1
|
Oluwakoya OM, Okoh AI. Prevalence of multidrug-resistant Campylobacter species in wastewater effluents: A menace of environmental and public health concern. Helicobacter 2024; 29:e13095. [PMID: 38798008 DOI: 10.1111/hel.13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
The prevalence of multidrug-resistant Campylobacter species in wastewater effluents presents a formidable challenge at the intersection of environmental sustainability and public health. This study examined the presence of multidrug-resistant Campylobacter in wastewater effluents in the Eastern Cape Province, South Africa, and its implications for environmental ecosystems and public health. Forty-five samples from household effluent (HHE) and wastewater treatment plant effluent (WWTPE) were collected at different geographical locations within the province between April and September 2022. The counts of the presumptive Campylobacter genus ranged from 5.2 × 103 to 6.03 × 104 CFU/mL for HHE and 4.93 × 103 to 1.04 × 104 CFU/mL for WWTPE. About 42.55% of the samples were positive for Campylobacter species. Five virulence determinants including the cadF and wlaN were detected in all the isolates; however, flgR (19.23%), ciaB, and ceuE (15.38%) were less prevalent. The antibiogram profiles of confirmed Campylobacter isolates revealed high resistance (>55%) against all tested antibiotics ranging from 55.77% (nalidixic acid) to 92.30% (erythromycin), and resistance against the other antibiotics followed the order ciprofloxacin (51.92%), azithromycin (50%), and levofloxacin (48.08%). On the contrary, gentamicin was sensitive against 61.54% of the isolates, followed by imipenem (57.69%) and streptomycin (51.92%). The WWTPE's antibiotic resistance index (ARI) was 0.19, lower than the permitted Krumperman threshold of 0.2; and HHE's ARIs were higher. The isolates' respective multiple antibiotic resistance indexes (MARI) varied between 0.08 and 1.00. Among the phenotypically resistant Campylobacter isolates examined, 21 resistance determinants encoding resistance against β-lactam, carbapenems, aminoglycosides, phenicol, quinolones, tetracyclines, and macrolides were detected, which explains the phenotypic resistance observed in the study. This study concludes that the wastewaters in the study areas are important reservoirs of multidrug-resistant and potentially pathogenic Campylobacter species, suggesting the need for proper treatment of the wastewaters to eliminate the organisms in the effluents before discharge the final effluent to the receiving watershed.
Collapse
Affiliation(s)
- Olufunmilayo Modupe Oluwakoya
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
2
|
Yamamoto S, Iyoda S, Ohnishi M. Stabilizing Genetically Unstable Simple Sequence Repeats in the Campylobacter jejuni Genome by Multiplex Genome Editing: a Reliable Approach for Delineating Multiple Phase-Variable Genes. mBio 2021; 12:e0140121. [PMID: 34425708 PMCID: PMC8437040 DOI: 10.1128/mbio.01401-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
Hypermutable simple sequence repeats (SSRs) are major drivers of phase variation in Campylobacter jejuni. The presence of multiple SSR-mediated phase-variable genes encoding enzymes that modify surface structures, including capsular polysaccharide (CPS) and lipooligosaccharide (LOS), generates extreme cell surface diversity within bacterial populations, thereby promoting adaptation to selective pressures in host environments. Therefore, genetically controlling SSR-mediated phase variation can be important for achieving stable and reproducible research on C. jejuni. Here, we show that natural "cotransformation" is an effective method for C. jejuni genome editing. Cotransformation is a trait of naturally competent bacteria that causes uptake/integration of multiple different DNA molecules, which has been recently adapted to multiplex genome editing by natural transformation (MuGENT), a method for introducing multiple mutations into the genomes of these bacteria. We found that cotransformation efficiently occurred in C. jejuni. To examine the feasibility of MuGENT in C. jejuni, we "locked" different polyG SSR tracts in strain NCTC11168 (which are located in the biosynthetic CPS/LOS gene clusters) into either the ON or OFF configurations. This approach, termed "MuGENT-SSR," enabled the generation of all eight edits within 2 weeks and the identification of a phase-locked strain with a highly stable type of Penner serotyping, a CPS-based serotyping scheme. Furthermore, extensive genome editing of this strain by MuGENT-SSR identified a phase-variable gene that determines the Penner serotype of NCTC11168. Thus, MuGENT-SSR provides a platform for genetic and phenotypic engineering of genetically unstable C. jejuni, making it a reliable approach for elucidating the mechanisms underlying phase-variable expression of specific phenotypes. IMPORTANCE Campylobacter jejuni is the leading bacterial cause of foodborne gastroenteritis in developed countries and occasionally progresses to the autoimmune disease Guillain-Barré syndrome. A relatively large number of hypermutable simple sequence repeat (SSR) tracts in the C. jejuni genome markedly decreases its phenotypic stability through reversible changes in the ON or OFF expression states of the genes in which they reside, a phenomenon called phase variation. Thus, controlling SSR-mediated phase variation can be important for achieving stable and reproducible research on C. jejuni. In this study, we developed a feasible and effective approach for genetically manipulate multiple SSR tracts in the C. jejuni genome using natural cotransformation, a trait of naturally transformable bacterial species that causes the uptake and integration of multiple different DNA molecules. This approach will greatly help to improve the genetic and phenotypic stability of C. jejuni to enable diverse applications in research and development.
Collapse
Affiliation(s)
- Shouji Yamamoto
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
3
|
Joensen KG, Schjørring S, Gantzhorn MR, Vester CT, Nielsen HL, Engberg JH, Holt HM, Ethelberg S, Müller L, Sandø G, Nielsen EM. Whole genome sequencing data used for surveillance of Campylobacter infections: detection of a large continuous outbreak, Denmark, 2019. ACTA ACUST UNITED AC 2021; 26. [PMID: 34085631 PMCID: PMC8176674 DOI: 10.2807/1560-7917.es.2021.26.22.2001396] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Campylobacter is one of the most frequent causes of bacterial gastroenteritis. Campylobacter outbreaks are rarely reported, which could be a reflection of a surveillance without routine molecular typing. We have previously shown that numerous small outbreak-like clusters can be detected when whole genome sequencing (WGS) data of clinical Campylobacter isolates was applied. Aim Typing-based surveillance of Campylobacter infections was initiated in 2019 to enable detection of large clusters of clinical isolates and to match them to concurrent retail chicken isolates in order to react on ongoing outbreaks. Methods We performed WGS continuously on isolates from cases (n = 701) and chicken meat (n = 164) throughout 2019. Core genome multilocus sequence typing was used to detect clusters of clinical isolates and match them to isolates from chicken meat. Results Seventy-two clusters were detected, 58 small clusters (2–4 cases) and 14 large clusters (5–91 cases). One third of the clinical isolates matched isolates from chicken meat. One large cluster persisted throughout the whole year and represented 12% of all studied Campylobacter cases. This cluster type was detected in several chicken samples and was traced back to one slaughterhouse, where interventions were implemented to control the outbreak. Conclusion Our WGS-based surveillance has contributed to an improved understanding of the dynamics of the occurrence of Campylobacter strains in chicken meat and the correlation to clusters of human cases.
Collapse
Affiliation(s)
| | - Susanne Schjørring
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark
| | | | | | - Hans Linde Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Hanne Marie Holt
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Steen Ethelberg
- Statens Serum Institut, Department of Infectious Disease Epidemiology and Prevention, Copenhagen, Denmark
| | - Luise Müller
- Statens Serum Institut, Department of Infectious Disease Epidemiology and Prevention, Copenhagen, Denmark
| | - Gudrun Sandø
- Danish Veterinary and Food Administration, Glostrup, Denmark
| | - Eva Møller Nielsen
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark
| |
Collapse
|
4
|
Sher AA, Jerome JP, Bell JA, Yu J, Kim HY, Barrick JE, Mansfield LS. Experimental Evolution of Campylobacter jejuni Leads to Loss of Motility, rpoN (σ54) Deletion and Genome Reduction. Front Microbiol 2020; 11:579989. [PMID: 33240235 PMCID: PMC7677240 DOI: 10.3389/fmicb.2020.579989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Evolution experiments in the laboratory have focused heavily on model organisms, often to the exclusion of clinically relevant pathogens. The foodborne bacterial pathogen Campylobacter jejuni belongs to a genus whose genomes are small compared to those of its closest genomic relative, the free-living genus Sulfurospirillum, suggesting genome reduction during the course of evolution to host association. In an in vitro experiment, C. jejuni serially passaged in rich medium in the laboratory exhibited loss of flagellar motility-an essential function for host colonization. At early time points the motility defect was often reversible, but after 35 days of serial culture, motility was irreversibly lost in most cells in 5 independently evolved populations. Population re-sequencing revealed disruptive mutations to genes in the flagellar transcriptional cascade, rpoN (σ54)-therefore disrupting the expression of the genes σ54 regulates-coupled with deletion of rpoN in all evolved lines. Additional mutations were detected in virulence-related loci. In separate in vivo experiments, we demonstrate that a phase variable (reversible) motility mutant carrying an adenine deletion within a homopolymeric tract resulting in truncation of the flagellar biosynthesis gene fliR was deficient for colonization in a C57BL/6 IL-10-/- mouse disease model. Re-insertion of an adenine residue partially restored motility and ability to colonize mice. Thus, a pathogenic C. jejuni strain was rapidly attenuated by experimental laboratory evolution and demonstrated genomic instability during this evolutionary process. The changes observed suggest C. jejuni is able to evolve in a novel environment through genome reduction as well as transition, transversion, and slip-strand mutations.
