aamot
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
| | - Fabienne Antunes Ferreira
- Bacterial Molecular Genetics Laboratory (GeMBac), Department of Microbiology, Immunology, and Parasitology, Biological Sciences Center, Universidade Federal de Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Trindade, Postal Code 88040-960, Florianópolis, SC, Brazil
| |
Collapse
|
4
|
Liu X, Yu E, Zhao Q, Han H, Li Q. Enzymes as green and sustainable tools for DNA data storage. Chem Commun (Camb) 2025; 61:2891-2905. [PMID: 39834292 DOI: 10.1039/d4cc06351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
DNA is considered as an ideal supramolecular material for information storage with high storage density and long-term stability. Enzymes, as green and sustainable tools, offer several unique advantages for DNA-based information storage. These advantages include low cost and reduced generation of hazardous wastes during DNA synthesis, as well as the improvements in data reading speed and data recovery accuracy. Moreover, enzymes could achieve scalable data steganography. In this review, we introduced the exciting application strategies of enzymatic tools in each step of DNA information storage (writing, storing, retrieval and reading). We further address the challenges and opportunities associated with enzymatic tools for DNA information storage, aiming at developing new techniques to overcome these obstacles.
Collapse
Affiliation(s)
- Xutong Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Enyang Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Qixuan Zhao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
5
|
Bejaoui S, Nielsen SH, Rasmussen A, Coia JE, Andersen DT, Pedersen TB, Møller MV, Kusk Nielsen MT, Frees D, Persson S. Comparison of Illumina and Oxford Nanopore sequencing data quality for Clostridioides difficile genome analysis and their application for epidemiological surveillance. BMC Genomics 2025; 26:92. [PMID: 39885402 PMCID: PMC11783910 DOI: 10.1186/s12864-025-11267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND The burden of Clostridioides difficile as a nosocomial- and community-acquired pathogen has been increasing over the recent decades, including reports of severe outbreaks. Molecular and virulence genotyping are central for the epidemiological surveillance of this pathogen, but need to balance accuracy and rapid turnaround time of the results. While Illumina short-read sequencing has been adopted as the gold standard to investigate C. difficile virulence and transmission routes, little is known about the potential of Nanopore long-read sequencing in this field. The goal of our study was to compare sequencing and assembly quality of 37 C. difficile isolates using Illumina (SPAdes assembled) and Nanopore (Flye and Unicycler assembled) data alone, along with hybrid assemblies obtained with short-read polishing of long reads. RESULTS Illumina sequencing produced reads with an average quality of 99.68% (Q25), while Nanopore sequencing produced reads reaching an average quality of 96.84% (Q15), showing a tenfold difference in quality. Sequence type (ST) designation from Nanopore assemblies failed to detect ST5, ST7, ST8, ST13 and ST49, while ST designation based on unpolished Nanopore reads using Krocus was successful for all STs. Nanopore sequences exhibited an average of 640 base errors per genome (~ 0.015% substitution rate), which was reflected by the incorrect assignment of over 180 alleles in core genome multilocus sequence typing (cgMLST) analysis. As a result, Nanopore-derived phylogenies were not as accurate as the Illumina reference, and therefore inadequate for precise investigation of transmission events. Both sequencing platforms provided comparable, satisfactory results for the detection of virulence genes tcdA, tcdB, cdtAB and in-frame deletions in tcdC. CONCLUSION Compared to Illumina, Nanopore has higher error rate, which limits its application for high-resolution epidemiological surveillance. However, the short analysis time, lower cost and more simple procedure combined with correctly identified STs and virulence genes, makes it an alternative when fast and less detailed analyses are preferred.
Collapse
Affiliation(s)
- Semeh Bejaoui
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg, Denmark
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Astrid Rasmussen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - John Eugenio Coia
- Department of Regional Health Research (Esbjerg), University of Southern Denmark, Odense, Denmark
- ESCMID Study Group for C. difficile infections (ESCGD), Basel, Switzerland
| | - Dorte Terp Andersen
- Department of Clinical Diagnostics, Esbjerg and Grindsted Hospital, University Hospital of Southern, Odense, Denmark
| | - Tobias Bruun Pedersen
- Department of Clinical Diagnostics, Esbjerg and Grindsted Hospital, University Hospital of Southern, Odense, Denmark
| | - Martin Vad Møller
- Department of Clinical Diagnostics, Esbjerg and Grindsted Hospital, University Hospital of Southern, Odense, Denmark
| | - Marc Trunjer Kusk Nielsen
- Department of Clinical Diagnostics, Esbjerg and Grindsted Hospital, University Hospital of Southern, Odense, Denmark
| | - Dorte Frees
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg, Denmark
| | - Søren Persson
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
| |
Collapse
|
6
|
Cardoso EM, Dea Lindner JD, Ferreira FA. Genomic analysis of Salmonella Heidelberg isolated from the Brazilian poultry farms. Braz J Microbiol 2024; 55:4129-4137. [PMID: 39441515 PMCID: PMC11711797 DOI: 10.1007/s42770-024-01544-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024] Open
Abstract
The rapid expansion of broiler chicken production in Brazil has presented significant sanitation challenges within the poultry industry. Among these challenges, Salmonella enterica subsp. enterica serotype Heidelberg stands as a contributor to global salmonellosis outbreaks. This study analyzed 13 draft genomes of Salmonella Heidelberg isolated from the pre-slaughter broiler chickens farms in Brazil. By conducting in silico analysis of these genomes, the study investigated genome similarity based on single nucleotide polymorphisms (SNPs) and identified genes encoding resistance to antimicrobials, sanitizers, and virulence factors. Furthermore, mobile genetic elements (MGE) were identified to assess their potential role in propagating genes through horizontal gene transfer. A risk classification was also applied based on the resistomes. The genomes revealed a high prevalence of genes conferring resistance to aminoglycosides, fosfomycin, sulfonamides, tetracycline, and genes linked to quaternary ammonium resistance. The study also uncovered six Salmonella pathogenicity islands (SPI) and over 100 genes encoding virulence factors. The association of MGE with antibiotic-resistant genes sul2 and blaCMY-2 raised concerns about the potential transfer to other bacteria, posing a substantial risk for spreading resistance mechanisms according to established risk protocols. Additionally, SNP analysis indicated close phylogenetic relationships among some isolates, suggesting a common origin. This study enhances our understanding of Salmonella Heidelberg strains by identifying key risk factors for transmission and revealing the association between resistance genes and MGEs. This insight provides a foundation for developing and implementing effective control, monitoring, and treatment strategies in the poultry industry.
