1
|
Horsfield ST, Fok BCT, Fu Y, Turner P, Lees JA, Croucher NJ. Optimizing nanopore adaptive sampling for pneumococcal serotype surveillance in complex samples using the graph-based GNASTy algorithm. Genome Res 2025; 35:1025-1040. [PMID: 40037844 PMCID: PMC12047183 DOI: 10.1101/gr.279435.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025]
Abstract
Serotype surveillance of Streptococcus pneumoniae (the pneumococcus) is critical for understanding the effectiveness of current vaccination strategies. However, existing methods for serotyping are limited in their ability to identify co-carriage of multiple pneumococci and detect novel serotypes. To develop a scalable and portable serotyping method that overcomes these challenges, we employed nanopore adaptive sampling (NAS), an on-sequencer enrichment method that selects for target DNA in real-time, for direct detection of S. pneumoniae in complex samples. Whereas NAS targeting the whole S. pneumoniae genome was ineffective in the presence of nonpathogenic streptococci, the method was both specific and sensitive when targeting the capsular biosynthetic locus (CBL), the operon that determines S. pneumoniae serotype. NAS significantly improved coverage and yield of the CBL relative to sequencing without NAS and accurately quantified the relative prevalence of serotypes in samples representing co-carriage. To maximize the sensitivity of NAS to detect novel serotypes, we developed and benchmarked a new pangenome-graph algorithm, named GNASTy. We show that GNASTy outperforms the current NAS implementation, which is based on linear genome alignment, when a sample contains a serotype absent from the database of targeted sequences. The methods developed in this work provide an improved approach for novel serotype discovery and routine S. pneumoniae surveillance that is fast, accurate, and feasible in low-resource settings. Although NAS facilitates whole-genome enrichment under ideal circumstances, GNASTy enables targeted enrichment to optimize serotype surveillance in complex samples.
Collapse
Affiliation(s)
- Samuel T Horsfield
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W12 0BZ, United Kingdom;
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Basil C T Fok
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W12 0BZ, United Kingdom
| | - Yuhan Fu
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W12 0BZ, United Kingdom
| | - Paul Turner
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX3 7LG, United Kingdom
| | - John A Lees
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W12 0BZ, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W12 0BZ, United Kingdom
| |
Collapse
|
2
|
Ganaie FA, Beall BW, Yu J, van der Linden M, McGee L, Satzke C, Manna S, Lo SW, Bentley SD, Ravenscroft N, Nahm MH. Update on the evolving landscape of pneumococcal capsule types: new discoveries and way forward. Clin Microbiol Rev 2025; 38:e0017524. [PMID: 39878373 PMCID: PMC11905375 DOI: 10.1128/cmr.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
SUMMARYStreptococcus pneumoniae (the "pneumococcus") is a significant human pathogen. The key determinant of pneumococcal fitness and virulence is its ability to produce a protective polysaccharide (PS) capsule, and anti-capsule antibodies mediate serotype-specific opsonophagocytic killing of bacteria. Notably, immunization with pneumococcal conjugate vaccines (PCVs) has effectively reduced the burden of disease caused by serotypes included in vaccines but has also spurred a relative upsurge in the prevalence of non-vaccine serotypes. Recent advancements in serotyping and bioinformatics surveillance tools coupled with high-resolution analytical techniques have enabled the discovery of numerous new capsule types, thereby providing a fresh perspective on the dynamic pneumococcal landscape. This review offers insights into the current pneumococcal seroepidemiology highlighting important serotype shifts in different global regions in the PCV era. It also comprehensively summarizes newly discovered serotypes from 2007 to 2024, alongside updates on revised chemical structures and the de-novo determinations of structures for previously known serotypes. Furthermore, we spotlight emerging evidence on non-pneumococcal Mitis-group strains that express capsular PS that are serologically and biochemically related to the pneumococcal capsule types. We further discuss the implications of these recent findings on capsule nomenclature, pneumococcal carriage detection, and future PCV design. The review maps out the current status and also outlines the course for future research and vaccine strategies, ensuring a continued effective response to the evolving pneumococcal challenge.
