1
|
Freeman KG, Mondal S, Macale LS, Podgorski J, White SJ, Silva BH, Ortiz V, Huet A, Perez RJ, Narsico JT, Ho MC, Jacobs-Sera D, Lowary TL, Conway JF, Park D, Hatfull GF. Structure and infection dynamics of mycobacteriophage Bxb1. Cell 2025:S0092-8674(25)00345-9. [PMID: 40239650 DOI: 10.1016/j.cell.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/27/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025]
Abstract
Mycobacteriophage Bxb1 is a well-characterized virus of Mycobacterium smegmatis with double-stranded DNA and a long, flexible tail. Mycobacteriophages show considerable potential as therapies for Mycobacterium infections, but little is known about the structural details of these phages or how they bind to and traverse the complex Mycobacterium cell wall. Here, we report the complete structure and atomic model of phage Bxb1, including the arrangement of immunodominant domains of both the capsid and tail tube subunits, as well as the assembly of the protein subunits in the tail-tip complex. The structure contains protein assemblies with 3-, 5-, 6-, and 12-fold symmetries, which interact to satisfy several symmetry mismatches. Cryoelectron tomography of phage particles bound to M. smegmatis reveals the structural transitions that occur for free phage particles to bind to the cell surface and navigate through the cell wall to enable DNA transfer into the cytoplasm.
Collapse
Affiliation(s)
- Krista G Freeman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sudipta Mondal
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Lourriel S Macale
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Jennifer Podgorski
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Simon J White
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Benjamin H Silva
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Valery Ortiz
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Alexis Huet
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronelito J Perez
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Joemark T Narsico
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Todd L Lowary
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Donghyun Park
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA.
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Bozidis P, Markou E, Gouni A, Gartzonika K. Does Phage Therapy Need a Pan-Phage? Pathogens 2024; 13:522. [PMID: 38921819 PMCID: PMC11206709 DOI: 10.3390/pathogens13060522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
The emergence of multidrug-resistant bacteria is undoubtedly one of the most serious global health threats. One response to this threat that has been gaining momentum over the past decade is 'phage therapy'. According to this, lytic bacteriophages are used for the treatment of bacterial infections, either alone or in combination with antimicrobial agents. However, to ensure the efficacy and broad applicability of phage therapy, several challenges must be overcome. These challenges encompass the development of methods and strategies for the host range manipulation and bypass of the resistance mechanisms developed by pathogenic bacteria, as has been the case since the advent of antibiotics. As our knowledge and understanding of the interactions between phages and their hosts evolves, the key issue is to define the host range for each application. In this article, we discuss the factors that affect host range and how this determines the classification of phages into different categories of action. For each host range group, recent representative examples are provided, together with suggestions on how the different groups can be used to combat certain types of bacterial infections. The available methodologies for host range expansion, either through sequential adaptation to a new pathogen or through genetic engineering techniques, are also reviewed.
Collapse
Affiliation(s)
- Petros Bozidis
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Athanasia Gouni
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Konstantina Gartzonika
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| |
Collapse
|
3
|
Li Y, Wei Y, Guo X, Li X, Lu L, Hu L, He Z. Insertion sequence transposition activates antimycobacteriophage immunity through an lsr2-silenced lipid metabolism gene island. MLIFE 2024; 3:87-100. [PMID: 38827510 PMCID: PMC11139207 DOI: 10.1002/mlf2.12106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 06/04/2024]
Abstract
Insertion sequences (ISs) exist widely in bacterial genomes, but their roles in the evolution of bacterial antiphage defense remain to be clarified. Here, we report that, under the pressure of phage infection, the IS1096 transposition of Mycobacterium smegmatis into the lsr2 gene can occur at high frequencies, which endows the mutant mycobacterium with a broad-spectrum antiphage ability. Lsr2 functions as a negative regulator and directly silences expression of a gene island composed of 11 lipid metabolism-related genes. The complete or partial loss of the gene island leads to a significant decrease of bacteriophage adsorption to the mycobacterium, thus defending against phage infection. Strikingly, a phage that has evolved mutations in two tail-filament genes can re-escape from the lsr2 inactivation-triggered host defense. This study uncovered a new signaling pathway for activating antimycobacteriophage immunity by IS transposition and provided insight into the natural evolution of bacterial antiphage defense.