Collapse
Affiliation(s)
- Emanuela Mendes Cardoso
- Bacterial Molecular Genetics Laboratory (GeMBac), Department of Microbiology, Immunology, and Parasitology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), Campus Universitário Reitor João David Ferreira Lima, Trindade, Florianópolis, SC, 88040-960, Brazil
| | - Juliano De Dea Lindner
- Food Technology and Bioprocess Research Group, Department of Food Science and Technology, Agricultural Sciences Center, UFSC, Rodovia Admar Gonzaga, 1346. Itacorubi., Florianópolis, SC, 88034-001, Brazil
| | - Fabienne Antunes Ferreira
- Bacterial Molecular Genetics Laboratory (GeMBac), Department of Microbiology, Immunology, and Parasitology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), Campus Universitário Reitor João David Ferreira Lima, Trindade, Florianópolis, SC, 88040-960, Brazil.
| |
Collapse
|
7
|
Fuchs SA, Hülse L, Tamayo T, Kolbe-Busch S, Pfeffer K, Dilthey AT. NanoCore: core-genome-based bacterial genomic surveillance and outbreak detection in healthcare facilities from Nanopore and Illumina data. mSystems 2024; 9:e0108024. [PMID: 39373471 PMCID: PMC11575142 DOI: 10.1128/msystems.01080-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024] Open
Abstract
Genomic surveillance enables the early detection of pathogen transmission in healthcare facilities and contributes to the reduction of substantial patient harm. Fast turnaround times, flexible multiplexing, and low capital requirements make Nanopore sequencing well suited for genomic surveillance purposes; the analysis of Nanopore data, however, can be challenging. We present NanoCore, a user-friendly method for Nanopore-based genomic surveillance in healthcare facilities, enabling the calculation and visualization of cgMLST-like (core-genome multilocus sequence typing) sample distances directly from unassembled Nanopore reads. NanoCore implements a mapping, variant calling, and multilevel filtering strategy and also supports the analysis of Illumina data. We validated NanoCore on two 24-isolate data sets of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). In the Nanopore-only mode, NanoCore-based pairwise distances between closely related isolates were near-identical to Illumina-based SeqSphere+ distances, a gold standard commercial method (average differences of 0.75 and 0.81 alleles for MRSA and VRE; sd = 0.98 and 1.00), and gave an identical clustering into closely related and non-closely related isolates. In the "hybrid" mode, in which only Nanopore data are used for some isolates and only Illumina data for others, increased average pairwise isolate distance differences were observed (average differences of 3.44 and 1.95 for MRSA and VRE, respectively; sd = 2.76 and 1.34), while clustering results remained identical. NanoCore is computationally efficient (<15 hours of wall time for the analysis of a 24-isolate data set on a workstation), available as free software, and supports installation via conda. In conclusion, NanoCore enables the effective use of the Nanopore technology for bacterial pathogen surveillance in healthcare facilities. IMPORTANCE Genomic surveillance involves sequencing the genomes and measuring the relatedness of bacteria from different patients or locations in the same healthcare facility, enabling an improved understanding of pathogen transmission pathways and the detection of "silent" outbreaks that would otherwise go undetected. It has become an indispensable tool for the detection and prevention of healthcare-associated infections and is routinely applied by many healthcare institutions. The earlier an outbreak or transmission chain is detected, the better; in this context, the Oxford Nanopore sequencing technology has important potential advantages over traditionally used short-read sequencing technologies, because it supports "real-time" data generation and the cost-effective "on demand" sequencing of small numbers of bacterial isolates. The analysis of Nanopore sequencing data, however, can be challenging. We present NanoCore, a user-friendly software for genomic surveillance that works directly based on Nanopore sequencing reads in FASTQ format, and demonstrate that its accuracy is equivalent to traditional gold standard short read-based analyses.
Collapse
Affiliation(s)
- Sebastian A Fuchs
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany
| | - Lisanna Hülse
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany
| | - Teresa Tamayo
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany
| | - Susanne Kolbe-Busch
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander T Dilthey
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
8
|
Monecke S, Boswihi S, Braun SD, Diezel C, Müller E, Reinicke M, Udo E, Ehricht R. Sequencing a CC239-MRSA-III with a novel composite SCC mec element from Kuwait. Eur J Clin Microbiol Infect Dis 2024; 43:1761-1775. [PMID: 38990431 DOI: 10.1007/s10096-024-04891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Staphylococcus aureus CC239-MRSA-III is an ancient pandemic strain of hospital-associated, methicillin-resistant S. aureus that spread globally for decades and that still can be found in some parts of the world. In Kuwait, microarray-based surveillance identified from 2019 to 2022 a series of isolates of a hitherto unknown variant of this strain that carried a second set of recombinase genes, ccrA/B-2. To elucidate the structure of its SCCmec element, two isolates were subjected to nanopore sequencing. This revealed, in addition to ccrA/B-2, several SCC-associated genes including speG (spermidine N acetyltransferase) and a gene encoding a large "E-domain containing protein" (dubbed as edcP-SCC). This gene contained three regions consisting of multiple repeating units. In terms of sequence and structure it was similar but not identical to the biofilm-related aap gene from S. epidermidis. A review of published sequences identified edcP-SCC in eighteen genome sequences of S. aureus, S. epidermidis and S. capitis, and frequently it appears in a similar cluster of genes as in the strains sequenced herein. Isolates also carried a prophage with the adhesion factor sasX/sesI and aminoglycoside resistance genes. This is consistent with an affiliation to the "South-East Asian" Clade of CC239. The emergence of edcP-SCC and sasX-positive CC239 strain shows that, against a global trend towards community-associated MRSA, the ancient pandemic CC239 hospital strain still continues to evolve and to cause outbreaks.
Collapse
Affiliation(s)
- Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany.