Collapse
Affiliation(s)
- Feroze A. Ganaie
- Department of Medicine, Division of Pulmonary/Allergy/Critical Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bernard W. Beall
- Eagle Global Scientific, LLC, Contractor to Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jigui Yu
- Department of Medicine, Division of Pulmonary/Allergy/Critical Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mark van der Linden
- Reference Laboratory for Streptococci, Department of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Lesley McGee
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Catherine Satzke
- Infection, Immunity and Global Health, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sam Manna
- Infection, Immunity and Global Health, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Stephanie W. Lo
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
- Milner Center for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Stephen D. Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| | - Moon H. Nahm
- Department of Medicine, Division of Pulmonary/Allergy/Critical Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Hong E, Shin Y, Kim H, Cho WY, Song WH, Jung SH, Lee M. PneusPage: A WEB-BASED TOOL for the analysis of Whole-Genome Sequencing Data of Streptococcus pneumonia. J Microbiol 2025; 63:e.2409020. [PMID: 39895075 DOI: 10.71150/jm.2409020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/04/2024] [Indexed: 02/04/2025]
Abstract
With the advent of whole-genome sequencing, opportunities to investigate the population structure, transmission patterns, antimicrobial resistance profiles, and virulence determinants of Streptococcus pneumoniae at high resolution have been increasingly expanding. Consequently, a user-friendly bioinformatics tool is needed to automate the analysis of Streptococcus pneumoniae whole-genome sequencing data, summarize clinically relevant genomic features, and further guide treatment options. Here, we developed PneusPage, a web-based tool that integrates functions for species prediction, molecular typing, drug resistance determination, and data visualization of Streptococcus pneumoniae. To evaluate the performance of PneusPage, we analyzed 80 pneumococcal genomes with different serotypes from the Global Pneumococcal Sequencing Project and compared the results with those from another platform, PathogenWatch. We observed a high concordance between the two platforms in terms of serotypes (100% concordance rate), multilocus sequence typing (100% concordance rate), penicillin-binding protein typing (88.8% concordance rate), and the Global Pneumococcal Sequencing Clusters (98.8% concordance rate). In addition, PneusPage offers integrated analysis functions for the detection of virulence and mobile genetic elements that are not provided by previous platforms. By automating the analysis pipeline, PneusPage makes whole-genome sequencing data more accessible to non-specialist users, including microbiologists, epidemiologists, and clinicians, thereby enhancing the utility of whole-genome sequencing in both research and clinical settings. PneusPage is available at https://pneuspage.minholee.net/.
Collapse
Affiliation(s)
- Eunju Hong
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Youngjin Shin
- Basic Medical Science Facilitation Program, Catholic Medical Center, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyunseong Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | | | - Woo-Hyun Song
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Seung-Hyun Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Integrated Research Center for Genomic Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| |
Collapse
|
4
|
Che J, Peng B, Xu J, Shao Z. Prevalence of Streptococcus pneumoniae serotypes causing pneumococcal diseases in the Chinese Mainland: A systematic review and meta-analysis. Hum Vaccin Immunother 2024; 20:2416763. [PMID: 39631045 PMCID: PMC11622625 DOI: 10.1080/21645515.2024.2416763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Pneumococcal disease (PD) caused by Streptococcus pneumoniae (Sp) continues to be a global public health concern. Monitoring the prevalence and shift of Sp serotypes causing PD is critical for vaccination and local policies for PD management. A systematic review of published work on pneumococcal serotype distribution in the Chinese Mainland from January 1997 to July 2023 was conducted. The literature was searched in Medline, Embase, the Cochrane Library, Web of Science, CNKI, and Wanfang. Distribution of the Sp serogroups/serotypes was presented as count and proportion. Pooled distributions were calculated using a double arcsine transformation. Subgroup analyses were performed according to isolate location, strain source, patient age, period, and clinical manifestation. In total 36,477 Sp isolates in 159 studies were included. In the Chinese Mainland, the highest proportion of Sp in PD was serotype 19F, followed by 19A, 23F, 14 and 6B. Serotype 19F was the most predominant circulating serotype through all time periods. PD cases caused by non-vaccine serotypes showed a significant increase after 2019. In summary, from 1997 to 2023, the top 10 prevalent Sp serotypes causing PD in the Chinese Mainland were 19F, 19A, 6, 23F, 14, 6B, 6A, 3, 15B, and 9 V. Although the distribution of serotypes varied according to the subgroups, the increase in non-vaccine serotypes (e.g. 15A), and diversity distribution of serotypes 6A and 3 in different age groups should not be ignored.
