1
|
Ntozini B, Walaza S, Metcalf B, Hazelhurst S, de Gouveia L, Meiring S, Mogale D, Mtshali S, Ismail A, Ndlangisa K, Du Plessis M, Quan V, Chochua S, McGee L, von Gottberg A, Wolter N. Molecular Epidemiology of Invasive Group B Streptococcus in South Africa, 2019-2020. J Infect Dis 2025; 231:e697-e707. [PMID: 39737783 PMCID: PMC11998550 DOI: 10.1093/infdis/jiae633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Group B Streptococcus (GBS) is a leading cause of neonatal meningitis and sepsis and an important cause of disease in adults. Capsular polysaccharide and protein-based GBS vaccines are currently under development. METHODS Through national laboratory-based surveillance, invasive GBS isolates were collected from patients of all ages between 2019 and 2020. Phenotypic serotyping and antimicrobial susceptibility testing were conducted, followed by whole-genome sequencing for analysis of population structure and surface protein and resistance genes. RESULTS In total, 1748 invasive GBS cases were reported. Of these, 661 isolates underwent characterization, with 658 yielding both phenotypic and genotypic results. Isolates (n = 658) belonged to 5 clonal complexes (CC1, CC8/10, CC17, CC19, and CC23) and 6 serotypes were detected: III (42.8%), Ia (27.9%), V (11.9%), II (8.4%), Ib (6.7%), and IV (2.3%). Phenotypically, only 1 isolate exhibited reduced penicillin susceptibility (minimum inhibitory concentration 0.25 µg/mL). Phenotypic resistance to erythromycin, clindamycin, and tetracycline was observed in 16.1%, 3.8%, and 91.5% of isolates, respectively. ermTR (34.9%) and mefA/E (30.1%) genes were most common among erythromycin-resistant isolates, while ermB predominated in clindamycin-resistant isolates (32.0%). tetM accounted for 95.8% of tetracycline resistance. All isolates carried at least 1 of the 3 pilus gene clusters, 1 of the 4 homologous alpha/Rib family determinants, and 98% harbored 1 of the serine-rich repeat protein genes. hvgA was found exclusively in CC17 isolates. CONCLUSIONS In our setting, β-lactam antibiotics remain appropriate for GBS treatment and polysaccharide and protein-based vaccines under development are expected to provide good coverage.
Collapse
Affiliation(s)
- Buhle Ntozini
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sibongile Walaza
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Benjamin Metcalf
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Scott Hazelhurst
- School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Linda de Gouveia
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Susan Meiring
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Dineo Mogale
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Senzo Mtshali
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Kedibone Ndlangisa
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mignon Du Plessis
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Vanessa Quan
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Sopio Chochua
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lesley McGee
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicole Wolter
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Khan UB, Dyster V, Chaguza C, van Sorge NM, van de Beek D, Man WK, Bentley SD, Bijlsma MW, Jamrozy D. Genetic markers associated with host status and clonal expansion of Group B Streptococcus in the Netherlands. Front Microbiol 2024; 15:1410651. [PMID: 39050634 PMCID: PMC11266191 DOI: 10.3389/fmicb.2024.1410651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Objectives Certain Group B Streptococcus (GBS) genotypes are associated with invasive disease in neonates. We conducted a comparative genomic analysis of GBS isolates from neonatal disease and maternal carriage in the Netherlands to determine distribution of genetic markers between the two host groups. Methods Whole genome sequencing was used to characterise 685 neonatal invasive isolates (2006-2021) and 733 maternal carriage isolates (2017-2021) collected in the Netherlands. Results Clonal complex (CC) 17 and serotype III were significantly more common in disease while carriage isolates were associated with serotypes II, IV, V as well as CC1. Previously reported CC17-A1 sub-lineage was dominant among disease isolates and significantly less common in carriage. The phiStag1 phage, previously associated with expansion of invasive CC17 isolates in the Netherlands, was more common among disease isolates compared to carriage isolates overall, however it was equally distributed between CC17 isolates from carriage and disease. Prevalence of antimicrobial resistance genes was overall lower in disease compared to carriage isolates, but increased significantly over time, mediated by rise in prevalence of a multidrug resistance element ICESag37 among disease isolates. Conclusion There is a stable association between certain GBS genotypes and invasive disease, which suggests opportunities for developing more precise disease prevention strategies based on GBS targeted screening. In contrast, GBS mobile genetic elements appear less likely to be correlated with carriage or disease, and instead are associated with clonal expansion events across the GBS population.