Collapse
Affiliation(s)
- Yakun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Yuyun Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Xiao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Xiaohui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Lining Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Zheng‐Guo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| |
Collapse
|
4
|
Li X, Long X, Chen L, Guo X, Lu L, Hu L, He ZG. Mycobacterial phage TM4 requires a eukaryotic-like Ser/Thr protein kinase to silence and escape anti-phage immunity. Cell Host Microbe 2023; 31:1469-1480.e4. [PMID: 37567169 DOI: 10.1016/j.chom.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/15/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023]
Abstract
In eukaryotic cells, serine/threonine protein kinases (StpKs) play important roles in limiting viral infections. StpKs are commonly activated upon infections, inhibiting the expression of genes central for viral replication. Here, we report that a eukaryotic-like StpK7 encoded by MSMEG_1200 in M. smegmatis is required for mycobacteriophage TM4 to escape bacterial defense. stpK7 is located within a gene island, MSMEG_1191-MSMEG_1200, containing multiple anti-phage genes resembling the BREX (bacteriophage exclusion) phage-resistance system. StpK7 negatively regulates the expression of this gene island. Following phage TM4 infection, StpK7 is induced, directly phosphorylating the transcriptional regulator MSMEG_1198 and inhibiting its positive regulatory activity, thus reducing the expression of multiple downstream genes in the BREX-like gene island. Further analysis showed that genes within this anti-phage island critically regulate mycobacterial lipid hemostasis and phage adsorption. Collectively, this work characterizes a regulatory network driven by StpK7, which is utilized by phage TM4 to escape from the host defense against mycobacteria.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiating Long
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Liu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Lining Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zheng-Guo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Wetzel KS, Illouz M, Abad L, Aull HG, Russell DA, Garlena RA, Cristinziano M, Malmsheimer S, Chalut C, Hatfull GF, Kremer L. Therapeutically useful mycobacteriophages BPs and Muddy require trehalose polyphleates. Nat Microbiol 2023; 8:1717-1731. [PMID: 37644325 PMCID: PMC10465359 DOI: 10.1038/s41564-023-01451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/17/2023] [Indexed: 08/31/2023]
Abstract
Mycobacteriophages show promise as therapeutic agents for non-tuberculous mycobacterium infections. However, little is known about phage recognition of Mycobacterium cell surfaces or mechanisms of phage resistance. We show here that trehalose polyphleates (TPPs)-high-molecular-weight, surface-exposed glycolipids found in some mycobacterial species-are required for infection of Mycobacterium abscessus and Mycobacterium smegmatis by clinically useful phages BPs and Muddy. TPP loss leads to defects in adsorption and infection and confers resistance. Transposon mutagenesis shows that TPP disruption is the primary mechanism for phage resistance. Spontaneous phage resistance occurs through TPP loss by mutation, and some M. abscessus clinical isolates are naturally phage-insensitive due to TPP synthesis gene mutations. Both BPs and Muddy become TPP-independent through single amino acid substitutions in their tail spike proteins, and M. abscessus mutants resistant to TPP-independent phages reveal additional resistance mechanisms. Clinical use of BPs and Muddy TPP-independent mutants should preempt phage resistance caused by TPP loss.
Collapse
Affiliation(s)
- Katherine S Wetzel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Morgane Illouz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Lawrence Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haley G Aull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca A Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madison Cristinziano
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Silke Malmsheimer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.
- INSERM, IRIM, Montpellier, France.
| |
Collapse
|
6
|
Wetzel KS, Illouz M, Abad L, Aull HG, Russell DA, Garlena RA, Cristinziano M, Malmsheimer S, Chalut C, Hatfull GF, Kremer L. Mycobacterium trehalose polyphleates are required for infection by therapeutically useful mycobacteriophages BPs and Muddy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532567. [PMID: 36993724 PMCID: PMC10055034 DOI: 10.1101/2023.03.14.532567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mycobacteriophages are good model systems for understanding their bacterial hosts and show promise as therapeutic agents for nontuberculous mycobacterium infections. However, little is known about phage recognition of Mycobacterium cell surfaces, or mechanisms of phage resistance. We show here that surface-exposed trehalose polyphleates (TPPs) are required for infection of Mycobacterium abscessus and Mycobacterium smegmatis by clinically useful phages BPs and Muddy, and that TPP loss leads to defects in adsorption, infection, and confers resistance. Transposon mutagenesis indicates that TPP loss is the primary mechanism for phage resistance. Spontaneous phage resistance occurs through TPP loss, and some M. abscessus clinical isolates are phage-insensitive due to TPP absence. Both BPs and Muddy become TPP-independent through single amino acid substitutions in their tail spike proteins, and M. abscessus mutants resistant to TPP-independent phages reveal additional resistance mechanisms. Clinical use of BPs and Muddy TPP-independent mutants should preempt phage resistance caused by TPP loss.
Collapse
|
7
|
Dulberger CL, Guerrero-Bustamante CA, Owen SV, Wilson S, Wuo MG, Garlena RA, Serpa LA, Russell DA, Zhu J, Braunecker BJ, Squyres GR, Baym M, Kiessling LL, Garner EC, Rubin EJ, Hatfull GF. Mycobacterial nucleoid-associated protein Lsr2 is required for productive mycobacteriophage infection. Nat Microbiol 2023; 8:695-710. [PMID: 36823286 PMCID: PMC10066036 DOI: 10.1038/s41564-023-01333-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023]
Abstract
Mycobacteriophages are a diverse group of viruses infecting Mycobacterium with substantial therapeutic potential. However, as this potential becomes realized, the molecular details of phage infection and mechanisms of resistance remain ill-defined. Here we use live-cell fluorescence microscopy to visualize the spatiotemporal dynamics of mycobacteriophage infection in single cells and populations, showing that infection is dependent on the host nucleoid-associated Lsr2 protein. Mycobacteriophages preferentially adsorb at Mycobacterium smegmatis sites of new cell wall synthesis and following DNA injection, Lsr2 reorganizes away from host replication foci to establish zones of phage DNA replication (ZOPR). Cells lacking Lsr2 proceed through to cell lysis when infected but fail to generate consecutive phage bursts that trigger epidemic spread of phage particles to neighbouring cells. Many mycobacteriophages code for their own Lsr2-related proteins, and although their roles are unknown, they do not rescue the loss of host Lsr2.