Collapse
Affiliation(s)
- Jie Che
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bai Peng
- Value & Implementation Global Medical & Scientific Affairs, MSD China, Shanghai, China
| | - Juan Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhujun Shao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
5
|
Kalinich CC, Gonzalez FL, Osmaston A, Breban MI, Distefano I, Leon C, Sheen P, Zimic M, Coronel J, Tan G, Crudu V, Ciobanu N, Codreanu A, Solano W, Ráez J, Allicock OM, Chaguza C, Wyllie AL, Brandt M, Weinberger DM, Sobkowiak B, Cohen T, Grandjean L, Grubaugh ND, Redmond SN. Tiled Amplicon Sequencing Enables Culture-free Whole-Genome Sequencing of Pathogenic Bacteria From Clinical Specimens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629550. [PMID: 39763738 PMCID: PMC11702625 DOI: 10.1101/2024.12.19.629550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Pathogen sequencing is an important tool for disease surveillance and demonstrated its high value during the COVID-19 pandemic. Viral sequencing during the pandemic allowed us to track disease spread, quickly identify new variants, and guide the development of vaccines. Tiled amplicon sequencing, in which a panel of primers is used for multiplex amplification of fragments across an entire genome, was the cornerstone of SARS-CoV-2 sequencing. The speed, reliability, and cost-effectiveness of this method led to its implementation in academic and public health laboratories across the world and adaptation to a broad range of viral pathogens. However, similar methods are not available for larger bacterial genomes, for which whole-genome sequencing typically requires in vitro culture. This increases costs, error rates and turnaround times. The need to culture poses particular problems for medically important bacteria such as Mycobacterium tuberculosis, which are slow to grow and challenging to culture. As a proof of concept, we developed two novel whole-genome amplicon panels for M. tuberculosis and Streptococcus pneumoniae. Applying our amplicon panels to clinical samples, we show the ability to classify pathogen subgroups and to reliably identify markers of drug resistance without culturing. Development of this work in clinical settings has the potential to dramatically reduce the time of diagnosis of drug resistance for multiple drugs in parallel, enabling earlier intervention for high priority pathogens.