Collapse
Affiliation(s)
- Azam A. Sher
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
| | - John P. Jerome
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Julia A. Bell
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Julian Yu
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Hahyung Y. Kim
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Jeffrey E. Barrick
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Linda S. Mansfield
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
5
|
Samarth DP, Kwon YM. Horizontal genetic exchange of chromosomally encoded markers between Campylobacter jejuni cells. PLoS One 2020; 15:e0241058. [PMID: 33104745 PMCID: PMC7588059 DOI: 10.1371/journal.pone.0241058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
Many epidemiological studies provide us with the evidence of horizontal gene transfer (HGT) contributing to the bacterial genomic diversity that benefits the bacterial populations with increased ability to adapt to the dynamic environments. Campylobacter jejuni, a major cause of acute enteritis in the U.S., often linked with severe post-infection neuropathies, has been reported to exhibit a non-clonal population structure and comparatively higher strain-level genetic variation. In this study, we provide evidence of the HGT of chromosomally encoded genetic markers between C. jejuni cells in the biphasic MH medium. We used two C. jejuni NCTC-11168 mutants harbouring distinct antibiotic-resistance genes [chloramphenicol (Cm) and kanamycin (Km)] present at two different neutral genomic loci. Cultures of both marker strains were mixed together and incubated for 5 hrs, then plated on MH agar plates supplemented with both antibiotics. The recombinant cells with double antibiotic markers were generated at the frequency of 0.02811 ± 0.0035% of the parental strains. PCR assays using locus-specific primers confirmed that transfer of the antibiotic-resistance genes was through homologous recombination. Also, the addition of chicken cecal content increased the recombination efficiency approximately up to 10-fold as compared to the biphasic MH medium (control) at P < 0.05. Furthermore, treating the co-culture with DNase I decreased the available DNA, which in turn significantly reduced recombination efficiency by 99.92% (P < 0.05). We used the cell-free supernatant of 16 hrs-culture of Wild-type C. jejuni as a template for PCR and found DNA sequences from six different genomic regions were easily amplified, indicating the presence of released chromosomal DNA in the culture supernatant. Our findings suggest that HGT in C. jejuni is facilitated in the chicken gut environment contributing to in vivo genomic diversity. Additionally, C. jejuni might have an active mechanism to release its chromosomal DNA into the extracellular environment, further expediting HGT in C. jejuni populations.
Collapse
Affiliation(s)
- Deepti Pranay Samarth
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
- * E-mail:
| | - Young Min Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States of America
| |
Collapse
|
6
|
Igwaran A, Okoh AI. Occurrence, Virulence and Antimicrobial Resistance-Associated Markers in Campylobacter Species Isolated from Retail Fresh Milk and Water Samples in Two District Municipalities in the Eastern Cape Province, South Africa. Antibiotics (Basel) 2020; 9:E426. [PMID: 32708075 PMCID: PMC7400711 DOI: 10.3390/antibiotics9070426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/02/2022] Open
Abstract
Campylobacter species are among the major bacteria implicated in human gastrointestinal infections and are majorly found in faeces of domestic animals, sewage discharges and agricultural runoff. These pathogens have been implicated in diseases outbreaks through consumption of contaminated milk and water in some parts of the globe and reports on this is very scanty in the Eastern Cape Province. Hence, this study evaluated the occurrence as well as virulence and antimicrobial-associated makers of Campylobacter species recovered from milk and water samples. A total of 56 water samples and 72 raw milk samples were collected and the samples were processed for enrichment in Bolton broth and incubated for 48 h in 10% CO2 at 42 °C under microaerobic condition. Thereafter, the enriched cultures were further processed and purified. After which, presumptive Campylobacter colonies were isolated and later confirmed by PCR using specific primers for the detection of the genus Campylobacter, target species and virulence associated genes. Antimicrobial resistance profiles of the isolates were determined by disk diffusion method against a panel of 12 antibiotics and relevant genotypic resistance genes were assessed by PCR assay. A total of 438 presumptive Campylobacter isolates were obtained; from which, 162 were identified as belonging to the genus Campylobacter of which 36.92% were obtained from water samples and 37.11% from milk samples. The 162 confirmed isolates were further delineated into four species, of which, 7.41%, 27.16% and 8.64% were identified as C. fetus, C. jejuni and C. coli respectively. Among the virulence genes screened for, the iam (32.88%) was most prevalent, followed by flgR (26.87%) gene and cdtB and cadF (5.71% each) genes. Of the 12 antibiotics tested, the highest phenotypic resistance displayed by Campylobacter isolates was against clindamycin (95.68%), while the lowest was observed against imipenem (21.47%). Other high phenotypic resistance displayed by the isolates were against erythromycin (95.06%), followed by ceftriaxone (93.21%), doxycycline (87.65%), azithromycin and ampicillin (87.04% each), tetracycline (83.33%), chloramphenicol (78.27%), ciprofloxacin (77.78%), levofloxacin (59.88%) and gentamicin (56.17%). Relevant resistance genes were assessed in the isolates that showed high phenotypic resistance, and the highest resistance gene harbored by the isolates was catII (95%) gene while VIM, KPC, Ges, bla-OXA-48-like, tetC, tetD, tetK, IMI and catI genes were not detected. The occurrence of this pathogen and the detection of virulence and antimicrobial resistance-associated genes in Campylobacter isolates recovered from milk/water samples position them a risk to human health.
Collapse
Affiliation(s)
- Aboi Igwaran
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
7
|
Barakat AMA, El-Razik KAA, Elfadaly HA, Rabie NS, Sadek SAS, Almuzaini AM. Prevalence, molecular detection, and virulence gene profiles of Campylobacter species in humans and foods of animal origin. Vet World 2020; 13:1430-1438. [PMID: 32848321 PMCID: PMC7429388 DOI: 10.14202/vetworld.2020.1430-1438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/29/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND AIM Campylobacteriosis is one of the most well-characterized bacterial foodborne infections worldwide that arise chiefly due to the consumption of foods of animal origin such as poultry, milk, and their products. The disease is caused by numerous species within the genus Campylobacter, but Campylobacter jejuni is the most commonly isolated species from established cases of human campylobacteriosis. This study was conducted to determine the prevalence and virulence of Campylobacter isolates from human, chicken, and milk and milk products in Egypt. MATERIALS AND METHODS A total of 1299 samples (547 chicken intestine and liver, 647 milk and milk products, and 105 human stool) were collected and microbiologically investigated, confirmed by multiplex polymerase chain reaction (PCR) targeting the 23S rRNA, hipO, and glyA genes specific for Campylobacter spp., C. jejuni, and Campylobacter Coli, respectively, followed by virulence genes (Campylobacter adhesion to fibronectin F [cadF] and cdtB) detection using PCR. RESULTS About 38.09%, 37.84%, and 8.5% of human stool, chicken, and milk and milk product samples, respectively, were bacteriologically positive, with a total of 302 Campylobacter isolates. All isolates were molecularly confirmed as Campylobacter spp. (100%) where 285 isolates (94.37%) were identified as C. jejuni and 17 isolates (5.62%) as C. coli. Regarding the virulence pattern, all isolates (100%) carried cadF gene while cytolethal distending toxin B gene was definite in 284/302 isolates (94%), concisely, 282/285 (98.94%) C. jejuni isolates, and in 2/17 (11.76%) C. coli isolates. CONCLUSION The widespread presence of these highly virulent Campylobacter, especially C. jejuni, proofs the urgent need for the implementation of stringent control, public health, and food protection strategies to protect consumers from this zoonotic pathogen. The availability of information about pathogen virulence will enable enhanced local policy drafting by food safety and public health officials.
Collapse
Affiliation(s)
| | | | - Hassan A. Elfadaly
- Department of Zoonotic Diseases, National Research Centre, Dokki, Giza, Egypt
| | - Nagwa S. Rabie
- Department of Poultry Diseases, National Research Centre, Dokki, Giza, Egypt
| | - Sabry A. S. Sadek
- Department of Zoonotic Diseases, National Research Centre, Dokki, Giza, Egypt
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
8
|
Natural Transmission of Helicobacter saguini Causes Multigenerational Inflammatory Bowel Disease in C57/129 IL-10 -/- Mice. mSphere 2020; 5:5/2/e00011-20. [PMID: 32213619 PMCID: PMC7096620 DOI: 10.1128/msphere.00011-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
While family history is a significant risk factor for developing inflammatory bowel disease (IBD), it is unclear whether the microbiome from parents is a transmissible influence on disease in their offspring. Furthermore, it is unknown whether IBD-associated microbes undergo genomic adaptations during multigenerational transmission and chronic colonization in their hosts. Herein, we show that a single bacterial species, Helicobacter saguini, isolated from a nonhuman primate species with familial IBD, is transmissible from parent to offspring in germfree IL-10−/− mice and causes multigenerational IBD. Additionally, whole-genome sequence analysis of H. saguini isolated from different mouse generations identified microevolutions in environmental interaction, nutrient metabolism, and virulence factor genes that suggest that multigenerational transmission may promote adaptations related to colonization and survival in new hosts and chronic inflammatory environments. The findings from our study highlight the importance of specific bacterial species with pathogenic potential, like H. saguini, as transmissible microorganisms in the etiopathogenesis of IBD. Cotton-top tamarins (CTTs) are an ideal model of human inflammatory bowel disease (IBD) because these animals develop multigenerational, lower bowel cancer. We previously isolated and characterized a novel enterohepatic Helicobacter species, Helicobacter saguini, from CTTs with IBD and documented that H. saguini infection in germfree C57BL IL-10−/− mice recapitulates IBD, suggesting that H. saguini influences IBD etiopathogenesis. In this study, we utilized a germfree IL-10−/− model to illustrate that H. saguini infection can naturally transmit and infect four generations and cause significant intestinal inflammatory pathology. Additionally, whole-genome sequencing of representative H. saguini isolates from each generation of IL-10−/− mice revealed gene mutations suggestive of multigenerational evolution. Overall, these results support that specific bacterial species with pathogenic potential, like H. saguini, are transmissible microorganisms in the etiopathogenesis of IBD in CTTs and reinforces the importance of specific microbiota in the pathogenesis of IBD in humans. IMPORTANCE While family history is a significant risk factor for developing inflammatory bowel disease (IBD), it is unclear whether the microbiome from parents is a transmissible influence on disease in their offspring. Furthermore, it is unknown whether IBD-associated microbes undergo genomic adaptations during multigenerational transmission and chronic colonization in their hosts. Herein, we show that a single bacterial species, Helicobacter saguini, isolated from a nonhuman primate species with familial IBD, is transmissible from parent to offspring in germfree IL-10−/− mice and causes multigenerational IBD. Additionally, whole-genome sequence analysis of H. saguini isolated from different mouse generations identified microevolutions in environmental interaction, nutrient metabolism, and virulence factor genes that suggest that multigenerational transmission may promote adaptations related to colonization and survival in new hosts and chronic inflammatory environments. The findings from our study highlight the importance of specific bacterial species with pathogenic potential, like H. saguini, as transmissible microorganisms in the etiopathogenesis of IBD.
