1
|
Alzheimer M, Froschauer K, Svensson SL, König F, Hopp E, Drobnič T, Henderson LD, Ribardo DA, Hendrixson DR, Bischler T, Beeby M, Sharma CM. Functional genomics of Campylobacter -host interactions in an intestinal tissue model reveals a small lipoprotein essential for flagellar assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646747. [PMID: 40236077 PMCID: PMC11996450 DOI: 10.1101/2025.04.02.646747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Campylobacter jejuni is currently the most common cause of bacterial gastroenteritis worldwide. However, its genome provides few clues about how it interacts with the host. Moreover, infection screens have often been limited to classical cell culture or animal models. To identify C. jejuni genes involved in host cell interactions, we applied transposon sequencing in a humanized 3D intestinal infection model based on tissue engineering. This revealed key proteins required for host cell adherence and/or internalization, including an Rrf2 family transcriptional regulator as well as three so far uncharacterized genes ( pflC / Cj1643 , pflD / Cj0892c , pflE / Cj0978c ), which we demonstrate to encode factors essential for motility. Deletion mutants of pflC / D / E are non-motile but retain intact, paralysed flagella filaments. We demonstrate that two of these newly identified motility proteins, PflC and PflD, are components of the C. jejuni 's periplasmic disk structures of the high torque motor. The third gene, pflE , encodes a small protein of only 57 aa. Using CryoET imaging we uncovered that the small protein has a striking effect on motor biogenesis, leading to a complete loss of the flagellar disk and motor structures upon its deletion. While PflE does not appear to be a structural component of the motor itself, our data suggests that it is a lipoprotein and supports localization of the main basal disk protein FlgP, which is the first assembly step of the flagellar disk structure. Despite being annotated as a lipoprotein, we find that C. jejuni FlgP instead relies on PflE for its association with the outer membrane. Overall, our genome-wide screen revealed novel C. jejuni host interaction factors including a transcriptional regulator as well as two structural components and a small protein crucial for biogenesis of the C. jejuni high torque flagella motor. Since the flagella machinery is a critical virulence determining factor for C. jejuni , our work demonstrates how such a small protein can, quite literally, bring a bacterial pathogen to a halt.
Collapse
|
2
|
Stoakes E, Turner K, Baker DJ, Suau Sans M, Yasir M, Kalmar L, Costigan R, Lott M, Grant AJ. Application of TraDIS to define the core essential genome of Campylobacter jejuni and Campylobacter coli. BMC Microbiol 2023; 23:97. [PMID: 37024800 PMCID: PMC10077673 DOI: 10.1186/s12866-023-02835-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Campylobacter species are the major cause of bacterial gastroenteritis. As there is no effective vaccine, combined with the rapid increase in antimicrobial resistant strains, there is a need to identify new targets for intervention. Essential genes are those that are necessary for growth and/or survival, making these attractive targets. In this study, comprehensive transposon mutant libraries were created in six C. jejuni strains, four C. coli strains and one C. lari and C. hyointestinalis strain, allowing for those genes that cannot tolerate a transposon insertion being called as essential. Comparison of essential gene lists using core genome analysis can highlight those genes which are common across multiple strains and/or species. Comparison of C. jejuni and C. coli, the two species that cause the most disease, identified 316 essential genes. Genes of interest highlighted members of the purine pathway being essential for C. jejuni whilst also finding that a functional potassium uptake system is essential. Protein-protein interaction networks using these essential gene lists also highlighted proteins in the purine pathway being major 'hub' proteins which have a large number of interactors across the network. When adding in two more species (C. lari and C. hyointestinalis) the essential gene list reduces to 261. Within these 261 essential genes, there are many genes that have been found to be essential in other bacteria. These include htrB and PEB4, which have previously been found as core virulence genes across Campylobacter species in other studies. There were 21 genes which have no known function with eight of these being associated with the membrane. These surface-associated essential genes may provide attractive targets. The essential gene lists presented will help to prioritise targets for the development of novel therapeutic and preventative interventions.
Collapse
Affiliation(s)
- Emily Stoakes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Keith Turner
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Dave J Baker
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Maria Suau Sans
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Muhammad Yasir
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Lajos Kalmar
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Ruby Costigan
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Martin Lott
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK.
| |
Collapse
|
3
|
Middendorf PS, Jacobs-Reitsma WF, Zomer AL, den Besten HMW, Abee T. Comparative Analysis of L-Fucose Utilization and Its Impact on Growth and Survival of Campylobacter Isolates. Front Microbiol 2022; 13:872207. [PMID: 35572645 PMCID: PMC9100392 DOI: 10.3389/fmicb.2022.872207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Campylobacter jejuni and Campylobacter coli were previously considered asaccharolytic, but are now known to possess specific saccharide metabolization pathways, including L-fucose. To investigate the influence of the L-fucose utilization cluster on Campylobacter growth, survival and metabolism, we performed comparative genotyping and phenotyping of the C. jejuni reference isolate NCTC11168 (human isolate), C. jejuni Ca1352 (chicken meat isolate), C. jejuni Ca2426 (sheep manure isolate), and C. coli Ca0121 (pig manure isolate), that all possess the L-fucose utilization cluster. All isolates showed enhanced survival and prolonged spiral cell morphology in aging cultures up to day seven in L-fucose-enriched MEMα medium (MEMαF) compared to MEMα. HPLC analysis indicated L-fucose utilization linked to acetate, lactate, pyruvate and succinate production, confirming the activation of the L-fucose pathway in these isolates and its impact on general metabolism. Highest consumption of L-fucose by C. coli Ca0121 is conceivably linked to its enhanced growth performance up to day 7, reaching 9.3 log CFU/ml compared to approximately 8.3 log CFU/ml for the C. jejuni isolates. Genetic analysis of the respective L-fucose clusters revealed several differences, including a 1 bp deletion in the Cj0489 gene of C. jejuni NCTC11168, causing a frameshift in this isolate resulting in two separate genes, Cj0489 and Cj0490, while no apparent phenotype could be linked to the presumed frameshift in this isolate. Additionally, we found that the L-fucose cluster of C. coli Ca0121 was most distant from C. jejuni NCTC11168, but confirmation of links to L-fucose metabolism associated phenotypic traits in C. coli versus C. jejuni isolates requires further studies.