Collapse
Affiliation(s)
- Chaney C Kalinich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Freddy L Gonzalez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Alice Osmaston
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Isabel Distefano
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Candy Leon
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Mirko Zimic
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Grace Tan
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
| | | | | | | | | | - Jimena Ráez
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Orchid M Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
| | - Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Matthew Brandt
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Benjamin Sobkowiak
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Ted Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Louis Grandjean
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Seth N Redmond
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Hackman J, Hibberd ML, Swarthout TD, Hinds J, Ashall J, Sheppard C, Tonkin-Hill G, Gould K, Brown C, Msefula J, Mataya AA, Toizumi M, Yoshida LM, French N, Heyderman RS, Flasche S, Kwambana B, Hué S. Evaluating methods for identifying and quantifying Streptococcus pneumoniae co-colonization using next-generation sequencing data. Microbiol Spectr 2024; 12:e0364323. [PMID: 39499074 PMCID: PMC11619295 DOI: 10.1128/spectrum.03643-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/28/2024] [Indexed: 11/07/2024] Open
Abstract
Detection of multiple pneumococcal serotype carriage can enhance monitoring of pneumococcal vaccine impact, particularly among high-burden childhood populations. We assessed methods for identifying co-carriage of pneumococcal serotypes from whole-genome sequences. Twenty-four nasopharyngeal samples were collected during community carriage surveillance from healthy children in Blantyre, Malawi, which were then serotyped by microarray. Pneumococcal DNA from culture plate sweeps were sequenced using Illumina MiSeq, and genomic serotyping was carried out using SeroCall and PneumoKITy. Their sensitivity was calculated in reference to the microarray data. Local maxima in the single-nucleotide polymorphism (SNP) density distributions were assessed for their correspondence to the relative abundance of serotypes. Across the 24 individuals, the microarray detected 77 non-unique serotypes, of which 42 occurred at high relative abundance (>10%) (per individual, median, 3; range, 1-6 serotypes). The average sequencing depth was 57X (range: 21X-88X). The sensitivity of SeroCall for identifying high-abundance serotypes was 98% (95% CI, 0.87-1.00), 20% (0.08-0.36) for low abundance (<10%), and 62% (0.50-0.72) overall. PneumoKITy's sensitivity was 86% (0.72-0.95), 20% (0.06-0.32), and 56% (0.42-0.65), respectively. Local maxima in the SNP frequency distribution were highly correlated with the relative abundance of high-abundance serotypes. Six samples were resequenced, and the pooled runs had an average fourfold increase in sequencing depth. This allowed genomic serotyping of two of the previously undetectable seven low-abundance serotypes. Genomic serotyping is highly sensitive for the detection of high-abundance serotypes in samples with co-carriage. Serotype-associated reads may be identified through SNP frequency, and increased read depth can increase sensitivity for low-abundance serotype detection.IMPORTANCEPneumococcal carriage is a prerequisite for invasive pneumococcal disease, which is a leading cause of childhood pneumonia. Multiple carriage of unique pneumococcal serotypes at a single time point is prevalent among high-burden childhood populations. This study assessed the sensitivity of different genomic serotyping methods for identifying pneumococcal serotypes during co-carriage. These methods were evaluated against the current gold standard for co-carriage detection. The results showed that genomic serotyping methods have high sensitivity for detecting high-abundance serotypes in samples with co-carriage, and increasing sequencing depth can increase sensitivity for low-abundance serotypes. These results are important for monitoring vaccine impact, which aims to reduce the prevalence of specific pneumococcal serotypes. By accurately detecting and identifying multiple pneumococcal serotypes in carrier populations, we can better evaluate the effectiveness of vaccination programs.
Collapse
Affiliation(s)
- Jada Hackman
- Faculty of Epidemiology and Population Health, Department of Infectious Disease Epidemiology, The London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Martin L. Hibberd
- Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Todd D. Swarthout
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Jason Hinds
- BUGS Bioscience, London Bioscience Innovation Centre, London, United Kingdom
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - James Ashall
- Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carmen Sheppard
- Vaccine Preventable Bacteria Section, UK Health Security Agency (UKHSA), London, United Kingdom
| | | | - Kate Gould
- BUGS Bioscience, London Bioscience Innovation Centre, London, United Kingdom
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Comfort Brown
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | | | | | - Michiko Toizumi
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Lay-Myint Yoshida
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Neil French
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Robert S. Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Stefan Flasche
- Faculty of Epidemiology and Population Health, Department of Infectious Disease Epidemiology, The London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Brenda Kwambana
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stéphane Hué
- Faculty of Epidemiology and Population Health, Department of Infectious Disease Epidemiology, The London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
7
|
Graffice E, Meewes C, Ganaie FA, Nahm MH, Calix JJ. Genome sequences of 36 Streptococcus pneumoniae strains optimized for the multiplexed opsonophagocytosis killing assay. Microbiol Resour Announc 2024; 13:e0055324. [PMID: 39162469 PMCID: PMC11385719 DOI: 10.1128/mra.00553-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
A multiplexed opsonophagocytosis assay (MOPA) was developed as a cost-effective, high-throughput biological assay to evaluate the efficacy of pneumococcal vaccines by in vitro measurement of opsonophagocytic activity of anti-capsular antibodies. Here, we report draft genomes of the 36 strains of Streptococcus pneumoniae developed for use in the reference pneumococcal MOPA.
