1
|
Liu G, Tian N, Chen L, Xie S, Hu J, Jin Q, Shao C, Huang M, Su Q, Huang J, Liu Z, Liu S. Transcriptomic Analysis of the Negative Effect of Epigallocatechin-3-Gallate from Tea Plant ( Camellia sinensis) on Agrobacterium-Mediated Transformation Efficiency. Curr Issues Mol Biol 2025; 47:178. [PMID: 40136432 PMCID: PMC11941606 DOI: 10.3390/cimb47030178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Agrobacterium-mediated transformation is a widely used method for plant genetic modification. However, its efficiency in tea plants is notably low, and the underlying molecular mechanisms remain unclear, hindering advancements in the molecular breeding and biology of tea plants. In this study, tobacco was utilized as a model to investigate the effects of various concentrations of epigallocatechin-3-gallate (EGCG) on Agrobacterium transformation efficiency. The results demonstrated that at an EGCG concentration of 0.4 mg/mL, Agrobacterium nearly lost its ability to transform tobacco. Additionally, malondialdehyde content in Agrobacterium was measured before and after EGCG treatment. The findings indicated that EGCG treatment led to an increase in malondialdehyde content. Transcriptome sequencing analysis revealed that differentially expressed genes (DEGs) involved in Agrobacterium flagellar synthesis and secretion systems were down-regulated under EGCG stress. Furthermore, flgE, virB4, and virB6 were identified as hub genes through weighted gene co-expression network analysis (WGCNA). These results elucidate the dynamic mechanisms by which EGCG affects Agrobacterium at both the physicochemical and molecular levels, providing a theoretical basis for optimizing genetic transformation in tea plants.
Collapse
Affiliation(s)
- Guizhi Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Na Tian
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Lan Chen
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Siyi Xie
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Jinyu Hu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Qifang Jin
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Chenyu Shao
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Mengdi Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Qin Su
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Jianan Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Shuoqian Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Onyeziri MC, Hardy GG, Natarajan R, Xu J, Reynolds IP, Kim J, Merritt PM, Danhorn T, Hibbing ME, Weisberg AJ, Chang JH, Fuqua C. Dual adhesive unipolar polysaccharides synthesized by overlapping biosynthetic pathways in Agrobacterium tumefaciens. Mol Microbiol 2022; 117:1023-1047. [PMID: 35191101 PMCID: PMC9149101 DOI: 10.1111/mmi.14887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
Agrobacterium tumefaciens is a member of the Alphaproteobacteria that pathogenises plants and associates with biotic and abiotic surfaces via a single cellular pole. A. tumefaciens produces the unipolar polysaccharide (UPP) at the site of surface contact. UPP production is normally surface-contact inducible, but elevated levels of the second messenger cyclic diguanylate monophosphate (cdGMP) bypass this requirement. Multiple lines of evidence suggest that the UPP has a central polysaccharide component. Using an A. tumefaciens derivative with elevated cdGMP and mutationally disabled for other dispensable polysaccharides, a series of related genetic screens have identified a large number of genes involved in UPP biosynthesis, most of which are Wzx-Wzy-type polysaccharide biosynthetic components. Extensive analyses of UPP production in these mutants have revealed that the UPP is composed of two genetically, chemically, and spatially discrete forms of polysaccharide, and that each requires a specific Wzy-type polymerase. Other important biosynthetic, processing, and regulatory functions for UPP production are also revealed, some of which are common to both polysaccharides, and a subset of which are specific to each type. Many of the UPP genes identified are conserved among diverse rhizobia, whereas others are more lineage specific.
