1
|
Britton SJ, Dingemans T, Rogers LJ, White JS, Maskell DL. Excitation of filamentous growth in Dekkera spp. by quorum sensing aromatic alcohols 2-phenylethanol and tryptophol. FEMS Microbiol Lett 2025; 372:fnae105. [PMID: 39657076 PMCID: PMC11719618 DOI: 10.1093/femsle/fnae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
Fungi from the genus Dekkera, also known as Brettanomyces, are significant contaminants in commercial beer and wine production, and when present unintentionally, these non-domesticated yeasts result in the development of undesirable sensorial characteristics, in part due to the production of volatile phenols and acetate esters. The persistence of Dekkera spp. in industrial manufacturing environments can be attributed to its strong bioadhesive properties, allowing it to attach to various surfaces and form biofilms, which often contribute to recurrent contaminations. In other fungi, the yeast-to-filamentous transition is pivotal in enhancing bioadhesive properties, a process tightly regulated by density-dependent quorum-sensing mechanisms. However, there is no documented evidence regarding the influence of fungal quorum-sensing compounds on the yeast-to-filamentous transition in Dekkera, nor is there any evidence of existing quorum-sensing circuits in this genus. In this investigation, two Dekkera spp. were cultivated on a modified nitrogen-limiting synthetic low-ammonium dextrose medium supplemented with exogenous concentrations of quorum-sensing molecules 2-phenylethanol and tryptophol. Following cultivation, whole colonies were imaged and analyzed with a whole colony filamentation algorithm to quantify their filamentation. Our results demonstrate that the quorum-sensing compounds 2-phenylethanol and tryptophol significantly promote the yeast-to-filamentous transition in Dekkera spp., underscoring the broader presence of quorum-regulated social behaviors within this genus.
Collapse
Affiliation(s)
- Scott J Britton
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
- Research and Development, Brouwerij Duvel Moortgat, 2870 Puurs-Sint-Amands, Belgium
| | - Thijs Dingemans
- Research and Development, Brouwerij Duvel Moortgat, 2870 Puurs-Sint-Amands, Belgium
| | | | - Jane S White
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Dawn L Maskell
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
2
|
Geng F, Liu J, Liu J, Lu Z, Pan Y. Recent progress in understanding the role of bacterial extracellular DNA: focus on dental biofilm. Crit Rev Microbiol 2024:1-19. [PMID: 39648406 DOI: 10.1080/1040841x.2024.2438117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/11/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Dental biofilm is a highly complicated and dynamic structure comprising not only microbial communities but also the surrounding matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA (eDNA) and other biopolymers. In recent years, the important role of bacterial eDNA in dental biofilms has gradually attracted attention. In this review, we present recent studies on the presence, dynamic conformation and release of oral bacterial eDNA. Moreover, updated information on functions associated with oral bacterial eDNA in biofilm formation, antibiotic resistance, activation of the immune system and immune evasion is highlighted. Finally, we summarize the role of oral bacterial eDNA as a promising target for the treatment of oral diseases. Increasing insight into the versatile roles of bacterial eDNA in dental biofilms will facilitate the prevention and treatment of biofilm-induced oral infections.
Collapse
Affiliation(s)
- Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Jinwen Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ze Lu
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Palencia Díaz MA, Tarifa MC, Marucci PL, Genovese DB, Brugnoni LI. Effectiveness of sodium hypochlorite and benzalkonium chloride in reducing spoilage yeast biofilms on food contact surfaces. BIOFOULING 2024; 40:964-978. [PMID: 39624854 DOI: 10.1080/08927014.2024.2435021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
The study evaluates the effectiveness of sodium hypochlorite (NaOCl) and a commercial quaternary ammonium compound (QAC) against planktonic and biofilm-associated yeast (Candida tropicalis, C. krusei, C. kefyr, and Rhodotorula mucilaginosa) isolated from ultrafiltration modules in a clarified apple juice production facility. The results demonstrated that the efficacy of disinfection against planktonic yeast cells did not directly correlate with the effectiveness against biofilm-embedded cells. QAC proved to be more effective than NaOCl in reducing yeast biofilms, achieving a higher than 3-log10 reduction in cell counts. In contrast, NaOCl, even at its maximum permissible concentration for food-contact surfaces, exhibited limited efficacy against biofilms. Both disinfectants had limited success in preventing biofilm regrowth, indicating the potential for persistent contamination in food processing environments. Furthermore, both agents compromised biofilm structure, with QAC having a significantly more pronounced impact than NaOCl.
Collapse
Affiliation(s)
| | - María Clara Tarifa
- Universidad Nacional de Río Negro, CIT Río Negro, Río Negro, Argentina
- Centro de Investigaciones y Transferencia de Río Negro (CIT Río Negro, UNRN-CONICET), Rio Negro, Argentina
| | - Patricia Liliana Marucci
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Diego Bautista Genovese
- Planta Piloto de Ingeniería Química - PLAPIQUI (UNS-CONICET), Bahía Blanca, Argentina
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Lorena Inés Brugnoni
- Instituto de Ciencias Biológicas y Biomédicas del Sur - INBIOSUR (UNS-CONICET), Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
4
|
Dakalbab S, Hamdy R, Holigová P, Abuzaid EJ, Abu-Qiyas A, Lashine Y, Mohammad MG, Soliman SSM. Uniqueness of Candida auris cell wall in morphogenesis, virulence, resistance, and immune evasion. Microbiol Res 2024; 286:127797. [PMID: 38851008 DOI: 10.1016/j.micres.2024.127797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Candida auris has drawn global attention due to its alarming multidrug resistance and the emergence of pan resistant strains. C. auris poses a significant risk in nosocomial candidemia especially among immunocompromised patients. C. auris showed unique virulence characteristics associated with cell wall including cell polymorphism, adaptation, endurance on inanimate surfaces, tolerance to external conditions, and immune evasion. Notably, it possesses a distinctive cell wall composition, with an outer mannan layer shielding the inner 1,3-β glucan from immune recognition, thereby enabling immune evasion and drug resistance. This review aimed to comprehend the association between unique characteristics of C. auris's cell wall and virulence, resistance mechanisms, and immune evasion. This is particularly relevant since the fungal cell wall has no human homology, providing a potential therapeutic target. Understanding the complex interactions between the cell wall and the host immune system is essential for devising effective treatment strategies, such as the use of repurposed medications, novel therapeutic agents, and immunotherapy like monoclonal antibodies. This therapeutic targeting strategy of C. auris holds promise for effective eradication of this resilient pathogen.
Collapse
Affiliation(s)
- Salam Dakalbab
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Science and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Egypt
| | | | - Eman J Abuzaid
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates
| | - Ameera Abu-Qiyas
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates
| | - Yasmina Lashine
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Egypt
| | - Mohammad G Mohammad
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
5
|
Arévalo-Jaimes BV, Admella J, Blanco-Cabra N, Torrents E. Culture media influences Candida parapsilosis growth, susceptibility, and virulence. Front Cell Infect Microbiol 2023; 13:1323619. [PMID: 38156315 PMCID: PMC10753817 DOI: 10.3389/fcimb.2023.1323619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Candida parapsilosis, a pathogenic yeast associated with systemic infections, exhibits metabolic adaptability in response to nutrient availability. Methods We investigated the impact of RPMI glucose supplemented (RPMId), TSB, BHI and YPD media on C. parapsilosis growth, morphology, susceptibility (caspofungin and amphotericin B), and in vivo virulence (Galleria mellonella) in planktonic and biofilm states. Results High-glucose media favors growth but hinders metabolic activity and filamentation. Media promoting carbohydrate production reduces biofilm susceptibility. Virulence differences between planktonic cells and biofilm suspensions from the same media shows that biofilm-related factors influence infection outcome depending on nutrient availability. Pseudohyphal growth occurred in biofilms under low oxygen and shear stress, but its presence is not exclusively correlated with virulence. Discussion This study provides valuable insights into the intricate interplay between nutrient availability and C. parapsilosis pathogenicity. It emphasizes the importance of considering pathogen behavior in diverse conditions when designing research protocols and therapeutic strategies.