- InfectoGnostics Research Campus, Jena, Germany.
| | - Samar Boswihi
- Faculty of Medicine, Department of Microbiology, Kuwait University, Kuwait City, Kuwait
| | - Sascha D Braun
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Martin Reinicke
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Edet Udo
- Faculty of Medicine, Department of Microbiology, Kuwait University, Kuwait City, Kuwait
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, Jena, Germany
| |
Collapse
|
9
|
Deng QM, Zhang J, Zhang YY, Jia M, Ding DS, Fang YQ, Wang HZ, Gu HC. Diagnosis and treatment of refractory infectious diseases using nanopore sequencing technology: Three case reports. World J Clin Cases 2024; 12:5208-5216. [DOI: 10.12998/wjcc.v12.i22.5208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Infectious diseases are still one of the greatest threats to human health, and the etiology of 20% of cases of clinical fever is unknown; therefore, rapid identification of pathogens is highly important. Traditional culture methods are only able to detect a limited number of pathogens and are time-consuming; serologic detection has window periods, false-positive and false-negative problems; and nucleic acid molecular detection methods can detect several known pathogens only once. Three-generation nanopore sequencing technology provides new options for identifying pathogens.
CASE SUMMARY Case 1: The patient was admitted to the hospital with abdominal pain for three days and cessation of defecation for five days, accompanied by cough and sputum. Nanopore sequencing of the drainage fluid revealed the presence of oral-like bacteria, leading to a clinical diagnosis of bronchopleural fistula. Cefoperazone sodium sulbactam treatment was effective. Case 2: The patient was admitted to the hospital with fever and headache, and CT revealed lung inflammation. Antibiotic treatment for Streptococcus pneumoniae, identified through nanopore sequencing of cerebrospinal fluid, was effective. Case 3: The patient was admitted to our hospital with intermittent fever and an enlarged neck mass that had persisted for more than six months. Despite antibacterial treatment, her symptoms worsened. The nanopore sequencing results indicate that voriconazole treatment is effective for Aspergillus brookii. The patient was diagnosed with mixed cell type classical Hodgkin's lymphoma with infection.
CONCLUSION Three-generation nanopore sequencing technology allows for rapid and accurate detection of pathogens in human infectious diseases.
Collapse
Affiliation(s)
- Qing-Mei Deng
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230031, Anhui Province, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei 230031, Anhui Province, China
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui Province, China
| | - Jian Zhang
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui Province, China
| | - Yi-Yong Zhang
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui Province, China
| | - Min Jia
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei 230031, Anhui Province, China
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui Province, China
| | - Du-Shan Ding
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui Province, China
| | - Yu-Qin Fang
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui Province, China
| | - Hong-Zhi Wang
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230031, Anhui Province, China
| | - Hong-Cang Gu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei 230031, Anhui Province, China
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui Province, China
| |
Collapse
|
10
|
Bogaerts B, Van den Bossche A, Verhaegen B, Delbrassinne L, Mattheus W, Nouws S, Godfroid M, Hoffman S, Roosens NHC, De Keersmaecker SCJ, Vanneste K. Closing the gap: Oxford Nanopore Technologies R10 sequencing allows comparable results to Illumina sequencing for SNP-based outbreak investigation of bacterial pathogens. J Clin Microbiol 2024; 62:e0157623. [PMID: 38441926 PMCID: PMC11077942 DOI: 10.1128/jcm.01576-23] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Whole-genome sequencing has become the method of choice for bacterial outbreak investigation, with most clinical and public health laboratories currently routinely using short-read Illumina sequencing. Recently, long-read Oxford Nanopore Technologies (ONT) sequencing has gained prominence and may offer advantages over short-read sequencing, particularly with the recent introduction of the R10 chemistry, which promises much lower error rates than the R9 chemistry. However, limited information is available on its performance for bacterial single-nucleotide polymorphism (SNP)-based outbreak investigation. We present an open-source workflow, Prokaryotic Awesome variant Calling Utility (PACU) (https://github.com/BioinformaticsPlatformWIV-ISP/PACU), for constructing SNP phylogenies using Illumina and/or ONT R9/R10 sequencing data. The workflow was evaluated using outbreak data sets of Shiga toxin-producing Escherichia coli and Listeria monocytogenes by comparing ONT R9 and R10 with Illumina data. The performance of each sequencing technology was evaluated not only separately but also by integrating samples sequenced by different technologies/chemistries into the same phylogenomic analysis. Additionally, the minimum sequencing time required to obtain accurate phylogenetic results using nanopore sequencing was evaluated. PACU allowed accurate identification of outbreak clusters for both species using all technologies/chemistries, but ONT R9 results deviated slightly more from the Illumina results. ONT R10 results showed trends very similar to Illumina, and we found that integrating data sets sequenced by either Illumina or ONT R10 for different isolates into the same analysis produced stable and highly accurate phylogenomic results. The resulting phylogenies for these two outbreaks stabilized after ~20 hours of sequencing for ONT R9 and ~8 hours for ONT R10. This study provides a proof of concept for using ONT R10, either in isolation or in combination with Illumina, for rapid and accurate bacterial SNP-based outbreak investigation.
Collapse
Affiliation(s)
- Bert Bogaerts
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | | | | | | | - Stéphanie Nouws
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Maxime Godfroid
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Stefan Hoffman
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | | | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| |
Collapse
|
11
|
Phillips LT, Witney AA, Furegato M, Laing KG, Zhou L, Sadiq ST. Time Required for Nanopore Whole-Genome Sequencing of Neisseria gonorrhoeae for Identification of Phylogenetic Relationships. J Infect Dis 2023; 228:1179-1188. [PMID: 37216766 PMCID: PMC10629711 DOI: 10.1093/infdis/jiad170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/20/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a global health challenge. Limitations to AMR surveillance reporting, alongside reduction in culture-based susceptibility testing, has resulted in a need for rapid diagnostics and strain detection. We investigated Nanopore sequencing time, and depth, to accurately identify closely related N. gonorrhoeae isolates, compared to Illumina sequencing. METHODS N. gonorrhoeae strains collected from a London sexual health clinic were cultured and sequenced with MiSeq and MinION sequencing platforms. Accuracy was determined by comparing variant calls at 68 nucleotide positions (37 resistance-associated markers). Accuracy at varying MinION sequencing depths was determined through retrospective time-stamped read analysis. RESULTS Of 22 MinION-MiSeq pairs reaching sufficient sequencing depth, agreement of variant call positions passing quality control criteria was 185/185 (100%; 95% confidence interval [CI], 98.0%-100.0%), 502/503 (99.8%; 95% CI, 98.9%-99.9%), and 564/565 (99.8%; 95% CI, 99.0%-100.0%) at 10x, 30x, and 40x MinION depth, respectively. Isolates identified as closely related by MiSeq, within one yearly evolutionary distance of ≤5 single nucleotide polymorphisms, were accurately identified via MinION. CONCLUSIONS Nanopore sequencing shows utility as a rapid surveillance tool, identifying closely related N. gonorrhoeae strains, with just 10x sequencing depth, taking a median time of 29 minutes. This highlights its potential for tracking local transmission and AMR markers.