Collapse
|
9
|
Hwang H, Isaacson RE, Singer RS. Comparison of relative expressions of genes involved in iron acquisition and regulation in fluoroquinolone-resistant and wild-type Campylobacter jejuni. Vet Microbiol 2020; 243:108615. [PMID: 32273001 DOI: 10.1016/j.vetmic.2020.108615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 11/16/2022]
Abstract
Campylobacteriosis caused by C. jejuni is a serious yet common foodborne disease in the U.S. The prevalence of fluoroquinolone-resistant C. jejuni from poultry has continued to increase despite the withdrawal of fluoroquinolone use in the U.S. poultry industry in 2005. To date, no clear selective pressures that explain this effect have been documented. In this study, we investigated limited bioavailability of iron in poultry and enhanced iron uptake and regulation as potential indirect selective pressures conferring fitness advantages in fluoroquinolone-resistant C. jejuni compared to its susceptible wild-type counterpart. Five fluoroquinolone-susceptible C. jejuni isolates were selected from litter collected from commercial broiler farms. Using antibiotic selection, five fluoroquinolone-resistant strains were created. Relative expressions of six genes involved in iron acquisition and regulation were compared between the resistant and susceptible strains using RT-qPCR under normal and iron-limiting conditions. High variability in the relative gene expressions was observed among the strains, with only one resistant strain showing the consistent upregulation of the measured genes compared to the matching susceptible wild-type. Our results suggest that the hypothesis tested in the study may not be an adequate explanation of the molecular mechanism behind the enhanced fitness of fluoroquinolone-resistant C. jejuni compared to susceptible C. jejuni. This study highlights the need for a better understanding of the complex ecology and dynamics of fluoroquinolone resistance in C. jejuni in poultry environment and warrants an examination of fluoroquinolone-resistant C. jejuni strains recovered from the natural broiler chicken environment.
Collapse
Affiliation(s)
- Haejin Hwang
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Randall S Singer
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
10
|
Igwaran A, I. Okoh A. Campylobacteriosis Agents in Meat Carcasses Collected from Two District Municipalities in the Eastern Cape Province, South Africa. Foods 2020; 9:E203. [PMID: 32079101 PMCID: PMC7074574 DOI: 10.3390/foods9020203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 01/12/2023] Open
Abstract
Raw meats are sometimes contaminated with Campylobacter species from animal faeces, and meats have repeatedly been implicated in foodborne infections. This study evaluated the prevalence, virulence genes, antimicrobial susceptibility patterns, and resistance gene determinants in Campylobacter species isolated from retailed meat carcasses. A total of 248 raw meat samples were collected from butcheries, supermarkets, and open markets; processed for enrichment in Bolton broth; and incubated at 42 °C for 48 h in 10% CO2. Thereafter, the broths were streaked on modified charcoal cefoperazone deoxycholate agar (mCCDA) plates and incubated at the same conditions and for the same amount of time. After incubation, colonies were isolated and confirmed by Polymerase chain reaction using specific oligonucleotide sequences used for the identification of the genus Campylobacter, species, and their virulence markers. The patterns of antimicrobial resistance profiles of the identified isolates were studied by disk diffusion method against 12 antibiotics, and relevant resistance genes were assessed by PCR. From culture, 845 presumptive Campylobacter isolates were obtained, of which 240 (28.4%) were identified as genus Campylobacter. These were then characterised into four species, of which C. coli had the highest prevalence rate (22.08%), followed by C. jejuni (16.66%) and C. fetus (3.73%). The virulence genes detected included iam (43.14%), cadF (37.25%), cdtB (23.53%), flgR (18.63%), and flaA (1.96%), and some of the isolates co-harboured two to four virulence genes. Of the 12 antibiotics tested, the highest phenotypic resistance displayed by Campylobacter isolates was against clindamycin (100%), and the lowest level of resistance was observed against imipenem (23.33%). The frequency of resistance genes detected included catll (91.78%), tetA (68.82%), gyra (61.76%), ampC (55%), aac(3)-IIa (aacC2)a (40.98%), tetM (38.71%), ermB (18.29%), tetB (12.90%), and tetK (2.15%). There is a high incidence of Campylobacter species in meat carcasses, suggesting these to be a reservoir of campylobacteriosis agents in this community, and as such, consumption of undercooked meats in this community is a potential health risk to consumers.
Collapse
Affiliation(s)
- Aboi Igwaran
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Anthony I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
11
|
Liaw J, Hong G, Davies C, Elmi A, Sima F, Stratakos A, Stef L, Pet I, Hachani A, Corcionivoschi N, Wren BW, Gundogdu O, Dorrell N. The Campylobacter jejuni Type VI Secretion System Enhances the Oxidative Stress Response and Host Colonization. Front Microbiol 2019; 10:2864. [PMID: 31921044 PMCID: PMC6927950 DOI: 10.3389/fmicb.2019.02864] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
The role of the Type VI secretion system (T6SS) in Campylobacter jejuni is poorly understood despite an increasing prevalence of the T6SS in recent C. jejuni isolates in humans and chickens. The T6SS is a contractile secretion machinery capable of delivering effectors that can play a role in host colonization and niche establishment. During host colonization, C. jejuni is exposed to oxidative stress in the host gastrointestinal tract, and in other bacteria the T6SS has been linked with the oxidative stress response. In this study, comparisons of whole genome sequences of a novel human isolate 488 with previously sequenced strains revealed a single highly conserved T6SS cluster shared between strains isolated from humans and chickens. The presence of a functional T6SS in the 488 wild-type strain is indicated by expression of T6SS genes and secretion of the effector TssD. Increased expression of oxidative stress response genes katA, sodB, and ahpC, and increased oxidative stress resistance in 488 wild-type strain suggest T6SS is associated with oxidative stress response. The role of the T6SS in interactions with host cells is explored using in vitro and in vivo models, and the presence of the T6SS is shown to increase C. jejuni cytotoxicity in the Galleria mellonella infection model. In biologically relevant models, the T6SS enhances C. jejuni interactions with and invasion of chicken primary intestinal cells and enhances the ability of C. jejuni to colonize chickens. This study demonstrates that the C. jejuni T6SS provides defense against oxidative stress and enhances host colonization, and highlights the importance of the T6SS during in vivo survival of T6SS-positive C. jejuni strains.
Collapse
Affiliation(s)
- Janie Liaw
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Geunhye Hong
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Cadi Davies
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Filip Sima
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Alexandros Stratakos
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Lavinia Stef
- Bioengineering of Animal Science Resources, Banat University of Agricultural Sciences and Veterinary Medicine - King Michael the I of Romania, Timisoara, Romania
| | - Ioan Pet
- Bioengineering of Animal Science Resources, Banat University of Agricultural Sciences and Veterinary Medicine - King Michael the I of Romania, Timisoara, Romania
| | - Abderrahman Hachani
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.,The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Bioengineering of Animal Science Resources, Banat University of Agricultural Sciences and Veterinary Medicine - King Michael the I of Romania, Timisoara, Romania
| | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
12
|
Ricke SC, Feye KM, Chaney WE, Shi Z, Pavlidis H, Yang Y. Developments in Rapid Detection Methods for the Detection of Foodborne Campylobacter in the United States. Front Microbiol 2019; 9:3280. [PMID: 30728816 PMCID: PMC6351486 DOI: 10.3389/fmicb.2018.03280] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
Abstract
The accurate and rapid detection of Campylobacter spp. is critical for optimal surveillance throughout poultry processing in the United States. The further development of highly specific and sensitive assays to detect Campylobacter in poultry matrices has tremendous utility and potential for aiding the reduction of foodborne illness. The introduction and development of molecular methods such as polymerase chain reaction (PCR) have enhanced the diagnostic capabilities of the food industry to identify the presence of foodborne pathogens throughout poultry production. Further innovations in various methodologies, such as immune-based typing and detection as well as high throughput analyses, will provide important epidemiological data such as the identification of unique or region-specific Campylobacter. Comparable to traditional microbiology and enrichment techniques, molecular techniques/methods have the potential to have improved sensitivity and specificity, as well as speed of data acquisition. This review will focus on the development and application of rapid molecular methods for identifying and quantifying Campylobacter in U.S. poultry and the emergence of novel methods that are faster and more precise than traditional microbiological techniques.