Collapse
Affiliation(s)
- Betsy V. Arévalo-Jaimes
- Bacterial Infections and Antimicrobial Therapies Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joana Admella
- Bacterial Infections and Antimicrobial Therapies Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapies Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Zeng H, Stadler M, Abraham WR, Müsken M, Schrey H. Inhibitory Effects of the Fungal Pigment Rubiginosin C on Hyphal and Biofilm Formation in Candida albicans and Candida auris. J Fungi (Basel) 2023; 9:726. [PMID: 37504715 PMCID: PMC10381533 DOI: 10.3390/jof9070726] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
The two fungal human pathogens, Candida auris and Candida albicans, possess a variety of virulence mechanisms. Among them are the formation of biofilms to protect yeast against harsh conditions through the development of (pseudo)hyphae whilst also facilitating the invasion of host tissues. In recent years, increased rates of antifungal resistance have been associated with C. albicans and C. auris, posing a significant challenge for the effective treatment of fungal infections. In the course of our ongoing search for novel anti-infectives, six selected azaphilones were tested for their cytotoxicity and antimicrobial effects as well as for their inhibitory activity against biofilm and hyphal formation. This study revealed that rubiginosin C, derived from stromata of the ascomycete Hypoxylon rubiginosum, effectively inhibited the formation of biofilms, pseudohyphae, and hyphae in both C. auris and C. albicans without lethal effects. Crystal violet staining assays were utilized to assess the inhibition of biofilm formation, while complementary microscopic techniques, such as confocal laser scanning microscopy, scanning electron microscopy, and optical microscopy, were used to investigate the underlying mechanisms. Rubiginosin C is one of the few substances known to effectively target both biofilm formation and the yeast-to-hyphae transition of C. albicans and C. auris within a concentration range not affecting host cells, making it a promising candidate for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Haoxuan Zeng
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Wolf-Rainer Abraham
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research GmbH, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Hedda Schrey
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
7
|
Abreu-Pereira CA, Gorayb-Pereira AL, Menezes Noveletto JV, Jordão CC, Pavarina AC. Zerumbone Disturbs the Extracellular Matrix of Fluconazole-Resistant Candida albicans Biofilms. J Fungi (Basel) 2023; 9:jof9050576. [PMID: 37233287 DOI: 10.3390/jof9050576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
This study assessed the effect of zerumbone (ZER) against fluconazole-resistant (CaR) and -susceptible Candida albicans (CaS) biofilms and verified the influence of ZER on extracellular matrix components. Initially, to determine the treatment conditions, the minimum inhibitory concentration (MIC), the minimum fungicidal concentration (MFC) and the survival curve were evaluated. Biofilms were formed for 48 h and exposed to ZER at concentrations of 128 and 256 µg/mL for 5, 10 and 20 min (n = 12). One group of biofilms did not receive the treatment in order to monitor the effects. The biofilms were evaluated to determine the microbial population (CFU/mL), and the extracellular matrix components (water-soluble polysaccharides (WSP), alkali-soluble polysaccharides (ASPs), proteins and extracellular DNA (eDNA), as well as the biomass (total and insoluble) were quantified. The MIC value of ZER for CaS was 256 μg/mL, and for CaR, it was 64 μg/mL. The survival curve and the MFC value coincided for CaS (256 μg/mL) and CaR (128 μg/mL). ZER reduced the cellular viability by 38.51% for CaS and by 36.99% for CaR. ZER at 256 µg/mL also reduced the total biomass (57%), insoluble biomass (45%), WSP (65%), proteins (18%) and eDNA (78%) of CaS biofilms. In addition, a reduction in insoluble biomass (13%), proteins (18%), WSP (65%), ASP (10%) and eDNA (23%) was also observed in the CaR biofilms. ZER was effective against fluconazole-resistant and -susceptible C. albicans biofilms and disturbed the extracellular matrix.
Collapse
Affiliation(s)
- César Augusto Abreu-Pereira
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, Brazil
| | - Ana Luiza Gorayb-Pereira
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, Brazil
| | - João Vinícius Menezes Noveletto
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, Brazil
| | - Cláudia Carolina Jordão
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, Brazil
| | - Ana Cláudia Pavarina
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, Brazil
| |
Collapse
|
8
|
Viana de Sousa T, Carolina Jordão C, Augusto Abreu-Pereira C, Gorayb Pereira AL, Barbugli PA, Klein MI, Pavarina AC. Hydrogen peroxide enhances the efficacy of photodynamic therapy against Candida albicans biofilms. BIOFOULING 2023; 39:94-109. [PMID: 36916295 DOI: 10.1080/08927014.2023.2189011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
The present study aimed to evaluate the effectiveness of hydrogen peroxide (H2O2) combined with antimicrobial photodynamic therapy (aPDT) on biofilms formed by Candida albicans strains which are either susceptible to or resistant to fluconazole. Biofilms were grown and treated with H2O2, followed by the application of Photodithazine® (P) and red light-emitting diode (LED) (L) either separately or combined (n = 12). After the treatment, biofilms were evaluated by estimating colony-forming unit ml-1, extracellular matrix components [water -soluble and -insoluble polysaccharides, proteins, extracellular DNA (eDNA)], biomass (total and insoluble dry-weight), and protein concentration. Biofilms formed by both strains presented a significant reduction in cell viability, biomass, extracellular matrix components (both types of polysaccharides, eDNA), and proteins (in the soluble and insoluble portion of biofilms) compared to the control. Microscopy images of the biofilms after treatments showed disarticulation of the matrix and scattered fungal cells. The application of H2O2 can disturb the organization of the extracellular matrix, and its association with aPDT potentiated the effect of the treatment.
Collapse
Affiliation(s)
- Tábata Viana de Sousa
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Araraquara, SP, Brazil
| | - Cláudia Carolina Jordão
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Araraquara, SP, Brazil
| | - César Augusto Abreu-Pereira
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Araraquara, SP, Brazil
| | - Ana Luiza Gorayb Pereira
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Araraquara, SP, Brazil
| | - Paula Aboud Barbugli
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Araraquara, SP, Brazil
| | - Marlise Inêz Klein
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Ana Claudia Pavarina
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Araraquara, SP, Brazil
| |
Collapse
|
9
|
Abdulghani M, Iram R, Chidrawar P, Bhosle K, Kazi R, Patil R, Kharat K, Zore G. Proteomic profile of Candida albicans biofilm. J Proteomics 2022; 265:104661. [PMID: 35728770 DOI: 10.1016/j.jprot.2022.104661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Candida albicans biofilms are characterized by structural and cellular heterogeneity that confers antifungal resistance and immune evasion. Despite this, biofilm formation remains poorly understood. In this study, we used proteomic analysis to understand biofilm formation in C. albicans related to morphophysiological and architectural features. LC-MS/MS analysis revealed that 64 proteins were significantly modulated, of which 31 were upregulated and 33 were downregulated. The results indicate that metabolism (25 proteins), gene expression (13 proteins), stress response (7 proteins), and cell wall (5 proteins) composition are modulated. The rate of oxidative phosphorylation (OxPhos) and biosynthesis of UDP-N-acetylglucosamine, vitamin B6, and thiamine increased, while the rate of methionine biosynthesis decreased. There was a significant modification of the cell wall architecture due to higher levels of Sun41, Pir1 and Csh1 and increased glycosylation of proteins. It was observed that C. albicans induces hyphal growth by upregulating the expression of genes involved in cAMP-PKA and MAPK pathways. This study is significant in that it suggests an increase in OxPhos and alteration of cell wall architecture that could be contributing to the recalcitrance of C. albicans cells growing in biofilms. Nevertheless, a deeper investigation is needed to explore it further. SIGNIFICANCE: Candida sps is included in the list of pathogens with potential drug resistance threat due to the increased frequency especially colonization of medical devices, and tissues among the patients, in recent years. Significance of our study is that we are reporting traits like modulation in cell wall composition, amino acid and vitamin biosynthesis and importantly energy generation (OxPhos) etc. These traits could be conferring antifungal resistance, host immune evasion etc. and thus survival, in addition to facilitating biofilm formation. These findings are expected to prime the further studies on devising potent strategy against biofilm growth among the patients.
Collapse
Affiliation(s)
- Mazen Abdulghani
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Rasiqua Iram
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Priti Chidrawar
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Kajal Bhosle
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Rubina Kazi
- Division of Biochemical Sciences, CSIR-NCL, Pune 8, MS, India
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, MS, India
| | - Kiran Kharat
- Department of Biotechnology, Deogiri College, Aurangabad, MS, India
| | - Gajanan Zore
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India.
| |
Collapse
|
10
|
Abreu-Pereira CA, Klein MI, Vitorino Lobo CI, Gorayb Pereira AL, Jordão CC, Pavarina AC. DNase enhances photodynamic therapy against fluconazole-resistant Candida albicans biofilms. Oral Dis 2022; 29:1855-1867. [PMID: 35133698 DOI: 10.1111/odi.14149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study evaluated the effectiveness of DNase I combined with antimicrobial photodynamic therapy, mediated by Photodithazine® and light-emitting diode light, against biofilms formed by a fluconazole-resistant Candida albicans strain (ATCC 96901) and two clinical isolates (R14 and R70). MATERIALS AND METHODS Biofilms were grown for 48 h and exposed to DNase for 5 min, followed by application of a photosensitizer (P) and light (L), either singly or combined (P+L+, P-L+, P+L-, P-L-, P-L-DNase, P+L+DNase, P+L-DNase, and P-L+DNase; n = 12). Biofilm analysis included quantification of extracellular matrix components (water-soluble and insoluble proteins and polysaccharides, and extracellular DNA), and biomass (total and insoluble), as well as enumeration of colony-forming units. The data were analyzed using three-way analysis of variance with Bonferroni's post-hoc test. RESULTS The DNase treatment combined with aPDT showed a reduction of 1.92, 1.65, and 1.29 log10 of cell viability compared with untreated controls for ATCC 96901, R14, and R70 strains, respectively. It also reduced extracellular matrix contents of water-soluble polysaccharides (36.3%) and extracellular DNA (72.3%), as well as insoluble biomass content (43.3%). CONCLUSION The three strains showed similar behavior when treated with DNase, and the extracellular matrix components were affected, improving the effectiveness of antimicrobial photodynamic therapy.