Collapse
Affiliation(s)
- Pjotr S. Middendorf
- Food Microbiology, Wageningen University, Wageningen, Netherlands
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | - Aldert L. Zomer
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
- WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, Netherlands
| | - Heidy M. W. den Besten
- Food Microbiology, Wageningen University, Wageningen, Netherlands
- Heidy M. W. den Besten,
| | - Tjakko Abee
- Food Microbiology, Wageningen University, Wageningen, Netherlands
- *Correspondence: Tjakko Abee,
| |
Collapse
|
4
|
Cayrou C, Barratt NA, Ketley JM, Bayliss CD. Phase Variation During Host Colonization and Invasion by Campylobacter jejuni and Other Campylobacter Species. Front Microbiol 2021; 12:705139. [PMID: 34394054 PMCID: PMC8355987 DOI: 10.3389/fmicb.2021.705139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Phase variation (PV) is a phenomenon common to a variety of bacterial species for niche adaption and survival in challenging environments. Among Campylobacter species, PV depends on the presence of intergenic and intragenic hypermutable G/C homopolymeric tracts. The presence of phase-variable genes is of especial interest for species that cause foodborne or zoonotic infections in humans. PV influences the formation and the structure of the lipooligosaccharide, flagella, and capsule in Campylobacter species. PV of components of these molecules is potentially important during invasion of host tissues, spread within hosts and transmission between hosts. Motility is a critical phenotype that is potentially modulated by PV. Variation in the status of the phase-variable genes has been observed to occur during colonization in chickens and mouse infection models. Interestingly, PV is also involved in bacterial survival of attack by bacteriophages even during chicken colonization. This review aims to explore and discuss observations of PV during model and natural infections by Campylobacter species and how PV may affect strategies for fighting infections by this foodborne pathogen.
Collapse
Affiliation(s)
- Caroline Cayrou
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Natalie A Barratt
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Julian M Ketley
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Christopher D Bayliss
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
5
|
Aviles FA, Kyndt JA. Cellulosimicrobium fucosivorans sp. nov., isolated from San Elijo Lagoon, contains a fucose metabolic pathway linked to carotenoid production. Arch Microbiol 2021; 203:4525-4538. [PMID: 34148152 DOI: 10.1007/s00203-021-02443-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Cellulosimicrobium strain SE3T was isolated from the San Elijo coastal lagoon near San Diego. A whole genome-based phylogenetic comparison shows great heterogeneity within the Cellulosimicrobium genus. Based on average nucleotide identity, whole genome-based comparison, and the presence of a unique L-fucose metabolic pathway, strain SE3T was shown to belong to a novel species within the genus, together with five other strains. The name Cellulosimicrobium fucosivorans sp. nov. is proposed, with strain SE3T as the type strain. The strain encodes a unique alpha-L-fucosidase and the L-fucose metabolic pathway is homologous to the one recently described in Campylobacter jejuni. C. fucosivorans is able to grow on L-fucose, and interestingly, the biosynthesis of the yellow carotenoid is dependent on the presence of L-fucose in the media. The ability to metabolize fucose and the linked production of carotenoids are expected to provide C. fucosivorans with a competitive advantage in the sunny coastal lagoon area.
Collapse
Affiliation(s)
- Fabiola A Aviles
- College of Science and Technology, Bellevue University, 1000 Galvin Rd. S., Bellevue, NE, 68005, USA
| | - John A Kyndt
- College of Science and Technology, Bellevue University, 1000 Galvin Rd. S., Bellevue, NE, 68005, USA.
| |
Collapse
|
6
|
Luijkx YMCA, Bleumink NMC, Jiang J, Overkleeft HS, Wösten MMSM, Strijbis K, Wennekes T. Bacteroides fragilis fucosidases facilitate growth and invasion of Campylobacter jejuni in the presence of mucins. Cell Microbiol 2020; 22:e13252. [PMID: 32827216 PMCID: PMC7685106 DOI: 10.1111/cmi.13252] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
The enteropathogenic bacterium, Campylobacter jejuni, was considered to be non‐saccharolytic, but recently it emerged that l‐fucose plays a central role in C. jejuni virulence. Half of C. jejuni clinical isolates possess an operon for l‐fucose utilisation. In the intestinal tract, l‐fucose is abundantly available in mucin O‐linked glycan structures, but C. jejuni lacks a fucosidase enzyme essential to release the l‐fucose. We set out to determine how C. jejuni can gain access to these intestinal l‐fucosides. Growth of the fuc + C. jejuni strains, 129,108 and NCTC 11168, increased in the presence of l‐fucose while fucose permease knockout strains did not benefit from additional l‐fucose. With fucosidase assays and an activity‐based probe, we confirmed that Bacteriodes fragilis, an abundant member of the intestinal microbiota, secretes active fucosidases. In the presence of mucins, C. jejuni was dependent on B. fragilis fucosidase activity for increased growth. Campylobacter jejuni invaded Caco‐2 intestinal cells that express complex O‐linked glycan structures that contain l‐fucose. In infection experiments, C. jejuni was more invasive in the presence of B. fragilis and this increase is due to fucosidase activity. We conclude that C. jejuni fuc + strains are dependent on exogenous fucosidases for increased growth and invasion.