Collapse
Affiliation(s)
- Charles L Dulberger
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | | | - Siân V Owen
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sean Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Michael G Wuo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca A Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lexi A Serpa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ben J Braunecker
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Georgia R Squyres
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Michael Baym
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Cambillau C, Goulet A. Exploring Host-Binding Machineries of Mycobacteriophages with AlphaFold2. J Virol 2023; 97:e0179322. [PMID: 36916948 PMCID: PMC10062164 DOI: 10.1128/jvi.01793-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Although more than 12,000 bacteriophages infecting mycobacteria (mycobacteriophages) have been isolated so far, there is a knowledge gap on their structure-function relationships. Here, we have explored the architecture of host-binding machineries from seven representative mycobacteriophages of the Siphoviridae family infecting Mycobacterium smegmatis, Mycobacterium abscessus, and Mycobacterium tuberculosis, using AlphaFold2 (AF2). AF2 enables confident structural analyses of large and flexible biological assemblies resistant to experimental methods, thereby opening new avenues to shed light on phage structure and function. Our results highlight the modularity and structural diversity of siphophage host-binding machineries that recognize host-specific receptors at the onset of viral infection. Interestingly, the studied mycobacteriophages' host-binding machineries present unique features compared with those of phages infecting other Gram-positive actinobacteria. Although they all assemble the classical Dit (distal tail), Tal (tail-associated lysin), and receptor-binding proteins, five of them contain two potential additional adhesion proteins. Moreover, we have identified brush-like domains formed of multiple polyglycine helices which expose hydrophobic residues as potential receptor-binding domains. These polyglycine-rich domains, which have been observed in only five native proteins, may be a hallmark of mycobacteriophages' host-binding machineries, and they may be more common in nature than expected. Altogether, the unique composition of mycobacteriophages' host-binding machineries indicate they might have evolved to bind to the peculiar mycobacterial cell envelope, which is rich in polysaccharides and mycolic acids. This work provides a rational framework to efficiently produce recombinant proteins or protein domains and test their host-binding function and, hence, to shed light on molecular mechanisms used by mycobacteriophages to infect their host. IMPORTANCE Mycobacteria include both saprophytes, such as the model system Mycobacterium smegmatis, and pathogens, such as Mycobacterium tuberculosis and Mycobacterium abscessus, that are poorly responsive to antibiotic treatments and pose a global public health problem. Mycobacteriophages have been collected at a very large scale over the last decade, and they have proven to be valuable tools for mycobacteria genetic manipulation, rapid diagnostics, and infection treatment. Yet, molecular mechanisms used by mycobacteriophages to infect their host remain poorly understood. Therefore, exploring the structural diversity of mycobacteriophages' host-binding machineries is important not only to better understand viral diversity and bacteriophage-host interactions, but also to rationally develop biotechnological tools. With the powerful protein structure prediction software AlphaFold2, which was publicly released a year ago, it is now possible to gain structural and functional insights on such challenging assemblies.
Collapse
Affiliation(s)
- Christian Cambillau
- School of Microbiology, University College Cork, Cork, Ireland
- AlphaGraphix, Formiguères, France
| | - Adeline Goulet
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, CNRS and Aix-Marseille Université, Marseille, France
| |
Collapse
|
9
|
Amarh ED, Dedrick RM, Garlena RA, Russell DA, Gauthier CH, Aull HG, Abad L, Jacobs-Sera D, Akusobi C, Rubin EJ, Hatfull GF. Unusual prophages in Mycobacterium abscessus genomes and strain variations in phage susceptibilities. PLoS One 2023; 18:e0281769. [PMID: 36795728 PMCID: PMC9934374 DOI: 10.1371/journal.pone.0281769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Mycobacterium abscessus infections are relatively common in patients with cystic fibrosis and are clinically challenging, with frequent intrinsic resistance to antibiotics. Therapeutic treatment with bacteriophages offers some promise but faces many challenges including substantial variation in phage susceptibilities among clinical isolates, and the need to personalize therapies for individual patients. Many strains are not susceptible to any phages or are not efficiently killed by lytic phages, including all smooth colony morphotype strains tested to-date. Here, we analyze a set of new M. abscessus isolates for the genomic relationships, prophage content, spontaneous phage release, and phage susceptibilities. We find that prophages are common in these M. abscessus genomes, but some have unusual arrangements, including tandemly integrated prophages, internal duplications, and they participate in active exchange of polymorphic toxin-immunity cassettes secreted by ESX systems. Relatively few strains are efficiently infected by any mycobacteriophages, and the infection patterns do not reflect the overall phylogenetic relationships of the strains. Characterization of these strains and their phage susceptibility profiles will help to advance the broader application of phage therapies for NTM infections.
Collapse
Affiliation(s)
- Elizabeth D. Amarh
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Rebekah M. Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Rebecca A. Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Daniel A. Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Christian H. Gauthier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Haley G. Aull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Lawrence Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Chidiebere Akusobi
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
10
|
Abstract
Mycobacteriophages-bacteriophages infecting Mycobacterium hosts-contribute substantially to our understanding of viral diversity and evolution, provide resources for advancing Mycobacterium genetics, are the basis of high-impact science education programs, and show considerable therapeutic potential. Over 10,000 individual mycobacteriophages have been isolated by high school and undergraduate students using the model organism Mycobacterium smegmatis mc2155 and 2,100 have been completely sequenced, giving a high-resolution view of the phages that infect a single common host strain. The phage genomes are revealed to be highly diverse and architecturally mosaic and are replete with genes of unknown function. Mycobacteriophages have provided many widely used tools for Mycobacterium genetics including integration-proficient vectors and recombineering systems, as well as systems for efficient delivery of reporter genes, transposons, and allelic exchange substrates. The genomic insights and engineering tools have facilitated exploration of phages for treatment of Mycobacterium infections, although their full therapeutic potential has yet to be realized.