Collapse
Affiliation(s)
- Laura T Phillips
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Adam A Witney
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Martina Furegato
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Ken G Laing
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Liqing Zhou
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - S Tariq Sadiq
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
- Infection Clinical Academic Group, St George's University Hospitals NHS Trust, London, United Kingdom
| |
Collapse
|
12
|
Ring N, Low AS, Wee B, Paterson GK, Nuttall T, Gally D, Mellanby R, Fitzgerald JR. Rapid metagenomic sequencing for diagnosis and antimicrobial sensitivity prediction of canine bacterial infections. Microb Genom 2023; 9:mgen001066. [PMID: 37471128 PMCID: PMC10438823 DOI: 10.1099/mgen.0.001066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/18/2023] [Indexed: 07/21/2023] Open
Abstract
Antimicrobial resistance is a major threat to human and animal health. There is an urgent need to ensure that antimicrobials are used appropriately to limit the emergence and impact of resistance. In the human and veterinary healthcare setting, traditional culture and antimicrobial sensitivity testing typically requires 48-72 h to identify appropriate antibiotics for treatment. In the meantime, broad-spectrum antimicrobials are often used, which may be ineffective or impact non-target commensal bacteria. Here, we present a rapid, culture-free, diagnostics pipeline, involving metagenomic nanopore sequencing directly from clinical urine and skin samples of dogs. We have planned this pipeline to be versatile and easily implementable in a clinical setting, with the potential for future adaptation to different sample types and animals. Using our approach, we can identify the bacterial pathogen present within 5 h, in some cases detecting species which are difficult to culture. For urine samples, we can predict antibiotic sensitivity with up to 95 % accuracy. Skin swabs usually have lower bacterial abundance and higher host DNA, confounding antibiotic sensitivity prediction; an additional host depletion step will likely be required during the processing of these, and other types of samples with high levels of host cell contamination. In summary, our pipeline represents an important step towards the design of individually tailored veterinary treatment plans on the same day as presentation, facilitating the effective use of antibiotics and promoting better antimicrobial stewardship.
Collapse
Affiliation(s)
- Natalie Ring
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Alison S. Low
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Bryan Wee
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Gavin K. Paterson
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Tim Nuttall
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - David Gally
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Richard Mellanby
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
13
|
Chen Y, Mao L, Lai D, Xu W, Zhang Y, Wu S, Yang D, Zhao S, Liu Z, Xiao Y, Tang Y, Meng X, Wang M, Shi J, Chen Q, Shu Q. Improved targeting of the 16S rDNA nanopore sequencing method enables rapid pathogen identification in bacterial pneumonia in children. Front Cell Infect Microbiol 2023; 12:1001607. [PMID: 36699719 PMCID: PMC9868273 DOI: 10.3389/fcimb.2022.1001607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Objectives To develop a rapid and low-cost method for 16S rDNA nanopore sequencing. Methods This was a prospective study on a 16S rDNA nanopore sequencing method. We developed this nanopore barcoding 16S sequencing method by adding barcodes to the 16S primer to reduce the reagent cost and simplify the experimental procedure. Twenty-one common pulmonary bacteria (7 reference strains, 14 clinical isolates) and 94 samples of bronchoalveolar lavage fluid from children with severe pneumonia were tested. Results indicating low-abundance pathogenic bacteria were verified with the polymerase chain reaction (PCR). Further, the results were compared with those of culture or PCR. Results The turnaround time was shortened to 6~8 hours and the reagent cost of DNA preparation was reduced by employing a single reaction adding barcodes to the 16S primer in advance. The accuracy rate for the 21 common pulmonary pathogens with an abundance ≥ 99% was 100%. Applying the culture or PCR results as the gold standard, 71 (75.5%) of the 94 patients were positive, including 25 positive cultures (26.6%) and 52 positive quantitative PCRs (55.3%). The median abundance in the positive culture and qPCR samples were 29.9% and 6.7%, respectively. With an abundance threshold increase of 1%, 5%, 10%, 15% and 20%, the test sensitivity decreased gradually to 98.6%, 84.9%, 72.6%, 67.1% and 64.4%, respectively, and the test specificity increased gradually to 33.3%, 71.4%, 81.0%, 90.5% and 100.0%, respectively. Conclusions The nanopore barcoding 16S sequencing method can rapidly identify the pathogens causing bacterial pneumonia in children.