Collapse
Affiliation(s)
- Yvette M C A Luijkx
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nancy M C Bleumink
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jianbing Jiang
- Leiden institute of Chemistry, Leiden University, Leiden, The Netherlands.,Health Science Center, School of Pharmacy, Shenzhen University, Shenzhen, China
| | | | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karin Strijbis
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tom Wennekes
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Virulence Traits of Inpatient Campylobacter jejuni Isolates, and a Transcriptomic Approach to Identify Potential Genes Maintaining Intracellular Survival. Microorganisms 2020; 8:microorganisms8040531. [PMID: 32272707 PMCID: PMC7232156 DOI: 10.3390/microorganisms8040531] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
There are still major gaps in our understanding of the bacterial factors that influence the outcomes of human Campylobacter jejuni infection. The aim of this study was to compare the virulence-associated features of 192 human C. jejuni strains isolated from hospitalized patients with diarrhoea (150/192, 78.1%), bloody diarrhoea (23/192, 11.9%), gastroenteritis (3/192, 1.6%), ulcerative colitis (3/192, 1.5%), and stomach ache (2/192, 1.0%). Traits were analysed with genotypic and phenotypic methods, including PCR and extracellular matrix protein (ECMP) binding, adhesion, and invasion capacities. Results were studied alongside patient symptoms, but no distinct links with them could be determined. Since the capacity of C. jejuni to invade host epithelial cells is one of its most enigmatic attributes, a high throughput transcriptomic analysis was performed in the third hour of internalization with a C. jejuni strain originally isolated from bloody diarrhoea. Characteristic groups of genes were significantly upregulated, outlining a survival strategy of internalized C. jejuni comprising genes related (1) to oxidative stress; (2) to a protective sheath formed by the capsule, LOS, N-, and O- glycosylation systems; (3) to dynamic metabolic activity supported by different translocases and the membrane-integrated component of the flagellar apparatus; and (4) to hitherto unknown genes.
Collapse
|
8
|
Xi D, Alter T, Einspanier R, Sharbati S, Gölz G. Campylobacter jejuni genes Cj1492c and Cj1507c are involved in host cell adhesion and invasion. Gut Pathog 2020; 12:8. [PMID: 32064001 PMCID: PMC7011364 DOI: 10.1186/s13099-020-00347-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Background Campylobacter jejuni (C. jejuni) has been assigned as an important food-borne pathogen for human health but many pathogenicity factors of C. jejuni and human host cell responses related to the infection have not yet been adequately clarified. This study aimed to determine further C. jejuni pathogenicity factors and virulence genes based on a random mutagenesis approach. A transposon mutant library of C. jejuni NCTC 11168 was constructed and the ability of individual mutants to adhere to and invade human intestinal epithelial cells was evaluated compared to the wild type. We identified two mutants of C. jejuni possessing altered phenotypes with transposon insertions in the genes Cj1492c and Cj1507c. Cj1492c is annotated as a two-component sensor and Cj1507c is described as a regulatory protein. However, functions of both mutated genes are not clarified so far. Results In comparison to the wild type, Cj::1492c and Cj::1507c showed around 70-80% relative motility and Cj::1492c had around 3-times enhanced adhesion and invasion rates whereas Cj::1507c had significantly impaired adhesive and invasive capability. Moreover, Cj::1492c had a longer lag phase and slower growth rate while Cj::1507c showed similar growth compared to the wild type. Between 5 and 24 h post infection, more than 60% of the intracellular wild type C. jejuni were eliminated in HT-29/B6 cells, however, significantly fewer mutants were able to survive intracellularly. Nevertheless, no difference in host cell viability and induction of the pro-inflammatory chemokine IL-8 were determined between both mutants and the wild type. Conclusion We conclude that genes regulated by Cj1507c have an impact on efficient adhesion, invasion and intracellular survival of C. jejuni in HT-29/B6 cells. Furthermore, potential signal sensing by Cj1492c seems to lead to limiting attachment and hence internalisation of C. jejuni. However, as the intracellular survival capacities are reduced, we suggest that signal sensing by Cj1492c impacts several processes related to pathogenicity of C. jejuni.
Collapse
Affiliation(s)
- De Xi
- 1Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Thomas Alter
- 2Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Ralf Einspanier
- 1Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Soroush Sharbati
- 1Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Greta Gölz
- 2Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
9
|
de Oliveira MG, Rizzi C, Galli V, Lopes GV, Haubert L, Dellagostin OA, da Silva WP. Presence of genes associated with adhesion, invasion, and toxin production in Campylobacter jejuni isolates and effect of temperature on their expression. Can J Microbiol 2018; 65:253-260. [PMID: 30532987 DOI: 10.1139/cjm-2018-0539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The aims of this study were to evaluate the presence of genes associated with adhesion (cadF), invasion (ciaB), and cytotoxin production (cdtA, cdtB, and cdtC) among Campylobacter jejuni isolates from a poultry slaughterhouse and to investigate the effect of different temperatures on the expression of these virulence-associated genes. A total of 88 C. jejuni isolates from cecum, liver, chicken carcasses, chilled water, and scalding water were submitted to PCR assay for detection of virulence genes. Representative isolates were selected for gene expression evaluation at 37 and 42 °C, according to their virulence gene profile and genotypic typing. All C. jejuni isolates carried the five virulence-associated genes, which play an important role in the infectious process. Differential gene expression by RT-qPCR was observed among C. jejuni isolates at 37 and 42 °C. The expression levels at 37 °C showed upregulation of the ciaB, cdtA, cdtB, and cdtC genes in five isolates, with the exception of ciaB for isolate 4. At 42 °C, upregulation was observed for ciaB and cdtC, cdtA and cdtB, and cadF in four, three, and two isolates, respectively. The C. jejuni isolates expressed the virulence genes evaluated, and the expression is gene- and isolate-dependent and varied according the temperature.
