1
|
Xie Y, Liu X, Wu T, Luo Y. Harnessing the Streptomyces-originating type I-E CRISPR/Cas system for efficient genome editing in Streptomyces. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1174-1182. [PMID: 39821831 DOI: 10.1007/s11427-024-2677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/04/2024] [Indexed: 01/19/2025]
Abstract
Since their discovery, CRISPR/Cas systems have significantly expanded the genetic toolbox, aiding in the exploration and enhanced production of natural products across various microbes. Among these, class 2 CRISPR/Cas systems are simpler and more broadly used, but they frequently fail to function effectively in many Streptomyces strains. In this study, we present an engineered class 1 type I CRISPR/Cas system derived from Streptomyces avermitilis, which enables efficient gene editing in phylogenetically distant Streptomyces strains. Through a plasmid interference assay, we identified the effective protospacer adjacent motif as 5'-AAN-3'. Utilizing this system, we achieved targeted chromosomal deletions ranging from 8 bp to 100 kb, with efficiencies exceeding 92%. We further utilized this system to insert DNA fragments into different Streptomyces genomes, facilitating the heterologous expression of exogenous genes and the activation of endogenous natural product biosynthetic gene clusters. Overall, we established a type I CRISPR/Cas-based gene-editing methodology that significantly advances the exploration of Streptomyces, known for their rich natural product resources. This is the first report of a gene editing tool developed based on the endogenous class 1 type I CRISPR/Cas system in Streptomyces spp. Our work enriches the Streptomyces gene manipulation toolbox and advances the discovery of valuable natural products within these organisms.
Collapse
Affiliation(s)
- Yuhui Xie
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaoyan Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tingting Wu
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunzi Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen, 518071, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Xu Z, Chen S, Wu W, Wen Y, Cao H. Type I CRISPR-Cas-mediated microbial gene editing and regulation. AIMS Microbiol 2023; 9:780-800. [PMID: 38173969 PMCID: PMC10758571 DOI: 10.3934/microbiol.2023040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
There are six major types of CRISPR-Cas systems that provide adaptive immunity in bacteria and archaea against invasive genetic elements. The discovery of CRISPR-Cas systems has revolutionized the field of genetics in many organisms. In the past few years, exploitations of the most abundant class 1 type I CRISPR-Cas systems have revealed their great potential and distinct advantages to achieve gene editing and regulation in diverse microorganisms in spite of their complicated structures. The widespread and diversified type I CRISPR-Cas systems are becoming increasingly attractive for the development of new biotechnological tools, especially in genetically recalcitrant microbial strains. In this review article, we comprehensively summarize recent advancements in microbial gene editing and regulation by utilizing type I CRISPR-Cas systems. Importantly, to expand the microbial host range of type I CRISPR-Cas-based applications, these structurally complicated systems have been improved as transferable gene-editing tools with efficient delivery methods for stable expression of CRISPR-Cas elements, as well as convenient gene-regulation tools with the prevention of DNA cleavage by obviating deletion or mutation of the Cas3 nuclease. We envision that type I CRISPR-Cas systems will largely expand the biotechnological toolbox for microbes with medical, environmental and industrial importance.
Collapse
Affiliation(s)
- Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shuzhen Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Weiyan Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yongqi Wen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Huiluo Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
3
|
Zhao X, Xu D, Xia W, Hu M, Peng X, Liu X, Ran T, Wang W. Multicopy expression of sigma factor RpoH reduces prodigiosin biosynthesis in Serratia marcescens FS14. Antonie Van Leeuwenhoek 2023; 116:1197-1208. [PMID: 37728826 DOI: 10.1007/s10482-023-01875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
Regulation of prodigiosin biosynthesis is received wide attention due to the antimicrobial, immunosuppressive and anticancer activities of prodigiosin. Here, we constructed a transposon mutant library in S. marcescens FS14 to identify genes involved in the regulation of prodigiosin biosynthesis. 62 strains with apparently different colors were obtained. Identification of the transposon insertion sites revealed that they are classified into three groups: the coding region of cyaA and two component system eepS/R and the promoter region of rpoH. Since the effect of cyaA and eepS/R genes on prodigiosin was extensively investigated in Serratia marcescens, we chose the mutant of rpoH for further investigation. Further deletion mutation of rpoH gene showed no effect on prodigiosin production suggesting that the effect on prodigiosin production caused by transposon insertion is not due to the deletion of RpoH. We further demonstrated that multicopy expression of RpoH reduced prodigiosin biosynthesis indicating that transposon insertion caused RpoH enhanced expression. Previous results indicate that RpoS is the sigma factor for transcription of pig gene cluster in FS14, to test whether the enhanced expression of RpoH prevents prodigiosin by competing with RpoS, we found that multicopy expression of RpoS could alleviate the prodigiosin production inhibition by enhanced RpoH. We proposed that multicopy expressed RpoH competes with RpoS for core RNA polymerase (RNAP) resulting in decreased transcription of pig gene cluster and prodigiosin production reduction. We also demonstrated that RpoH is not directly involved in prodigiosin biosynthesis. Our results suggest that manipulating the transcription level of sigma factors may be applied to regulate the production of secondary metabolites.