Collapse
Affiliation(s)
- Yinghu Chen
- The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Clinical Research Center for Child Health, Hangzhou, China,Joint Research Center for Molecular Diagnosis of Severe Infection in Children, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Lingfeng Mao
- Joint Research Center for Molecular Diagnosis of Severe Infection in Children, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Dengming Lai
- The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Clinical Research Center for Child Health, Hangzhou, China,Joint Research Center for Molecular Diagnosis of Severe Infection in Children, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Weize Xu
- The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Clinical Research Center for Child Health, Hangzhou, China,Joint Research Center for Molecular Diagnosis of Severe Infection in Children, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Yuebai Zhang
- The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Clinical Research Center for Child Health, Hangzhou, China
| | - Sihao Wu
- Joint Research Center for Molecular Diagnosis of Severe Infection in Children, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Di Yang
- Joint Research Center for Molecular Diagnosis of Severe Infection in Children, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Shaobo Zhao
- The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhicong Liu
- The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Clinical Research Center for Child Health, Hangzhou, China
| | - Yi Xiao
- The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Clinical Research Center for Child Health, Hangzhou, China
| | - Yi Tang
- Joint Research Center for Molecular Diagnosis of Severe Infection in Children, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Xiaofang Meng
- Joint Research Center for Molecular Diagnosis of Severe Infection in Children, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Min Wang
- Joint Research Center for Molecular Diagnosis of Severe Infection in Children, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Jueliang Shi
- Joint Research Center for Molecular Diagnosis of Severe Infection in Children, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Qixing Chen
- The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Clinical Research Center for Child Health, Hangzhou, China,Joint Research Center for Molecular Diagnosis of Severe Infection in Children, Binjiang Institute of Zhejiang University, Hangzhou, China,*Correspondence: Qixing Chen, ; Qiang Shu,
| | - Qiang Shu
- The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Clinical Research Center for Child Health, Hangzhou, China,Joint Research Center for Molecular Diagnosis of Severe Infection in Children, Binjiang Institute of Zhejiang University, Hangzhou, China,*Correspondence: Qixing Chen, ; Qiang Shu,
| |
Collapse
|
14
|
Long-Read Whole Genome Sequencing Elucidates the Mechanisms of Amikacin Resistance in Multidrug-Resistant Klebsiella pneumoniae Isolates Obtained from COVID-19 Patients. Antibiotics (Basel) 2022; 11:antibiotics11101364. [PMID: 36290022 PMCID: PMC9598329 DOI: 10.3390/antibiotics11101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative, encapsulated, non-motile bacterium, which represents a global challenge to public health as one of the major causes of healthcare-associated infections worldwide. In the recent decade, the World Health Organization (WHO) noticed a critically increasing rate of carbapenem-resistant K. pneumoniae occurrence in hospitals. The situation with extended-spectrum beta-lactamase (ESBL) producing bacteria further worsened during the COVID-19 pandemic, due to an increasing number of patients in intensive care units (ICU) and extensive, while often inappropriate, use of antibiotics including carbapenems. In order to elucidate the ways and mechanisms of antibiotic resistance spreading within the K. pneumoniae population, whole genome sequencing (WGS) seems to be a promising approach, and long-read sequencing is especially useful for the investigation of mobile genetic elements carrying antibiotic resistance genes, such as plasmids. We have performed short- and long read sequencing of three carbapenem-resistant K. pneumoniae isolates obtained from COVID-19 patients in a dedicated ICU of a multipurpose medical center, which belonged to the same clone according to cgMLST analysis, in order to understand the differences in their resistance profiles. We have revealed the presence of a small plasmid carrying aph(3′)-VIa gene providing resistance to amikacin in one of these isolates, which corresponded perfectly to its phenotypic resistance profile. We believe that the results obtained will facilitate further elucidating of antibiotic resistance mechanisms for this important pathogen, and highlight the need for continuous genomic epidemiology surveillance of clinical K. pneumoniae isolates.
Collapse
|
15
|
Deng Q, Cao Y, Wan X, Wang B, Sun A, Wang H, Wang Y, Wang H, Gu H. Nanopore-based metagenomic sequencing for the rapid and precise detection of pathogens among immunocompromised cancer patients with suspected infections. Front Cell Infect Microbiol 2022; 12:943859. [PMID: 36204638 PMCID: PMC9530710 DOI: 10.3389/fcimb.2022.943859] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer patients are at high risk of infections and infection-related mortality; thereby, prompt diagnosis and precise anti-infectives treatment are critical. This study aimed to evaluate the performance of nanopore amplicon sequencing in identifying microbial agents among immunocompromised cancer patients with suspected infections. This prospective study enlisted 56 immunocompromised cancer patients with suspected infections. Their body fluid samples such as sputum and blood were collected, and potential microbial agents were detected in parallel by nanopore amplicon sequencing and the conventional culture method. Among the 56 body fluid samples, 47 (83.9%) samples were identified to have at least one pathogen by nanopore amplicon sequencing, but only 25 (44.6%) samples exhibited a positive finding by culture. Among 31 culture-negative samples, nanopore amplicon sequencing successfully detected pathogens in 22 samples (71.0%). Nanopore amplicon sequencing showed a higher sensitivity in pathogen detection than that of the conventional culture method (83.9% vs. 44.6%, P<0.001), and this advantage both existed in blood samples (38.5% vs. 0%, P=0.039) and non-blood samples (97.7% vs. 58.1%, P<0.001). Compared with the culture method, nanopore amplicon sequencing illustrated more samples with bacterial infections (P<0.001), infections from fastidious pathogens (P=0.006), and co-infections (P<0.001). The mean turnaround time for nanopore amplicon sequencing was about 17.5 hours, which was shorter than that of the conventional culture assay. This study suggested nanopore amplicon sequencing as a rapid and precise method for detecting pathogens among immunocompromised cancer patients with suspected infections. The novel and high-sensitive method will improve the outcomes of immunocompromised cancer patients by facilitating the prompt diagnosis of infections and precise anti-infectives treatment.
Collapse
Affiliation(s)
- Qingmei Deng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Yongqing Cao
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Xiaofeng Wan
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Bin Wang
- Zhejiang ShengTing Biotechnology Company, Hangzhou, China
| | - Aimin Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Huanzhong Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Yunfei Wang
- Zhejiang ShengTing Biotechnology Company, Hangzhou, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
- *Correspondence: Hongzhi Wang, ; Hongcang Gu,
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
- *Correspondence: Hongzhi Wang, ; Hongcang Gu,
| |
Collapse
|
16
|
Azarian T, Sherry NL, Baker K, Holt KE, Okeke IN. Making microbial genomics work for clinical and public health microbiology. Microb Genom 2022; 8:mgen000900. [PMID: 36112024 PMCID: PMC9676031 DOI: 10.1099/mgen.0.000900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 01/05/2025] Open
Affiliation(s)
- Taj Azarian
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Norelle L. Sherry
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kate Baker
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kathryn E. Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
17
|
Nanopore Sequencing for De Novo Bacterial Genome Assembly and Search for Single-Nucleotide Polymorphism. Int J Mol Sci 2022; 23:ijms23158569. [PMID: 35955702 PMCID: PMC9369328 DOI: 10.3390/ijms23158569] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Nanopore sequencing (ONT) is a new and rapidly developing method for determining nucleotide sequences in DNA and RNA. It serves the ability to obtain long reads of thousands of nucleotides without assembly and amplification during sequencing compared to next-generation sequencing. Nanopore sequencing can help for determination of genetic changes leading to antibiotics resistance. This study presents the application of ONT technology in the assembly of an E. coli genome characterized by a deletion of the tolC gene and known single-nucleotide variations leading to antibiotic resistance, in the absence of a reference genome. We performed benchmark studies to determine minimum coverage depth to obtain a complete genome, depending on the quality of the ONT data. A comparison of existing programs was carried out. It was shown that the Flye program demonstrates plausible assembly results relative to others (Shasta, Canu, and Necat). The required coverage depth for successful assembly strongly depends on the size of reads. When using high-quality samples with an average read length of 8 Kbp or more, the coverage depth of 30× is sufficient to assemble the complete genome de novo and reliably determine single-nucleotide variations in it. For samples with shorter reads with mean lengths of 2 Kbp, a higher coverage depth of 50× is required. Avoiding of mechanical mixing is obligatory for samples preparation. Nanopore sequencing can be used alone to determine antibiotics-resistant genetic features of bacterial strains.