Collapse
Affiliation(s)
| | - Gail G. Hardy
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Ramya Natarajan
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Jing Xu
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Ian P. Reynolds
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Jinwoo Kim
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Peter M. Merritt
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Thomas Danhorn
- Department of Biology, Indiana University, Bloomington, IN 47405
| | | | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN 47405
| |
Collapse
|
3
|
Bacterial Homologs of Progestin and AdipoQ Receptors (PAQRs) Affect Membrane Energetics Homeostasis but Not Fluidity. J Bacteriol 2022; 204:e0058321. [PMID: 35285724 PMCID: PMC9017321 DOI: 10.1128/jb.00583-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane potential homeostasis is essential for cell survival. Defects in membrane potential lead to pleiotropic phenotypes, consistent with the central role of membrane energetics in cell physiology. Homologs of the progestin and AdipoQ receptors (PAQRs) are conserved in multiple phyla of Bacteria and Eukarya. In eukaryotes, PAQRs are proposed to modulate membrane fluidity and fatty acid (FA) metabolism. The role of bacterial homologs has not been elucidated. Here, we use Escherichia coli and Bacillus subtilis to show that bacterial PAQR homologs, which we name “TrhA,” have a role in membrane energetics homeostasis. Using transcriptional fusions, we show that E. coli TrhA (encoded by yqfA) is part of the unsaturated fatty acid biosynthesis regulon. Fatty acid analyses and physiological assays show that a lack of TrhA in both E. coli and B. subtilis (encoded by yplQ) provokes subtle but consistent changes in membrane fatty acid profiles that do not translate to control of membrane fluidity. Instead, membrane proteomics in E. coli suggested a disrupted energy metabolism and dysregulated membrane energetics in the mutant, though it grew similarly to its parent. These changes translated into a disturbed membrane potential in the mutant relative to its parent under various growth conditions. Similar dysregulation of membrane energetics was observed in a different E. coli strain and in the distantly related B. subtilis. Together, our findings are consistent with a role for TrhA in membrane energetics homeostasis, through a mechanism that remains to be elucidated. IMPORTANCE Eukaryotic homologs of the progestin and AdipoQ receptor family (PAQR) have been shown to regulate membrane fluidity by affecting, through unknown mechanisms, unsaturated fatty acid (FA) metabolism. The bacterial homologs studied here mediate small and consistent changes in unsaturated FA metabolism that do not seem to impact membrane fluidity but, rather, alter membrane energetics homeostasis. Together, the findings here suggest that bacterial and eukaryotic PAQRs share functions in maintaining membrane homeostasis (fluidity in eukaryotes and energetics for bacteria with TrhA homologs).
Collapse
|
4
|
De Silva PM, Patidar R, Graham CI, Brassinga AKC, Kumar A. A response regulator protein with antar domain, AvnR, in Acinetobacter baumannii ATCC 17978 impacts its virulence and amino acid metabolism. MICROBIOLOGY-SGM 2021; 166:554-566. [PMID: 32324528 DOI: 10.1099/mic.0.000913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acinetobacter baumannii, a Gram-negative coccobacillus, is notorious for its involvement in opportunistic infections around the world. Its resistance to antibiotics makes treatment of infections challenging. In this study, we describe a novel response regulator protein, AvnR (A1S_2006) that regulates virulence-related traits in A. baumannii ATCC17978. Sequence analysis suggests that AvnR is a CheY-like response regulator and contains the RNA-binding ANTAR (AmiR and NasR transcription anti-termination regulators) domain. We show that AvnR plays a role in regulating biofilm formation (on glass and plastic surfaces), surface motility, adhesion to A549 cells as well as in nitrogen metabolism in A. baumannii. RNA-Seq analysis revealed that avnR deletion results in altered expression of more than 150 genes (116 upregulated and 42 downregulated). RNA-Seq data suggest that altered biofilm formation and surface motility observed in the avnR deletion mutant is likely mediated by previously unknown pathways. Of note, was the altered expression of genes predicted to be involved in amino acid transport and metabolism in avnR deletion mutant. Biolog phenotypic array showed that deletion of avnR hampered A. baumannii ATCC17978's ability to metabolize various nitrogen sources, particularly that of glutamic acid, serine, histidine, aspartic acid, isoleucine and arginine. Taken together our data show that AvnR, the first ANTAR protein described in A. baumannii, affects virulence phenotypes as well as its ability to metabolize nitrogen sources.
Collapse
Affiliation(s)
- P Malaka De Silva
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Rakesh Patidar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
5
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
6
|
Abstract
Agrobacterium spp. are important plant pathogens that are the causative agents of crown gall or hairy root disease. Their unique infection strategy depends on the delivery of part of their DNA to plant cells. Thanks to this capacity, these phytopathogens became a powerful and indispensable tool for plant genetic engineering and agricultural biotechnology. Although Agrobacterium spp. are standard tools for plant molecular biologists, current laboratory strains have remained unchanged for decades and functional gene analysis of Agrobacterium has been hampered by time-consuming mutation strategies. Here, we developed clustered regularly interspaced short palindromic repeats (CRISPR)-mediated base editing to enable the efficient introduction of targeted point mutations into the genomes of both Agrobacterium tumefaciens and Agrobacterium rhizogenes As an example, we generated EHA105 strains with loss-of-function mutations in recA, which were fully functional for maize (Zea mays) transformation and confirmed the importance of RolB and RolC for hairy root development by A. rhizogenes K599. Our method is highly effective in 9 of 10 colonies after transformation, with edits in at least 80% of the cells. The genomes of EHA105 and K599 were resequenced, and genome-wide off-target analysis was applied to investigate the edited strains after curing of the base editor plasmid. The off-targets present were characteristic of Cas9-independent off-targeting and point to TC motifs as activity hotspots of the cytidine deaminase used. We anticipate that CRISPR-mediated base editing is the start of "engineering the engineer," leading to improved Agrobacterium strains for more efficient plant transformation and gene editing.