Collapse
Affiliation(s)
- Xuezheng Zhao
- Department of Microbiology, College of Life Sciences,, Nanjing Agricultural University, Nanjing, China
| | - Dongqing Xu
- Department of Microbiology, College of Life Sciences,, Nanjing Agricultural University, Nanjing, China
| | - Wenxiao Xia
- Department of Microbiology, College of Life Sciences,, Nanjing Agricultural University, Nanjing, China
| | - Menghua Hu
- Department of Microbiology, College of Life Sciences,, Nanjing Agricultural University, Nanjing, China
| | - Xuede Peng
- Department of Microbiology, College of Life Sciences,, Nanjing Agricultural University, Nanjing, China
| | - Xia Liu
- Department of Microbiology, College of Life Sciences,, Nanjing Agricultural University, Nanjing, China
| | - Tingting Ran
- Department of Microbiology, College of Life Sciences,, Nanjing Agricultural University, Nanjing, China.
| | - Weiwu Wang
- Department of Microbiology, College of Life Sciences,, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
4
|
Shangguan Q, White MF. Repurposing the atypical type I-G CRISPR system for bacterial genome engineering. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001373. [PMID: 37526970 PMCID: PMC10482374 DOI: 10.1099/mic.0.001373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The CRISPR-Cas system functions as a prokaryotic immune system and is highly diverse, with six major types and numerous sub-types. The most abundant are type I CRISPR systems, which utilize a multi-subunit effector, Cascade, and a CRISPR RNA (crRNA) to detect invading DNA species. Detection leads to DNA loading of the Cas3 helicase-nuclease, leading to long-range deletions in the targeted DNA, thus providing immunity against mobile genetic elements (MGE). Here, we focus on the type I-G system, a streamlined, 4-subunit complex with an atypical Cas3 enzyme. We demonstrate that Cas3 helicase activity is not essential for immunity against MGE in vivo and explore applications of the Thioalkalivibrio sulfidiphilus Cascade effector for genome engineering in Escherichia coli. Long-range, bidirectional deletions were observed when the lacZ gene was targeted. Deactivation of the Cas3 helicase activity dramatically altered the types of deletions observed, with small deletions flanked by direct repeats that are suggestive of microhomology mediated end joining. When donor DNA templates were present, both the wild-type and helicase-deficient systems promoted homology-directed repair (HDR), with the latter system providing improvements in editing efficiency, suggesting that a single nick in the target site may promote HDR in E. coli using the type I-G system. These findings open the way for further application of the type I-G CRISPR systems in genome engineering.
Collapse
Affiliation(s)
- Qilin Shangguan
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Malcolm F. White
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| |
Collapse
|
5
|
Type III CRISPR-Cas provides resistance against nucleus-forming jumbo phages via abortive infection. Mol Cell 2022; 82:4471-4486.e9. [PMID: 36395770 DOI: 10.1016/j.molcel.2022.10.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/13/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
Abstract
Bacteria have diverse defenses against phages. In response, jumbo phages evade multiple DNA-targeting defenses by protecting their DNA inside a nucleus-like structure. We previously demonstrated that RNA-targeting type III CRISPR-Cas systems provide jumbo phage immunity by recognizing viral mRNA exported from the nucleus for translation. Here, we demonstrate that recognition of phage mRNA by the type III system activates a cyclic triadenylate-dependent accessory nuclease, NucC. Although unable to access phage DNA in the nucleus, NucC degrades the bacterial chromosome, triggers cell death, and disrupts phage replication and maturation. Hence, type-III-mediated jumbo phage immunity occurs via abortive infection, with suppression of the viral epidemic protecting the population. We further show that type III systems targeting jumbo phages have diverse accessory nucleases, including RNases that provide immunity. Our study demonstrates how type III CRISPR-Cas systems overcome the inaccessibility of jumbo phage DNA to provide robust immunity.
Collapse
|
6
|
Araújo RG, Zavala NR, Castillo-Zacarías C, Barocio ME, Hidalgo-Vázquez E, Parra-Arroyo L, Rodríguez-Hernández JA, Martínez-Prado MA, Sosa-Hernández JE, Martínez-Ruiz M, Chen WN, Barceló D, Iqbal HM, Parra-Saldívar R. Recent Advances in Prodigiosin as a Bioactive Compound in Nanocomposite Applications. Molecules 2022; 27:4982. [PMID: 35956931 PMCID: PMC9370345 DOI: 10.3390/molecules27154982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Bionanocomposites based on natural bioactive entities have gained importance due to their abundance; renewable and environmentally benign nature; and outstanding properties with applied perspective. Additionally, their formulation with biological molecules with antimicrobial, antioxidant, and anticancer activities has been produced nowadays. The present review details the state of the art and the importance of this pyrrolic compound produced by microorganisms, with interest towards Serratia marcescens, including production strategies at a laboratory level and scale-up to bioreactors. Promising results of its biological activity have been reported to date, and the advances and applications in bionanocomposites are the most recent strategy to potentiate and to obtain new carriers for the transport and controlled release of prodigiosin. Prodigiosin, a bioactive secondary metabolite, produced by Serratia marcescens, is an effective proapoptotic agent against bacterial and fungal strains as well as cancer cell lines. Furthermore, this molecule presents antioxidant activity, which makes it ideal for treating wounds and promoting the general improvement of the immune system. Likewise, some of the characteristics of prodigiosin, such as hydrophobicity, limit its use for medical and biotechnological applications; however, this can be overcome by using it as a component of a bionanocomposite. This review focuses on the chemistry and the structure of the bionanocomposites currently developed using biorenewable resources. Moreover, the work illuminates recent developments in pyrrole-based bionanocomposites, with special insight to its application in the medical area.