Collapse
Affiliation(s)
- César Augusto Abreu-Pereira
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Marlise Inêz Klein
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Carmélia Isabel Vitorino Lobo
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Ana Luiza Gorayb Pereira
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Cláudia Carolina Jordão
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Ana Claudia Pavarina
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Univ Estadual Paulista - UNESP, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| |
Collapse
|
11
|
The inhibitory activity of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) on Candida albicans biofilms. Photodiagnosis Photodyn Ther 2021; 34:102271. [PMID: 33785444 DOI: 10.1016/j.pdpdt.2021.102271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/26/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Biofilm-associated Candida albicans (C. albicans) infections are hard to cure due to their high levels of resistance to antifungal agents. Photodynamic therapy (PDT) is a promising approach for controlling infections caused by C. albicans. This study was designed to explore the inhibitory activity of PDT using 5-aminolevulinic acid (ALA) as photosensitizer against C. albicans biofilms. METHODS C. albicans cell suspensions were incubated for 48 h to form mature biofilms. ALA solution was diluted to 15 mM and incubated with C. albicans biofilms for 5 h before irradiated by red light semiconductor laser under the light intensity of 300 J/cm2 and fluence rate of 100 mW/cm2 for 50 min. The inhibitory activity was evaluated from subcellular level, molecular level and transcriptional level using transmission electron microscopy (TEM) observation, flow cytometry analysis and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) assays, respectively. RESULTS From subcellular level, the degraded content of the cytoplasm, nuclear condensation and mitochondrial swelling were observed after ALA-PDT. From molecular level, ALA-PDT resulted in 19.4 % cell apoptosis. From transcriptional level, ALA-PDT significantly reduced the mRNA expressions of hyphae-specific genes (HWP1 and ALS3) and long-term biofilm maintenance genes (UME6 and HGC1), whereas ALA or red light alone had no significant effect. CONCLUSIONS The inhibitory activity indicated that ALA-PDT may have the potential to serve as an antifungal strategy in eliminatingC. albicans biofilms.
Collapse
|
12
|
Yang X, Pei Z, Hu R, Zhang Z, Lou Z, Sun X. Study on the Inhibitory Activity and Possible Mechanism of Myriocin on Clinically Relevant Drug-Resistant Candida albicans and Its Biofilms. Biol Pharm Bull 2021; 44:305-315. [PMID: 33441497 DOI: 10.1248/bpb.b20-00246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to prevent and control the infection of Candida albicans, the antifungal activity, possible mechanism of myriocin against C. albicans and its biofilm were studied. The antifungal activity of myriocin was investigated by microdilution method. The effect of myriocin on fungal cell wall or membrane was evaluated by adding sorbitol, ergosterol or phytosphingosine (PHS). The damage to the cell membrane was investigated with propidium iodide (PI) staining and visualized by scanning electron microscope (SEM). The effects on biofilms and extracellular polysaccharides (EPS) were observed by crystal violet staining method and phenol-sulfuric acid method respectively. The adhesion of C. albicans cells to hydrocarbons was tested to evaluate cell surface hydrophobic (CSH). The combined effects of myriocin and antifungal drugs commonly used in clinical practice were investigated by using the checkerboard microdilution method. Minimal inhibitory concentrations (MICs) were found to be 0.125-4 µg/mL. Myriocin was found to affect both cell wall and cell membrane. After exposure to myriocin, biofilm and EPS were found to be inhibited and removed, and the CSH was decreased. The combined fungistasis of myriocin and voriconazole (VCZ) or amphotericin B (AMB) were additive. Myriocin had significant antifungal activity against C. albicans, and the antifungal mechanisms might be cell wall and membrane damage. Myriocin effectively inhibited and eliminated biofilms, and its mechanism may be related to the inhibition of EPS and CSH.
Collapse
Affiliation(s)
- Xin Yang
- Department of Pharmacy, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University
| | - Zejun Pei
- Department of Pharmacy, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University
| | - Renjing Hu
- Clinical Laboratory, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University
| | - Zhehao Zhang
- Department of Pharmacy, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University
| | - Zaixiang Lou
- School of Food Science and Technology, Jiangnan University
| | - Xin Sun
- Department of Pharmacy, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University
| |
Collapse
|
13
|
Pham DQ, Bryant SJ, Cheeseman S, Huang LZY, Bryant G, Dupont MF, Chapman J, Berndt CC, Vongsvivut JP, Crawford RJ, Truong VK, Ang ASM, Elbourne A. Micro- to nano-scale chemical and mechanical mapping of antimicrobial-resistant fungal biofilms. NANOSCALE 2020; 12:19888-19904. [PMID: 32985644 DOI: 10.1039/d0nr05617k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A fungal biofilm refers to the agglomeration of fungal cells surrounded by a polymeric extracellular matrix (ECM). The ECM is composed primarily of polysaccharides that facilitate strong surface adhesion, proliferation, and cellular protection from the surrounding environment. Biofilms represent the majority of known microbial communities, are ubiquitous, and are found on a multitude of natural and synthetic surfaces. The compositions, and in-turn nanomechanical properties, of fungal biofilms remain poorly understood, because these systems are complex, composed of anisotropic cellular and extracellular material, and importantly are species and environment dependent. Therefore, genomic variation, and/or mutations, as well as environmental and growth factors can change the composition of a fungal cell's biofilm. In this work, we probe the physico-mechanical and biochemical properties of two fungal species, Candida albicans (C. albicans) and Cryptococcus neoformans (C. neoformans), as well as two antifungal resistant sub-species of C. neoformans, fluconazole-resistant C. neoformans (FlucRC. neoformans) and amphotericin B-resistant C. neoformans (AmBRC. neoformans). A new experimental methodology of characterization is proposed, employing a combination of atomic force microscopy (AFM), instrumented nanoindentation, and Synchrotron ATR-FTIR measurements. This allowed the nano-mechanical and chemical characterisation of each fungal biofilm.
Collapse
Affiliation(s)
- Duy Quang Pham
- Surface Engineering for Advanced Materials (SEAM), Department of Mechanical and Production Design Engineering, Swinburne University of Technology, Hawthorn, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang Y, Song J, Zhang F, Zeng K, Zhu X. Antifungal Photodynamic Activity of Hexyl-Aminolevulinate Ethosomes Against Candida albicans Biofilm. Front Microbiol 2020; 11:2052. [PMID: 33042036 PMCID: PMC7518189 DOI: 10.3389/fmicb.2020.02052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/05/2020] [Indexed: 02/04/2023] Open
Abstract
Biofilm formation is responsible for the development of chronic and recurrent Candida albicans infections. The generation of biofilms is commonly accompanied by high resistance to conventional antifungal drugs, which can increase up to 1,000-fold. Fortunately, antimicrobial photodynamic therapy (aPDT) has shown excellent potential to treat biofilm infections. However, the current most commonly used photosensitizer (PS), aminolevulinic acid (ALA), is hydrophilic, unstable, and has low permeability, leading to unsatisfactory effects on biofilm eradication. To solve these problems, more stable lipophilic PSs and more effective permeability carriers could be considered as two effective solutions. Hexyl-aminolevulinate (HAL) has good bioavailability as a PS, and we proved in a previous study that ethosomes (ES), lipid-based nanocarriers, promote percutaneous drug penetration. In our previous study, a HAL-ES system presented superior photodynamic effects compared to those of ALA or HAL alone. Therefore, here, we aim to evaluate the biological effects of HAL-ES-mediated aPDT on C. albicans biofilm. An XTT sodium salt assay showed that aPDT using 0.5% HAL decreased C. albicans biofilm activity by 69.71 ± 0.43%. Moreover, aPDT with 0.5% HAL-ES further decreased biofilm activity by 92.95 ± 0.16% and inhibited growth of 25.71 ± 1.61% within 48 h, mostly via its effect on the hyphae growth, which correlated with a three-fold increase in C. albicans plasma membrane permeabilization. Notably, HAL-ES-mediated aPDT significantly reduced the sessile minimum inhibitory concentration 50 (SMIC50) of fluconazole to <2.0 μg/ml, and the 21-day survival rate of C. albicans biofilm-infected mice increased from 6.7 to 73.3%. It also significantly reduced the drug resistance and in vivo pathogenicity of C. albicans biofilm. These results demonstrate that HAL-ES-mediated aPDT could be an effective therapy for C. albicans biofilm infections; while also serving as a particularly promising effective treatment for cutaneous or mucocutaneous candidiasis and the prevention of progression to systemic candidiasis.
Collapse
Affiliation(s)
- Yingzhe Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinru Song
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feiyin Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoliang Zhu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Zara G, Budroni M, Mannazzu I, Fancello F, Zara S. Yeast biofilm in food realms: occurrence and control. World J Microbiol Biotechnol 2020; 36:134. [PMID: 32776210 PMCID: PMC7415760 DOI: 10.1007/s11274-020-02911-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
In natural environments, microorganisms form microbial aggregates called biofilms able to adhere to a multitude of different surfaces. Yeasts make no exception to this rule, being able to form biofilms in a plethora of environmental niches. In food realms, yeast biofilms may cause major problems due to their alterative activities. In addition, yeast biofilms are tenacious structures difficult to eradicate or treat with the current arsenal of antifungal agents. Thus, much effort is being made to develop novel approaches to prevent and disrupt yeast biofilms, for example through the use of natural antimicrobials or small molecules with both inhibiting and dispersing properties. The aim of this review is to provide a synopsis of the most recent literature on yeast biofilms regarding: (i) biofilm formation mechanisms; (ii) occurrence in food and in food-related environments; and (iii) inhibition and dispersal using natural compounds, in particular.