Collapse
Affiliation(s)
- Emma Graffice
- 1Department of Medicine, Division of Infectious Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chloe Meewes
- 1Department of Medicine, Division of Infectious Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Feroze A Ganaie
- Division of Pulmonary/Allergy/Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Moon H Nahm
- Division of Pulmonary/Allergy/Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Juan J Calix
- 1Department of Medicine, Division of Infectious Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
8
|
Sari RF, Fadilah F, Maladan Y, Sarassari R, Safari D. A narrative review of genomic characteristics, serotype, immunogenicity, and vaccine development of Streptococcus pneumoniae capsular polysaccharide. Clin Exp Vaccine Res 2024; 13:91-104. [PMID: 38752009 PMCID: PMC11091432 DOI: 10.7774/cevr.2024.13.2.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
This narrative review describes genomic characteristic, serotyping, immunogenicity, and vaccine development of Streptococcus pneumoniae capsular polysaccharide (CPS). CPS is a primary virulence factor of S. pneumoniae. The genomic characteristics of S. pneumoniae CPS, including the role of biosynthetic gene and genetic variation within cps (capsule polysaccharide) locus which may lead to serotype replacement are still being investigated. One hundred unique serotypes of S. pneumoniae have been identified through various methods of serotyping using phenotypic and genotypic approach. The advantages and limitations of each method are various, emphasizing the need for accurate and comprehensive serotyping for effective disease surveillance and vaccine targeting. In addition, we elaborate the critical role of CPS in vaccine development by providing an overview of immunogenicity, ongoing research of pneumococcal vaccines, and the impact on disease burden.
Collapse
Affiliation(s)
- Ratna Fathma Sari
- Master’s Programme in Biomedical Sciences, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Indonesia
| | - Fadilah Fadilah
- Medical Chemistry Department, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Yustinus Maladan
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Indonesia
| | - Rosantia Sarassari
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Indonesia
| | - Dodi Safari
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Indonesia
| |
Collapse
|
9
|
Kikuchi-Ueda T, Maeno S, Gotoh Y, Ogura Y, Fujisaki R, Hayashi T. Complete genome sequences of 11 Streptococcus pneumoniae strains isolated from acute infectious purpura fulminans, sepsis, and pneumonia. Microbiol Resour Announc 2024; 13:e0077323. [PMID: 38132669 PMCID: PMC10868184 DOI: 10.1128/mra.00773-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
The complete genome sequences of 11 Japanese Streptococcus pneumoniae isolates were determined by hybrid assembly of long and short reads, including two strains isolated from patients with acute infectious purpura fulminans, six strains from patients with sepsis, and three strains from patients with pneumonia.
Collapse
Affiliation(s)
- Takane Kikuchi-Ueda
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi, Tokyo, Japan
| | - Shintaro Maeno
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Ryuichi Fujisaki
- Department of Sport and Medical Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Manna S, Werren JP, Ortika BD, Bellich B, Pell CL, Nikolaou E, Gjuroski I, Lo S, Hinds J, Tundev O, Dunne EM, Gessner BD, Bentley SD, Russell FM, Mulholland EK, Mungun T, von Mollendorf C, Licciardi PV, Cescutti P, Ravenscroft N, Hilty M, Satzke C. Streptococcus pneumoniae serotype 33G: genetic, serological, and structural analysis of a new capsule type. Microbiol Spectr 2024; 12:e0357923. [PMID: 38059623 PMCID: PMC10782959 DOI: 10.1128/spectrum.03579-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Streptococcus pneumoniae (the pneumococcus) is a bacterial pathogen with the greatest burden of disease in Asia and Africa. The pneumococcal capsular polysaccharide has biological relevance as a major virulence factor as well as public health importance as it is the target for currently licensed vaccines. These vaccines have limited valency, covering up to 23 of the >100 known capsular types (serotypes) with higher valency vaccines in development. Here, we have characterized a new pneumococcal serotype, which we have named 33G. We detected serotype 33G in nasopharyngeal swabs (n = 20) from children and adults hospitalized with pneumonia, as well as healthy children in Mongolia. We show that the genetic, serological, and biochemical properties of 33G differ from existing serotypes, satisfying the criteria to be designated as a new serotype. Future studies should focus on the geographical distribution of 33G and any changes in prevalence following vaccine introduction.