Collapse
Affiliation(s)
- Mauricéia Greici de Oliveira
- a Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Caroline Rizzi
- b Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vanessa Galli
- b Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Graciela Volz Lopes
- a Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Louise Haubert
- a Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- b Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wladimir Padilha da Silva
- a Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil.,b Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
10
|
Campylobacter jejuni transcriptional and genetic adaptation during human infection. Nat Microbiol 2018; 3:494-502. [PMID: 29588538 PMCID: PMC5876760 DOI: 10.1038/s41564-018-0133-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/19/2018] [Indexed: 12/22/2022]
Abstract
Campylobacter jejuni infections are a leading cause bacterial food-borne diarrheal illness worldwide, and Campylobacter infections in children are associated with stunted growth and therefore long-term deficits into adulthood. Despite this global impact on health and human capital, how zoonotic C. jejuni responds to the human host remains unclear. Unlike other intestinal pathogens, C. jejuni does not harbor pathogen-defining toxins that explicitly contribute to disease in humans. This makes understanding Campylobacter pathogenesis challenging and supports a broad examination of bacterial factors that contribute to C. jejuni infection. Here we use a controlled human infection model to characterize C. jejuni transcriptional and genetic adaptations in vivo, along with a non-human primate infection model to validate our approach. We found variation in 11 genes is associated with either acute or persistent human infections and include products involved in host cell invasion, bile sensing, and flagella modification, plus additional potential therapeutic targets. Particularly, a functional version of the cell invasion protein A (cipA) gene product is strongly associated with persistently infecting bacteria and we went on to identify its biochemical role in flagella modification. These data characterize the adaptive C. jejuni response to primate infections and suggest therapy design should consider the intrinsic differences between acute and persistently infecting bacteria. Additionally, RNA-sequencing revealed conserved responses during natural host commensalism and human infections. 39 genes were differentially regulated in vivo across hosts, lifestyles, and C. jejuni strains. This conserved in vivo response highlights important C. jejuni survival mechanisms such as iron acquisition and evasion of the host mucosal immune response. These advances highlight pathogen adaptability across host species and demonstrate the utility of multidisciplinary collaborations in future clinical trials to study pathogens in vivo.
Collapse
|
11
|
Méric G, McNally A, Pessia A, Mourkas E, Pascoe B, Mageiros L, Vehkala M, Corander J, Sheppard SK. Convergent Amino Acid Signatures in Polyphyletic Campylobacter jejuni Subpopulations Suggest Human Niche Tropism. Genome Biol Evol 2018; 10:763-774. [PMID: 29452359 PMCID: PMC5841378 DOI: 10.1093/gbe/evy026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 12/14/2022] Open
Abstract
Human infection with the gastrointestinal pathogen Campylobacter jejuni is dependent upon the opportunity for zoonotic transmission and the ability of strains to colonize the human host. Certain lineages of this diverse organism are more common in human infection but the factors underlying this overrepresentation are not fully understood. We analyzed 601 isolate genomes from agricultural animals and human clinical cases, including isolates from the multihost (ecological generalist) ST-21 and ST-45 clonal complexes (CCs). Combined nucleotide and amino acid sequence analysis identified 12 human-only amino acid KPAX clusters among polyphyletic lineages within the common disease causing CC21 group isolates, with no such clusters among CC45 isolates. Isolate sequence types within human-only CC21 group KPAX clusters have been sampled from other hosts, including poultry, so rather than representing unsampled reservoir hosts, the increase in relative frequency in human infection potentially reflects a genetic bottleneck at the point of human infection. Consistent with this, sequence enrichment analysis identified nucleotide variation in genes with putative functions related to human colonization and pathogenesis, in human-only clusters. Furthermore, the tight clustering and polyphyly of human-only lineage clusters within a single CC suggest the repeated evolution of human association through acquisition of genetic elements within this complex. Taken together, combined nucleotide and amino acid analysis of large isolate collections may provide clues about human niche tropism and the nature of the forces that promote the emergence of clinically important C. jejuni lineages.
Collapse
Affiliation(s)
- Guillaume Méric
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, United Kingdom
| | - Alan McNally
- Institute of Microbiology and Infection, University of Birmingham, United Kingdom
| | - Alberto Pessia
- Department of Mathematics and Statistics, University of Helsinki, Finland
| | - Evangelos Mourkas
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, United Kingdom
| | - Ben Pascoe
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, United Kingdom
| | - Leonardos Mageiros
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, United Kingdom
| | - Minna Vehkala
- Department of Mathematics and Statistics, University of Helsinki, Finland
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Finland
- Department of Biostatistics, University of Oslo, Norway
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Samuel K Sheppard
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, United Kingdom
| |
Collapse
|
12
|
Dwivedi R, Nothaft H, Garber J, Xin Kin L, Stahl M, Flint A, van Vliet AHM, Stintzi A, Szymanski CM. L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni. Mol Microbiol 2016; 101:575-89. [PMID: 27145048 DOI: 10.1111/mmi.13409] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/15/2016] [Indexed: 11/28/2022]
Abstract
Campylobacter jejuni and Campylobacter coli are zoonotic pathogens once considered asaccharolytic, but are now known to encode pathways for glucose and fucose uptake/metabolism. For C. jejuni, strains with the fuc locus possess a competitive advantage in animal colonization models. We demonstrate that this locus is present in > 50% of genome-sequenced strains and is prevalent in livestock-associated isolates of both species. To better understand how these campylobacters sense nutrient availability, we examined biofilm formation and chemotaxis to fucose. C. jejuni NCTC11168 forms less biofilms in the presence of fucose, although its fucose permease mutant (fucP) shows no change. In a newly developed chemotaxis assay, both wild-type and the fucP mutant are chemotactic towards fucose. C. jejuni 81-176 naturally lacks the fuc locus and is unable to swim towards fucose. Transfer of the NCTC11168 locus into 81-176 activated fucose uptake and chemotaxis. Fucose chemotaxis also correlated with possession of the pathway for C. jejuni RM1221 (fuc+) and 81116 (fuc-). Systematic mutation of the NCTC11168 locus revealed that Cj0485 is necessary for fucose metabolism and chemotaxis. This study suggests that components for fucose chemotaxis are encoded within the fuc locus, but downstream signals only in fuc + strains, are involved in coordinating fucose availability with biofilm development.