Collapse
Affiliation(s)
- Giacomo Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.
| | - Marilena Budroni
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Francesco Fancello
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Severino Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
16
|
Vitzilaiou E, Aunsbjerg SD, Mahyudin NA, Knøchel S. Stress Tolerance of Yeasts Dominating Reverse Osmosis Membranes for Whey Water Treatment. Front Microbiol 2020; 11:816. [PMID: 32431679 PMCID: PMC7214788 DOI: 10.3389/fmicb.2020.00816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
Filamentous yeast species belonging to the closely related Saprochaete clavata and Magnusiomyces spicifer were recently found to dominate biofilm communities on the retentate and permeate surface of Reverse Osmosis (RO) membranes used in a whey water treatment system after CIP (Cleaning-In-Place). Microscopy revealed that the two filamentous yeast species can cover extensive areas due to their large cell size and long hyphae formation. Representative strains from these species were here further characterized and displayed similar physiological and biochemical characteristics. Both strains tested were able to grow in twice RO-filtrated permeate water and metabolize the urea present. Little is known about the survival characteristics of these strains. Here, their tolerance toward heat (60, 70, and 80°C) and Ultraviolet light (UV-C) treatment at 255 nm using UV-LED was assessed as well as their ability to form biofilm and withstand cleaning associated stress. According to the heat tolerance experiments, the D60°C of S. clavata and M. spicifer is 16.37 min and 7.24 min, respectively, while a reduction of 3.5 to >4.5 log (CFU/mL) was ensured within 5 min at 70°C. UV-C light at a dose level 10 mJ/cm2 had little effect, while doses of 40 mJ/cm2 and upward ensured a ≥4log reduction in a static laboratory scale set-up. The biofilm forming potential of one filamentous yeast and one budding yeast, Sporopachydermia lactativora, both isolated from the same biofilm, was compared in assays employing flat-bottomed polystyrene microwells and peg lids, respectively. In these systems, employing both nutrient rich as well as nutrient poor media, only the filamentous yeast was able to create biofilm. However, on RO membrane coupons in static systems, both the budding yeast and a filamentous yeast were capable of forming single strain biofilms and when these coupons were exposed to different simulations of CIP treatments both the filamentous and budding yeast survived these. The dominance of these yeasts in some filter systems tested, their capacity to adhere and their tolerance toward relevant stresses as demonstrated here, suggest that these slow growing yeasts are well suited to initiate microbial biofouling on surfaces in low nutrient environments.
Collapse
Affiliation(s)
- Eirini Vitzilaiou
- Laboratory of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Stina D. Aunsbjerg
- Laboratory of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - N. A. Mahyudin
- Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Susanne Knøchel
- Laboratory of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Abstract
Bacterial biofilms play a critical role in environmental processes, water treatment, human health, and food processing. They exhibit highly complex dynamics due to the interactions between the bacteria and the extracellular polymeric substance (EPS), water, and nutrients and minerals that make up the biofilm. We present a hybrid computational model in which the dynamics of discrete bacterial cells are simulated within a multiphase continuum, consisting of EPS and water as separate interacting phases, through which nutrients and minerals diffuse. Bacterial cells in our model consume water and nutrients in order to grow, divide, and produce EPS. Consequently, EPS flows outward from the bacterial colony, while water flows inward. The model predicts bacterial colony formation as a treelike structure. The distribution of bacterial growth and EPS production is found to be sensitive to the pore spacing between bacteria and the consumption of nutrients within the bacterial colony. Forces that are sometimes neglected in biofilm simulations, such as lubrication force between nearby bacterial cells and osmotic (swelling) pressure force resulting from gradients in EPS concentration, are observed to have an important effect on biofilm growth via their influence on bacteria pore spacing and associated water/nutrient percolation into the bacterial colony.
Collapse
|
18
|
Fulaz S, Vitale S, Quinn L, Casey E. Nanoparticle–Biofilm Interactions: The Role of the EPS Matrix. Trends Microbiol 2019; 27:915-926. [DOI: 10.1016/j.tim.2019.07.004] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/19/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023]
|
19
|
Aravinda Narayanan R, Ahmed A. Arrested fungal biofilms as low-modulus structural bio-composites: Water holds the key. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:134. [PMID: 31643003 DOI: 10.1140/epje/i2019-11899-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Biofilms are self-assembling structures consisting of rigid microbial cells embedded in a soft biopolymeric extracellular matrix (ECM), and have been commonly viewed as being detrimental to health and equipment. In this work, we show that biofilms formed by a non-pathogenic fungus Neurospora discreta, are fungal bio-composites (FBCs) that can be directed to self-organize through active stresses to achieve specific properties. We induced active stresses by systematically varying the agitation rate during the growth of FBCs. By growing FBCs that are strong enough to be conventionally tensile loaded, we find that as agitation rate increases, the elongation strain at which the FBCs break, increases linearly, and their elastic modulus correspondingly decreases. Using results from microstructural imaging and thermogravimetry, we rationalize that agitation increases the production of ECM, which concomitantly increases the water content of agitated FBCs up to 250% more than un-agitated FBCs. Water held in the nanopores of the ECM acts a plasticizer and controls the ductility of FBCs in close analogy with polyelectrolyte complexes. This paradigm shift in viewing biofilms as bio-composites opens up the possibility for their use as sustainable, biodegradable, low-modulus structural materials.
Collapse
Affiliation(s)
- R Aravinda Narayanan
- Department of Physics, Birla Institute of Technology and Science (Pilani), Hyderabad Campus, 500078, Hyderabad, India.
| | - Asma Ahmed
- School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, CT1 1QU, Canterbury, UK
| |
Collapse
|
20
|
Microbial biofilm communities on Reverse Osmosis membranes in whey water processing before and after cleaning. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117174] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Tariq S, Wani S, Rasool W, Shafi K, Bhat MA, Prabhakar A, Shalla AH, Rather MA. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb Pathog 2019; 134:103580. [DOI: 10.1016/j.micpath.2019.103580] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 01/25/2023]
|
22
|
Heersema LA, Smyth HDC. A Multispecies Biofilm In Vitro Screening Model of Dental Caries for High-Throughput Susceptibility Testing. High Throughput 2019; 8:E14. [PMID: 31151195 PMCID: PMC6631723 DOI: 10.3390/ht8020014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/27/2019] [Accepted: 05/22/2019] [Indexed: 02/08/2023] Open
Abstract
There is a current need to develop and optimize new therapeutics for the treatment of dental caries, but these efforts are limited by the relatively low throughput of relevant in vitro models. The aim of this work was to bridge the 96-well microtiter plate system with a relevant multispecies dental caries model that could be reproducibly grown to allow for the high-throughput screening of anti-biofilm therapies. Various media and inoculum concentrations were assessed using metabolic activity, biomass, viability, and acidity assays to determine the optimal laboratory-controlled conditions for a multispecies biofilm composed of Streptococcus gordonii, Streptococcus mutans, and Candida albicans. The selected model encompasses several of the known fundamental characteristics of dental caries-associated biofilms. The 1:1 RPMI:TSBYE 0.6% media supported the viability and biomass production of mono- and multispecies biofilms best. Kinetic studies over 48 h in 1:1 RPMI:TSBYE 0.6% demonstrated a stable biofilm phase between 10 and 48 h for all mono- and multispecies biofilms. The 1:1:0.1 S. gordonii: S. mutans: C. albicans multispecies biofilm in 1:1 RPMI:TSBYE 0.6% is an excellent choice for a high-throughput multispecies model of dental caries. This high-throughput multispecies model can be used for screening novel therapies and for better understanding the treatment effects on biofilm interactions and stability.
Collapse
Affiliation(s)
- Lara A Heersema
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 787812, USA.
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
- The LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
23
|
Sharma J, Rosiana S, Razzaq I, Shapiro RS. Linking Cellular Morphogenesis with Antifungal Treatment and Susceptibility in Candida Pathogens. J Fungi (Basel) 2019; 5:E17. [PMID: 30795580 PMCID: PMC6463059 DOI: 10.3390/jof5010017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Fungal infections are a growing public health concern, and an increasingly important cause of human mortality, with Candida species being amongst the most frequently encountered of these opportunistic fungal pathogens. Several Candida species are polymorphic, and able to transition between distinct morphological states, including yeast, hyphal, and pseudohyphal forms. While not all Candida pathogens are polymorphic, the ability to undergo morphogenesis is linked with the virulence of many of these pathogens. There are also many connections between Candida morphogenesis and antifungal drug treatment and susceptibility. Here, we review how Candida morphogenesis-a key virulence trait-is linked with antifungal drugs and antifungal drug resistance. We highlight how antifungal therapeutics are able to modulate morphogenesis in both sensitive and drug-resistant Candida strains, the shared signaling pathways that mediate both morphogenesis and the cellular response to antifungal drugs and drug resistance, and the connection between Candida morphology, drug resistance, and biofilm growth. We further review the development of anti-virulence drugs, and targeting Candida morphogenesis as a novel therapeutic strategy to target fungal pathogens. Together, this review highlights important connections between fungal morphogenesis, virulence, and susceptibility to antifungals.