Collapse
|
18
|
Fotouhi B, Faramarzi V, Ahmadi V. DNA sequencing by Förster resonant energy transfer. OPTICS EXPRESS 2022; 30:21854-21865. [PMID: 36224897 DOI: 10.1364/oe.454459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/19/2022] [Indexed: 06/16/2023]
Abstract
We propose a new DNA sequencing concept based on nonradiative Förster resonant energy transfer (FRET) from a donor quantum dot (QD) to an acceptor molecule. The FRET mechanism combined with the nanopore-based DNA translocation is suggested as a novel concept for sequencing DNA molecules. A recently-developed hybrid quantum/classical method is employed, which uses time-dependent density functional theory and quasistatic finite difference time domain calculations. Due to the significant absorbance of DNA bases for photon energies higher than 4 eV, biocompatibility, and stability, we use Zinc-Oxide (ZnO) QD as a donor in the FRET mechanism. The most sensitivity for the proposed method to DNA is achieved for the Hoechst fluorescent-dye acceptor and 1 nm ZnO-QD. Results show that the insertion of each type of DNA nucleobases between the donor and acceptor changes the frequency of the emitted light from the acceptor molecule between 0.25 to 1.6 eV. The noise analysis shows that the method can determine any unknown DNA nucleobases if the signal-to-noise ratio is larger than 5 dB. The proposed concept and excellent results shed light on a new promising class of DNA sequencers.
Collapse
|
19
|
Liao YC, Wu HC, Liou CH, Lauderdale TLY, Huang IW, Lai JF, Chen FJ. Rapid and Routine Molecular Typing Using Multiplex Polymerase Chain Reaction and MinION Sequencer. Front Microbiol 2022; 13:875347. [PMID: 35422786 PMCID: PMC9002326 DOI: 10.3389/fmicb.2022.875347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022] Open
Abstract
Molecular typing is an essential tool that has been extensively applied in laboratories as well as in clinical settings. Next-generation sequencing technologies promise high-throughput and cost-effective molecular applications; however, the accessibility of these technologies is limited due to the high capital cost. Oxford Nanopore Technologies (ONT) offers a MinION device with the advantages of real-time data analysis, rapid library preparation, and low cost per test. However, the advantages of the MinION device are often overshadowed by its lower raw accuracy. Herein, we present a concise multilocus sequence typing protocol of Staphylococcus aureus using multiplex polymerase chain reaction and Rapid Barcoding Kit for barcoding and MinION device for sequencing. Moreover, to clarify the effects of carryover DNA on tasks that require high sequence accuracy, we used the MinION flow cell in successive runs of washing and reusing. Our results revealed that the MinION flow cell could achieve accurate typing of a total of 467 samples with 3,269 kilobase-long genes within a total of 5 runs. This thus demonstrates the effectiveness of a portable nanopore MinION sequencer in providing accurate, rapid, and routine molecular typing.
Collapse
Affiliation(s)
- Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Han-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Ci-Hong Liou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Tsai-Ling Yang Lauderdale
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - I-Wen Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Jui-Fen Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Feng-Jui Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
20
|
Yonkus JA, Whittle E, Alva-Ruiz R, Abdelrahman AM, Horsman SE, Suh GA, Cunningham SA, Nelson H, Grotz TE, Smoot RL, Cleary SP, Nagorney DM, Kendrick ML, Patel R, Truty MJ, Chia N. "Answers in hours": A prospective clinical study using nanopore sequencing for bile duct cultures. Surgery 2022; 171:693-702. [PMID: 34973809 DOI: 10.1016/j.surg.2021.09.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Surgical site infection is a major source of morbidity in patients undergoing pancreatic head resection and is often from organisms in intraoperative bile duct cultures. As such, many institutions use prolonged prophylactic antibiotics and tailor based on bile duct cultures. However, standard cultures take days, leaving many patients unnecessarily on prolonged antibiotics. Nanopore sequencing can provide data in hours and, thus, has the potential to improve antibiotic stewardship. The present study investigates the feasibility of nanopore sequencing in intraoperative bile samples. METHODS Patients undergoing pancreatic head resection were included. Intra-operative bile microbial profiles were determined with standard cultures and nanopore sequencing. Antibiotic recommendations were generated, and time-to-results determined for both methods. Organism yields, resistance patterns, antibiotic recommendations, and costs were compared. RESULTS Out of 42 patients, 22 (52%) had samples resulting in positive standard cultures. All positive standard cultures had microbes detected using nanopore sequencing. All 20 patients with negative standard cultures had negative nanopore sequencing. Nanopore sequencing detected more bacterial species compared to standard cultures (10.5 vs 4.4, p < 0.05) and more resistance genotypes (10.3 vs 2.7, p < 0.05). Antimicrobial recommendations based on nanopore sequencing provided coverage for standard cultures in 27 out of 44 (61%) samples, with broader coverage recommended by nanopore sequencing in 13 out of 27 (48%) of these samples. Nanopore sequencing results were faster (8 vs 98 hours) than standard cultures but had higher associated costs ($165 vs $38.49). CONCLUSION Rapid microbial profiling with nanopore sequencing is feasible with broader organism and resistance profiling compared to standard cultures. Nanopore sequencing has perfect negative predictive value and can potentially improve antibiotic stewardship; thus, a randomized control trial is under development.