Collapse
Affiliation(s)
- Ritika Dwivedi
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Harald Nothaft
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Jolene Garber
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Lin Xin Kin
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Martin Stahl
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Annika Flint
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Arnoud H M van Vliet
- Institute of Food Research, Gut Health and Food Safety Programme, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Alain Stintzi
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Christine M Szymanski
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
13
|
Baig A, McNally A, Dunn S, Paszkiewicz KH, Corander J, Manning G. Genetic import and phenotype specific alleles associated with hyper-invasion in Campylobacter jejuni. BMC Genomics 2015; 16:852. [PMID: 26497129 PMCID: PMC4619573 DOI: 10.1186/s12864-015-2087-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/15/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Campylobacter jejuni is a major zoonotic pathogen, causing gastroenteritis in humans. Invasion is an important pathogenesis trait by which C. jejuni causes disease. Here we report the genomic analysis of 134 strains to identify traits unique to hyperinvasive isolates. METHODS A total of 134 C. jejuni genomes were used to create a phylogenetic tree to position the hyperinvasive strains. Comparative genomics lead to the identification of mosaic capsule regions. A pan genome approach led to the discovery of unique loci, or loci with unique alleles, to the hyperinvasive strains. RESULTS Phylogenetic analysis showed that the hyper-invasive phenotype is a generalist trait. Despite the fact that hyperinvasive strains are only distantly related based on the whole genome phylogeny, they all possess genes within the capsule region with high identity to capsule genes from C. jejuni subsp. doylei and C. lari. In addition there were genes unique to the hyper-invasive strains with identity to non-C. jejuni genes, as well as allelic variants of mainly pathogenesis related genes already known in the other C. jejuni. In particular, the sequence of flagella genes, flgD-E and flgL were highly conserved amongst the hyper-invasive strains and divergent from sequences in other C. jejuni. A novel cytolethal distending toxin (cdt) operon was also identified as present in all hyper-invasive strains in addition to the classic cdt operon present in other C. jejuni. CONCLUSIONS Overall, the hyper-invasive phenotype is strongly linked to the presence of orthologous genes from other Campylobacter species in their genomes, notably within the capsule region, in addition to the observed association with unique allelic variants in flagellar genes and the secondary cdt operon which is unlikely under random sharing of accessory alleles in separate lineages.
Collapse
Affiliation(s)
- Abiyad Baig
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK. .,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | - Alan McNally
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Steven Dunn
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | | | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
| | - Georgina Manning
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| |
Collapse
|
14
|
Scott NE, Marzook NB, Cain JA, Solis N, Thaysen-Andersen M, Djordjevic SP, Packer NH, Larsen MR, Cordwell SJ. Comparative Proteomics and Glycoproteomics Reveal Increased N-Linked Glycosylation and Relaxed Sequon Specificity in Campylobacter jejuni NCTC11168 O. J Proteome Res 2014; 13:5136-50. [DOI: 10.1021/pr5005554] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | - Morten Thaysen-Andersen
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Steven P. Djordjevic
- i3
Institute, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Nicolle H. Packer
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Martin R. Larsen
- Protein
Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense 5000, Denmark
| | - Stuart J. Cordwell
- Discipline
of Pathology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
15
|
Clark CG, Chong PM, McCorrister SJ, Simon P, Walker M, Lee DM, Nguy K, Cheng K, Gilmour MW, Westmacott GR. The CJIE1 prophage of Campylobacter jejuni affects protein expression in growth media with and without bile salts. BMC Microbiol 2014; 14:70. [PMID: 24641125 PMCID: PMC4004267 DOI: 10.1186/1471-2180-14-70] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 03/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The presence of Campylobacter jejuni temperate bacteriophages has increasingly been associated with specific biological effects. It has recently been demonstrated that the presence of the prophage CJIE1 is associated with increased adherence and invasion of C. jejuni isolates in cell culture assays. RESULTS Quantitative comparative proteomics experiments were undertaken using three closely related isolates with CJIE1 and one isolate without CJIE1 to determine whether there was a corresponding difference in protein expression levels. Initial experiments indicated that about 2% of the total proteins characterized were expressed at different levels in isolates with or without the prophage. Some of these proteins regulated by the presence of CJIE1 were associated with virulence or regulatory functions. Additional experiments were conducted using C. jejuni isolates with and without CJIE1 grown on four different media: Mueller Hinton (MH) media containing blood; MH media containing 0.1% sodium deoxycholate, which is thought to result in increased expression of virulence proteins; MH media containing 2.5% Oxgall; and MHwithout additives. These experiments provided further evidence that CJIE1 affected protein expression, including virulence-associated proteins. They also demonstrated a general bile response involving a majority of the proteome and clearly showed the induction of almost all proteins known to be involved with iron acquisition. The data have been deposited to the ProteomeXchange with identifiers PXD000798, PXD000799, PXD000800, and PXD000801. CONCLUSION The presence of the CJIE1 prophage was associated with differences in protein expression levels under different conditions. Further work is required to determine what genes are involved in causing this phenomenon.