Collapse
Affiliation(s)
- Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Sierra Rosiana
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
24
|
Towards standardized mechanical characterization of microbial biofilms: analysis and critical review. NPJ Biofilms Microbiomes 2018; 4:17. [PMID: 30131867 PMCID: PMC6102240 DOI: 10.1038/s41522-018-0062-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 02/05/2023] Open
Abstract
Developing reliable anti-biofilm strategies or efficient biofilm-based bioprocesses strongly depends on having a clear understanding of the mechanisms underlying biofilm development, and knowledge of the relevant mechanical parameters describing microbial biofilm behavior. Many varied mechanical testing methods are available to assess these parameters. The mechanical properties thus identified can then be used to compare protocols such as antibiotic screening. However, the lack of standardization in both mechanical testing and the associated identification methods for a given microbiological goal remains a blind spot in the biofilm community. The pursuit of standardization is problematic, as biofilms are living structures, i.e., both complex and dynamic. Here, we review the main available methods for characterizing the mechanical properties of biofilms through the lens of the relationship linking experimental testing to the identification of mechanical parameters. We propose guidelines for characterizing biofilms according to microbiological objectives that will help the reader choose an appropriate test and a relevant identification method for measuring any given mechanical parameter. The use of a common methodology for the mechanical characterization of biofilms will enable reliable analysis and comparison of microbiological protocols needed for improvement of engineering process and screening.
Collapse
|
25
|
Garcia C, Burgain A, Chaillot J, Pic É, Khemiri I, Sellam A. A phenotypic small-molecule screen identifies halogenated salicylanilides as inhibitors of fungal morphogenesis, biofilm formation and host cell invasion. Sci Rep 2018; 8:11559. [PMID: 30068935 PMCID: PMC6070544 DOI: 10.1038/s41598-018-29973-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022] Open
Abstract
A poorly exploited paradigm in the antimicrobial therapy field is to target virulence traits for drug development. In contrast to target-focused approaches, antivirulence phenotypic screens enable identification of bioactive molecules that induce a desirable biological readout without making a priori assumption about the cellular target. Here, we screened a chemical library of 678 small molecules against the invasive hyphal growth of the human opportunistic yeast Candida albicans. We found that a halogenated salicylanilide (N1-(3,5-dichlorophenyl)-5-chloro-2-hydroxybenzamide) and one of its analogs, Niclosamide, an FDA-approved anthelmintic in humans, exhibited both antifilamentation and antibiofilm activities against C. albicans and the multi-resistant yeast C. auris. The antivirulence activity of halogenated salicylanilides were also expanded to C. albicans resistant strains with different resistance mechanisms. We also found that Niclosamide protected the intestinal epithelial cells against invasion by C. albicans. Transcriptional profiling of C. albicans challenged with Niclosamide exhibited a signature that is characteristic of the mitochondria-to-nucleus retrograde response. Our chemogenomic analysis showed that halogenated salicylanilides compromise the potential-dependant mitochondrial protein translocon machinery. Given the fact that the safety of Niclosamide is well established in humans, this molecule could represent the first clinically approved antivirulence agent against a pathogenic fungus.
Collapse
Affiliation(s)
- Carlos Garcia
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Anaïs Burgain
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Julien Chaillot
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Émilie Pic
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Inès Khemiri
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Adnane Sellam
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada.
- Department of Microbiology-Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Big Data Research Centre (BDRC-UL), Université Laval, Faculty of Sciences and engineering, Quebec City, QC, Canada.
| |
Collapse
|
26
|
Maskarinec SA, Parlak Z, Tu Q, Levering V, Zauscher S, López GP, Fowler VG, Perfect JR. On-demand release of Candida albicans biofilms from urinary catheters by mechanical surface deformation. BIOFOULING 2018; 34:595-604. [PMID: 29897277 PMCID: PMC6276112 DOI: 10.1080/08927014.2018.1474461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Candida albicans is a leading cause of catheter-associated urinary tract infections and elimination of these biofilm-based infections without antifungal agents would constitute a significant medical advance. A novel urinary catheter prototype that utilizes on-demand surface deformation is effective at eliminating bacterial biofilms and here the broader applicability of this prototype to remove fungal biofilms has been demonstrated. C. albicans biofilms were debonded from prototypes by selectively inflating four additional intralumens surrounding the main lumen of the catheters to provide the necessary surface strain to remove the adhered biofilm. Deformable catheters eliminated significantly more biofilm than the controls (>90% eliminated vs 10% control; p < 0.001). Mechanical testing revealed that fungal biofilms have an elastic modulus of 45 ± 6.7 kPa with a fracture energy of 0.4-2 J m-2. This study underscores the potential of mechanical disruption as a materials design strategy to combat fungal device-associated infections.
Collapse
Affiliation(s)
- Stacey A. Maskarinec
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, NC, USA
| | - Zehra Parlak
- Mechanical Engineering & Materials Science, Duke University, Durham, NC, USA
| | - Qing Tu
- Mechanical Engineering & Materials Science, Duke University, Durham, NC, USA
| | - Vrad Levering
- Biomedical Engineering, Duke University, Durham, NC, USA
| | - Stefan Zauscher
- Mechanical Engineering & Materials Science, Duke University, Durham, NC, USA
| | - Gabriel P. López
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Vance G. Fowler
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | - John R. Perfect
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
27
|
Tarifa MC, Genovese D, Lozano JE, Brugnoni LI. In situ microstructure and rheological behavior of yeast biofilms from the juice processing industries. BIOFOULING 2018; 34:74-85. [PMID: 29228797 DOI: 10.1080/08927014.2017.1407758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
The factors affecting the mechanical properties of biofilms formed by yeast species (Rhodotorula mucilaginosa, Candida krusei, C. kefyr and C. tropicalis) isolated from the juice processing industries have been investigated. Variables studied were: the food matrix (apple/pear juice), the sugar concentration (6/12 °Bx) and the hydrodynamic conditions (static/turbulent flow). A range of environmental cues were included as the mechanical properties of biofilms are complex. Yeast counts were significantly higher in turbulent flow compared with under static conditions. The thickness of the biofilm ranged from 38 to 148 μm, from static to turbulent flow. Yeast biofilms grown under turbulent flow conditions were viscoelastic with a predominant solid-like behavior and were structurally stronger than those grown under static conditions, indicating gel-type structures. Only the type of flow had a significant effect on [Formula: see text] and G*. Flow velocity and nutrient status modulated the biofilm thickness, the biomass and the mechanical properties. A better knowledge of the factors controlling biofilm formation will help in the development of control strategies.
Collapse
Affiliation(s)
- María C Tarifa
- a Institute of Biological and Biomedical Sciences of the South INBIOSUR) , Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Bahía Blanca , Argentina
| | - Diego Genovese
- b Pilot Plant of Chemical Engineering (PLAPIQUI) , Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Bahía Blanca , Argentina
| | - Jorge E Lozano
- b Pilot Plant of Chemical Engineering (PLAPIQUI) , Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Bahía Blanca , Argentina
| | - Lorena I Brugnoni
- a Institute of Biological and Biomedical Sciences of the South INBIOSUR) , Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Bahía Blanca , Argentina
| |
Collapse
|
28
|
Essential Oils and Antifungal Activity. Pharmaceuticals (Basel) 2017; 10:ph10040086. [PMID: 29099084 PMCID: PMC5748643 DOI: 10.3390/ph10040086] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/25/2022] Open
Abstract
Since ancient times, folk medicine and agro-food science have benefitted from the use of plant derivatives, such as essential oils, to combat different diseases, as well as to preserve food. In Nature, essential oils play a fundamental role in protecting the plant from biotic and abiotic attacks to which it may be subjected. Many researchers have analyzed in detail the modes of action of essential oils and most of their components. The purpose of this brief review is to describe the properties of essential oils, principally as antifungal agents, and their role in blocking cell communication mechanisms, fungal biofilm formation, and mycotoxin production.
Collapse
|
29
|
Hwang G, Liu Y, Kim D, Li Y, Krysan DJ, Koo H. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo. PLoS Pathog 2017; 13:e1006407. [PMID: 28617874 PMCID: PMC5472321 DOI: 10.1371/journal.ppat.1006407] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/09/2017] [Indexed: 01/08/2023] Open
Abstract
Candida albicans is frequently detected with heavy infection by Streptococcus mutans in plaque-biofilms from children with early-childhood caries (ECC). This cross-kingdom biofilm contains an extensive matrix of extracellular α-glucans that is produced by an exoenzyme (GtfB) secreted by S. mutans. Here, we report that mannans located on the outer surface of C. albicans cell-wall mediates GtfB binding, enhancing glucan-matrix production and modulating bacterial-fungal association within biofilms formed in vivo. Using single-molecule atomic force microscopy, we determined that GtfB binds with remarkable affinity to mannans and to the C. albicans surface, forming a highly stable and strong bond (1-2 nN). However, GtfB binding properties to C. albicans was compromised in strains defective in O-mannan (pmt4ΔΔ) or N-mannan outer chain (och1ΔΔ). In particular, the binding strength of GtfB on och1ΔΔ strain was severely disrupted (>3-fold reduction vs. parental strain). In turn, the GtfB amount on the fungal surface was significantly reduced, and the ability of C. albicans mutant strains to develop mixed-species biofilms with S. mutans was impaired. This phenotype was independent of hyphae or established fungal-biofilm regulators (EFG1, BCR1). Notably, the mechanical stability of the defective biofilms was weakened, resulting in near complete biomass removal by shear forces. In addition, these in vitro findings were confirmed in vivo using a rodent biofilm model. Specifically, we observed that C. albicans och1ΔΔ was unable to form cross-kingdom biofilms on the tooth surface of rats co-infected with S. mutans. Likewise, co-infection with S. mutans defective in GtfB was also incapable of forming mixed-species biofilms. Taken together, the data support a mechanism whereby S. mutans-secreted GtfB binds to the mannan layer of C. albicans to promote extracellular matrix formation and their co-existence within biofilms. Enhanced understanding of GtfB-Candida interactions may provide new perspectives for devising effective therapies to disrupt this cross-kingdom relationship associated with an important childhood oral disease.