Collapse
Affiliation(s)
- Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
11
|
Zhang Z, Yang Z, Zhen J, Xiang X, Liao P, Xie J. Insertion Mutation of MSMEG_0392 Play an Important Role in Resistance of M. smegmatis to Mycobacteriophage SWU1. Infect Drug Resist 2022; 15:347-357. [PMID: 35140480 PMCID: PMC8818766 DOI: 10.2147/idr.s341494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Phage is a new choice for the treatment of multi-drug-resistant bacteria, and phage resistance is also an issue of concern. SWU1 is a mycobacteriophage, and the mechanism of its resistance remain poorly understood. Methods The mutant strains which were stably resistant to SWU1 were screened by transposon mutation library. The stage of phage resistance was observed by transmission electron microscope (TEM). The insertion site of transposon was identified by thermal asymmetric interlaced PCR (TAIL-PCR). The possible relationship between insertion site and phage resistance was verified by gene knockout technique. The fatty acid composition of bacterial cell wall was analyzed by Gas Chromatography-Mass Spectrometer (GC-MS). Through the amplification and sequencing of target genes and gene complement techniques to find the mechanism of SWU1 resistance. Results The transposon mutant M12 which was stably resistant to mycobacteriophage SWU1 was successfully screened. It was confirmed that resistance occurred in the adsorption stage of bacteriophage. It was verified that the insertion site of the transposon was located in the MSMEG_3705 gene, but after knocking out the gene in the wild type M. smegmatis mc2 155, the resistance of the knockout strain to SWU1 was not observed. Through the amplification and sequencing of the target gene MSMEG_0392, it was found that there was an adenine insertion mutation at position 817. After complementing MSMEG_0392 in M12, it was found that M12 returned to sensitivity to SWU1. Conclusion We confirmed that the resistance of M12 to SWU1 was related to the functional inactivation of MSMEG_0392 and this phenomenon may be caused by the change of cell wall of M. smegmatis.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Clinical Laboratory, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Three Gorges Eco-Environment and Bioresources, Eco-Environment Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Zhulan Yang
- Department of Clinical Laboratory, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Junfeng Zhen
- Department of Clinical Laboratory, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
| | - Xiaohong Xiang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, People’s Republic of China
| | - Pu Liao
- Department of Clinical Laboratory, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Three Gorges Eco-Environment and Bioresources, Eco-Environment Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, People’s Republic of China
- Correspondence: Jianping Xie; Pu Liao, Tel/Fax +8623-68367108, Email ;
| |
Collapse
|
12
|
Diacon AH, Guerrero-Bustamante CA, Rosenkranz B, Rubio Pomar FJ, Vanker N, Hatfull GF. Mycobacteriophages to Treat Tuberculosis: Dream or Delusion? Respiration 2021; 101:1-15. [PMID: 34814151 DOI: 10.1159/000519870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022] Open
Abstract
Rates of antimicrobial resistance are increasing globally while the pipeline of new antibiotics is drying up, putting patients with disease caused by drug-resistant bacteria at increased risk of complications and death. The growing costs for diagnosis and management of drug resistance threaten tuberculosis control where the disease is endemic and resources limited. Bacteriophages are viruses that attack bacteria. Phage preparations served as anti-infective agents long before antibiotics were discovered. Though small in size, phages are the most abundant and diverse biological entity on earth. Phages have co-evolved with their hosts and possess all the tools needed to infect and kill bacteria, independent of drug resistance. Modern biotechnology has improved our understanding of the biology of phages and their possible uses. Phage preparations are available to treat meat, fruit, vegetables, and dairy products against parasites or to prevent contamination with human pathogens, such as Listeria monocytogenes, Escherichia coli, or Staphylococcus aureus. Such phage-treated products are considered fit for human consumption. A number of recent case reports describe in great detail the successful treatment of highly drug-resistant infections with individualized phage preparations. Formal clinical trials with standardized products are slowly emerging. With its highly conserved genome and relative paucity of natural phage defence mechanisms Mycobacterium tuberculosis appears to be a suitable target for phage treatment. A phage cocktail with diverse and strictly lytic phages that kill all lineages of M. tuberculosis, and can be propagated on Mycobacterium smegmatis, has been assembled and is available for the evaluation of optimal dosage and suitable routes of administration for tuberculosis in humans. Phage treatment can be expected to be safe and active on extracellular organisms, but phage penetration to intracellular and granulomatous environments as well as synergistic effects with antibiotics are important questions to address during further evaluation.
Collapse
Affiliation(s)
| | | | - Bernd Rosenkranz
- Division of Pharmacology, Stellenbosch University, Cape Town, South Africa.,Fundisa African Academy of Medicines Development, Cape Town, South Africa
| | | | | | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Guerrero-Bustamante CA, Dedrick RM, Garlena RA, Russell DA, Hatfull GF. Toward a Phage Cocktail for Tuberculosis: Susceptibility and Tuberculocidal Action of Mycobacteriophages against Diverse Mycobacterium tuberculosis Strains. mBio 2021; 12:e00973-21. [PMID: 34016711 PMCID: PMC8263002 DOI: 10.1128/mbio.00973-21] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
The global health burden of human tuberculosis (TB) and the widespread antibiotic resistance of its causative agent Mycobacterium tuberculosis warrant new strategies for TB control. The successful use of a bacteriophage cocktail to treat a Mycobacterium abscessus infection suggests that phages could play a role in tuberculosis therapy. To assemble a phage cocktail with optimal therapeutic potential for tuberculosis, we have explored mycobacteriophage diversity to identify phages that demonstrate tuberculocidal activity and determined the phage infection profiles for a diverse set of strains spanning the major lineages of human-adapted strains of the Mycobacterium tuberculosis complex. Using a combination of genome engineering and bacteriophage genetics, we have assembled a five-phage cocktail that minimizes the emergence of phage resistance and cross-resistance to multiple phages, and which efficiently kills the M. tuberculosis strains tested. Furthermore, these phages function without antagonizing antibiotic effectiveness, and infect both isoniazid-resistant and -sensitive strains.IMPORTANCE Tuberculosis kills 1.5 million people each year, and resistance to commonly used antibiotics contributes to treatment failures. The therapeutic potential of bacteriophages against Mycobacterium tuberculosis offers prospects for shortening antibiotic regimens, provides new tools for treating multiple drug-resistant (MDR)-TB and extensively drug-resistant (XDR)-TB infections, and protects newly developed antibiotics against rapidly emerging resistance to them. Identifying a suitable suite of phages active against diverse M. tuberculosis isolates circumvents many of the barriers to initiating clinical evaluation of phages as part of the arsenal of antituberculosis therapeutics.