Collapse
Affiliation(s)
- Steven C. Ricke
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Kristina M. Feye
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | | | - Zhaohao Shi
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | | | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
13
|
Ren F, Li X, Tang H, Jiang Q, Yun X, Fang L, Huang P, Tang Y, Li Q, Huang J, Jiao XA. Insights into the impact of flhF inactivation on Campylobacter jejuni colonization of chick and mice gut. BMC Microbiol 2018; 18:149. [PMID: 30348090 PMCID: PMC6196472 DOI: 10.1186/s12866-018-1318-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/15/2018] [Indexed: 11/23/2022] Open
Abstract
Background Campylobacter jejuni (C. jejuni) is a leading cause of foodborne gastroenteritis worldwide. This bacterium lacks many of the classical virulence factors, and flagellum-associated persistent colonization has been shown to be crucial for its pathogenesis. The flagellum plays a multifunctional role in C. jejuni pathogenesis, and different flagellar elements make diverse contributions. The flhF gene encodes the flagellar biosynthesis regulator, which is important for flagellar biosynthesis. In this study, the influence of flhF on C. jejuni colonization was systematically studied, and the possible mechanisms were also analyzed. Results The flhF gene has a significant influence on C. jejuni colonization, and its inactivation resulted in severe defects in the commensal colonization of chicks, with approximately 104- to 107-fold reductions (for NCTC 11168 and a C. jejuni isolate respectively) observed in the bacterial caecal loads. Similar effects were observed in mice where the flhF mutant strain completely lost the ability to continuously colonize mice, which cleared the isolate at 7 days post inoculation. Characterization of the phenotypic properties of C. jejuni that influence colonization showed that the adhesion and invasion abilities of the C. jejuni flhF mutant were reduced to approximately 52 and 27% of that of the wild-type strain, respectively. The autoagglutination and biofilm-formation abilities of the flhF mutant strain were also significantly decreased. Further genetic investigation revealed that flhF is continuously upregulated during the infection process, which indicates a close association of this gene with C. jejuni pathogenesis. The transcription of some other infection-related genes that are not directly involved in flagellar assembly were also influenced by its inactivation, with the flagellar coexpressed determinants (Feds) being apparently affected. Conclusions Inactivation of flhF has a significant influence on C. jejuni colonization in both birds and mammals. This defect may be caused by the decreased adhesion, invasion, autoagglutination and biofilm-formation abilities of the flhF mutant strain, as well as the influence on the transcription of other infection related genes, which provides insights into this virulence factor and the flagellum mediated co-regulation of C. jejuni pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12866-018-1318-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fangzhe Ren
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xiaofei Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, Jiangsu, China
| | - Haiyan Tang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, Jiangsu, China
| | - Qidong Jiang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, Jiangsu, China
| | - Xi Yun
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, 225009, Jiangsu, China
| | - Lin Fang
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, 225009, Jiangsu, China
| | - Pingyu Huang
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, 225009, Jiangsu, China
| | - Yuanyue Tang
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, 225009, Jiangsu, China
| | - Qiuchun Li
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, 225009, Jiangsu, China
| | - Jinlin Huang
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, 225009, Jiangsu, China.
| | - Xin-An Jiao
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
14
|
Bronowski C, Mustafa K, Goodhead I, James CE, Nelson C, Lucaci A, Wigley P, Humphrey TJ, Williams NJ, Winstanley C, for the ENIGMA Consortium. Campylobacter jejuni transcriptome changes during loss of culturability in water. PLoS One 2017; 12:e0188936. [PMID: 29190673 PMCID: PMC5708674 DOI: 10.1371/journal.pone.0188936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022] Open
Abstract
Background Water serves as a potential reservoir for Campylobacter, the leading cause of bacterial gastroenteritis in humans. However, little is understood about the mechanisms underlying variations in survival characteristics between different strains of C. jejuni in natural environments, including water. Results We identified three Campylobacter jejuni strains that exhibited variability in their ability to retain culturability after suspension in tap water at two different temperatures (4°C and 25°C). Of the three, strains C. jejuni M1 exhibited the most rapid loss of culturability whilst retaining viability. Using RNAseq transcriptomics, we characterised C. jejuni M1 gene expression in response to suspension in water by analyzing bacterial suspensions recovered immediately after introduction into water (Time 0), and from two sampling time/temperature combinations where considerable loss of culturability was evident, namely (i) after 24 h at 25°C, and (ii) after 72 h at 4°C. Transcript data were compared with a culture-grown control. Some gene expression characteristics were shared amongst the three populations recovered from water, with more genes being up-regulated than down. Many of the up-regulated genes were identified in the Time 0 sample, whereas the majority of down-regulated genes occurred in the 25°C (24 h) sample. Conclusions Variations in expression were found amongst genes associated with oxygen tolerance, starvation and osmotic stress. However, we also found upregulation of flagellar assembly genes, accompanied by down-regulation of genes involved in chemotaxis. Our data also suggested a switch from secretion via the sec system to via the tat system, and that the quorum sensing gene luxS may be implicated in the survival of strain M1 in water. Variations in gene expression also occurred in accessory genome regions. Our data suggest that despite the loss of culturability, C. jejuni M1 remains viable and adapts via specific changes in gene expression.
Collapse
Affiliation(s)
- Christina Bronowski
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Kasem Mustafa
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Ian Goodhead
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Chloe E. James
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Charlotte Nelson
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Anita Lucaci
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Paul Wigley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Tom J. Humphrey
- Medical Microbiology and Infectious Diseases, School of Medicine, Swansea University, Swansea, United Kingdom
| | - Nicola J. Williams
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| | | |
Collapse
|
15
|
Coadministration of the Campylobacter jejuni N-Glycan-Based Vaccine with Probiotics Improves Vaccine Performance in Broiler Chickens. Appl Environ Microbiol 2017; 83:AEM.01523-17. [PMID: 28939610 DOI: 10.1128/aem.01523-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/13/2017] [Indexed: 01/01/2023] Open
Abstract
Source attribution studies report that the consumption of contaminated poultry is the primary source for acquiring human campylobacteriosis. Oral administration of an engineered Escherichia coli strain expressing the Campylobacter jejuni N-glycan reduces bacterial colonization in specific-pathogen-free leghorn chickens, but only a fraction of birds respond to vaccination. Optimization of the vaccine for commercial broiler chickens has great potential to prevent the entry of the pathogen into the food chain. Here, we tested the same vaccination approach in broiler chickens and observed similar efficacies in pathogen load reduction, stimulation of the host IgY response, the lack of C. jejuni resistance development, uniformity in microbial gut composition, and the bimodal response to treatment. Gut microbiota analysis of leghorn and broiler vaccine responders identified one member of Clostridiales cluster XIVa, Anaerosporobacter mobilis, that was significantly more abundant in responder birds. In broiler chickens, coadministration of the live vaccine with A. mobilis or Lactobacillus reuteri, a commonly used probiotic, resulted in increased vaccine efficacy, antibody responses, and weight gain. To investigate whether the responder-nonresponder effect was due to the selection of a C. jejuni "supercolonizer mutant" with altered phase-variable genes, we analyzed all poly(G)-containing loci of the input strain compared to nonresponder colony isolates and found no evidence of phase state selection. However, untargeted nuclear magnetic resonance (NMR)-based metabolomics identified a potential biomarker negatively correlated with C. jejuni colonization levels that is possibly linked to increased microbial diversity in this subgroup. The comprehensive methods used to examine the bimodality of the vaccine response provide several opportunities to improve the C. jejuni vaccine and the efficacy of any vaccination strategy.IMPORTANCE Campylobacter jejuni is a common cause of human diarrheal disease worldwide and is listed by the World Health Organization as a high-priority pathogen. C. jejuni infection typically occurs through the ingestion of contaminated chicken meat, so many efforts are targeted at reducing C. jejuni levels at the source. We previously developed a vaccine that reduces C. jejuni levels in egg-laying chickens. In this study, we improved vaccine performance in meat birds by supplementing the vaccine with probiotics. In addition, we demonstrated that C. jejuni colonization levels in chickens are negatively correlated with the abundance of clostridia, another group of common gut microbes. We describe new methods for vaccine optimization that will assist in improving the C. jejuni vaccine and other vaccines under development.
Collapse
|
16
|
Kovac J, Stessl B, Čadež N, Gruntar I, Cimerman M, Stingl K, Lušicky M, Ocepek M, Wagner M, Smole Možina S. Population structure and attribution of human clinical Campylobacter jejuni isolates from central Europe to livestock and environmental sources. Zoonoses Public Health 2017; 65:51-58. [PMID: 28755449 DOI: 10.1111/zph.12366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 12/19/2022]
Abstract
Campylobacter jejuni is among the most prevalent causes of human bacterial gastroenteritis worldwide. Domesticated animals and, especially, chicken meat are considered to be the main sources of infections. However, the contribution of surface waters and wildlife in C. jejuni transmission to humans is not well understood. We have evaluated the source attribution potential of a six-gene multiplex PCR (mPCR) method coupled with STRUCTURE analysis on a set of 410 C. jejuni strains isolated from environment, livestock, food and humans in central Europe. Multiplex PCR fingerprints were analysed using Subclade prediction algorithm to classify them into six distinct mPCR clades. A subset of C. jejuni isolates (70%) was characterized by multilocus sequence typing (MLST) demonstrating 74% congruence between mPCR and MLST. The correspondence analysis of mPCR clades and sources of isolation indicated three distinct groups in the studied C. jejuni population-the first one associated with isolates from poultry, the second one with isolates from cattle, and the third one with isolates from the environment. The STRUCTURE analysis attributed 7.2% and 21.7% of human isolates to environmental sources based on MLST and mPCR fingerprints, respectively.