Collapse
Affiliation(s)
- Geelsu Hwang
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Yuan Liu
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Dongyeop Kim
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Yong Li
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Damian J. Krysan
- Department of Pediatrics, Infectious Diseases and Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
30
|
Costa-Orlandi CB, Sardi JCO, Pitangui NS, de Oliveira HC, Scorzoni L, Galeane MC, Medina-Alarcón KP, Melo WCMA, Marcelino MY, Braz JD, Fusco-Almeida AM, Mendes-Giannini MJS. Fungal Biofilms and Polymicrobial Diseases. J Fungi (Basel) 2017; 3:jof3020022. [PMID: 29371540 PMCID: PMC5715925 DOI: 10.3390/jof3020022] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/19/2017] [Accepted: 05/04/2017] [Indexed: 12/29/2022] Open
Abstract
Biofilm formation is an important virulence factor for pathogenic fungi. Both yeasts and filamentous fungi can adhere to biotic and abiotic surfaces, developing into highly organized communities that are resistant to antimicrobials and environmental conditions. In recent years, new genera of fungi have been correlated with biofilm formation. However, Candida biofilms remain the most widely studied from the morphological and molecular perspectives. Biofilms formed by yeast and filamentous fungi present differences, and studies of polymicrobial communities have become increasingly important. A key feature of resistance is the extracellular matrix, which covers and protects biofilm cells from the surrounding environment. Furthermore, to achieve cell–cell communication, microorganisms secrete quorum-sensing molecules that control their biological activities and behaviors and play a role in fungal resistance and pathogenicity. Several in vitro techniques have been developed to study fungal biofilms, from colorimetric methods to omics approaches that aim to identify new therapeutic strategies by developing new compounds to combat these microbial communities as well as new diagnostic tools to identify these complex formations in vivo. In this review, recent advances related to pathogenic fungal biofilms are addressed.
Collapse
Affiliation(s)
- Caroline B Costa-Orlandi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Janaina C O Sardi
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba SP 13414-018, Brazil.
| | - Nayla S Pitangui
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Haroldo C de Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Liliana Scorzoni
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Mariana C Galeane
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Kaila P Medina-Alarcón
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Wanessa C M A Melo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Mônica Y Marcelino
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Jaqueline D Braz
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Maria José S Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| |
Collapse
|
31
|
The Structure-Activity Relationship of Pterostilbene Against Candida albicans Biofilms. Molecules 2017; 22:molecules22030360. [PMID: 28264443 PMCID: PMC6155180 DOI: 10.3390/molecules22030360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/12/2017] [Accepted: 02/22/2017] [Indexed: 12/31/2022] Open
Abstract
Candida albicans biofilms contribute to invasive infections and dramatic drug resistance, and anti-biofilm agents are urgently needed in the clinic. Pterostilbene (PTE) is a natural plant product with potentials to be developed as an anti-biofilm agent. In this study, we evaluated the structure-activity relationship (SAR) of PTE analogues against C. albicans biofilms. XTT (Sodium 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt) reduction assay was used to evaluate the activity of the analogues against C. albicans biofilms. Knowing that hyphal formation is essential for C. albicans biofilms, anti-hyphal assay was further carried out. By comparing a series of compounds tested in this study, we found that compounds with para-hydroxy (–OH) in partition A exhibited better activity than those with other substituents in the para position, and the double bond in partition B and meta-dimethoxy (–OCH3) in partition C both contributed to the best activity. Consistent results were obtained by anti-hyphal assay. Collectively, para-hydroxy (–OH), double bond and meta-dimethoxy (–OCH3) are all needed for the best activity of PTE against C. albicans biofilms.
Collapse
|
32
|
Hirota K, Yumoto H, Sapaar B, Matsuo T, Ichikawa T, Miyake Y. Pathogenic factors in Candida biofilm-related infectious diseases. J Appl Microbiol 2016; 122:321-330. [PMID: 27770500 DOI: 10.1111/jam.13330] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/11/2016] [Accepted: 10/15/2016] [Indexed: 01/07/2023]
Abstract
Candida albicans is a commonly found member of the human microflora and is a major human opportunistic fungal pathogen. A perturbation of the microbiome can lead to infectious diseases caused by various micro-organisms, including C. albicans. Moreover, the interactions between C. albicans and bacteria are considered to play critical roles in human health. The major biological feature of C. albicans, which impacts human health, resides in its ability to form biofilms. In particular, the extracellular matrix (ECM) of Candida biofilm plays a multifaceted role and therefore may be considered as a highly attractive target to combat biofilm-related infectious diseases. In addition, extracellular DNA (eDNA) also plays a crucial role in Candida biofilm formation and its structural integrity and induces the morphological transition from yeast to the hyphal growth form during C. albicans biofilm development. This review focuses on pathogenic factors such as eDNA in Candida biofilm formation and its ECM production and provides meaningful information for future studies to develop a novel strategy to battle infectious diseases elicited by Candida-formed biofilm.
Collapse
Affiliation(s)
- K Hirota
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - H Yumoto
- Department of Conservative Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - B Sapaar
- Department of Oral and Maxillofacial Prosthodontics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - T Matsuo
- Department of Conservative Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - T Ichikawa
- Department of Oral and Maxillofacial Prosthodontics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Y Miyake
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
33
|
Krom BP, Levy N, Meijler MM, Jabra-Rizk MA. Farnesol and Candida albicans: Quorum Sensing or Not Quorum Sensing? Isr J Chem 2016. [DOI: 10.1002/ijch.201500025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Role of phosphatidylinositol phosphate signaling in the regulation of the filamentous-growth mitogen-activated protein kinase pathway. EUKARYOTIC CELL 2015; 14:427-40. [PMID: 25724886 DOI: 10.1128/ec.00013-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/23/2015] [Indexed: 01/04/2023]
Abstract
Reversible phosphorylation of the phospholipid phosphatidylinositol (PI) is a key event in the determination of organelle identity and an underlying regulatory feature in many biological processes. Here, we investigated the role of PI signaling in the regulation of the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in yeast. Lipid kinases that generate phosphatidylinositol 4-phosphate [PI(4)P] at the Golgi (Pik1p) or PI(4,5)P2 at the plasma membrane (PM) (Mss4p and Stt4p) were required for filamentous-growth MAPK pathway signaling. Introduction of a conditional allele of PIK1 (pik1-83) into the filamentous (Σ1278b) background reduced MAPK activity and caused defects in invasive growth and biofilm/mat formation. MAPK regulatory proteins that function at the PM, including Msb2p, Sho1p, and Cdc42p, were mislocalized in the pik1-83 mutant, which may account for the signaling defects of the PI(4)P kinase mutants. Other PI kinases (Fab1p and Vps34p), and combinations of PIP (synaptojanin-type) phosphatases, also influenced the filamentous-growth MAPK pathway. Loss of these proteins caused defects in cell polarity, which may underlie the MAPK signaling defect seen in these mutants. In line with this possibility, disruption of the actin cytoskeleton by latrunculin A (LatA) dampened the filamentous-growth pathway. Various PIP signaling mutants were also defective for axial budding in haploid cells, cell wall construction, or proper regulation of the high-osmolarity glycerol response (HOG) pathway. Altogether, the study extends the roles of PI signaling to a differentiation MAPK pathway and other cellular processes.
Collapse
|
35
|
Dreszer C, Wexler AD, Drusová S, Overdijk T, Zwijnenburg A, Flemming HC, Kruithof JC, Vrouwenvelder JS. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: formation, structure, detachment and impact of flux change. WATER RESEARCH 2014; 67:243-54. [PMID: 25282092 DOI: 10.1016/j.watres.2014.09.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/03/2014] [Accepted: 09/04/2014] [Indexed: 05/23/2023]
Abstract
Biofouling causes performance loss in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane operation for process and drinking water production. The development of biofilm formation, structure and detachment was studied in-situ, non-destructively with Optical Coherence Tomography (OCT) in direct relation with the hydraulic biofilm resistance and membrane performance parameters: transmembrane pressure drop (TMP) and feed-channel pressure drop (FCP). The objective was to evaluate the suitability of OCT for biofouling studies, applying a membrane biofouling test cell operated at constant crossflow velocity (0.1 m s(-1)) and permeate flux (20 L m(-2)h(-1)). In time, the biofilm thickness on the membrane increased continuously causing a decline in membrane performance. Local biofilm detachment was observed at the biofilm-membrane interface. A mature biofilm was subjected to permeate flux variation (20 to 60 to 20 L m(-2)h(-1)). An increase in permeate flux caused a decrease in biofilm thickness and an increase in biofilm resistance, indicating biofilm compaction. Restoring the original permeate flux did not completely restore the original biofilm parameters: After elevated flux operation the biofilm thickness was reduced to 75% and the hydraulic resistance increased to 116% of the original values. Therefore, after a temporarily permeate flux increase the impact of the biofilm on membrane performance was stronger. OCT imaging of the biofilm with increased permeate flux revealed that the biofilm became compacted, lost internal voids, and became more dense. Therefore, membrane performance losses were not only related to biofilm thickness but also to the internal biofilm structure, e.g. caused by changes in pressure. Optical Coherence Tomography proved to be a suitable tool for quantitative in-situ biofilm thickness and morphology studies which can be carried out non-destructively and in real-time in transparent membrane biofouling monitors.