Collapse
Affiliation(s)
- Uzma Basit Khan
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Victoria Dyster
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Nina M. van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam UMC Location AMC, Amsterdam, Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Wing Kit Man
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Stephen D. Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Merijn W. Bijlsma
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Paediatrics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Dorota Jamrozy
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
3
|
Vaz MJ, Dongas S, Ratner AJ. Capsule production promotes Group B Streptococcus intestinal colonization. Microbiol Spectr 2023; 11:e0234923. [PMID: 37732775 PMCID: PMC10655599 DOI: 10.1128/spectrum.02349-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/25/2023] [Indexed: 09/22/2023] Open
Abstract
Late-onset disease is the most common clinical presentation of Group B Streptococcus (GBS) infection during infancy, and gastrointestinal (GI) colonization is an important precursor. Previously, we described a murine model of postnatal GBS GI colonization that resulted in sustained colonization and progression to invasive disease. Capsular polysaccharide is an important GBS virulence factor. Vaccines based on a subset of capsular serotypes are in clinical trials. However, little is known regarding the role of specific GBS capsular serotypes in GI colonization. We examined the role of GBS capsule in GI colonization using capsule-producing and acapsular strains derived from GBS strain A909 (serotype Ia) in a murine model. Using isogenic GBS strains differing only in capsular serotypes, we explored the role of specific serotypes in GI colonization by determining competitive indices during cocolonization. We found that GBS A909 colonizes the murine GI tract without causing invasive disease. In monocolonization experiments, there was colonization persistence with the capsule-producing strain (100%) compared to the acapsular mutant strain (13%). In cocolonization experiments, the capsule-producing strain outcompeted its isogenic acapsular mutant, with a geometric mean competitive index of 8, 95% confidence interval (CI) [1.7, 38.9] in the colon at 7 days post-colonization. A909 expressing its native serotype Ia capsule outcompeted an isogenic mutant that expresses serotype III capsule, with a geometric mean competitive index of 2.5, 95% CI [1.2, 5.1] in the colon at 7 days post-colonization. Thus, polysaccharide capsule production enhances GBS GI colonization in vivo. In an A909 genetic background, the production of a serotype Ia capsule provides a competitive advantage over an isogenic strain producing type III capsule. The murine model is a valuable tool to understand the role of GBS capsule types in GI colonization. IMPORTANCE The establishment of GBS intestinal colonization is believed to be a critical precursor to late-onset disease in neonates, which has a significant impact on neurodevelopment outcomes in this population. Our prior work described a murine model of postnatal Group B Streptococcus (GBS) acquisition and invasive disease. Using this model, we explored the importance of GBS polysaccharide capsule production on gastrointestinal colonization. We found that the expression of capsule (compared to isogenic acapsular strains) provides an advantage in intestinal colonization and, importantly, that capsule type Ia has an advantage over capsule type III in a GBS A909 strain background. We speculate that specific serotypes may differ in colonization fitness, which may play a role in serotype distribution in neonatal disease.
Collapse
Affiliation(s)
- Michelle J. Vaz
- Department of Pediatrics, NYU School of Medicine, New York, New York, USA
| | - Sophia Dongas
- Department of Pediatrics, NYU School of Medicine, New York, New York, USA
| | - Adam J. Ratner
- Department of Pediatrics, NYU School of Medicine, New York, New York, USA
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| |
Collapse
|
4
|
Andersen M, Smith B, Murra M, Nielsen SY, Slotved HC, Henriksen TB. Invasive group B Streptococcus strains and clinical characteristics in Danish infants from 1999 to 2009. Front Microbiol 2022; 13:1001953. [PMID: 36246253 PMCID: PMC9554412 DOI: 10.3389/fmicb.2022.1001953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Group B Streptococcus (GBS) infection in infants may result in both respiratory, cardiovascular, and neurological dysfunction and ultimately death of the infant. Surveillance of GBS strains in infants and their clinical characteristics guide development of effective vaccines and other potential treatments and may have implications for future prognostics and infant care. Therefore, we aimed to study GBS serotypes and clonal complexes (CC) in Danish infants with early onset infection (EOD) (0-6 days of life) and late-onset infection (LOD) (7-89 days of life) and to estimate the association between GBS strain and different clinical outcomes. Methods We included Danish infants less than 3 months of age with GBS isolates from blood or cerebrospinal fluid between 1999 and 2009. GBS isolates were analyzed by serotyping and multilocus sequence typing with classification of isolates into clonal complexes. Clinical characteristics were obtained by questionnaires completed by tending pediatrician including gestational age, Apgar scores, age at onset, meningitis, symptom severity, treatment duration, and mortality. Symptom severities were reported within neurological symptoms, need for respiratory or circulatory support, and treatment of disseminated intravascular coagulation. Results A total of 212 GBS isolates were collected with 129 from EOD and 83 from LOD. The dominating GBS strains were III/CC17 (41%), Ia/CC23 (17%), III/CC19 (15%), Ib/CC8-10 (7%), and V/CC1 (6%). Strain Ia/CC23 was mostly found in EOD, while III/CC17 was widespread in LOD, though being the most common in both EOD and LOD. Strain III/CC17 and Ia/CC23 had highest percentage of samples from cerebrospinal fluid (26%), while III/CC19 had the least (8%). Strain III/CC19 had highest mortality with about one fifth of infected infants dying (22%) followed by Ia/CC23 (16%), Ib/CC8-10 (9%), and then III/CC17 (6%). The symptom severity varied between strains, but with no strain consistently resulting in more severe symptoms. Conclusion Some potential differences in disease severity were observed between the different strains. These findings emphasize the continuous need for multimodal surveillance of infant GBS strains and their clinical characteristics to optimize development of GBS vaccines and other potential treatments.