Collapse
Affiliation(s)
- J Kovac
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.,Department of Food Science, The Pennsylvania State University, State College, PA, USA
| | - B Stessl
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - N Čadež
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - I Gruntar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - M Cimerman
- National Laboratory of Health, Environment and Food, Department of Microbiological Analysis of Food, Water and Environmental Samples Maribor, Maribor, Slovenia
| | - K Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - M Lušicky
- National Laboratory of Health, Environment and Food, Department of Microbiological Analysis of Food, Water and Environmental Samples Maribor, Maribor, Slovenia
| | - M Ocepek
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - M Wagner
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - S Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
17
|
Singh P, Lee H, Silva M, Chin K, Kang I. Trisodium phosphate dip, hot water dip, and combination dip with/without brushing on broiler carcass decontamination. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Fiebiger U, Bereswill S, Heimesaat MM. Dissecting the Interplay Between Intestinal Microbiota and Host Immunity in Health and Disease: Lessons Learned from Germfree and Gnotobiotic Animal Models. Eur J Microbiol Immunol (Bp) 2016; 6:253-271. [PMID: 27980855 PMCID: PMC5146645 DOI: 10.1556/1886.2016.00036] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
This review elaborates the development of germfree and gnotobiotic animal models and their application in the scientific field to unravel mechanisms underlying host-microbe interactions and distinct diseases. Strictly germfree animals are raised in isolators and not colonized by any organism at all. The germfree state is continuously maintained by birth, raising, housing and breeding under strict sterile conditions. However, isolator raised germfree mice are exposed to a stressful environment and exert an underdeveloped immune system. To circumvent these physiological disadvantages depletion of the bacterial microbiota in conventionally raised and housed mice by antibiotic treatment has become an alternative approach. While fungi and parasites are not affected by antibiosis, the bacterial microbiota in these "secondary abiotic mice" have been shown to be virtually eradicated. Recolonization of isolator raised germfree animals or secondary abiotic mice results in a gnotobiotic state. Both, germfree and gnotobiotic mice have been successfully used to investigate biological functions of the conventional microbiota in health and disease. Particularly for the development of novel clinical applications germfree mice are widely used tools, as summarized in this review further focusing on the modulation of bacterial microbiota in laboratory mice to better mimic conditions in the human host.
Collapse
Affiliation(s)
| | | | - Markus M. Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology and Hygiene, Charité – University Medicine Berlin, Campus Benjamin Franklin
| |
Collapse
|
19
|
Lango-Scholey L, Aidley J, Woodacre A, Jones MA, Bayliss CD. High Throughput Method for Analysis of Repeat Number for 28 Phase Variable Loci of Campylobacter jejuni Strain NCTC11168. PLoS One 2016; 11:e0159634. [PMID: 27466808 PMCID: PMC4965091 DOI: 10.1371/journal.pone.0159634] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/05/2016] [Indexed: 11/19/2022] Open
Abstract
Mutations in simple sequence repeat tracts are a major mechanism of phase variation in several bacterial species including Campylobacter jejuni. Changes in repeat number of tracts located within the reading frame can produce a high frequency of reversible switches in gene expression between ON and OFF states. The genome of C. jejuni strain NCTC11168 contains 29 loci with polyG/polyC tracts of seven or more repeats. This protocol outlines a method—the 28-locus-CJ11168 PV-analysis assay—for rapidly determining ON/OFF states of 28 of these phase-variable loci in a large number of individual colonies from C. jejuni strain NCTC11168. The method combines a series of multiplex PCR assays with a fragment analysis assay and automated extraction of fragment length, repeat number and expression state. This high throughput, multiplex assay has utility for detecting shifts in phase variation states within and between populations over time and for exploring the effects of phase variation on adaptation to differing selective pressures. Application of this method to analysis of the 28 polyG/polyC tracts in 90 C. jejuni colonies detected a 2.5-fold increase in slippage products as tracts lengthened from G8 to G11 but no difference between tracts of similar length indicating that flanking sequence does not influence slippage rates. Comparison of this observed slippage to previously measured mutation rates for G8 and G11 tracts in C. jejuni indicates that PCR amplification of a DNA sample will over-estimate phase variation frequencies by 20-35-fold. An important output of the 28-locus-CJ11168 PV-analysis assay is combinatorial expression states that cannot be determined by other methods. This method can be adapted to analysis of phase variation in other C. jejuni strains and in a diverse range of bacterial species.
Collapse
Affiliation(s)
- Lea Lango-Scholey
- School for Veterinary Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jack Aidley
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Alexandra Woodacre
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Michael A. Jones
- School for Veterinary Medicine, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
20
|
Ahmed MFEM, El-Adawy H, Hotzel H, Tomaso H, Neubauer H, Kemper N, Hartung J, Hafez HM. Prevalence, genotyping and risk factors of thermophilic Campylobacter spreading in organic turkey farms in Germany. Gut Pathog 2016; 8:28. [PMID: 27257438 PMCID: PMC4890334 DOI: 10.1186/s13099-016-0108-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The need for organic food of animal origin has increased rapidly in recent years. However, effects of organic animal husbandry on food safety have not been rigorously tested especially in meat turkey flocks. This study provides for the first time an overview on the prevalence and genetic diversity of Campylobacter species (spp.) in five organic meat turkey farms located in different regions in Germany, as well as on potential risk factors of bacterial spreading. Thirty cloacal swabs as well as water samples and darkling beetles were collected from each flock and examined for the presence of Campylobacter by conventional and molecular biological methods. The isolates were genotyped by flaA-RFLP. RESULTS Campylobacter spp. were detected in cloacal swabs in all 5 turkey flocks with prevalence ranged from 90.0 to 100 %. 13 cloacal swabs collected from birds in farm III and IV were harboured mixed population of thermophilic campylobacters. In total, from 158 Campylobacter isolated from turkeys 89 (56.33 %) were identified as C. coli and 69 (43.76 %) as C. jejuni. Three Campylobacter (2 C. jejuni and 1 C. coli) were detected in drinkers of two farms and 3 C. coli were isolated from darkling beetles of one farm. No Campylobacter were isolated from main water tanks. flaA-RFLP assay showed that turkey farms can harbour more than one genotype. In a single turkey two different genotypes could be detected. The genotypes of campylobacters isolated from water samples or beetles were identical with those isolated from turkeys. No effect was found of some environmental parameters [ammonia concentration (NH3), carbon dioxide concentration (CO2), relative humidity (RH) and air temperature)] on Campylobacter prevalence in organic turkey farms. Additionally, drinking water and darkling beetles might be considered as risk factors for the spreading of Campylobacter in turkey flocks. CONCLUSIONS This study highlights the high prevalence and genotypic diversity of Campylobacter spp. isolated from organic turkey flocks. Further research is needed to assess other potential risk factors responsible for bacteria spreading in order to mitigate the spread of Campylobacter in organic turkey flocks by improving biosecurity control measures.
Collapse
Affiliation(s)
- Marwa Fawzy El Metwaly Ahmed
- />Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- />Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hosny El-Adawy
- />Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- />Department of Poultry Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Helmut Hotzel
- />Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Herbert Tomaso
- />Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Heinrich Neubauer
- />Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Nicole Kemper
- />Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Joerg Hartung
- />Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | |
Collapse
|
21
|
King JE, Roberts IS. Bacterial Surfaces: Front Lines in Host-Pathogen Interaction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:129-56. [PMID: 27193542 DOI: 10.1007/978-3-319-32189-9_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All bacteria are bound by at least one membrane that acts as a barrier between the cell's interior and the outside environment. Surface components within and attached to the cell membrane are essential for ensuring that the overall homeostasis of the cell is maintained. However, many surface components of the bacterial cell also have an indispensable role mediating interactions of the bacteria with their immediate environment and as such are essential to the pathogenesis of infectious disease. During the course of an infection, bacterial pathogens will encounter many different ecological niches where environmental conditions such as salinity, temperature, pH, and the availability of nutrients fluctuate. It is the bacterial cell surface that is at the front-line of these host-pathogen interactions often protecting the bacterium from hostile surroundings but at the same time playing a critical role in the adherence to host tissues promoting colonization and subsequent infection. To deal effectively with the changing environments that pathogens may encounter in different ecological niches within the host many of the surface components of the bacterial cell are subject to phenotypic variation resulting in heterogeneous subpopulations of bacteria within the clonal population. This dynamic phenotypic heterogeneity ensures that at least a small fraction of the population will be adapted for a particular circumstance should it arise. Diversity within the clonal population has often been masked by studies on entire bacterial populations where it was often assumed genes were expressed in a uniform manner. This chapter, therefore, aims to highlight the non-uniformity in certain cell surface structures and will discuss the implication of this heterogeneity in bacterial-host interaction. Some of the recent advances in studying bacterial surface structures at the single cell level will also be reviewed.
Collapse
Affiliation(s)
- Jane E King
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Ian S Roberts
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
22
|
Modi S, Brahmbhatt MN, Chatur YA, Nayak JB. Prevalence of Campylobacter species in milk and milk products, their virulence gene profile and anti-bio gram. Vet World 2015; 8:1-8. [PMID: 27046986 PMCID: PMC4777796 DOI: 10.14202/vetworld.2015.1-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/22/2014] [Accepted: 11/29/2014] [Indexed: 11/16/2022] Open
Abstract
Aim: During the last decades, number of food poisoning cases due to Campylobacter occurred, immensely. After poultry, raw milk acts as a second main source of Campylobacter. Therefore, the present study was undertaken to detect the prevalence of Campylobacters in milk and milk products and to know the antibiotic sensitivity and virulence gene profile of Campylobacter spp. in Anand city, Gujarat, India. Material and Methods: A total of 240 samples (85 buffalo milk, 65 cow milk, 30 cheese, 30 ice-cream and 30 paneer) were collected from the different collection points in Anand city. The samples were processed by microbiological culture method, and presumptive isolates were further confirmed by genus and species-specific polymerase chain reaction using previously reported primer. The isolates were further subjected to antibiotic susceptibility assay and virulence gene detection. Result: Campylobacter species were detected in 7 (2.91%) raw milk samples whereas none of the milk product was positive. All the isolate identified were Campylobacter jejuni. Most of the isolates showed resistance against nalidixic acid, ciprofloxacin, and tetracyclin. All the isolates have three virulence genes cadF, cdtB and flgR whereas only one isolate was positive for iamA gene and 6 isolates were positive for fla gene. Conclusion: The presence of Campylobacter in raw milk indicates that raw milk consumption is hazardous for human being and proper pasteurization of milk and adaptation of hygienic condition will be necessary to protect the consumer from this zoonotic pathogen.