Collapse
Affiliation(s)
- C Dreszer
- Wetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands; Biofilm Centre, University Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - A D Wexler
- Wetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
| | - S Drusová
- Wetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
| | - T Overdijk
- Wetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
| | - A Zwijnenburg
- Wetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
| | - H-C Flemming
- Biofilm Centre, University Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - J C Kruithof
- Wetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
| | - J S Vrouwenvelder
- Wetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands; Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands; King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal, Saudi Arabia.
| |
Collapse
|
36
|
Sapaar B, Nur A, Hirota K, Yumoto H, Murakami K, Amoh T, Matsuo T, Ichikawa T, Miyake Y. Effects of extracellular DNA from Candida albicans and pneumonia-related pathogens on Candida biofilm formation and hyphal transformation. J Appl Microbiol 2014; 116:1531-42. [PMID: 24661775 DOI: 10.1111/jam.12483] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/12/2013] [Accepted: 02/12/2014] [Indexed: 02/06/2023]
Abstract
AIMS The aim of this study was to investigate the effects of genomic DNA purified from Candida albicans and pneumonia-related pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, on in vitro biofilm formation and morphological change of 3 Candida species (C. albicans, C. glabrata, and C. tropicalis). METHODS AND RESULTS Biofilm formation was evaluated by the crystal violet assay and colony-forming unit counts. Morphological characteristics of biofilms were evaluated by scanning electron microscopy and fluorescence microscopy. Addition of DNA at a low concentration (<1·0 μg ml(-1)) significantly increased biofilm mass of all three Candida species. In contrast, the addition of DNA at a high concentration (10 μg ml(-1)) decreased the biofilm mass. Interestingly, the formation of hyphae in a dense network of yeast cells was observed in C. albicans biofilms exposed to a low concentration of DNA (<1·0 μg ml(-1)). CONCLUSIONS These findings demonstrated that extracellular DNA (eDNA) plays a crucial role in Candida biofilm formation and suggested that eDNA may induce the morphological transition from yeast to hyphal growth form during C. albicans biofilm development. SIGNIFICANCE AND IMPACT OF THE STUDY A novel therapy targeting eDNA may be applicable for Candida infection to decrease biofilm formation and hyphal formation.
Collapse
Affiliation(s)
- B Sapaar
- Department of Oral and Maxillofacial Prosthodontics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Candida Biofilm: Clinical Implications of Recent Advances in Research. CURRENT FUNGAL INFECTION REPORTS 2014. [DOI: 10.1007/s12281-014-0176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Abstract
The aim of the present work was to investigate the in situ rheological behavior of yeast biofilms growing on stainless steel under static and turbulent flow. The species used (Rhodototula mucilaginosa, Candida krusei, Candida kefyr and Candida tropicalis) were isolated from a clarified apple juice industry. The flow conditions impacted biofilm composition over time, with a predominance of C. krusei under static and turbulent flow. Likewise, structural variations occurred, with a tighter appearance under dynamic flow. Under turbulent flow there was an increase of 112 μm in biofilm thickness at 11 weeks (p < 0.001) and cell morphology was governed by hyphal structures and rounded cells. Using the in situ growth method introduced here, yeast biofilms were determined to be viscoelastic materials with a predominantly solid-like behavior, and neither this nor the G'0 values were significantly affected by the flow conditions or the growth time, and at large deformations their weak structure collapsed beyond a critical strain of about 1.5-5%. The present work could represent a starting point for developing in situ measurements of yeast rheology and contribute to a thin body of knowledge about fungal biofilm formation.
Collapse
|
39
|
Enhanced biotransformation of fluoranthene by intertidally derived Cunninghamella elegans under biofilm-based and niche-mimicking conditions. Appl Environ Microbiol 2013; 79:7922-30. [PMID: 24038685 DOI: 10.1128/aem.02129-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aims of the investigation were to ascertain if surface attachment of Cunninghamella elegans and niche intertidal conditions provided in a bioreactor influenced biotransformation of fluoranthene by C. elegans. A newly designed polymethylmethacrylate (PMMA) conico-cylindrical flask (CCF) holding eight equidistantly spaced rectangular strips mounted radially on a circular disc allowed comparison of fluoranthene biotransformation between CCFs with a hydrophobic surface (PMMA-CCF) and a hydrophilic glass surface (GS-CCF) and a 500-ml Erlenmeyer flask (EF). Fluoranthene biotransformation was higher by 22-fold, biofilm growth was higher by 3-fold, and cytochrome P450 gene expression was higher by 2.1-fold when C. elegans was cultivated with 2% inoculum as biofilm culture in PMMA-CCF compared to planktonic culture in EF. Biotransformation was enhanced by 7-fold with 10% inoculum. The temporal pattern of biofilm progression based on three-channel fluorescence detection by confocal laser scanning microscopy demonstrated well-developed, stable biofilm with greater colocalization of fluoranthene within extracellular polymeric substances and filaments of the biofilm grown on PMMA in contrast to a glass surface. A bioreactor with discs rotating at 2 revolutions per day affording 6-hourly emersion and immersion mimicked the niche intertidal habitat of C. elegans and supported biofilm formation and transformation of fluoranthene. The amount of transformed metabolite was 3.5-fold, biofilm growth was 3-fold, and cytochrome P450 gene expression was 1.9-fold higher in the process mimicking the intertidal conditions than in a submerged process without disc rotation. In the CCF and reactor, where biofilm formation was comparatively greater, higher concentration of exopolysaccharides allowed increased mobilization of fluoranthene within the biofilm with consequential higher gene expression leading to enhanced volumetric productivity.
Collapse
|
40
|
Tarifa MC, Brugnoni LI, Lozano JE. Role of hydrophobicity in adhesion of wild yeast isolated from the ultrafiltration membranes of an apple juice processing plant. BIOFOULING 2013; 29:841-853. [PMID: 23837866 DOI: 10.1080/08927014.2013.808628] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The role of cell surface hydrophobicity in the adhesion to stainless steel (SS) of 11 wild yeast strains isolated from the ultrafiltration membranes of an apple juice processing plant was investigated. The isolated yeasts belonged to four species: Candida krusei (5 isolates), Candida tropicalis (2 isolates), Kluyveromyces marxianus (3 isolates) and Rhodotorula mucilaginosa (1 isolate). Surface hydrophobicity was measured by the microbial adhesion to solvents method. Yeast cells and surfaces were incubated in apple juice and temporal measurements of the numbers of adherent cells were made. Ten isolates showed moderate to high hydrophobicity and 1 strain was hydrophilic. The hydrophobicity expressed by the yeast surfaces correlated positively with the rate of adhesion of each strain. These results indicated that cell surface hydrophobicity governs the initial attachment of the studied yeast strains to SS surfaces common to apple juice processing plants.
Collapse
Affiliation(s)
- María Clara Tarifa
- Pilot Plant of Chemical Engineering (UNS-CONICET), Bahía Blanca, Argentina
| | | | | |
Collapse
|
41
|
Abstract
BACKGROUND Candida is the third most common cause of late-onset neonatal sepsis in infants born at <1500 g. Candida parapsilosis infections are increasingly reported in preterm neonates in association with indwelling catheters. METHODS We systematically reviewed neonatal literature and synthesized data pertaining to percentage of C. parapsilosis infections and mortality by meta-analyses. We also reviewed risk factors, virulence determinants, antimicrobial susceptibility patterns and outlined clinical management strategies. RESULTS C. parapsilosis infections comprised 33.47% (95% confidence interval [CI]: 30.02, 37.31) of all neonatal Candida infections. C. parapsilosis rates were similar in studies performed before the year 2000, 33.53% (95% CI: 30.06, 37.40) (28 studies), to those after 2000, 27.00% (95% CI: 8.25, 88.37) (8 studies). The mortality due to neonatal C. parapsilosis infections was 10.02% (95% CI: 7.66, 13.12). Geographical variations in C. parapsilosis infections included a low incidence in Europe and higher incidence in North America and Australia. Biofilm formation was a significant virulence determinant and predominant risk factors for C. parapsilosis infections were prematurity, prior colonization and catheterization. Amphotericin B remains the antifungal drug of choice and combination therapy with caspofungin or other echinocandins may be considered in resistant cases. CONCLUSION C. parapsilosis is a significant neonatal pathogen, comprises a third of all Candida infections and is associated with 10% mortality. Availability of tools for genetic manipulation of this organism will identify virulence determinants and organism characteristics that may explain predilection for preterm neonates. Strategies to prevent horizontal transmission in the neonatal unit are paramount in decreasing infection rates.