Collapse
Affiliation(s)
- Rafael G. Araújo
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing Monterrey, Monterrey 64849, Mexico
| | - Natalia Rodríguez Zavala
- Chemical & Biochemical Engineering Department, Tecnológico Nacional de México-Instituto Tecnológico de Durango (TecNM-ITD), Blvd. Felipe Pescador 1830 Ote. Durango, Durango 34080, Mexico
| | - Carlos Castillo-Zacarías
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ingeniería Ambiental, Ciudad Universitaria S/N, San Nicolás de los Garza 66455, Mexico
| | - Mario E. Barocio
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - María Adriana Martínez-Prado
- Chemical & Biochemical Engineering Department, Tecnológico Nacional de México-Instituto Tecnológico de Durango (TecNM-ITD), Blvd. Felipe Pescador 1830 Ote. Durango, Durango 34080, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing Monterrey, Monterrey 64849, Mexico
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing Monterrey, Monterrey 64849, Mexico
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637457, Singapore
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034 Barcelona, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, Edifici H2O, 17003 Girona, Spain
- Sustainability Cluster, School of Engineering, UPES, Dehradun 248007, India
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing Monterrey, Monterrey 64849, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing Monterrey, Monterrey 64849, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
7
|
Xiang T, Zhou W, Xu C, Xu J, Liu R, Wang N, Xu L, Zhao Y, Luo M, Mo X, Mao Z, Wan Y. Transcriptomic Analysis Reveals Competitive Growth Advantage of Non-pigmented Serratia marcescens Mutants. Front Microbiol 2022; 12:793202. [PMID: 35058908 PMCID: PMC8764370 DOI: 10.3389/fmicb.2021.793202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022] Open
Abstract
Serratia marcescens is a common bacterium well-known for the red secondary metabolite prodigiosin. However, color mutants have long been described. Non-pigmented strains can be found to exist both naturally and under laboratory conditions. It is unclear why S. marcescens loses prodigiosin synthesis capacity in certain conditions. In the present study, we find that the spontaneous color mutants arise within a few generations (about five passages) and rapidly replace the wild-type parent cells (about 24 passages), which indicates a growth advantage of the former. Although, the loss of prodigiosin synthesis genes (pigA-N) is frequently reported as the major reason for pigment deficiency, it was unexpected that the whole gene cluster is completely preserved in the different color morphotypes. Comparative transcriptomic analysis indicates a dramatic variation at the transcriptional level. Most of the pig genes are significantly downregulated in the color morphotypes which directly lead to prodigiosin dyssynthesis. Besides, the transcriptional changes of several other genes have been noticed, of which transcriptional regulators, membrane proteins, and nearly all type VI secretion system (T6SS) components are generally downregulated, while both amino acid metabolite and transport systems are activated. In addition, we delete the transcription regulator slyA to generate a non-pigmented mutant. The ΔslyA strain loses prodigiosin synthesis capacity, but has a higher cell density, and surprisingly enhances the virulence as an entomopathogen. These data indicate that S. marcescens shuts down several high-cost systems and activates the amino acid degradation and transport pathways at the transcriptional level to obtain extra resources, which provides new insights into the competitive growth advantage of bacterial spontaneous color mutants.
Collapse
Affiliation(s)
- Tingting Xiang
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Wei Zhou
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Cailing Xu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Jing Xu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Rui Liu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Nuo Wang
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Liang Xu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yu Zhao
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Minhui Luo
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiaoxin Mo
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Zeyang Mao
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yongji Wan
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Backes N, Phillips GJ. Repurposing CRISPR-Cas Systems as Genetic Tools for the Enterobacteriales. EcoSal Plus 2021; 9:eESP00062020. [PMID: 34125584 PMCID: PMC11163844 DOI: 10.1128/ecosalplus.esp-0006-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022]
Abstract
Over the last decade, the study of CRISPR-Cas systems has progressed from a newly discovered bacterial defense mechanism to a diverse suite of genetic tools that have been applied across all domains of life. While the initial applications of CRISPR-Cas technology fulfilled a need to more precisely edit eukaryotic genomes, creative "repurposing" of this adaptive immune system has led to new approaches for genetic analysis of microorganisms, including improved gene editing, conditional gene regulation, plasmid curing and manipulation, and other novel uses. The main objective of this review is to describe the development and current state-of-the-art use of CRISPR-Cas techniques specifically as it is applied to members of the Enterobacteriales. While many of the applications covered have been initially developed in Escherichia coli, we also highlight the potential, along with the limitations, of this technology for expanding the availability of genetic tools in less-well-characterized non-model species, including bacterial pathogens.