Collapse
Affiliation(s)
| | - Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebecca A Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Mycobacteriophages as Genomic Engineers and Anti-infective Weapons. mBio 2021; 12:mBio.00632-21. [PMID: 34006655 PMCID: PMC8262953 DOI: 10.1128/mbio.00632-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium abscessus (Mab) is an emerging pathogen that is highly tolerant to current antibiotic therapies, and the current standard of care has a high failure rate. Mycobacteriophages represent a promising alternative treatment that have the potential to kill Mab with few side effects. However, the repertoire of phages that infect Mab is limited, and little is understood about the determinants of phage susceptibility in mycobacteria. Two studies from the Hatfull group (R. M. Dedrick, B. E. Smith, R. A. Garlena, D. A. Russell, et al., mBio 12:e03431-20, 2021, https://doi.org/10.1128/mBio.03431-20, and R. M. Dedrick, H. G. Aull, D. Jacobs-Sera, R. A. Garlena, et al., mBio 12:e03441-20, 2021, https://doi.org/10.1128/mBio.03441-20) shed new light on the natural phage complement of Mab and provide some of the first insights into what factors might drive susceptibility to these phages. These studies not only lay the groundwork for therapeutic development of more effective phage therapy in Mab but also provide a foothold for studying how mobile elements such as phages and plasmids impact Mab biology and evolution.
Collapse
|
15
|
Mycobacterium abscessus Strain Morphotype Determines Phage Susceptibility, the Repertoire of Therapeutically Useful Phages, and Phage Resistance. mBio 2021; 12:mBio.03431-20. [PMID: 33785625 PMCID: PMC8092298 DOI: 10.1128/mbio.03431-20] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium abscessus infections in cystic fibrosis patients are challenging to treat due to widespread antibiotic resistance. The therapeutic use of lytic bacteriophages presents a new potential strategy, but the great variation among clinical M. abscessus isolates demands determination of phage susceptibility prior to therapy. Mycobacterium abscessus is an opportunistic pathogen whose treatment is confounded by widespread multidrug resistance. The therapeutic use of bacteriophages against Mycobacterium abscessus infections offers a potential alternative approach, although the spectrum of phage susceptibilities among M. abscessus isolates is not known. We determined the phage infection profiles of 82 M. abscessus recent clinical isolates and find that colony morphotype—rough or smooth—is a key indicator of phage susceptibility. None of the smooth strains are efficiently killed by any phages, whereas 80% of rough strains are infected and efficiently killed by at least one phage. The repertoire of phages available for potential therapy of rough morphotype infections includes those with relatively broad host ranges, host range mutants of Mycobacterium smegmatis phages, and lytically propagated viruses derived from integrated prophages. The rough colony morphotype results from indels in the glycopeptidolipid synthesis genes mps1 and mps2, negating reversion to smooth as a common route to phage resistance. Resistance is thus rare, and although mutations in polyketide synthesis, uvrD2, and rpoZ can confer resistance, these likely also impair survival in vivo. The expanded therapeutic repertoire and the resistance profiles show that small cocktails or single phages could be suitable for controlling infections with rough strains.
Collapse
|
16
|
Allué-Guardia A, Saranathan R, Chan J, Torrelles JB. Mycobacteriophages as Potential Therapeutic Agents against Drug-Resistant Tuberculosis. Int J Mol Sci 2021; 22:ijms22020735. [PMID: 33450990 PMCID: PMC7828454 DOI: 10.3390/ijms22020735] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/21/2023] Open
Abstract
The current emergence of multi-, extensively-, extremely-, and total-drug resistant strains of Mycobacterium tuberculosis poses a major health, social, and economic threat, and stresses the need to develop new therapeutic strategies. The notion of phage therapy against bacteria has been around for more than a century and, although its implementation was abandoned after the introduction of drugs, it is now making a comeback and gaining renewed interest in Western medicine as an alternative to treat drug-resistant pathogens. Mycobacteriophages are genetically diverse viruses that specifically infect mycobacterial hosts, including members of the M. tuberculosis complex. This review describes general features of mycobacteriophages and their mechanisms of killing M. tuberculosis, as well as their advantages and limitations as therapeutic and prophylactic agents against drug-resistant M. tuberculosis strains. This review also discusses the role of human lung micro-environments in shaping the availability of mycobacteriophage receptors on the M. tuberculosis cell envelope surface, the risk of potential development of bacterial resistance to mycobacteriophages, and the interactions with the mammalian host immune system. Finally, it summarizes the knowledge gaps and defines key questions to be addressed regarding the clinical application of phage therapy for the treatment of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence: (A.A.-G.); (J.B.T.)
| | - Rajagopalan Saranathan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; (R.S.); (J.C.)
| | - John Chan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; (R.S.); (J.C.)
| | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence: (A.A.-G.); (J.B.T.)