Collapse
|
7
|
Pestana-Nobles R, Leyva-Rojas JA, Yosa J. Searching Hit Potential Antimicrobials in Natural Compounds Space against Biofilm Formation. Molecules 2020; 25:E5334. [PMID: 33207596 PMCID: PMC7696173 DOI: 10.3390/molecules25225334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 01/06/2023] Open
Abstract
Biofilms are communities of microorganisms that can colonize biotic and abiotic surfaces and thus play a significant role in the persistence of bacterial infection and resistance to antimicrobial. About 65% and 80% of microbial and chronic infections are associated with biofilm formation, respectively. The increase in infections by multi-resistant bacteria instigates the need for the discovery of novel natural-based drugs that act as inhibitory molecules. The inhibition of diguanylate cyclases (DGCs), the enzyme implicated in the synthesis of the second messenger, cyclic diguanylate (c-di-GMP), involved in the biofilm formation, represents a potential approach for preventing the biofilm development. It has been extensively studied using PleD protein as a model of DGC for in silico studies as virtual screening and as a model for in vitro studies in biofilms formation. This study aimed to search for natural products capable of inhibiting the Caulobacter crescentus enzyme PleD. For this purpose, 224,205 molecules from the natural products ZINC15 database, have been evaluated through molecular docking and molecular dynamic simulation. Our results suggest trans-Aconitic acid (TAA) as a possible starting point for hit-to-lead methodologies to obtain new inhibitors of the PleD protein and hence blocking the biofilm formation.
Collapse
|
8
|
The phosphorylated regulator of chemotaxis is crucial throughout biofilm biogenesis in Shewanella oneidensis. NPJ Biofilms Microbiomes 2020; 6:54. [PMID: 33188190 PMCID: PMC7666153 DOI: 10.1038/s41522-020-00165-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/13/2020] [Indexed: 02/04/2023] Open
Abstract
The core of the chemotaxis system of Shewanella oneidensis is made of the CheA3 kinase and the CheY3 regulator. When appropriated, CheA3 phosphorylates CheY3, which, in turn, binds to the rotor of the flagellum to modify the swimming direction. In this study, we showed that phosphorylated CheY3 (CheY3-P) also plays an essential role during biogenesis of the solid-surface-associated biofilm (SSA-biofilm). Indeed, in a ΔcheY3 strain, the formation of this biofilm is abolished. Using the phospho-mimetic CheY3D56E mutant, we showed that CheY-P is required throughout the biogenesis of the biofilm but CheY3 phosphorylation is independent of CheA3 during this process. We have recently found that CheY3 interacts with two diguanylate cyclases (DGCs) and with MxdA, the c-di-GMP effector, probably triggering exopolysaccharide synthesis by the Mxd machinery. Here, we discovered two additional DGCs involved in SSA-biofilm development and showed that one of them interacts with CheY3. We therefore propose that CheY3-P acts together with DGCs to control SSA-biofilm formation. Interestingly, two orthologous CheY regulators complement the biofilm defect of a ΔcheY3 strain, supporting the idea that biofilm formation could involve CheY regulators in other bacteria.