Collapse
Affiliation(s)
- Jennifer A Yonkus
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Emma Whittle
- Division of Surgical Research, Department of Surgery; Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Roberto Alva-Ruiz
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Amro M Abdelrahman
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Susan E Horsman
- Department of Pharmacy, College of Medicine, Mayo Clinic, Rochester, MN
| | - Gina A Suh
- Division of Infectious Disease, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Scott A Cunningham
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Heidi Nelson
- Division of Research and Optimal Patient Care, Cancer Programs, American College of Surgeons, Rochester, MN
| | - Travis E Grotz
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Rory L Smoot
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Sean P Cleary
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - David M Nagorney
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Michael L Kendrick
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Robin Patel
- Division of Infectious Disease, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Mark J Truty
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Nicholas Chia
- Division of Surgical Research, Department of Surgery; Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
21
|
Whittle E, Yonkus JA, Jeraldo P, Alva-Ruiz R, Nelson H, Kendrick ML, Grys TE, Patel R, Truty MJ, Chia N. Optimizing Nanopore Sequencing for Rapid Detection of Microbial Species and Antimicrobial Resistance in Patients at Risk of Surgical Site Infections. mSphere 2022; 7:e0096421. [PMID: 35171692 PMCID: PMC8849348 DOI: 10.1128/msphere.00964-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Surgical site infections (SSI) are a significant burden to patients and health care systems. We evaluated the use of Nanopore sequencing (NS) to rapidly detect microbial species and antimicrobial resistance (AMR) genes present in intraoperative bile aspirates. Bile aspirates from 42 patients undergoing pancreatic head resection were included. Three methods of DNA extraction using mechanical cell lysis or protease cell lysis were compared to determine the optimum method of DNA extraction. The impact of host DNA depletion, sequence run duration, and use of different AMR gene databases was also assessed. To determine clinical value, NS results were compared to standard culture (SC) results. NS identified microbial species in all culture positive samples. Mechanical lysis improved NS detection of cultured species from 60% to 76%, enabled detection of fungal species, and increased AMR predictions. Host DNA depletion improved detection of streptococcal species and AMR correlation with SC. Selection of AMR database influenced the number of AMR hits and resistance profile of 13 antibiotics. AMR prediction using CARD and ResFinder 4.1 correctly predicted 79% and 81% of the bile antibiogram, respectively. Sequence run duration positively correlated with detection of AMR genes. A minimum of 6 h was required to characterize the biliary microbes, resulting in a turnaround time of 14 h. Rapid identification of microbial species and AMR genes can be achieved by NS. NS results correlated with SC, suggesting that NS may be useful in guiding early antimicrobial therapy postsurgery. IMPORTANCE Surgical site infections (SSI) are a significant burden to patients and health care systems. They increase mortality rates, length of hospital stays, and associated health care costs. To reduce the risk of SSI, surgical patients are administered broad-spectrum antibiotics that are later adapted to target microbial species detected at the site of surgical incision. Use of broad-spectrum antibiotics can be harmful to the patient. We wanted to develop a rapid method of detecting microbial species and their antimicrobial resistance phenotypes. We developed a method of detecting microbial species and predicting resistance phenotypes using Nanopore sequencing. Results generated using Nanopore sequencing were similar to current methods of detection but were obtained in a significantly shorter amount of time. This suggests that Nanopore sequencing could be used to tailor antibiotics in surgical patients and reduce use of broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Emma Whittle
- Division of Surgical Research, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Jennifer A. Yonkus
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Patricio Jeraldo
- Division of Surgical Research, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Roberto Alva-Ruiz
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Heidi Nelson
- Division of Research and Optimal Patient Care, Cancer Programs, American College of Surgeonsgrid.417954.a, Chicago, Illinois, USA
| | - Michael L. Kendrick
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Thomas E. Grys
- Department of Laboratory Medicine and Pathology, Mayo Clinicgrid.66875.3a, Phoenix, Arizona, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Mark J. Truty
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Nicholas Chia
- Division of Surgical Research, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| |
Collapse
|
22
|
Charalampous T, Alcolea-Medina A, Snell LB, Williams TGS, Batra R, Alder C, Telatin A, Camporota L, Meadows CIS, Wyncoll D, Barrett NA, Hemsley CJ, Bryan L, Newsholme W, Boyd SE, Green A, Mahadeva U, Patel A, Cliff PR, Page AJ, O'Grady J, Edgeworth JD. Evaluating the potential for respiratory metagenomics to improve treatment of secondary infection and detection of nosocomial transmission on expanded COVID-19 intensive care units. Genome Med 2021; 13:182. [PMID: 34784976 PMCID: PMC8594956 DOI: 10.1186/s13073-021-00991-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Clinical metagenomics (CMg) has the potential to be translated from a research tool into routine service to improve antimicrobial treatment and infection control decisions. The SARS-CoV-2 pandemic provides added impetus to realise these benefits, given the increased risk of secondary infection and nosocomial transmission of multi-drug-resistant (MDR) pathogens linked with the expansion of critical care capacity. METHODS CMg using nanopore sequencing was evaluated in a proof-of-concept study on 43 respiratory samples from 34 intubated patients across seven intensive care units (ICUs) over a 9-week period during the first COVID-19 pandemic wave. RESULTS An 8-h CMg workflow was 92% sensitive (95% CI, 75-99%) and 82% specific (95% CI, 57-96%) for bacterial identification based on culture-positive and culture-negative samples, respectively. CMg sequencing reported the presence or absence of β-lactam-resistant genes carried by Enterobacterales that would modify the initial guideline-recommended antibiotics in every case. CMg was also 100% concordant with quantitative PCR for detecting Aspergillus fumigatus from 4 positive and 39 negative samples. Molecular typing using 24-h sequencing data identified an MDR-K. pneumoniae ST307 outbreak involving 4 patients and an MDR-C. striatum outbreak involving 14 patients across three ICUs. CONCLUSION CMg testing provides accurate pathogen detection and antibiotic resistance prediction in a same-day laboratory workflow, with assembled genomes available the next day for genomic surveillance. The provision of this technology in a service setting could fundamentally change the multi-disciplinary team approach to managing ICU infections. The potential to improve the initial targeted treatment and rapidly detect unsuspected outbreaks of MDR-pathogens justifies further expedited clinical assessment of CMg.