| |
Collapse
|
17
|
Sinha S, Samaddar S, Das Gupta SK, Roy S. Network approach to mutagenesis sheds insight on phage resistance in mycobacteria. Bioinformatics 2021; 37:213-220. [PMID: 33416849 DOI: 10.1093/bioinformatics/btaa1103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 12/08/2020] [Accepted: 01/01/2021] [Indexed: 01/03/2023] Open
Abstract
MOTIVATION A rigorous yet general mathematical approach to mutagenesis, especially one capable of delivering systems-level perspectives would be invaluable. Such systems-level understanding of phage resistance is also highly desirable for phage-bacteria interactions and phage therapy research. Independently, the ability to distinguish between two graphs with a set of common or identical nodes and identify the implications thereof, is important in network science. RESULTS Herein we propose a measure called shortest path alteration fraction (SPAF) to compare any two networks by shortest paths, using sets. When SPAF is one, it can identify node pairs connected by at least one shortest path, which are present in either network but not both. Similarly, SPAF equaling zero identifies identical shortest paths, which are simultaneously present between a node pair in both networks. We study the utility of our measure theoretically in five diverse microbial species, to capture reported effects of well-studied mutations and predict new ones. We also scrutinise the effectiveness of our procedure through theoretical and experimental tests on Mycobacterium smegmatis mc2155 and by generating a mutant of mc2155, which is resistant to mycobacteriophage D29. This mutant of mc2155, which is resistant to D29 exhibits significant phenotypic alterations. Whole-genome sequencing identifies mutations, which cannot readily explain the observed phenotypes. Exhaustive analyses of protein-protein interaction network of the mutant and wild-type, using the machinery of topological metrics and differential networks does not yield a clear picture. However, SPAF coherently identifies pairs of proteins at the end of a subset of shortest paths, from amongst hundreds of thousands of viable shortest paths in the networks. The altered functions associated with the protein pairs are strongly correlated with the observed phenotypes.
Collapse
Affiliation(s)
- Saptarshi Sinha
- Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, WB, 700009, India
| | - Sourabh Samaddar
- Department of Microbiology, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kolkata, WB, 700 054, India
| | - Sujoy K Das Gupta
- Department of Microbiology, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kolkata, WB, 700 054, India
| | - Soumen Roy
- Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, WB, 700009, India
| |
Collapse
|
18
|
Suarez CA, Franceschelli JJ, Tasselli SE, Morbidoni HR. Weirdo19ES is a novel singleton mycobacteriophage that selects for glycolipid deficient phage-resistant M. smegmatis mutants. PLoS One 2020; 15:e0231881. [PMID: 32357186 PMCID: PMC7194413 DOI: 10.1371/journal.pone.0231881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/02/2020] [Indexed: 11/23/2022] Open
Abstract
The sequencing and bioinformatics analysis of bacteriophages infecting mycobacteria has yielded a large amount of information on their evolution, including that on their environmental propagation on other genera such as Gordonia, closely related to Mycobacterium. However, little is known on mycobacteriophages cell biology such as the nature of their receptor(s) or their replication cycle. As part of our on-going screening for novel mycobacteriophages, we herein report the isolation and genome bioinformatics analysis of Weirdo19ES, a singleton Siphoviridae temperate mycobacteriophage with a 70.19% GC content. Nucleotide and protein sequence comparison to actinobacteriophage databases revealed that Weirdo19ES shows low homology to Gordonia phage Ruthy and mycobacteriophages falling in clusters Q and G and to singleton DS6A.Weirdo19ES also displays uncommon features such as a very short Lysin A gene (with only one enzymatic domain) and two putative HNH endonucleases. Mycobacterium smegmatis mutants resistant to Weirdo19ES are cross- resistant to I3. In agreement with that phenotype, analysis of cell envelope of those mutants showed that Weirdo19ES shares receptors with the transducing mycobacteriophage I3.This singleton mycobacteriophage adds up to the uncommonness of local mycobacteriophages previously isolated by our group and helps understanding the nature of mycobacteriophage receptors.
Collapse
Affiliation(s)
- Cristian Alejandro Suarez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina Judith Franceschelli
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sabrina Emilse Tasselli
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor Ricardo Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail:
| |
Collapse
|
19
|
Samanta S, Biswas P, Banerjee A, Bose A, Siddiqui N, Nambi S, Saini DK, Visweswariah SS. A universal stress protein in Mycobacterium smegmatis sequesters the cAMP-regulated lysine acyltransferase and is essential for biofilm formation. J Biol Chem 2020; 295:1500-1516. [PMID: 31882539 PMCID: PMC7008380 DOI: 10.1074/jbc.ra119.011373] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/19/2019] [Indexed: 01/08/2023] Open
Abstract
Universal stress proteins (USPs) are present in many bacteria, and their expression is enhanced under various environmental stresses. We have previously identified a USP in Mycobacterium smegmatis that is a product of the msmeg_4207 gene and is a substrate for a cAMP-regulated protein lysine acyltransferase (KATms; MSMEG_5458). Here, we explored the role of this USP (USP4207) in M. smegmatis and found that its gene is present in an operon that also contains genes predicted to encode a putative tripartite tricarboxylate transporter (TTT). Transcription of the TTT-usp4207 operon was induced in the presence of citrate and tartrate, perhaps by the activity of a divergent histidine kinase-response regulator gene pair. A usp4207-deleted strain had rough colony morphology and reduced biofilm formation compared with the WT strain; however, both normal colony morphology and biofilm formation were restored in a Δusp4207Δkatms strain. We identified several proteins whose acetylation was lost in the Δkatms strain, and whose transcript levels increased in M. smegmatis biofilms along with that of USP4207, suggesting that USP4207 insulates KATms from its other substrates in the cell. We propose that USP4207 sequesters KATms from diverse substrates whose activities are down-regulated by acylation but are required for biofilm formation, thus providing a defined role for this USP in mycobacterial physiology and stress responses.