Collapse
Affiliation(s)
- Clifford G Clark
- Enterics Research Section, Bacteriology and Enterics Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington St, Winnipeg, Manitoba R3E 3R2, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Molecular methods to investigate adhesion, transmigration, invasion and intracellular survival of the foodborne pathogen Campylobacter jejuni. J Microbiol Methods 2013; 95:8-23. [DOI: 10.1016/j.mimet.2013.06.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/18/2013] [Accepted: 06/28/2013] [Indexed: 01/08/2023]
|
17
|
Backert S, Boehm M, Wessler S, Tegtmeyer N. Transmigration route of Campylobacter jejuni across polarized intestinal epithelial cells: paracellular, transcellular or both? Cell Commun Signal 2013; 11:72. [PMID: 24079544 PMCID: PMC3850506 DOI: 10.1186/1478-811x-11-72] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 09/18/2013] [Indexed: 02/08/2023] Open
Abstract
Intact intercellular junctions and cellular matrix contacts are crucial structural components for the formation and maintenance of epithelial barrier functions in humans to control the commensal flora and protect against intruding microbes. Campylobacter jejuni is one of the most important zoonotic pathogens causing food-borne gastroenteritis and potentially more severe diseases such as reactive arthritis or Guillain–Barré syndrome. Crossing the intestinal epithelial barrier and host cell invasion by C. jejuni are considered to represent the primary reasons of gut tissue damage in humans and various animal model systems including monkeys, piglets, rabbits, hamsters and ferrets. C. jejuni is also able to invade underlying tissues such as the lamina propria, can enter the bloodstream, and possibly reach distinct organs such as spleen, liver or mesenteric lymph nodes. However, the molecular mechanisms as well as major bacterial and host cell factors involved in these activities are poorly understood. Various models exist by which the pathogen can trigger its own transmigration across polarized intestinal epithelial cells in vitro, the paracellular and/or transcellular mechanism. Recent studies suggest that bacterial factors such as flagellum, serine protease HtrA and lipooligosaccharide LOS may play an active role in bacterial transmigration. Here we review our knowledge on transmigration of C. jejuni as well as some other Campylobacter species, and discuss the pros and cons for the route(s) taken to travel across polarized epithelial cell monolayers. These studies provide fresh insights into the infection strategies employed by this important pathogen.
Collapse
Affiliation(s)
- Steffen Backert
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen/Nuremberg, Staudtstr, 5, D-91058, Erlangen, Germany.
| | | | | | | |
Collapse
|
18
|
Thibodeau A, Fravalo P, Garneau P, Masson L, Laurent-Lewandowski S, Quessy S, Harel J, Letellier A. Distribution of colonization and antimicrobial resistance genes in Campylobacter jejuni isolated from chicken. Foodborne Pathog Dis 2013; 10:382-91. [PMID: 23510494 DOI: 10.1089/fpd.2012.1271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Campylobacter jejuni is an important worldwide foodborne pathogen commonly found as a commensal organism in poultry that can reach high numbers within the gut after colonization. Although information regarding some genes involved in colonization is available, little is known about their distribution in strains isolated specifically from chickens and whether there is a linkage between antimicrobial resistance (AMR) and colonization genes. To assess the distribution and relevance of genes associated with chicken colonization and AMR, a C. jejuni microarray was created to detect 254 genes of interest in colonization and AMR including variants. DNA derived from chicken-specific Campylobacter isolates collected in 2003 (n=29) and 2008 (n=28) was hybridized to the microarray and compared. Hybridization results showed variable colonization-associated gene presence. Acquired AMR genes were low in prevalence whereas chemotaxis receptors, arsenic resistance genes, as well as genes from the cell envelope and flagella functional groups were highly variable in their presence. Strains clustered into two groups, each linked to different control strains, 81116 and NCTC11168. Clustering was found to be independent of collection time. We also show that AMR weakly associated with the CJ0628 and arsR genes. Although other studies have implicated numerous genes associated with C. jejuni chicken colonization, our data on chicken-specific isolates suggest the opposite. The enormous variability in presumed colonization gene prevalence in our chicken isolates suggests that many are of lesser importance than previously thought. Alternatively, this also suggests that combinations of genes may be required for natural colonization of chicken intestines.
Collapse
Affiliation(s)
- Alexandre Thibodeau
- Industrial-CRSNG Meat Safety Research, University of Montreal, Saint-Hyacinthe, Quebec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bell JA, Jerome J, Plovanich-Jones AE, Smith EJ, Gettings JR, Kim HY, Landgraf JR, Lefébure T, Kopper JJ, Rathinam VA, St. Charles JL, Buffa BA, Brooks AP, Poe SA, Eaton KA, Stanhope MJ, Mansfield LS. Outcome of infection of C57BL/6 IL-10(-/-) mice with Campylobacter jejuni strains is correlated with genome content of open reading frames up- and down-regulated in vivo. Microb Pathog 2013; 54:1-19. [PMID: 22960579 PMCID: PMC4118490 DOI: 10.1016/j.micpath.2012.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 08/07/2012] [Indexed: 12/12/2022]
Abstract
Human Campylobacter jejuni infection can result in an asymptomatic carrier state, watery or bloody diarrhea, bacteremia, meningitis, or autoimmune neurological sequelae. Infection outcomes of C57BL/6 IL-10(-/-) mice orally infected with twenty-two phylogenetically diverse C. jejuni strains were evaluated to correlate colonization and disease phenotypes with genetic composition of the strains. Variation between strains was observed in colonization, timing of development of clinical signs, and occurrence of enteric lesions. Five pathotypes of C. jejuni in C57BL/6 IL-10(-/-) mice were delineated: little or no colonization, colonization without disease, colonization with enteritis, colonization with hemorrhagic enteritis, and colonization with neurological signs with or without enteritis. Virulence gene content of ten sequenced strains was compared in silico; virulence gene content of twelve additional strains was compared using a C. jejuni pan-genome microarray. Neither total nor virulence gene content predicted pathotype; nor was pathotype correlated with multilocus sequence type. Each strain was unique with regard to absences of known virulence-related loci and/or possession of point mutations and indels, including phase variation, in virulence-related genes. An experiment in C. jejuni 11168-infected germ-free mice showed that expression levels of ninety open reading frames (ORFs) were significantly up- or down-regulated in the mouse cecum at least two-fold compared to in vitro growth. Genomic content of these ninety C. jejuni 11168 ORFs was significantly correlated with the capacity to colonize and cause enteritis in C57BL/6 IL-10(-/-) mice. Differences in gene expression levels and patterns are thus an important determinant of pathotype in C. jejuni strains in this mouse model.