Collapse
Affiliation(s)
- Nicholas Backes
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Gregory J. Phillips
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
9
|
Sun D, Zhou X, Liu C, Zhu J, Ru Y, Liu W, Liu J. Fnr Negatively Regulates Prodigiosin Synthesis in Serratia sp. ATCC 39006 During Aerobic Fermentation. Front Microbiol 2021; 12:734854. [PMID: 34603264 PMCID: PMC8485047 DOI: 10.3389/fmicb.2021.734854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022] Open
Abstract
The well-known Crp/Fnr family regulator Fnr has long been recognized as an oxygen sensor to regulate multiple biological processes, including the switch between aerobic/anaerobic metabolism, nitrogen fixation, bioluminescence, infection, and virulence. In most cases, Fnr was found to be active under anaerobic conditions. However, its role in aerobic antibiotic metabolism has not yet been revealed. In this research, we report that in the model organism, Serratia sp. ATCC 39006, Fnr (Ser39006_013370) negatively regulates prodigiosin production by binding to the spacer between the −10 and −35 region in the promoter of prodigiosin biosynthetic gene cluster under aerobic conditions. Fnr was also shown to modulate the anti-bacterial activity and motility by regulating pathway-specific regulatory genes, indicating that Fnr acts as a global regulator in Serratia sp. ATCC 39006. For the first time, we describe that Fnr regulates antibiotic synthesis in the presence of oxygen, which expands the known physiological functions of Fnr and benefits the further investigation of this important transcriptional regulator.
Collapse
Affiliation(s)
- Di Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xuge Zhou
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Cong Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yunrui Ru
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
10
|
Campa AR, Smith LM, Hampton HG, Sharma S, Jackson SA, Bischler T, Sharma CM, Fineran PC. The Rsm (Csr) post-transcriptional regulatory pathway coordinately controls multiple CRISPR-Cas immune systems. Nucleic Acids Res 2021; 49:9508-9525. [PMID: 34403463 PMCID: PMC8450108 DOI: 10.1093/nar/gkab704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
CRISPR-Cas systems provide bacteria with adaptive immunity against phages and plasmids; however, pathways regulating their activity are not well defined. We recently developed a high-throughput genome-wide method (SorTn-seq) and used this to uncover CRISPR-Cas regulators. Here, we demonstrate that the widespread Rsm/Csr pathway regulates the expression of multiple CRISPR-Cas systems in Serratia (type I-E, I-F and III-A). The main pathway component, RsmA (CsrA), is an RNA-binding post-transcriptional regulator of carbon utilisation, virulence and motility. RsmA binds cas mRNAs and suppresses type I and III CRISPR-Cas interference in addition to adaptation by type I systems. Coregulation of CRISPR-Cas and flagella by the Rsm pathway allows modulation of adaptive immunity when changes in receptor availability would alter susceptibility to flagella-tropic phages. Furthermore, we show that Rsm controls CRISPR-Cas in other genera, suggesting conservation of this regulatory strategy. Finally, we identify genes encoding RsmA homologues in phages, which have the potential to manipulate the physiology of host bacteria and might provide an anti-CRISPR activity.
Collapse
Affiliation(s)
- Aroa Rey Campa
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.,Bio-Protection Research Centre, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Leah M Smith
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Hannah G Hampton
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Sahil Sharma
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.,Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Cynthia M Sharma
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.,Bio-Protection Research Centre, University of Otago, PO Box 56, Dunedin 9054, New Zealand.,Genetics Otago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Regulator RcsB Controls Prodigiosin Synthesis and Various Cellular Processes in Serratia marcescens JNB5-1. Appl Environ Microbiol 2021; 87:AEM.02052-20. [PMID: 33158890 DOI: 10.1128/aem.02052-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022] Open
Abstract
Prodigiosin (PG), a red linear tripyrrole pigment normally secreted by Serratia marcescens, has received attention for its reported immunosuppressive, antimicrobial, and anticancer properties. Although several genes have been shown to be important for prodigiosin synthesis, information on the regulatory mechanisms behind this cellular process remains limited. In this work, we identified that the transcriptional regulator RcsB encoding gene BVG90_13250 (rcsB) negatively controlled prodigiosin biosynthesis in S. marcescens Disruption of rcsB conferred a remarkably increased production of prodigiosin. This phenotype corresponded to negative control of transcription of the prodigiosin-associated pig operon by RcsB, probably by binding to the promoter region of the prodigiosin synthesis positive regulator FlhDC. Moreover, using transcriptomics and further experiments, we revealed that RcsB also controlled some other important cellular processes, including swimming and swarming motilities, capsular polysaccharide production, biofilm formation, and acid resistance (AR), in S. marcescens Collectively, this work proposes that RcsB is a prodigiosin synthesis repressor in S. marcescens and provides insight into the regulatory mechanism of RcsB in cell motility, capsular polysaccharide production, and acid resistance in S. marcescens IMPORTANCE RcsB is a two-component response regulator in the Rcs phosphorelay system, and it plays versatile regulatory functions in Enterobacteriaceae However, information on the function of the RcsB protein in bacteria, especially in S. marcescens, remains limited. In this work, we illustrated experimentally that the RcsB protein was involved in diverse cellular processes in S. marcescens, including prodigiosin synthesis, cell motility, capsular polysaccharide production, biofilm formation, and acid resistance. Additionally, the regulatory mechanism of the RcsB protein in these cellular processes was investigated. In conclusion, this work indicated that RcsB could be a regulator for prodigiosin synthesis and provides insight into the function of the RcsB protein in S. marcescens.