Collapse
Affiliation(s)
- Sintu Samanta
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Priyanka Biswas
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Arka Banerjee
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Avipsa Bose
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Nida Siddiqui
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Subhalaxmi Nambi
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| |
Collapse
|
20
|
The Mycobacterium tuberculosis CRISPR-Associated Cas1 Involves Persistence and Tolerance to Anti-Tubercular Drugs. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7861695. [PMID: 31061828 PMCID: PMC6466960 DOI: 10.1155/2019/7861695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 11/29/2022]
Abstract
Tuberculosis remains one of the leading causes of death worldwide. Even if new antitubercular drugs are currently being developed, the rapid emergence and spread of drug-resistant strain remain a severe challenge. The CRISPR associated proteins 1 (Cas1), a most conserved endonuclease which is responsible for spacer integration into CRISPR arrays, was found deleted in many specific drug-resistant strains. The function of Cas1 is still unknown in Mycobacterium type III-A CRISPR family. In this study, the Cas1 (Rv2817c) defect was found in 57.14% of clinical isolates. To investigate the function of Cas1 in new spacer acquisition, we challenged Bacillus Calmette–Guérin (BCG) with a mycobacteriophage D29. Newly acquired spacer sequence matches D29 genome was not found by spacer deep-sequencing. We further expressed Cas1 in recombinant Mycobacterium smegmatis. We found that Cas1 increased the sensitivity to multiple anti-tuberculosis drugs by reducing the persistence during drug treatment. We also showed that Cas1 impaired the repair of DNA damage and changed the stress response of Mycobacterium smegmatis. This study provides a further understanding of Cas1 in Mycobacterium tuberculosis complex (MTBC) drug-resistance evolution and a new sight for the tuberculosis treatment.
Collapse
|
21
|
Abstract
Mycobacteriophages are viruses that infect mycobacterial hosts. A large number of mycobacteriophages have been isolated and genomically characterized, providing insights into viral diversity and evolution, as well as fueling development of tools for mycobacterial genetics. Mycobacteriophages have intimate relationships with their hosts and provide insights into the genetics and physiology of the mycobacteria and tools for potential clinical applications such as drug development, diagnosis, vaccines, and potentially therapy.
Collapse
|
22
|
Di Capua CB, Belardinelli JM, Buchieri MV, Bortolotti A, Franceschelli JJ, Morbidoni HR. Deletion of MSMEG_1350 in Mycobacterium smegmatis causes loss of epoxy-mycolic acids, fitness alteration at low temperature and resistance to a set of mycobacteriophages. MICROBIOLOGY-SGM 2018; 164:1567-1582. [PMID: 30311878 DOI: 10.1099/mic.0.000734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mycobacterium smegmatis is intrinsically resistant to thiacetazone, an anti-tubercular thiourea; however we report here that it causes a mild inhibition in growth in liquid medium. Since mycolic acid biosynthesis was affected, we cloned and expressed Mycobacterium smegmatis mycolic acid methyltransferases, postulated as targets for thiacetazone in other mycobacterial species. During this analysis we identified MSMEG_1350 as the methyltransferase involved in epoxy mycolic acid synthesis since its deletion led to their total loss. Phenotypic characterization of the mutant strain showed colony morphology alterations at all temperatures, reduced growth and a slightly increased susceptibility to SDS, lipophilic and large hydrophilic drugs at 20 °C with little effect at 37 °C. No changes were detected between parental and mutant strains in biofilm formation, sliding motility or sedimentation rate. Intriguingly, we found that several mycobacteriophages severely decreased their ability to form plaques in the mutant strain. Taken together our results prove that, in spite of being a minor component of the mycolic acid pool, epoxy-mycolates are required for a proper assembly and functioning of the cell envelope. Further studies are warranted to decipher the role of epoxy-mycolates in the M. smegmatis cell envelope.
Collapse
Affiliation(s)
- Cecilia B Di Capua
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Juan M Belardinelli
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina.,‡Present address: Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - María V Buchieri
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ana Bortolotti
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina J Franceschelli
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor R Morbidoni
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
23
|
Letarov AV, Kulikov EE. Adsorption of bacteriophages on bacterial cells. BIOCHEMISTRY (MOSCOW) 2018. [DOI: 10.1134/s0006297917130053] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Abstract
ABSTRACT
Mycobacteriophages have provided numerous essential tools for mycobacterial genetics, including delivery systems for transposons, reporter genes, and allelic exchange substrates, and components for plasmid vectors and mutagenesis. Their genetically diverse genomes also reveal insights into the broader nature of the phage population and the evolutionary mechanisms that give rise to it. The substantial advances in our understanding of the biology of mycobacteriophages including a large collection of completely sequenced genomes indicates a rich potential for further contributions in tuberculosis genetics and beyond.
Collapse
|
25
|
Pang L, Tian X, Pan W, Xie J. Structure and function of mycobacterium glycopeptidolipids from comparative genomics perspective. J Cell Biochem 2013; 114:1705-13. [PMID: 23444081 DOI: 10.1002/jcb.24515] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 11/08/2022]
Abstract
Glycopeptidolipids (GPLs) attached to the outer surface of the greasy cell envelope, are a class of important glycolipids synthesized by several non-tuberculosis mycobacteria. The deletion or structure change of GPLs confers several phenotypical changes including colony morphology, hydrophobicity, aggregation, sliding motility, and biofilm formation. In addition, GPLs, particular serovar specific GPLs, are important immunomodulators. This review aims to summarize the advance on the structure, function and biosynthesis of mycobacterium GPLs.