Collapse
|
42
|
Nur A, Hirota K, Yumoto H, Hirao K, Liu D, Takahashi K, Murakami K, Matsuo T, Shu R, Miyake Y. Effects of extracellular DNA and DNA-binding protein on the development of a Streptococcus intermedius biofilm. J Appl Microbiol 2013; 115:260-70. [PMID: 23551549 DOI: 10.1111/jam.12202] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/13/2013] [Accepted: 03/22/2013] [Indexed: 02/01/2023]
Abstract
AIMS The aim of this study was to clarify the effects of homologous and heterologous extracellular DNAs (eDNAs) and histone-like DNA-binding protein (HLP) on Streptococcus intermedius biofilm development and rigidity. METHODS AND RESULTS Formed biofilm mass was measured with 0·1% crystal violet staining method and observed with a scanning electron microscope. The localizations of eDNA and extracellular HLP (eHLP) in formed biofilm were detected by staining with 7-hydoxyl-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) and anti-HLP antibody without fixation, respectively. DNase I treatment (200 U ml(-1)) markedly decreased biofilm formation and cell density in biofilms. Colocalization of eHLP and eDNA in biofilm was confirmed. The addition of eDNA (up to 1 μg ml(-1)) purified from Strep. intermedius, other Gram-positive bacteria, Gram-negative bacteria, or human KB cells into the Strep. intermedius culture increased the biofilm mass of all tested strains of Strep. intermedius, wild-type, HLP-downregulated strain and control strains. In contrast, the addition of eDNA (>1 μg ml(-1)) decreased the biofilm mass of all Strep. intermedius strains. CONCLUSIONS These findings demonstrated that eDNA and eHLP play crucial roles in biofilm development and its rigidity. SIGNIFICANCE AND IMPACT OF THE STUDY eDNA- and HLP-targeting strategies may be applicable to novel treatments for bacterial biofilm-related infectious diseases.
Collapse
Affiliation(s)
- A Nur
- Department of Oral Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Extracellular DNA release acts as an antifungal resistance mechanism in mature Aspergillus fumigatus biofilms. EUKARYOTIC CELL 2013; 12:420-9. [PMID: 23314962 DOI: 10.1128/ec.00287-12] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aspergillus fumigatus has been shown to form biofilms that are associated with adaptive antifungal resistance mechanisms. These include multidrug efflux pumps, heat shock proteins, and extracellular matrix (ECM). ECM is a key structural and protective component of microbial biofilms and in bacteria has been shown to contain extracellular DNA (eDNA). We therefore hypothesized that A. fumigatus biofilms also possess eDNA as part of the ECM, conferring a functional role. Fluorescence microscopy and quantitative PCR analyses demonstrated the presence of eDNA, which was released phase dependently (8 < 12 < 24 < 48 h). Random amplification of polymorphic DNA (RAPD) PCR showed that eDNA was identical to genomic DNA. Biofilm architectural integrity was destabilized by DNase treatment. Biochemical and transcriptional analyses showed that chitinase activity and mRNA levels of chitinase, a marker of autolysis, were significantly upregulated as the biofilm matured and that inhibition of chitinases affected biofilm growth and stability, indicating mechanistically that autolysis was possibly involved. Finally, using checkerboard assays, it was shown that combinational treatment of biofilms with DNase plus amphotericin B and caspofungin significantly improved antifungal susceptibility. Collectively, these data show that eDNA is an important structural component of A. fumigatus ECM that is released through autolysis, which is important for protection from environmental stresses, including antifungal therapy.
Collapse
|
44
|
Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R, Barbosa DB, Henriques M. Silver colloidal nanoparticles: effect on matrix composition and structure of Candida albicans and Candida glabrata biofilms. J Appl Microbiol 2013; 114:1175-83. [PMID: 23231706 DOI: 10.1111/jam.12102] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/13/2012] [Accepted: 12/05/2012] [Indexed: 11/28/2022]
Abstract
AIM The aim of this study was to assess the effect of different silver nanoparticles (SN) concentrations on the matrix composition and structure of Candida albicans and Candida glabrata biofilms. METHODS AND RESULTS Candida biofilms were developed in 6-well microtiter plates during 48 h. After, these biofilms were exposed to 13.5 or 54 μg SN ml(-1) for 24 h. Then, extracellular matrices were extracted from biofilms and analysed chemically in terms of proteins, carbohydrates and DNA. To investigate the biofilm structure, scanning electron microscopy (SEM) and epifluorescence microscopy were used. SN interfered with the matrix composition of Candida biofilms tested in terms of protein, carbohydrate and DNA, except for the protein content of C. albicans biofilm. By SEM, Candida biofilms treated with SN revealed structural differences, when compared with the control groups. Further, SN showed a trend of agglomeration within the biofilms. Epifluorescence microscopy images suggest that SN induced damage on cell walls of the Candida isolates tested. CONCLUSIONS In general, irrespective of concentration, SN affected the matrix composition and structure of Candida biofilms and these findings may be related to the mechanisms of biocide action of SN. SIGNIFICANCE AND IMPACT OF THE STUDY This study reveals new insights about the behaviour of SN when in contact with Candida biofilms. SN may contribute to the development of therapies to prevent or control Candida infections.
Collapse
Affiliation(s)
- D R Monteiro
- Department of Dental Materials and Prosthodontics, Araçatuba Dental School, Univ Estadual Paulista (UNESP), Araçatuba/São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ehret AE, Böl M. Modelling mechanical characteristics of microbial biofilms by network theory. J R Soc Interface 2012; 10:20120676. [PMID: 23034354 DOI: 10.1098/rsif.2012.0676] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this contribution, we present a constitutive model to describe the mechanical behaviour of microbial biofilms based on classical approaches in the continuum theory of polymer networks. Although the model is particularly developed for the well-studied biofilms formed by mucoid Pseudomonas aeruginosa strains, it could easily be adapted to other biofilms. The basic assumption behind the model is that the network of extracellular polymeric substances can be described as a superposition of worm-like chain networks, each connected by transient junctions of a certain lifetime. Several models that were applied to biofilms previously are included in the presented approach as special cases, and for small shear strains, the governing equations are those of four parallel Maxwell elements. Rheological data given in the literature are very adequately captured by the proposed model, and the simulated response for a series of compression tests at large strains is in good qualitative agreement with reported experimental behavior.
Collapse
Affiliation(s)
- Alexander E Ehret
- Institute of Solid Mechanics, Technische Universita¨t Braunschweig, 38106 Braunschweig, Germany
| | | |
Collapse
|
46
|
Böl M, Ehret AE, Bolea Albero A, Hellriegel J, Krull R. Recent advances in mechanical characterisation of biofilm and their significance for material modelling. Crit Rev Biotechnol 2012; 33:145-71. [DOI: 10.3109/07388551.2012.679250] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Karunanithi S, Joshi J, Chavel C, Birkaya B, Grell L, Cullen PJ. Regulation of mat responses by a differentiation MAPK pathway in Saccharomyces cerevisiae. PLoS One 2012; 7:e32294. [PMID: 22496730 PMCID: PMC3319557 DOI: 10.1371/journal.pone.0032294] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/24/2012] [Indexed: 11/18/2022] Open
Abstract
Fungal species exhibit diverse behaviors when presented with extracellular challenges. Pathogenic fungi can undergo cell differentiation and biofilm formation in response to fluctuating nutrient levels, and these responses are required for virulence. In the model fungal eukaryote Saccharomyces cerevisiae, nutrient limitation induces filamentous growth and biofilm/mat formation. Both responses require the same signal transduction (MAPK) pathway and the same cell adhesion molecule (Flo11) but have been studied under different conditions. We found that filamentous growth and mat formation are aspects of a related response that is regulated by the MAPK pathway. Cells in yeast-form mats differentiated into pseudohyphae in response to nutrient limitation. The MAPK pathway regulated mat expansion (in the plane of the XY-axis) and substrate invasion (downward in the plane of the Z-axis), which optimized the mat's response to extracellular nutrient levels. The MAPK pathway also regulated an upward growth pattern (in the plane of the Z-axis) in response to nutrient limitation and changes in surface rigidity. Upward growth allowed for another level of mat responsiveness and resembled a type of colonial chemorepulsion. Together our results show that signaling pathways play critical roles in regulating social behaviors in which fungal cells participate. Signaling pathways may regulate similar processes in pathogens, whose highly nuanced responses are required for virulence.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul J. Cullen
- Department of Biological Sciences, State University of New York-Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
48
|
Induced Biofilm Cultivation Enhances Riboflavin Production by an Intertidally Derived Candida famata. Appl Biochem Biotechnol 2012; 166:1991-2006. [DOI: 10.1007/s12010-012-9626-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
|
49
|
Hyphal growth in human fungal pathogens and its role in virulence. Int J Microbiol 2011; 2012:517529. [PMID: 22121367 PMCID: PMC3216317 DOI: 10.1155/2012/517529] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/18/2011] [Indexed: 01/12/2023] Open
Abstract
Most of the fungal species that infect humans can grow in more than one morphological form but only a subset of pathogens produce filamentous hyphae during the infection process. This subset is phylogenetically unrelated and includes the commonly carried yeasts, Candida albicans, C. dubliniensis, and Malassezia spp., and the acquired pathogens, Aspergillus fumigatus and dermatophytes such as Trichophyton rubrum and T. mentagrophytes. The primary function of hypha formation in these opportunistic pathogens is to invade the substrate they are adhered to, whether biotic or abiotic, but other functions include the directional translocation between host environments, consolidation of the colony, nutrient acquisition and the formation of 3-dimensional matrices. To support these functions, polarised hyphal growth is co-regulated with other factors that are essential for normal hypha function in vivo.
Collapse
|
50
|
Cellulase and xylanase activity in relation to biofilm formation by two intertidal filamentous fungi in a novel polymethylmethacrylate conico-cylindrical flask. Bioprocess Biosyst Eng 2011; 34:1087-101. [DOI: 10.1007/s00449-011-0559-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/23/2011] [Indexed: 11/26/2022]
|