Collapse
Affiliation(s)
- Themoula Charalampous
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences, Kings College London, London, UK
| | - Adela Alcolea-Medina
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences, Kings College London, London, UK
- Infection Sciences, Viapath, St Thomas' Hospital, London, UK
| | - Luke B Snell
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences, Kings College London, London, UK
- Department of Infectious Diseases, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Tom G S Williams
- Department of Infectious Diseases, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Rahul Batra
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences, Kings College London, London, UK
- Department of Infectious Diseases, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Christopher Alder
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences, Kings College London, London, UK
- Department of Infectious Diseases, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Andrea Telatin
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Luigi Camporota
- Critical Care Directorate, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | | | - Duncan Wyncoll
- Critical Care Directorate, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Nicholas A Barrett
- Critical Care Directorate, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Carolyn J Hemsley
- Department of Infectious Diseases, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Lisa Bryan
- Infection Sciences, Viapath, St Thomas' Hospital, London, UK
| | - William Newsholme
- Department of Infectious Diseases, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Sara E Boyd
- Department of Infectious Diseases, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Anna Green
- Department of Cellular Pathology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ula Mahadeva
- Department of Cellular Pathology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Amita Patel
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences, Kings College London, London, UK
- Department of Infectious Diseases, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | | | - Andrew J Page
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Justin O'Grady
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| | - Jonathan D Edgeworth
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences, Kings College London, London, UK.
- Infection Sciences, Viapath, St Thomas' Hospital, London, UK.
- Department of Infectious Diseases, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
23
|
Bogaerts B, Winand R, Van Braekel J, Hoffman S, Roosens NHC, De Keersmaecker SCJ, Marchal K, Vanneste K. Evaluation of WGS performance for bacterial pathogen characterization with the Illumina technology optimized for time-critical situations. Microb Genom 2021; 7:000699. [PMID: 34739368 PMCID: PMC8743554 DOI: 10.1099/mgen.0.000699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
Whole genome sequencing (WGS) has become the reference standard for bacterial outbreak investigation and pathogen typing, providing a resolution unattainable with conventional molecular methods. Data generated with Illumina sequencers can however only be analysed after the sequencing run has finished, thereby losing valuable time during emergency situations. We evaluated both the effect of decreasing overall run time, and also a protocol to transfer and convert intermediary files generated by Illumina sequencers enabling real-time data analysis for multiple samples part of the same ongoing sequencing run, as soon as the forward reads have been sequenced. To facilitate implementation for laboratories operating under strict quality systems, extensive validation of several bioinformatics assays (16S rRNA species confirmation, gene detection against virulence factor and antimicrobial resistance databases, SNP-based antimicrobial resistance detection, serotype determination, and core genome multilocus sequence typing) for three bacterial pathogens (Mycobacterium tuberculosis , Neisseria meningitidis , and Shiga-toxin producing Escherichia coli ) was performed by evaluating performance in function of the two most critical sequencing parameters, i.e. read length and coverage. For the majority of evaluated bioinformatics assays, actionable results could be obtained between 14 and 22 h of sequencing, decreasing the overall sequencing-to-results time by more than half. This study aids in reducing the turn-around time of WGS analysis by facilitating a faster response in time-critical scenarios and provides recommendations for time-optimized WGS with respect to required read length and coverage to achieve a minimum level of performance for the considered bioinformatics assay(s), which can also be used to maximize the cost-effectiveness of routine surveillance sequencing when response time is not essential.
Collapse
Affiliation(s)
- Bert Bogaerts
- Transversal activities in Applied Genomics, Sciensano, Brussels (1050), Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent (9000), Belgium
| | - Raf Winand
- Transversal activities in Applied Genomics, Sciensano, Brussels (1050), Belgium
| | - Julien Van Braekel
- Transversal activities in Applied Genomics, Sciensano, Brussels (1050), Belgium
| | - Stefan Hoffman
- Transversal activities in Applied Genomics, Sciensano, Brussels (1050), Belgium
| | - Nancy H. C. Roosens
- Transversal activities in Applied Genomics, Sciensano, Brussels (1050), Belgium
| | | | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent (9000), Belgium
- Department of Information Technology, IDLab, imec, Ghent University, Ghent (9000), Belgium
- Department of Genetics, University of Pretoria, 0001 Pretoria, South Africa
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels (1050), Belgium
| |
Collapse
|
24
|
Culture-Independent Genotyping, Virulence and Antimicrobial Resistance Gene Identification of Staphylococcus aureus from Orthopaedic Implant-Associated Infections. Microorganisms 2021; 9:microorganisms9040707. [PMID: 33808095 PMCID: PMC8065434 DOI: 10.3390/microorganisms9040707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 01/28/2023] Open
Abstract
Our culture-independent nanopore shotgun metagenomic sequencing protocol on biopsies has the potential for same-day diagnostics of orthopaedic implant-associated infections (OIAI). As OIAI are frequently caused by Staphylococcus aureus, we included S. aureus genotyping and virulence gene detection to exploit the protocol to its fullest. The aim was to evaluate S. aureus genotyping, virulence and antimicrobial resistance genes detection using the shotgun metagenomic sequencing protocol. This proof of concept study included six patients with S. aureus-associated OIAI at Akershus University Hospital, Norway. Five tissue biopsies from each patient were divided in two: (1) conventional microbiological diagnostics and genotyping, and whole genome sequencing (WGS) of S. aureus isolates; (2) shotgun metagenomic sequencing of DNA from the biopsies. Consensus sequences were analysed using spaTyper, MLST, VirulenceFinder, and ResFinder from the Center for Genomic Epidemiology (CGE). MLST was also compared using krocus. All spa-types, one CGE and four krocus MLST results matched Sanger sequencing results. Virulence gene detection matched between WGS and shotgun metagenomic sequencing. ResFinder results corresponded to resistance phenotype. S. aureus spa-typing, and identification of virulence and antimicrobial resistance genes are possible using our shotgun metagenomics protocol. MLST requires further optimization. The protocol has potential application to other species and infection types.
Collapse
|