Collapse
Affiliation(s)
- Shivani Modi
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| | - M N Brahmbhatt
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| | - Y A Chatur
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| | - J B Nayak
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| |
Collapse
|
23
|
Hofreuter D. Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni. Front Cell Infect Microbiol 2014; 4:137. [PMID: 25325018 PMCID: PMC4178425 DOI: 10.3389/fcimb.2014.00137] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/11/2014] [Indexed: 01/27/2023] Open
Abstract
During the last decade Campylobacter jejuni has been recognized as the leading cause of bacterial gastroenteritis worldwide. This facultative intracellular pathogen is a member of the Epsilonproteobacteria and requires microaerobic atmosphere and nutrient rich media for efficient proliferation in vitro. Its catabolic capacity is highly restricted in contrast to Salmonella Typhimurium and other enteropathogenic bacteria because several common pathways for carbohydrate utilization are either missing or incomplete. Despite these metabolic limitations, C. jejuni efficiently colonizes various animal hosts as a commensal intestinal inhabitant. Moreover, C. jejuni is tremendously successful in competing with the human intestinal microbiota; an infectious dose of few hundreds bacteria is sufficient to overcome the colonization resistance of humans and can lead to campylobacteriosis. Besides the importance and clear clinical manifestation of this disease, the pathogenesis mechanisms of C. jejuni infections are still poorly understood. In recent years comparative genome sequence, transcriptome and metabolome analyses as well as mutagenesis studies combined with animal infection models have provided a new understanding of how the specific metabolic capacity of C. jejuni drives its persistence in the intestinal habitat of various hosts. Furthermore, new insights into the metabolic requirements that support the intracellular survival of C. jejuni were obtained. Because C. jejuni harbors distinct properties in establishing an infection in comparison to pathogenic Enterobacteriaceae, it represents an excellent organism for elucidating new aspects of the dynamic interaction and metabolic cross talk between a bacterial pathogen, the microbiota and the host.
Collapse
Affiliation(s)
- Dirk Hofreuter
- Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology Hannover, Germany
| |
Collapse
|
24
|
Revez J, Zhang J, Schott T, Kivistö R, Rossi M, Hänninen ML. Genomic variation between Campylobacter jejuni isolates associated with milk-borne-disease outbreaks. J Clin Microbiol 2014; 52:2782-6. [PMID: 24850348 PMCID: PMC4136164 DOI: 10.1128/jcm.00931-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 05/13/2014] [Indexed: 01/28/2023] Open
Abstract
Bacterial genome sequencing has led to the development of new approaches for the analysis of food-borne epidemics and the exploration of the relatedness of outbreak-associated isolates and their separation from nonassociated isolates. Using Illumina technology, we sequenced a total of six isolates (two from patients, two from raw bulk milk, and two from dairy cattle) associated with a milk-borne Campylobacter jejuni outbreak in a farming family and compared their genomes. These isolates had identical pulsed-field gel electrophoresis (PFGE) types, and their multilocus sequence typing (MLST) type was ST-50. We used the Ma_1 isolate (milk) as the reference, and its genome was assembled and tentatively ordered using the C. jejuni NCTC 11168 genome as the scaffold. Using whole-genome MLST (wgMLST), we identified a total of three single-nucleotide polymorphisms (SNPs) and differences in poly(G or C) or poly(A or T) tracts in 12 loci among the isolates. Several new alleles not present in the database were detected. In contrast, the sequences of the unassociated C. jejuni strains P14 and 1-12S (both ST-50) differed by 420 to 454 alleles from the epidemic-associated isolates. We found that the fecal contamination of bulk tank milk occurred by highly related sequence variants of C. jejuni, which are reflected as SNPs and differences in the length of the poly(A or T) tracts. Poly(G or C) tracts are reversibly variable and are thus unstable markers for comparison. Further, unrelated strains of ST-50 were clearly separated from the outbreak-associated isolates, indicating that wgMLST is an excellent tool for analysis. In addition, other useful data related to the genes and genetic systems of the isolates were obtained.
Collapse
Affiliation(s)
- Joana Revez
- Department of Food Hygiene and Environmental Health, Helsinki University, Helsinki, Finland
| | - Ji Zhang
- Department of Food Hygiene and Environmental Health, Helsinki University, Helsinki, Finland
| | - Thomas Schott
- Department of Food Hygiene and Environmental Health, Helsinki University, Helsinki, Finland Biology Oceanography, Leibniz Institute for Baltic Sea Research, Rostock-Warnemünde, Germany
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Helsinki University, Helsinki, Finland
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, Helsinki University, Helsinki, Finland
| | - Marja-Liisa Hänninen
- Department of Food Hygiene and Environmental Health, Helsinki University, Helsinki, Finland
| |
Collapse
|
25
|
Thomas DK, Lone AG, Selinger LB, Taboada EN, Uwiera RRE, Abbott DW, Inglis GD. Comparative variation within the genome of Campylobacter jejuni NCTC 11168 in human and murine hosts. PLoS One 2014; 9:e88229. [PMID: 24516617 PMCID: PMC3917866 DOI: 10.1371/journal.pone.0088229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/03/2014] [Indexed: 11/18/2022] Open
Abstract
Campylobacteriosis incited by C. jejuni is a significant enteric disease of human beings. A person working with two reference strains of C. jejuni National Collection of Type Cultures (NCTC) 11168 developed symptoms of severe enteritis including bloody diarrhea. The worker was determined to be infected by C. jejuni. In excess of 50 isolates were recovered from the worker's stool. All of the recovered isolates and the two reference strains were indistinguishable from each other based on comparative genomic fingerprint subtyping. Whole genome sequence analysis indicated that the worker was infected with a C. jejuni NCTC 11168 obtained from the American Type Culture Collection; this strain (NCTC 11168-GSv) is the genome sequence reference. After passage through the human host, major genetic changes including indel mutations within twelve contingency loci conferring phase variations were detected in the genome of C. jejuni. Specific and robust single nucleotide polymorphism (SNP) changes in the human host were also observed in two loci (Cj0144c, Cj1564). In mice inoculated with an isolate of C. jejuni NCTC 11168-GSv from the infected person, the isolate underwent further genetic variation. At nine loci, mutations specific to inoculated mice including five SNP changes were observed. The two predominant SNPs observed in the human host reverted in mice. Genetic variations occurring in the genome of C. jejuni in mice corresponded to increased densities of C. jejuni cells associated with cecal mucosa. In conclusion, C. jejuni NCTC 11168-GSv was found to be highly virulent in a human being inciting severe enteritis. Host-specific mutations in the person with enteritis occurred/were selected for in the genome of C. jejuni, and many were not maintained in mice. Information obtained in the current study provides new information on host-specific genetic adaptation by C. jejuni.
Collapse
Affiliation(s)
- Dallas K Thomas
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, Alberta, Canada
| | - Abdul G Lone
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, Alberta, Canada ; Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - L Brent Selinger
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | - Richard R E Uwiera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - D Wade Abbott
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, Alberta, Canada
| | - G Douglas Inglis
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, Alberta, Canada
| |
Collapse
|
26
|
Effects of genotypic and phenotypic variation on establishment are important for conservation, invasion, and infection biology. Proc Natl Acad Sci U S A 2013; 111:302-7. [PMID: 24367109 DOI: 10.1073/pnas.1317745111] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is abundant evidence that the probability of successful establishment in novel environments increases with number of individuals in founder groups and with number of repeated introductions. Theory posits that the genotypic and phenotypic variation among individuals should also be important, but few studies have examined whether founder diversity influences establishment independent of propagule pressure, nor whether the effect is model or context dependent. I summarize the results of 18 experimental studies and report on a metaanalysis that provides strong evidence that higher levels of genotypic and phenotypic diversity in founder groups increase establishment success in plants and animals. The effect of diversity is stronger in experiments carried out under natural conditions in the wild than under seminatural or standardized laboratory conditions. The realization that genetic and phenotypic variation is key to successful establishment may improve the outcome of reintroduction and translocation programs used to vitalize or restore declining and extinct populations. Founder diversity may also improve the ability of invasive species to establish and subsequently spread in environments outside of their native community, and enhance the ability of pathogens and parasites to colonize and invade the environment constituted by their hosts. It is argued that exchange of ideas, methodological approaches, and insights of the role of diversity for establishment in different contexts may further our knowledge, vitalize future research, and improve management plans in different disciplines.
Collapse
|
27
|
Lone AG, Selinger LB, Uwiera RRE, Xu Y, Inglis GD. Campylobacter jejuni colonization is associated with a dysbiosis in the cecal microbiota of mice in the absence of prominent inflammation. PLoS One 2013; 8:e75325. [PMID: 24066174 PMCID: PMC3774657 DOI: 10.1371/journal.pone.0075325] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/13/2013] [Indexed: 12/11/2022] Open
Abstract
Background Campylobacter jejuni causes enterocolitis in humans, but does not incite disease in asymptomatic carrier animals. To survive in the intestine, C. jejuni must successfully compete with the microbiota and overcome the host immune defense. Campylobacter jejuni colonization success varies considerably amongst individual mice, and we examined the degree to which the intestinal microbiota was affected in mice (i.e. a model carrier animal) colonized by C. jejuni at high relative to low densities. Methods Mice were inoculated with C. jejuni or buffer, and pathogen shedding and intestinal colonization were measured. Histopathologic scoring and quantification of mRNA expression for α-defensins, toll-like receptors, and cytokine genes were conducted. Mucosa-associated bacterial communities were characterized by two approaches: multiplexed barcoded pyrosequencing and terminal restriction fragment length polymorphism analysis. Results Two C. jejuni treatments were established based on the degree of cecal and colonic colonization; C. jejuni Group A animals were colonized at high cell densities, and C. jejuni Group B animals were colonized at lower cell densities. Histological examination of cecal and colonic tissues indicated that C. jejuni did not incite visible pathologic changes. Although there was no significant difference among treatments in expression of mRNA for α-defensins, toll-like receptors, or cytokine genes, a trend for increased expression of toll-like receptors and cytokine genes was observed for C. jejuni Group A. The results of the two methods to characterize bacterial communities indicated that the composition of the cecal microbiota of C. jejuni Group A mice differed significantly from C. jejuni Group B and Control mice. This difference was due to a reduction in load, diversity and richness of bacteria associated with the cecal mucosa of C. jejuni Group A mice. Conclusions High density colonization by C. jejuni is associated with a dysbiosis in the cecal microbiota independent of prominent inflammation.