Collapse
|
12
|
Korf IHE, Kittler S, Bierbrodt A, Mengden R, Rohde C, Rohde M, Kroj A, Lehnherr T, Fruth A, Flieger A, Lehnherr H, Wittmann J. In Vitro Evaluation of a Phage Cocktail Controlling Infections with Escherichia coli. Viruses 2020; 12:v12121470. [PMID: 33352791 PMCID: PMC7768485 DOI: 10.3390/v12121470] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Worldwide, poultry industry suffers from infections caused by avian pathogenic Escherichia coli. Therapeutic failure due to resistant bacteria is of increasing concern and poses a threat to human and animal health. This causes a high demand to find alternatives to fight bacterial infections in animal farming. Bacteriophages are being especially considered for the control of multi-drug resistant bacteria due to their high specificity and lack of serious side effects. Therefore, the study aimed on characterizing phages and composing a phage cocktail suitable for the prevention of infections with E. coli. Six phages were isolated or selected from our collections and characterized individually and in combination with regard to host range, stability, reproduction, and efficacy in vitro. The cocktail consisting of six phages was able to inhibit formation of biofilms by some E. coli strains but not by all. Phage-resistant variants arose when bacterial cells were challenged with a single phage but not when challenged by a combination of four or six phages. Resistant variants arising showed changes in carbon metabolism and/or motility. Genomic comparison of wild type and phage-resistant mutant E28.G28R3 revealed a deletion of several genes putatively involved in phage adsorption and infection.
Collapse
Affiliation(s)
- Imke H. E. Korf
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (C.R.); (J.W.)
- Correspondence:
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | | | - Ruth Mengden
- Food Inspection, Animal Welfare and Veterinary Service of the Land of Bremen, Border Control Post Bremerhaven, Senator-Borttscheller-Straße 8, 27568 Bremerhaven, Germany;
| | - Christine Rohde
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (C.R.); (J.W.)
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz-Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany;
| | - Andrea Kroj
- PTC Phage Technology Center GmbH, Siemensstraße 42, 59199 Bönen, Germany; (A.K.); (T.L.); (H.L.)
| | - Tatiana Lehnherr
- PTC Phage Technology Center GmbH, Siemensstraße 42, 59199 Bönen, Germany; (A.K.); (T.L.); (H.L.)
| | - Angelika Fruth
- Robert Koch Institute, Burgstraße 37, 38855 Wernigerode, Germany; (A.F.); (A.F.)
| | - Antje Flieger
- Robert Koch Institute, Burgstraße 37, 38855 Wernigerode, Germany; (A.F.); (A.F.)
| | - Hansjörg Lehnherr
- PTC Phage Technology Center GmbH, Siemensstraße 42, 59199 Bönen, Germany; (A.K.); (T.L.); (H.L.)
| | - Johannes Wittmann
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (C.R.); (J.W.)
| |
Collapse
|
13
|
Csörgő B, León LM, Chau-Ly IJ, Vasquez-Rifo A, Berry JD, Mahendra C, Crawford ED, Lewis JD, Bondy-Denomy J. A compact Cascade–Cas3 system for targeted genome engineering. Nat Methods 2020; 17:1183-1190. [DOI: 10.1038/s41592-020-00980-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 09/15/2020] [Indexed: 12/26/2022]
|
14
|
Quintero-Yanes A, Lee CM, Monson R, Salmond G. The FloR master regulator controls flotation, virulence and antibiotic production in Serratia sp. ATCC 39006. Environ Microbiol 2020; 22:2921-2938. [PMID: 32352190 DOI: 10.1111/1462-2920.15048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 11/26/2022]
Abstract
Serratia sp. ATCC 39006 produces intracellular gas vesicles to enable upward flotation in water columns. It also uses flagellar rotation to swim through liquid and swarm across semi-solid surfaces. Flotation and motility can be co-regulated with production of a β-lactam antibiotic (carbapenem carboxylate) and a linear tripyrrole red antibiotic, prodigiosin. Production of gas vesicles, carbapenem and prodigiosin antibiotics, and motility are controlled by master transcriptional and post-transcriptional regulators, including the SmaI/SmaR-based quorum sensing system and the mRNA binding protein, RsmA. Recently, the ribose operon repressor, RbsR, was also defined as a pleiotropic regulator of flotation and virulence factor elaboration in this strain. Here, we report the discovery of a new global regulator (FloR; a DeoR family transcription factor) that modulates flotation through control of gas vesicle morphogenesis. The floR mutation is highly pleiotropic, down-regulating production of gas vesicles, carbapenem and prodigiosin antibiotics, and infection in Caenorhabditis elegans, but up-regulating flagellar motility. Detailed proteomic analysis using TMT peptide labelling and LC-MS/MS revealed that FloR is a physiological master regulator that operates through subordinate pleiotropic regulators including Rap, RpoS, RsmA, PigU, PstS and PigT.