Collapse
Affiliation(s)
- Sam Manna
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Joel P. Werren
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Belinda D. Ortika
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Barbara Bellich
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Casey L. Pell
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Elissavet Nikolaou
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ilche Gjuroski
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Stephanie Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Jason Hinds
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
- BUGS Bioscience, London Bioscience Innovation Center, London, United Kingdom
| | - Odgerel Tundev
- National Center for Communicable Diseases, Ministry of Health, Ulaanbaatar, Mongolia
| | | | | | - Stephen D. Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Fiona M. Russell
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
| | - E. Kim Mulholland
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tuya Mungun
- National Center for Communicable Diseases, Ministry of Health, Ulaanbaatar, Mongolia
| | - Claire von Mollendorf
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
| | - Paul V. Licciardi
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Catherine Satzke
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
11
|
Abdul Rahman NA, Mohd Desa MN, Masri SN, Taib NM, Sulaiman N, Hazman H, John J. The Molecular Approaches and Challenges of Streptococcus pneumoniae Serotyping for Epidemiological Surveillance in the Vaccine Era. Pol J Microbiol 2023; 72:103-115. [PMID: 37314355 DOI: 10.33073/pjm-2023-023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/15/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) belongs to the Gram-positive cocci. This bacterium typically colonizes the nasopharyngeal region of healthy individuals. It has a distinct polysaccharide capsule - a virulence factor allowing the bacteria to elude the immune defense mechanisms. Consequently, it might trigger aggressive conditions like septicemia and meningitis in immunocompromised or older individuals. Moreover, children below five years of age are at risk of morbidity and mortality. Studies have found 101 S. pneumoniae capsular serotypes, of which several correlate with clinical and carriage isolates with distinct disease aggressiveness. Introducing pneumococcal conjugate vaccines (PCV) targets the most common disease-associated serotypes. Nevertheless, vaccine selection pressure leads to replacing the formerly dominant vaccine serotypes (VTs) by non-vaccine types (NVTs). Therefore, serotyping must be conducted for epidemiological surveillance and vaccine assessment. Serotyping can be performed using numerous techniques, either by the conventional antisera-based (Quellung and latex agglutination) or molecular-based approaches (sequetyping, multiplex PCR, real-time PCR, and PCR-RFLP). A cost-effective and practical approach must be used to enhance serotyping accuracy to monitor the prevalence of VTs and NVTs. Therefore, dependable pneumococcal serotyping techniques are essential to precisely monitor virulent lineages, NVT emergence, and genetic associations of isolates. This review discusses the principles, associated benefits, and drawbacks of the respective available conventional and molecular approaches, and potentially the whole genome sequencing (WGS) to be directed for future exploration.
Collapse
Affiliation(s)
- Nurul Asyikin Abdul Rahman
- 1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- 2School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Kuala Pilah, Malaysia
| | - Mohd Nasir Mohd Desa
- 1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Norbaya Masri
- 3Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Niazlin Mohd Taib
- 3Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nurshahira Sulaiman
- 1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hazmin Hazman
- 1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - James John
- 4Department of Medical Laboratory Technology, School of Allied Health Science, Sathyabama Institute of Science and Technology, Chennai, India
| |
Collapse
|