Collapse
|
9
|
McCarthy RR, Yu M, Eilers K, Wang Y, Lai E, Filloux A. Cyclic di-GMP inactivates T6SS and T4SS activity in Agrobacterium tumefaciens. Mol Microbiol 2019; 112:632-648. [PMID: 31102484 PMCID: PMC6771610 DOI: 10.1111/mmi.14279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2019] [Indexed: 01/17/2023]
Abstract
The Type VI secretion system (T6SS) is a bacterial nanomachine that delivers effector proteins into prokaryotic and eukaryotic preys. This secretion system has emerged as a key player in regulating the microbial diversity in a population. In the plant pathogen Agrobacterium tumefaciens, the signalling cascades regulating the activity of this secretion system are poorly understood. Here, we outline how the universal eubacterial second messenger cyclic di-GMP impacts the production of T6SS toxins and T6SS structural components. We demonstrate that this has a significant impact on the ability of the phytopathogen to compete with other bacterial species in vitro and in planta. Our results suggest that, as opposed to other bacteria, c-di-GMP turns down the T6SS in A. tumefaciens thus impacting its ability to compete with other bacterial species within the rhizosphere. We also demonstrate that elevated levels of c-di-GMP within the cell decrease the activity of the Type IV secretion system (T4SS) and subsequently the capacity of A. tumefaciens to transform plant cells. We propose that such peculiar control reflects on c-di-GMP being a key second messenger that silences energy-costing systems during early colonization phase and biofilm formation, while low c-di-GMP levels unleash T6SS and T4SS to advance plant colonization.
Collapse
Affiliation(s)
- Ronan R. McCarthy
- MRC Centre for Molecular Bacteriology and Infection, Department of Life SciencesImperial College LondonLondonSW7 2AZUK
- Division of Biosciences, Department of Life SciencesCollege of Health and Life Sciences, Brunel University LondonUxbridgeUB8 3PHUK
| | - Manda Yu
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Kira Eilers
- MRC Centre for Molecular Bacteriology and Infection, Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| | - Yi‐Chieh Wang
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Erh‐Min Lai
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
10
|
Thompson MA, Onyeziri MC, Fuqua C. Function and Regulation of Agrobacterium tumefaciens Cell Surface Structures that Promote Attachment. Curr Top Microbiol Immunol 2019; 418:143-184. [PMID: 29998422 PMCID: PMC6330146 DOI: 10.1007/82_2018_96] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Agrobacterium tumefaciens attaches stably to plant host tissues and abiotic surfaces. During pathogenesis, physical attachment to the site of infection is a prerequisite to infection and horizontal gene transfer to the plant. Virulent and avirulent strains may also attach to plant tissue in more benign plant associations, and as with other soil microbes, to soil surfaces in the terrestrial environment. Although most A. tumefaciens virulence functions are encoded on the tumor-inducing plasmid, genes that direct general surface attachment are chromosomally encoded, and thus this process is not obligatorily tied to virulence, but is a more fundamental capacity. Several different cellular structures are known or suspected to contribute to the attachment process. The flagella influence surface attachment primarily via their propulsive activity, but control of their rotation during the transition to the attached state may be quite complex. A. tumefaciens produces several pili, including the Tad-type Ctp pili, and several plasmid-borne conjugal pili encoded by the Ti and At plasmids, as well as the so-called T-pilus, involved in interkingdom horizontal gene transfer. The Ctp pili promote reversible interactions with surfaces, whereas the conjugal and T-pili drive horizontal gene transfer (HGT) interactions with other cells and tissues. The T-pilus is likely to contribute to physical association with plant tissues during DNA transfer to plants. A. tumefaciens can synthesize a variety of polysaccharides including cellulose, curdlan (β-1,3 glucan), β-1,2 glucan (cyclic and linear), succinoglycan, and a localized polysaccharide(s) that is confined to a single cellular pole and is called the unipolar polysaccharide (UPP). Lipopolysaccharides are also in the outer leaflet of the outer membrane. Cellulose and curdlan production can influence attachment under certain conditions. The UPP is required for stable attachment under a range of conditions and on abiotic and biotic surfaces. Other factors that have been reported to play a role in attachment include the elusive protein called rhicadhesin. The process of surface attachment is under extensive regulatory control and can be modulated by environmental conditions, as well as by direct responses to surface contact. Complex transcriptional and post-transcriptional control circuitry underlies much of the production and deployment of these attachment functions.
Collapse
Affiliation(s)
- Melene A Thompson
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
11
|
Abstract
Agrobacterium exopolysaccharides play a major role in the life of the cell. Exopolysaccharides are required for bacterial growth as a biofilm and they protect the bacteria against environmental stresses. Five of the exopolysaccharides made by A. tumefaciens have been characterized extensively with respect to their structure, synthesis, regulation, and role in the life of the bacteria. These are cyclic-β-(1, 2)-glucan, cellulose, curdlan, succinoglycan, and the unipolar polysaccharide (UPP). This chapter describes the structure, synthesis, regulation, and function of these five exopolysaccharides.
Collapse
|