Collapse
Affiliation(s)
- Lei Pang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | | | | | | |
Collapse
|
26
|
Abstract
The study of mycobacteriophages provides insights into viral diversity and evolution, as well as the genetics and physiology of their pathogenic hosts. Genomic characterization of 80 mycobacteriophages reveals a high degree of genetic diversity and an especially rich reservoir of interesting genes. These include a vast number of genes of unknown function that do not match known database entries and many genes whose functions can be predicted but which are not typically found as components of phage genomes. Thus many mysteries surround these genomes, such as why the genes are there, what do they do, how are they expressed and regulated, how do they influence the physiology of the host bacterium, and what forces of evolution directed them to their genomic homes? Although the genetic diversity and novelty of these phages is full of intrigue, it is a godsend for the mycobacterial geneticist, presenting an abundantly rich toolbox that can be exploited to devise new and effective ways for understanding the genetics and physiology of human tuberculosis. As the number of sequenced genomes continues to grow, their mysteries continue to thicken, and the time has come to learn more about the secret lives of mycobacteriophages.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennslyvania, USA
| |
Collapse
|
27
|
Reyes-Cortés R, Martínez-Peñafiel E, Martínez-Pérez F, de la Garza M, Kameyama L. A novel strategy to isolate cell-envelope mutants resistant to phage infection: bacteriophage mEp213 requires lipopolysaccharides in addition to FhuA to enter Escherichia coli K-12. Microbiology (Reading) 2012; 158:3063-3071. [DOI: 10.1099/mic.0.060970-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ruth Reyes-Cortés
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P. 7360, México D.F., Mexico
| | - Eva Martínez-Peñafiel
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P. 7360, México D.F., Mexico
| | - Francisco Martínez-Pérez
- Laboratorio de Microbiología y Mutagénesis Ambiental, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P. 7360, México D.F., Mexico
| | - Luis Kameyama
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P. 7360, México D.F., Mexico
| |
Collapse
|
28
|
Tatham E, Sundaram Chavadi S, Mohandas P, Edupuganti UR, Angala SK, Chatterjee D, Quadri LEN. Production of mycobacterial cell wall glycopeptidolipids requires a member of the MbtH-like protein family. BMC Microbiol 2012; 12:118. [PMID: 22726990 PMCID: PMC3537567 DOI: 10.1186/1471-2180-12-118] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/07/2012] [Indexed: 12/22/2022] Open
Abstract
Background Glycopeptidolipids (GPLs) are among the major free glycolipid components of the outer membrane of several saprophytic and clinically-relevant Mycobacterium species. The architecture of GPLs is based on a constant tripeptide-amino alcohol core of nonribosomal peptide synthetase origin that is N-acylated with a 3-hydroxy/methoxy acyl chain synthesized by a polyketide synthase and further decorated with variable glycosylation patterns built from methylated and acetylated sugars. GPLs have been implicated in many aspects of mycobacterial biology, thus highlighting the significance of gaining an understanding of their biosynthesis. Our bioinformatics analysis revealed that every GPL biosynthetic gene cluster known to date contains a gene (referred herein to as gplH) encoding a member of the MbtH-like protein family. Herein, we sought to conclusively establish whether gplH was required for GPL production. Results Deletion of gplH, a gene clustered with nonribosomal peptide synthetase-encoding genes in the GPL biosynthetic gene cluster of Mycobacterium smegmatis, produced a GPL deficient mutant. Transformation of this mutant with a plasmid expressing gplH restored GPL production. Complementation was also achieved by plasmid-based constitutive expression of mbtH, a paralog of gplH found in the biosynthetic gene cluster for production of the siderophore mycobactin of M. smegmatis. Further characterization of the gplH mutant indicated that it also displayed atypical colony morphology, lack of sliding motility, altered capacity for biofilm formation, and increased drug susceptibility. Conclusions Herein, we provide evidence formally establishing that gplH is essential for GPL production in M. smegmatis. Inactivation of gplH also leads to a pleiotropic phenotype likely to arise from alterations in the cell envelope due to the lack of GPLs. While genes encoding MbtH-like proteins have been shown to be needed for production of siderophores and antibiotics, our study presents the first case of one such gene proven to be required for production of a cell wall component. Furthermore, our results provide the first example of a mbtH-like gene with confirmed functional role in a member of the Mycobacterium genus. Altogether, our findings demonstrate a critical role of gplH in mycobacterial biology and advance our understanding of the genetic requirements for the biosynthesis of an important group of constituents of the mycobacterial outer membrane.
Collapse
Affiliation(s)
- Elizabeth Tatham
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Viruses are powerful tools for investigating and manipulating their hosts, but the enormous size and amazing genetic diversity of the bacteriophage population have emerged as something of a surprise. In light of the evident importance of mycobacteria to human health--especially Mycobacterium tuberculosis, which causes tuberculosis--and the difficulties that have plagued their genetic manipulation, mycobacteriophages are especially appealing subjects for discovery, genomic characterization, and manipulation. With more than 70 complete genome sequences available, the mycobacteriophages have provided a wealth of information on the diversity of phages that infect a common bacterial host, revealed the pervasively mosaic nature of phage genome architectures, and identified a huge number of genes of unknown function. Mycobacteriophages have provided key tools for tuberculosis genetics, and new methods for simple construction of mycobacteriophage recombinants will facilitate postgenomic explorations into mycobacteriophage biology.
Collapse
Affiliation(s)
- Graham F Hatfull
- Pittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|