Collapse
Affiliation(s)
- Mads Andersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitte Smith
- Department of Pediatrics and Adolescent Medicine, Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - May Murra
- Department of Microbiology, Vejle Hospital, Vejle, Denmark
| | - Stine Yde Nielsen
- Department of Microbiology, Vejle Hospital, Vejle, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hans-Christian Slotved
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Tine Brink Henriksen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Rodgus J, Prakapaite R, Mitsidis P, Grigaleviciute R, Planciuniene R, Kavaliauskas P, Jauneikaite E. Molecular Epidemiology of Group B Streptococci in Lithuania Identifies Multi-Drug Resistant Clones and Sporadic ST1 Serotypes Ia and Ib. Pathogens 2022; 11:1060. [PMID: 36145492 PMCID: PMC9504518 DOI: 10.3390/pathogens11091060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is a leading cause of neonatal infections. Yet, detailed assessment of the genotypic and phenotypic factors associated with GBS carriage, mother-to-baby transmission, and GBS infection in neonates and adults is lacking. Understanding the distribution of GBS genotypes, including the predominance of different serotypes, antimicrobial resistance (AMR) genes, and virulence factors, is likely to help to prevent GBS diseases, as well as inform estimates of the efficacy of future GBS vaccines. To this end, we set out to characterise GBS isolates collected from pregnant and non-pregnant women in Kaunas region in Lithuania. Whole genome sequences of 42 GBS isolates were analysed to determine multi-locus sequence typing (MLST), the presence of acquired AMR and surface protein genes, and the phylogenetic relatedness of isolates. We identified serotypes Ia (42.9%, 18/42), III (33.3%, 14/42), V (21.4%, 9/42), and a single isolate of serotype Ib. Genomic analyses revealed high diversity among the isolates, with 18 sequence types (STs) identified, including three novel STs. 85.7% (36/42) of isolates carried at least one AMR gene: tetM or tetO (35/42), ermB or lsaC (8/42) and ant6-Ia and aph3-III (2/42). This study represents the first genomic analysis of GBS isolated from women in Lithuania and contributes to an improved understanding of the global spread of GBS genotypes and phenotypes, laying the foundations for future GBS surveillance in Lithuania.
Collapse
Affiliation(s)
- Jonah Rodgus
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Ruta Prakapaite
- Institute of Infectious Diseases and Pathogenic Microbiology, 59116 Prienai, Lithuania
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Panagiotis Mitsidis
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Ramune Grigaleviciute
- Biological Research Centre, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| | - Rita Planciuniene
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| | - Povilas Kavaliauskas
- Institute of Infectious Diseases and Pathogenic Microbiology, 59116 Prienai, Lithuania
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY 10065, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| |
Collapse
|
6
|
Li A, Fang M, Hao D, Wu Q, Qian Y, Xu H, Zhu B. Late-Onset Sepsis in a Premature Infant Mediated by Breast Milk: Mother-to-Infant Transmission of Group B Streptococcus Detected by Whole-Genome Sequencing. Infect Drug Resist 2022; 15:5345-5352. [PMID: 36110126 PMCID: PMC9469938 DOI: 10.2147/idr.s381466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background Late-onset group B Streptococcus (LOGBS) sepsis is a cause of infection and death in infants. Infected breast milk has been considered a source of neonatal GBS infection and invasive infection. However, mother-to-infant transmission of GBS detected by the high-resolution diagnostic method is rarely reported. Methods This study describes a low-weight premature infant who developed late-onset GBS septicemia 21 days after birth. GBS strains isolated from the mother’s cervical secretion, the mother’s milk, and the baby’s blood were cultured to identify the source of GBS infection. We further confirmed the GBS isolates through matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Finally, we performed whole-genome sequencing (WGS) and phylogenetic analyses on the GBS strains recovered. Results GBS isolates were cultured from the bloodstream of the premature infant and the mother’s milk, respectively. Subsequently, WGS and phylogenetic analyses on three GBS isolates demonstrated that the GBS strain from the infant’s bloodstream was 100% homologous to that from the mother’s breast milk, which had some different gene fragments from the GBS strain from the mother’s cervical secretion. It provided evidence that this infant’s late-onset GBS septicemia originated from his mother’s breast milk instead of the vertical mother-to-infant transmission. Conclusion Through WGS and phylogenetic analysis of the GBS strains, we proved in this study that the late-onset GBS sepsis in a premature infant was derived from his mother’s breast milk. It indicated that WGS diagnosis is an effective tool for infection tracing. Furthermore, this report provides direction for preventing late-onset GBS infection.
Collapse
Affiliation(s)
- Aiyun Li
- Department of Clinical Medicine, The Women's Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ming Fang
- Institute of Infection Disease Control, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
| | - Dongjie Hao
- Department of Clinical Medicine, The Women's Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiaoai Wu
- Department of Clinical Medicine, The Women's Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yaqi Qian
- Department of Clinical Medicine, The Women's Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, People's Republic of China
| | - Bo Zhu
- Department of Clinical Medicine, The Women's Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|