Collapse
Affiliation(s)
- Alex Quintero-Yanes
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Cambridge, CB2 1QW, UK.,Bacterial Cell cycle and Development (BCcD), University of Namur, 61 Rue de Bruxelles, Namur, 5000, Belgium
| | - Chin Mei Lee
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Cambridge, CB2 1QW, UK.,Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Gambang, 26300, Malaysia
| | - Rita Monson
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Cambridge, CB2 1QW, UK
| | - George Salmond
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Cambridge, CB2 1QW, UK
| |
Collapse
|
15
|
LysR-Type Transcriptional Regulator MetR Controls Prodigiosin Production, Methionine Biosynthesis, Cell Motility, H 2O 2 Tolerance, Heat Tolerance, and Exopolysaccharide Synthesis in Serratia marcescens. Appl Environ Microbiol 2020; 86:AEM.02241-19. [PMID: 31791952 DOI: 10.1128/aem.02241-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/23/2019] [Indexed: 12/31/2022] Open
Abstract
Prodigiosin, a secondary metabolite produced by Serratia marcescens, has attracted attention due to its immunosuppressive, antimicrobial, and anticancer properties. However, information on the regulatory mechanism behind prodigiosin biosynthesis in S. marcescens remains limited. In this work, a prodigiosin-hyperproducing strain with the BVG90_22495 gene disrupted (ZK66) was selected from a collection of Tn5G transposon insertion mutants. Using real-time quantitative PCR (RT-qPCR) analysis, β-galactosidase assays, transcriptomics analysis, and electrophoretic mobility shift assays (EMSAs), the LysR-type regulator MetR encoded by the BVG90_22495 gene was found to affect prodigiosin synthesis, and this correlated with MetR directly binding to the promoter region of the prodigiosin-synthesis positive regulator PigP and hence negatively regulated the expression of the prodigiosin-associated pig operon. More analyses revealed that MetR regulated some other important cellular processes, including methionine biosynthesis, cell motility, H2O2 tolerance, heat tolerance, exopolysaccharide synthesis, and biofilm formation in S. marcescens Although MetR protein is highly conserved in many bacteria, we report here on the LysR-type regulator MetR exhibiting novel roles in negatively regulating prodigiosin synthesis and positively regulating heat tolerance, exopolysaccharide synthesis, and biofilm formation.IMPORTANCE Serratia marcescens, a Gram-negative bacterium, is found in a wide range of ecological niches and can produce several secondary metabolites, including prodigiosin, althiomycin, and serratamolide. Among them, prodigiosin shows diverse functions as an immunosuppressant, antimicrobial, and anticancer agent. However, the regulatory mechanisms behind prodigiosin synthesis in S. marcescens are not completely understood. Here, we adapted a transposon mutant library to identify the genes related to prodigiosin synthesis, and the BVG90_22495 gene encoding the LysR-type regulator MetR was found to negatively regulate prodigiosin synthesis. The molecular mechanism of the metR mutant hyperproducing prodigiosin was investigated. Additionally, we provided evidence supporting new roles for MetR in regulating methionine biosynthesis, cell motility, heat tolerance, H2O2 tolerance, and exopolysaccharide synthesis in S. marcescens Collectively, this work provides novel insight into regulatory mechanisms of prodigiosin synthesis and uncovers novel roles for the highly conserved MetR protein in regulating prodigiosin synthesis, heat tolerance, exopolysaccharide (EPS) synthesis, and biofilm formation.
Collapse
|
16
|
A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat Microbiol 2019; 5:48-55. [PMID: 31819217 DOI: 10.1038/s41564-019-0612-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/17/2019] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas systems provide bacteria with adaptive immunity against bacteriophages1. However, DNA modification2,3, the production of anti-CRISPR proteins4,5 and potentially other strategies enable phages to evade CRISPR-Cas. Here, we discovered a Serratia jumbo phage that evades type I CRISPR-Cas systems, but is sensitive to type III immunity. Jumbo phage infection resulted in a nucleus-like structure enclosed by a proteinaceous phage shell-a phenomenon only reported recently for distantly related Pseudomonas phages6,7. All three native CRISPR-Cas complexes in Serratia-type I-E, I-F and III-A-were spatially excluded from the phage nucleus and phage DNA was not targeted. However, the type III-A system still arrested jumbo phage infection by targeting phage RNA in the cytoplasm in a process requiring Cas7, Cas10 and an accessory nuclease. Type III, but not type I, systems frequently targeted nucleus-forming jumbo phages that were identified in global viral sequence datasets. The ability to recognize jumbo phage RNA and elicit immunity probably contributes to the presence of both RNA- and DNA-targeting CRISPR-Cas systems in many bacteria1,8. Together, our results support the model that jumbo phage nucleus-like compartments serve as a barrier to DNA-targeting, but not RNA-targeting, defences, and that this phenomenon is widespread among jumbo phages.