Collapse
Affiliation(s)
- Abdul G. Lone
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, Alberta, Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - L. Brent Selinger
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Richard R. E. Uwiera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Yong Xu
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - G. Douglas Inglis
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, Alberta, Canada
- * E-mail:
| |
Collapse
|
28
|
Revez J, Schott T, Llarena AK, Rossi M, Hänninen ML. Genetic heterogeneity of Campylobacter jejuni NCTC 11168 upon human infection. INFECTION GENETICS AND EVOLUTION 2013; 16:305-9. [PMID: 23523819 DOI: 10.1016/j.meegid.2013.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 01/28/2023]
Abstract
Campylobacter jejuni NCTC 11168 variants before and after accidental human infection were sequenced with Illumina technology and mapped against the isogenic reference genome applying the Breseq pipeline. Only the frequencies of length variations of homopolymeric tracts in the contingency genes Cj0045c, Cj0456c, Cj1139c, Cj1145c, and Cj1306c and a deletion in Cj0184c were significantly different after human passage (p<0.01). Our results highlight differences in the selection of C. jejuni variants after human infection compared with those observed in animal models, emphasizing the genetic diversity of C. jejuni NCTC 11168 and the possible role of the host in the selection of bacterial determinants that might be involved in the adaptation and disease development.
Collapse
Affiliation(s)
- Joana Revez
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
29
|
Thibodeau A, Fravalo P, Garneau P, Masson L, Laurent-Lewandowski S, Quessy S, Harel J, Letellier A. Distribution of colonization and antimicrobial resistance genes in Campylobacter jejuni isolated from chicken. Foodborne Pathog Dis 2013; 10:382-91. [PMID: 23510494 DOI: 10.1089/fpd.2012.1271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Campylobacter jejuni is an important worldwide foodborne pathogen commonly found as a commensal organism in poultry that can reach high numbers within the gut after colonization. Although information regarding some genes involved in colonization is available, little is known about their distribution in strains isolated specifically from chickens and whether there is a linkage between antimicrobial resistance (AMR) and colonization genes. To assess the distribution and relevance of genes associated with chicken colonization and AMR, a C. jejuni microarray was created to detect 254 genes of interest in colonization and AMR including variants. DNA derived from chicken-specific Campylobacter isolates collected in 2003 (n=29) and 2008 (n=28) was hybridized to the microarray and compared. Hybridization results showed variable colonization-associated gene presence. Acquired AMR genes were low in prevalence whereas chemotaxis receptors, arsenic resistance genes, as well as genes from the cell envelope and flagella functional groups were highly variable in their presence. Strains clustered into two groups, each linked to different control strains, 81116 and NCTC11168. Clustering was found to be independent of collection time. We also show that AMR weakly associated with the CJ0628 and arsR genes. Although other studies have implicated numerous genes associated with C. jejuni chicken colonization, our data on chicken-specific isolates suggest the opposite. The enormous variability in presumed colonization gene prevalence in our chicken isolates suggests that many are of lesser importance than previously thought. Alternatively, this also suggests that combinations of genes may be required for natural colonization of chicken intestines.
Collapse
Affiliation(s)
- Alexandre Thibodeau
- Industrial-CRSNG Meat Safety Research, University of Montreal, Saint-Hyacinthe, Quebec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
A "successful allele" at Campylobacter jejuni contingency locus Cj0170 regulates motility; "successful alleles" at locus Cj0045 are strongly associated with mouse colonization. Food Microbiol 2013; 34:425-30. [PMID: 23541212 DOI: 10.1016/j.fm.2013.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/20/2012] [Accepted: 01/09/2013] [Indexed: 01/23/2023]
Abstract
Campylobacter jejuni is an important foodborne pathogen of humans and its primary reservoir is the gastrointestinal (GI) tract of chickens. Our previous studies demonstrated that phase variation to specific "successful alleles" at C. jejuni contingency loci Cj0045 (successful alleles carry 9G or 10G homopolymeric tracts) and Cj0170 (successful allele carries a 10G homopolymeric tract) in C. jejuni populations is strongly associated with colonization and enteritis in C57BL/6 IL-10 deficient mice. In the current study, we strengthened the association between locus Cj0170, Cj0045, and mouse colonization. We generated 8 independent strains derived from C. jejuni 11168 strain KanR4 that carried a Cj0170 gene disruption and these were all non motile. Two randomly chosen strains with the Cj0170 gene disruption (DM0170-2 and DM0170-6) were gavaged into mice. DM0170-2 and DM0170-6 failed to colonize mice while the control strain that carried a "successful"Cj0170 10G allele was motile and did colonize mice. In parallel studies, when we inoculated C. jejuni strain 33292 into mice, the "unsuccessful"Cj0045 11G allele experienced phase variation to "successful" 9G and 10G alleles in 2 independent experiments prior to d4 post inoculation in mice while the "successful" 9G allele in the control strain remained stable through d21 post inoculation or shifted to other successful alleles. These data confirm that locus Cj0170 regulates motility in C. jejuni strain KanR4 and is a virulence factor in the mouse model. The data also support a possible role of locus Cj0045 as a virulence factor in strain 33292 in infection of mice.
Collapse
|
31
|
Bell JA, Jerome J, Plovanich-Jones AE, Smith EJ, Gettings JR, Kim HY, Landgraf JR, Lefébure T, Kopper JJ, Rathinam VA, St. Charles JL, Buffa BA, Brooks AP, Poe SA, Eaton KA, Stanhope MJ, Mansfield LS. Outcome of infection of C57BL/6 IL-10(-/-) mice with Campylobacter jejuni strains is correlated with genome content of open reading frames up- and down-regulated in vivo. Microb Pathog 2013; 54:1-19. [PMID: 22960579 PMCID: PMC4118490 DOI: 10.1016/j.micpath.2012.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 08/07/2012] [Indexed: 12/12/2022]
Abstract
Human Campylobacter jejuni infection can result in an asymptomatic carrier state, watery or bloody diarrhea, bacteremia, meningitis, or autoimmune neurological sequelae. Infection outcomes of C57BL/6 IL-10(-/-) mice orally infected with twenty-two phylogenetically diverse C. jejuni strains were evaluated to correlate colonization and disease phenotypes with genetic composition of the strains. Variation between strains was observed in colonization, timing of development of clinical signs, and occurrence of enteric lesions. Five pathotypes of C. jejuni in C57BL/6 IL-10(-/-) mice were delineated: little or no colonization, colonization without disease, colonization with enteritis, colonization with hemorrhagic enteritis, and colonization with neurological signs with or without enteritis. Virulence gene content of ten sequenced strains was compared in silico; virulence gene content of twelve additional strains was compared using a C. jejuni pan-genome microarray. Neither total nor virulence gene content predicted pathotype; nor was pathotype correlated with multilocus sequence type. Each strain was unique with regard to absences of known virulence-related loci and/or possession of point mutations and indels, including phase variation, in virulence-related genes. An experiment in C. jejuni 11168-infected germ-free mice showed that expression levels of ninety open reading frames (ORFs) were significantly up- or down-regulated in the mouse cecum at least two-fold compared to in vitro growth. Genomic content of these ninety C. jejuni 11168 ORFs was significantly correlated with the capacity to colonize and cause enteritis in C57BL/6 IL-10(-/-) mice. Differences in gene expression levels and patterns are thus an important determinant of pathotype in C. jejuni strains in this mouse model.
Collapse
Affiliation(s)
- J. A. Bell
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - J.P. Jerome
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Department of Microbiology and Molecular Genetics, College of Natural Sciences, Michigan State University, East Lansing, MI 48824
| | - A. E. Plovanich-Jones
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - E. J. Smith
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - J. R. Gettings
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - H. Y. Kim
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - J. R. Landgraf
- Research Technology Support Facility, Michigan State University, East Lansing, MI 48824
| | - T. Lefébure
- Department of Population Medicine and Diagnostic Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - J. J. Kopper
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Cell and Molecular Biology Program, College of Natural Sciences, Michigan State University, East Lansing, MI 48824
| | - V. A. Rathinam
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - J. L. St. Charles
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - B. A. Buffa
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - A. P. Brooks
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - S. A. Poe
- Laboratory Animal Medicine Unit, University of Michigan Medical School, Ann Arbor, MI 48109; Laboratory Animal Medicine Unit, University of Michigan Medical School, Ann Arbor, MI 48109
| | - K. A. Eaton
- Laboratory Animal Medicine Unit, University of Michigan Medical School, Ann Arbor, MI 48109; Laboratory Animal Medicine Unit, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - M. J. Stanhope
- Department of Population Medicine and Diagnostic Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - L. S. Mansfield
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
32
|
Sanad YM, Closs G, Kumar A, LeJeune JT, Rajashekara G. Molecular epidemiology and public health relevance of Campylobacter isolated from dairy cattle and European starlings in Ohio, USA. Foodborne Pathog Dis 2012; 10:229-36. [PMID: 23259503 DOI: 10.1089/fpd.2012.1293] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dairy cattle serve as a potential source for Campylobacter infection in humans. Outbreaks associated with consumption of either Campylobacter contaminated raw milk or contaminated milk after treatment were previously recorded in the United States. Further, starlings have been implicated in the spread of bacterial pathogens among livestock. Here, we determined the prevalence, genotypic, and phenotypic properties of Campylobacter isolated from fecal samples of dairy cattle and starlings found on the same establishment in northeastern Ohio. Campylobacter were detected in 83 (36.6%) and 57 (50.4%) out of 227 dairy and 113 starling fecal samples, respectively. Specifically, 79 C. jejuni, five C. coli, and two other Campylobacter spp. were isolated from dairy feces, while all isolates from starlings (n=57) were C. jejuni. Our results showed that the prevalence of C. jejuni in birds was significantly (p<0.01) higher than that in dairy cattle. The pulsed-field gel electrophoresis analysis showed that C. jejuni were genotypically diverse and host restricted; however, there were several shared genotypes between dairy cattle and starling isolates. Likewise, many shared clonal complexes (CC) between dairy cattle and starlings were observed by multilocus sequence typing (MLST) analysis. As in humans, both in cattle and starlings, the CC 45 and CC 21 were the most frequently represented CCs. As previously reported, CC 177 and CC 682 were restricted to the bird isolates, while CC 42 was restricted to dairy cattle isolates. Further, two new sequence types (STs) were detected in C. jejuni from dairy cattle. Interestingly, cattle and starling C. jejuni showed high resistance to multiple antimicrobials, including ciprofloxacin, erythromycin, and gentamicin. In conclusion, our results highlight starlings as potential reservoirs for C. jejuni, and they may play an important role in the epidemiology of clinically important C. jejuni in dairy population.