Collapse
Affiliation(s)
- J. A. Bell
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - J.P. Jerome
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Department of Microbiology and Molecular Genetics, College of Natural Sciences, Michigan State University, East Lansing, MI 48824
| | - A. E. Plovanich-Jones
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - E. J. Smith
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - J. R. Gettings
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - H. Y. Kim
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - J. R. Landgraf
- Research Technology Support Facility, Michigan State University, East Lansing, MI 48824
| | - T. Lefébure
- Department of Population Medicine and Diagnostic Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - J. J. Kopper
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Cell and Molecular Biology Program, College of Natural Sciences, Michigan State University, East Lansing, MI 48824
| | - V. A. Rathinam
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - J. L. St. Charles
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - B. A. Buffa
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - A. P. Brooks
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - S. A. Poe
- Laboratory Animal Medicine Unit, University of Michigan Medical School, Ann Arbor, MI 48109; Laboratory Animal Medicine Unit, University of Michigan Medical School, Ann Arbor, MI 48109
| | - K. A. Eaton
- Laboratory Animal Medicine Unit, University of Michigan Medical School, Ann Arbor, MI 48109; Laboratory Animal Medicine Unit, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - M. J. Stanhope
- Department of Population Medicine and Diagnostic Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - L. S. Mansfield
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
20
|
Cj1136 is required for lipooligosaccharide biosynthesis, hyperinvasion, and chick colonization by Campylobacter jejuni. Infect Immun 2012; 80:2361-70. [PMID: 22508861 DOI: 10.1128/iai.00151-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Campylobacter jejuni is a major cause of bacterial food-borne enteritis worldwide, and invasion into intestinal epithelial cells is an important virulence mechanism. Recently we reported the identification of hyperinvasive C. jejuni strains and created a number of transposon mutants of one of these strains, some of which exhibited reduced invasion into INT-407 and Caco-2 cells. In one such mutant the transposon had inserted into a homologue of cj1136, which encodes a putative galactosyltransferase according to the annotation of the C. jejuni NCTC11168 genome. In the current study, we investigated the role of cj1136 in C. jejuni virulence, lipooligosaccharide (LOS) biosynthesis, and host colonization by targeted mutagenesis and complementation of the mutation. The cj1136 mutant showed a significant reduction in invasion into human intestinal epithelial cells compared to the wild-type strain 01/51. Invasion levels were partially restored on complementing the mutation. The inactivation of cj1136 resulted in the production of truncated LOS, while biosynthesis of a full-length LOS molecule was restored in the complemented strain. The cj1136 mutant showed an increase in sensitivity to the bile salts sodium taurocholate and sodium deoxycholate and significantly increased sensitivity to polymyxin B compared to the parental strain. Importantly, the ability of the mutant to colonize 1-day-old chicks was also significantly impaired. This study confirms that a putative galactosyltransferase encoded by cj1136 is involved in LOS biosynthesis and is important for C. jejuni virulence, as disruption of this gene and the resultant truncation of LOS affect both colonization in vivo and invasiveness in vitro.
Collapse
|
21
|
Poli VFS, Thorsen L, Olesen I, Wik MT, Jespersen L. Differentiation of the virulence potential of Campylobacter jejuni strains by use of gene transcription analysis and a Caco-2 assay. Int J Food Microbiol 2012; 155:60-8. [DOI: 10.1016/j.ijfoodmicro.2012.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 01/20/2012] [Accepted: 01/22/2012] [Indexed: 01/05/2023]
|
22
|
Kienesberger S, Gorkiewicz G, Wolinski H, Zechner EL. New molecular microbiology approaches in the study of Campylobacter fetus. Microb Biotechnol 2012; 4:8-19. [PMID: 21255368 PMCID: PMC3815791 DOI: 10.1111/j.1751-7915.2010.00173.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Campylobacter fetus infection is a substantial problem in herds of domestic cattle worldwide and a rising threat in human disease. Application of comparative and functional genomics approaches will be essential to understand the molecular basis of this pathogen's interactions with various hosts. Here we report recent progress in genome analyses of C. fetus ssp. fetus and C. fetus ssp. venerealis, and the development of molecular tools to determine the genetic basis of niche‐specific adaptations. Campylobacter research has been strengthened by the rapid advancements in imaging technology occurring throughout microbiology. To move forward in understanding the mechanisms underlying C. fetus virulence, current efforts focus on developing suitable in vitro models to reflect host‐ and tissue‐specific aspects of infection.
Collapse
Affiliation(s)
- Sabine Kienesberger
- 1Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/1, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
23
|
L-fucose utilization provides Campylobacter jejuni with a competitive advantage. Proc Natl Acad Sci U S A 2011; 108:7194-9. [PMID: 21482772 DOI: 10.1073/pnas.1014125108] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Campylobacter jejuni is a prevalent gastrointestinal pathogen in humans and a common commensal of poultry. When colonizing its hosts, C. jejuni comes into contact with intestinal carbohydrates, including L-fucose, released from mucin glycoproteins. Several strains of C. jejuni possess a genomic island (cj0480c-cj0490) that is up-regulated in the presence of both L-fucose and mucin and allows for the utilization of L-fucose as a substrate for growth. Strains possessing this genomic island show increased growth in the presence of L-fucose and mutation of cj0481, cj0486, and cj0487 results in the loss of the ability to grow on this substrate. Furthermore, mutants in the putative fucose permease (cj0486) are deficient in fucose uptake and demonstrate a competitive disadvantage when colonizing the piglet model of human disease, which is not paralleled in the colonization of poultry. This identifies a previously unrecorded metabolic pathway in select strains of C. jejuni associated with a virulent lifestyle.