Collapse
|
17
|
Pan X, Sun C, Tang M, Liu C, Zhang J, You J, Osire T, Sun Y, Zhao Y, Xu M, Yang T, Rao Z. Loss of Serine-Type D-Ala-D-Ala Carboxypeptidase DacA Enhances Prodigiosin Production in Serratia marcescens. Front Bioeng Biotechnol 2019; 7:367. [PMID: 31850328 PMCID: PMC6901396 DOI: 10.3389/fbioe.2019.00367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
Serratia marcescens, a gram-negative bacterium, found in a wide range of ecological niches can produce several high-value products, including prodigiosin, althiomycin, and serratamolide. Among them, prodigiosin has attracted attention due to its immunosuppressive, antimicrobial, and anticancer properties. However, the regulatory mechanisms behind prodigiosin synthesis in Serratia marcescens remains limited. Here, a transposon mutant library was constructed to identify the genes related to prodigiosin synthesis, and BVG90_02415 gene encoding a peptidoglycan synthesizing enzyme D-Ala-D-Ala carboxypeptidase DacA was found to negatively regulates prodigiosin synthesis. Quantitative measurements revealed that disruption of dacA increased prodigiosin production 1.46-fold that of the wild-type strain JNB5-1 in fermentation medium. By comparing differences in cell growth, pigA gene expression level, cell morphology, membrane permeability, and intracellular prodigiosin concentration between wild-type strain JNB5-1 and dacA mutant SK4-72, results revealed that the mechanism for hyper-producing of prodigiosin by the dacA mutant was probably that dacA disruption enhanced prodigiosin leakage, which in turn alleviated feedback inhibition of prodigiosin and increased expression of pig gene cluster. Collectively, this work provides a novel insight into regulatory mechanisms of prodigiosin synthesis and uncovers new roles of DacA protein in regulating cell growth, cell morphology, and membrane permeability in Serratia marcescens. Finally, this study offers a new strategy for improving production of high-value compounds in Serratia marcescens.
Collapse
Affiliation(s)
- Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Changhao Sun
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Mi Tang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chao Liu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jianing Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Tolbert Osire
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yang Sun
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Youxi Zhao
- Biochemical Engineering College, Beijing Union University, Beijing, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Shin GY, Schachterle JK, Shyntum DY, Moleleki LN, Coutinho TA, Sundin GW. Functional Characterization of a Global Virulence Regulator Hfq and Identification of Hfq-Dependent sRNAs in the Plant Pathogen Pantoea ananatis. Front Microbiol 2019; 10:2075. [PMID: 31572315 PMCID: PMC6749038 DOI: 10.3389/fmicb.2019.02075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022] Open
Abstract
To successfully infect plant hosts, the collective regulation of virulence factors in a bacterial pathogen is crucial. Hfq is an RNA chaperone protein that facilitates the small RNA (sRNA) regulation of global gene expression at the post-transcriptional level. In this study, the functional role of Hfq in a broad host range phytopathogen Pantoea ananatis was determined. Inactivation of the hfq gene in P. ananatis LMG 2665T resulted in the loss of pathogenicity and motility. In addition, there was a significant reduction of quorum sensing signal molecule acyl-homoserine lactone (AHL) production and biofilm formation. Differential sRNA expression analysis between the hfq mutant and wild-type strains of P. ananatis revealed 276 sRNAs affected in their abundance by the loss of hfq at low (OD600 = 0.2) and high cell (OD600 = 0.6) densities. Further analysis identified 25 Hfq-dependent sRNAs, all showing a predicted Rho-independent terminator of transcription and mapping within intergenic regions of the P. ananatis genome. These included known sRNAs such as ArcZ, FnrS, GlmZ, RprA, RyeB, RyhB, RyhB2, Spot42, and SsrA, and 16 novel P. ananatis sRNAs. The current study demonstrated that Hfq is an important component of the collective regulation of virulence factors and sets a foundation for understanding Hfq-sRNA mediated regulation in the phytopathogen P. ananatis.
Collapse
Affiliation(s)
- Gi Yoon Shin
- Centre for Microbial Ecology and Genomics, Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.,Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Jeffrey K Schachterle
- Department of Plant, Soil and Microbial Sciences, College of Agriculture & Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Divine Y Shyntum
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lucy N Moleleki
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Teresa A Coutinho
- Centre for Microbial Ecology and Genomics, Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.,Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, College of Agriculture & Natural Resources, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
19
|
Fineran PC. Resistance is not futile: bacterial 'innate' and CRISPR-Cas 'adaptive' immune systems. MICROBIOLOGY-SGM 2019; 165:834-841. [PMID: 30958259 DOI: 10.1099/mic.0.000802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacteria are under a constant pressure from their viruses (phages) and other mobile genetic elements. They protect themselves through a range of defence strategies, which can be broadly classified as 'innate' and 'adaptive'. The bacterial innate immune systems include defences provided by restriction modification and abortive infection, among others. Bacterial adaptive immunity is elicited by a diverse range of CRISPR-Cas systems. Here, I discuss our research on both innate and adaptive phage resistance mechanisms and some of the evasion strategies employed by phages.
Collapse
Affiliation(s)
- Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
20
|
Parmeciano Di Noto G, Molina MC, Quiroga C. Insights Into Non-coding RNAs as Novel Antimicrobial Drugs. Front Genet 2019; 10:57. [PMID: 30853970 PMCID: PMC6395445 DOI: 10.3389/fgene.2019.00057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistant bacteria are a serious worldwide problem, especially carbapenem-resistant Enterobacteriaceae (such as Klebsiella pneumoniae and Escherichia coli), Acinetobacter baumannii and Pseudomonas aeruginosa. Since the emergence of extensive and pan-drug resistant bacteria there are few antibiotics left to treat patients, thus novel RNA-based strategies are being considered. Here, we examine the current situation of different non-coding RNAs found in bacteria as well as their function and potential application as antimicrobial agents. Furthermore, we discuss the factors that may contribute in the efficient development of RNA-based drugs, the limitations for their implementation and the use of nanocarriers for delivery.
Collapse
Affiliation(s)
- Gisela Parmeciano Di Noto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - María Carolina Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - Cecilia Quiroga
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| |
Collapse
|
21
|
Wang C, Pu T, Lou W, Wang Y, Gao Z, Hu B, Fan J. Hfq, a RNA Chaperone, Contributes to Virulence by Regulating Plant Cell Wall-Degrading Enzyme Production, Type VI Secretion System Expression, Bacterial Competition, and Suppressing Host Defense Response in Pectobacterium carotovorum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1166-1178. [PMID: 30198820 DOI: 10.1094/mpmi-12-17-0303-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hfq is a RNA chaperone and participates in a wide range of cellular processes and pathways. In this study, mutation of hfq gene from Pectobacterium carotovorum subsp. carotovorum PccS1 led to significantly reduced virulence and plant cell wall-degrading enzyme (PCWDE) activities. In addition, the mutant exhibited decreased biofilm formation and motility and greatly attenuated carbapenem production as well as secretion of hemolysin coregulated protein (Hcp) as compared with wild-type strain PccS1. Moreover, a higher level of callose deposition was induced in Nicotiana benthamiana leaves when infiltrated with the mutant. A total of 26 small (s)RNA deletion mutants were obtained among a predicted 27 sRNAs, and three mutants exhibited reduced virulence in the host plant. These results suggest that hfq plays a key role in Pectobacterium virulence by positively impacting PCWDE production, secretion of the type VI secretion system, bacterial competition, and suppression of host plant responses.
Collapse
Affiliation(s)
- Chunting Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianxin Pu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangying Lou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zishu Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Baishi Hu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqin Fan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
22
|
Medina-Aparicio L, Dávila S, Rebollar-Flores JE, Calva E, Hernández-Lucas I. The CRISPR-Cas system in Enterobacteriaceae. Pathog Dis 2018; 76:4794941. [PMID: 29325038 DOI: 10.1093/femspd/fty002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
In nature, microorganisms are constantly exposed to multiple viral infections and thus have developed many strategies to survive phage attack and invasion by foreign DNA. One of such strategies is the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) bacterial immunological system. This defense mechanism is widespread in prokaryotes including several families such as Enterobacteriaceae. Much knowledge about the CRISPR-Cas system has been generated, including its biological functions, transcriptional regulation, distribution, utility as a molecular marker and as a tool for specific genome editing. This review focuses on these aspects and describes the state of the art of the CRISPR-Cas system in the Enterobacteriaceae bacterial family.
Collapse
Affiliation(s)
- Liliana Medina-Aparicio
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Sonia Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Cuernavaca, Morelos 62209, México
| | - Javier E Rebollar-Flores
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Ismael Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| |
Collapse
|
23
|
Differential roles for ArcA and ArcB homologues in swarming motility in Serratia marcescens FS14. Antonie van Leeuwenhoek 2017; 111:609-617. [DOI: 10.1007/s10482-017-0981-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/10/2017] [Indexed: 12/30/2022]
|
24
|
Shanks RMQ, Stella NA, Lahr RM, Aston MA, Brothers KM, Callaghan JD, Sigindere C, Liu X. Suppressor analysis of eepR mutant defects reveals coordinate regulation of secondary metabolites and serralysin biosynthesis by EepR and HexS. MICROBIOLOGY-SGM 2017; 163:280-288. [PMID: 28270264 DOI: 10.1099/mic.0.000422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The EepR transcription factor positively regulates secondary metabolites and tissue-damaging metalloproteases. To gain insight into mechanisms by which EepR regulates pigment and co-regulated factors, genetic suppressor analysis was performed. Suppressor mutations that restored pigment to the non-pigmented ∆eepR mutant mapped to the hexS ORF. Mutation of hexS also restored haemolysis, swarming motility and protease production to the eepR mutant. HexS is a known direct and negative regulator of secondary metabolites in Serratia marcescens and is a LysR family regulator and an orthologue of LrhA. Here, we demonstrate that HexS directly controls eepR and the serralysin gene prtS. EepR was shown to directly regulate eepR expression but indirectly regulate hexS expression. Together, these data indicate that EepR and HexS oppose each other in controlling stationary phase-associated molecules and enzymes.
Collapse
Affiliation(s)
- Robert M Q Shanks
- Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Nicholas A Stella
- Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Roni M Lahr
- Present address: Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Marissa A Aston
- Present address: Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Kimberly M Brothers
- Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Jake D Callaghan
- Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Cihad Sigindere
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinyu Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|