Collapse
|
24
|
Croxall G, Weston V, Joseph S, Manning G, Cheetham P, McNally A. Increased human pathogenic potential of Escherichia coli from polymicrobial urinary tract infections in comparison to isolates from monomicrobial culture samples. J Med Microbiol 2011; 60:102-109. [DOI: 10.1099/jmm.0.020602-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The current diagnostic standard procedure outlined by the Health Protection Agency for urinary tract infections (UTIs) in clinical laboratories does not report bacteria isolated from samples containing three or more different bacterial species. As a result many UTIs go unreported and untreated, particularly in elderly patients, where polymicrobial UTI samples are especially prevalent. This study reports the presence of the major uropathogenic species in mixed culture urine samples from elderly patients, and of resistance to front-line antibiotics, with potentially increased levels of resistance to ciprofloxacin and trimethoprim. Most importantly, the study highlights that Escherichia
coli present in polymicrobial UTI samples are statistically more invasive (P<0.001) in in vitro epithelial cell infection assays than those isolated from monomicrobial culture samples. In summary, the results of this study suggest that the current diagnostic standard procedure for polymicrobial UTI samples needs to be reassessed, and that E. coli present in polymicrobial UTI samples may pose an increased risk to human health.
Collapse
Affiliation(s)
- Gemma Croxall
- Pathogen Research Group, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | | | - Susan Joseph
- Pathogen Research Group, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Georgina Manning
- Pathogen Research Group, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Phil Cheetham
- Pathogen Research Group, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Alan McNally
- Pathogen Research Group, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| |
Collapse
|
25
|
Phenotypic and genotypic evidence for L-fucose utilization by Campylobacter jejuni. J Bacteriol 2010; 193:1065-75. [PMID: 21193610 DOI: 10.1128/jb.01252-10] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni remains among the leading causes of bacterial food-borne illness. The current understanding of Campylobacter physiology suggests that it is asaccharolytic and is unable to catabolize exogenous carbohydrates. Contrary to this paradigm, we provide evidence for l-fucose utilization by C. jejuni. The fucose phenotype, shown in chemically defined medium, is strain specific and linked to an 11-open reading frame (ORF) plasticity region of the bacterial chromosome. By constructing a mutation in fucP (encoding a putative fucose permease), one of the genes in the plasticity region, we found that this locus is required for fucose utilization. Consistent with their function in fucose utilization, transcription of the genes in the locus is highly inducible by fucose. PCR screening revealed a broad distribution of this genetic locus in strains derived from various host species, and the presence of this locus was consistently associated with fucose utilization. Birds inoculated with the fucP mutant strain alone were colonized at a level comparable to that by the wild-type strain; however, in cocolonization experiments, the mutant was significantly outcompeted by the wild-type strain when birds were inoculated with a low dose (10⁵ CFU per bird). This advantage was not observed when birds were inoculated at a higher inoculum dose (10⁸ CFU per bird). These results demonstrated a previously undescribed substrate that supports growth of C. jejuni and identified the genetic locus associated with the utilization of this substrate. These findings substantially enhance our understanding of the metabolic repertoire of C. jejuni and the role of metabolic diversity in Campylobacter pathobiology.
Collapse
|
26
|
Tareen AM, Dasti JI, Zautner AE, Groß U, Lugert R. Campylobacter jejuni proteins Cj0952c and Cj0951c affect chemotactic behaviour towards formic acid and are important for invasion of host cells. MICROBIOLOGY-SGM 2010; 156:3123-3135. [PMID: 20656782 DOI: 10.1099/mic.0.039438-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Campylobacter jejuni, an important food-borne bacterial pathogen in industrialized countries and in the developing world, is one of the major causes of bacterial diarrhoea. To identify genes which are important for the invasion of host cells by the pathogen, we screened altogether 660 clones of a transposon-generated mutant library based on the clinical C. jejuni isolate B2. Thereby, we identified a clone with a transposon insertion in gene cj0952c. As in the well-characterized C. jejuni strain NCTC 11168, the corresponding protein together with the gene product of the adjacent gene cj0951c consists of two transmembrane domains, a HAMP domain and a putative MCP domain, which together are thought to act as a chemoreceptor, designated Tlp7. In this report we show that genes cj0952c and cj0951c (i) are important for the host cell invasion of the pathogen, (ii) are not translated as one protein in C. jejuni isolate B2, contradicting the idea of a postulated read-through mechanism, (iii) affect the motility of C. jejuni, (iv) alter the chemotactic behaviour of the pathogen towards formic acid, and (v) are not related to the utilization of formic acid by formate dehydrogenase.
Collapse
Affiliation(s)
- A Malik Tareen
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Javid Iqbal Dasti
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Andreas E Zautner
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Uwe Groß
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Raimond Lugert
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| |
Collapse
|
27
|
Identification of Campylobacter jejuni genes involved in its interaction with epithelial cells. Infect Immun 2010; 78:3540-53. [PMID: 20515930 DOI: 10.1128/iai.00109-10] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Campylobacter jejuni is the leading cause of infectious gastroenteritis in industrialized nations. Its ability to enter and survive within nonphagocytic cells is thought to be very important for pathogenesis. However, little is known about the C. jejuni determinants that mediate these processes. Through an extensive transposon mutagenesis screen, we have identified several loci that are required for C. jejuni efficient entry and survival within epithelial cells. Among these loci, insertional mutations in aspA, aspB, and sodB resulted in drastic reduction in C. jejuni entry and/or survival within host cells and a severe defect in colonization in an animal model. The implications of these findings for the understanding of C. jejuni-host cell interactions are discussed.
Collapse
|