Collapse
Affiliation(s)
- Yasser M Sanad
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, Ohio State University, Wooster, Ohio 44691, USA
| | | | | | | | | |
Collapse
|
33
|
Otto B, Haag LM, Fischer A, Plickert R, Kühl AA, Göbel UB, Heimesaat MM, Bereswill S. Campylobacter jejuni induces extra-intestinal immune responses via Toll-like-receptor-4 signaling in conventional IL-10 deficient mice with chronic colitis. Eur J Microbiol Immunol (Bp) 2012; 2:210-9. [PMID: 24688768 PMCID: PMC3962757 DOI: 10.1556/eujmi.2.2012.3.7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 06/27/2012] [Indexed: 11/19/2022] Open
Abstract
Campylobacter jejuni is one of the predominant causes for foodborne bacterial infections worldwide. We investigated whether signaling of C. jejuni-lipoproteins and -lipooligosaccharide via Toll-like-receptor (TLR) -2 and -4, respectively, is inducing intestinal and extra-intestinal immune responses following infection of conventional IL-10(-/-) mice with chronic colitis. At day 3 following oral infection, IL-10(-/-) mice lacking TLR-2 or TLR-4 harbored comparable C. jejuni strain ATCC 43431 loads in their colon. Interestingly, infected TLR-4(-/-) IL-10(-/-) mice displayed less compromized epithelial barrier function as indicated by lower translocation rates of live gut commensals into mesenteric lymphnodes (MLNs), and exhibited less distinct B lymphocyte responses in their colonic mucosa as compared to naїve IL-10(-/-) controls. Furthermore, in extra-intestinal compartments such as MLNs and spleens, abundance of myeloid cells was less distinct whereas relative percentages of activated T helper cells and cytotoxic T cells were higher in spleens and dendritic cells more abundant in MLNs of infected IL-10(-/-) animals lacking TLR-4 as compared to IL-10(-/-) controls. Taken together, in conventionally colonized IL-10(-/-) mice, TLR-4, but not TLR-2, is involved in mediating extra-intestinal pro-inflammatory immune responses following C. jejuni infection. Thus, conventional IL-10(-/-) mice are well suited to further dissect mechanisms underlying Campylobacter infections in vivo.
Collapse
Affiliation(s)
- B. Otto
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| | - L.-M. Haag
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| | - A. Fischer
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| | - R. Plickert
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| | - A. A. Kühl
- Department of Internal Medicine, Rheumatology and Clinical
Immunology / Research Center Immuno-Sciences (RCIS), Charité – University
Medicine BerlinBerlinGermany
| | - U. B. Göbel
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| | - M. M. Heimesaat
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| | - S. Bereswill
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| |
Collapse
|
34
|
Lertpiriyapong K, Gamazon ER, Feng Y, Park DS, Pang J, Botka G, Graffam ME, Ge Z, Fox JG. Campylobacter jejuni type VI secretion system: roles in adaptation to deoxycholic acid, host cell adherence, invasion, and in vivo colonization. PLoS One 2012; 7:e42842. [PMID: 22952616 PMCID: PMC3428339 DOI: 10.1371/journal.pone.0042842] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/11/2012] [Indexed: 12/21/2022] Open
Abstract
The recently identified type VI secretion system (T6SS) of proteobacteria has been shown to promote pathogenicity, competitive advantage over competing microorganisms, and adaptation to environmental perturbation. By detailed phenotypic characterization of loss-of-function mutants, in silico, in vitro and in vivo analyses, we provide evidence that the enteric pathogen, Campylobacter jejuni, possesses a functional T6SS and that the secretion system exerts pleiotropic effects on two crucial processes--survival in a bile salt, deoxycholic acid (DCA), and host cell adherence and invasion. The expression of T6SS during initial exposure to the upper range of physiological levels of DCA (0.075%-0.2%) was detrimental to C. jejuni proliferation, whereas down-regulation or inactivation of T6SS enabled C. jejuni to resist this effect. The C. jejuni multidrug efflux transporter gene, cmeA, was significantly up-regulated during the initial exposure to DCA in the wild type C. jejuni relative to the T6SS-deficient strains, suggesting that inhibition of proliferation is the consequence of T6SS-mediated DCA influx. A sequential modulation of the efflux transporter activity and the T6SS represents, in part, an adaptive mechanism for C. jejuni to overcome this inhibitory effect, thereby ensuring its survival. C. jejuni T6SS plays important roles in host cell adhesion and invasion as T6SS inactivation resulted in a reduction of adherence to and invasion of in vitro cell lines, while over-expression of a hemolysin co-regulated protein, which encodes a secreted T6SS component, greatly enhanced these processes. When inoculated into B6.129P2-IL-10(tm1Cgn) mice, the T6SS-deficient C. jejuni strains did not effectively establish persistent colonization, indicating that T6SS contributes to colonization in vivo. Taken together, our data demonstrate the importance of bacterial T6SS in host cell adhesion, invasion, colonization and, for the first time to our knowledge, adaptation to DCA, providing new insights into the role of T6SS in C. jejuni pathogenesis.
Collapse
Affiliation(s)
- Kvin Lertpiriyapong
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Eric R. Gamazon
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Danny S. Park
- Department of Computer Science, Columbia University, New York, New York, United States of America
| | - Jassia Pang
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Georgina Botka
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michelle E. Graffam
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
35
|
Semchenko EA, Day CJ, Moutin M, Wilson JC, Tiralongo J, Korolik V. Structural heterogeneity of terminal glycans in Campylobacter jejuni lipooligosaccharides. PLoS One 2012; 7:e40920. [PMID: 22815868 PMCID: PMC3397941 DOI: 10.1371/journal.pone.0040920] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 06/19/2012] [Indexed: 11/24/2022] Open
Abstract
Lipooligosaccharides of the gastrointestinal pathogen Campylobacter jejuni are regarded as a major virulence factor and are implicated in the production of cross-reactive antibodies against host gangliosides, which leads to the development of autoimmune neuropathies such as Guillain-Barré and Fisher Syndromes. C. jejuni strains are known to produce diverse LOS structures encoded by more than 19 types of LOS biosynthesis clusters. This study demonstrates that the final C. jejuni LOS structure cannot always be predicted from the genetic composition of the LOS biosynthesis cluster, as determined by novel lectin array analysis of the terminal LOS glycans. The differences were shown to be partially facilitated by the differential on/off status of three genes wlaN, cst and cj1144-45. The on/off status of these genes was also analysed in C. jejuni strains grown in vitro and in vivo, isolated directly from the host animal without passaging, using immunoseparation. Importantly, C. jejuni strains 331, 421 and 520 encoding cluster type C were shown to produce different LOS, mimicking asialo GM1, asialo GM2 and a heterogeneous mix of gangliosides and other glycoconjugates respectively. In addition, individual C. jejuni colonies were shown to consistently produce heterogeneous LOS structures, irrespective of the cluster type and the status of phase variable genes. Furthermore we describe C. jejuni strains (351 and 375) with LOS clusters that do not match any of the previously described LOS clusters, yet are able to produce LOS with asialo GM2-like mimicries. The LOS biosynthesis clusters of these strains are likely to contain genes that code for LOS biosynthesis machinery previously not identified, yet capable of synthesising LOS mimicking gangliosides.
Collapse
Affiliation(s)
- Evgeny A. Semchenko
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Marc Moutin
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Jennifer C. Wilson
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Joe Tiralongo
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- * E-mail:
| |
Collapse
|
36
|
Bayliss CD, Bidmos FA, Anjum A, Manchev VT, Richards RL, Grossier JP, Wooldridge KG, Ketley JM, Barrow PA, Jones MA, Tretyakov MV. Phase variable genes of Campylobacter jejuni exhibit high mutation rates and specific mutational patterns but mutability is not the major determinant of population structure during host colonization. Nucleic Acids Res 2012; 40:5876-89. [PMID: 22434884 PMCID: PMC3401435 DOI: 10.1093/nar/gks246] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Phase variation of surface structures occurs in diverse bacterial species due to stochastic, high frequency, reversible mutations. Multiple genes of Campylobacter jejuni are subject to phase variable gene expression due to mutations in polyC/G tracts. A modal length of nine repeats was detected for polyC/G tracts within C. jejuni genomes. Switching rates for these tracts were measured using chromosomally-located reporter constructs and high rates were observed for cj1139 (G8) and cj0031 (G9). Alteration of the cj1139 tract from G8 to G11 increased mutability 10-fold and changed the mutational pattern from predominantly insertions to mainly deletions. Using a multiplex PCR, major changes were detected in ‘on/off’ status for some phase variable genes during passage of C. jejuni in chickens. Utilization of observed switching rates in a stochastic, theoretical model of phase variation demonstrated links between mutability and genetic diversity but could not replicate observed population diversity. We propose that modal repeat numbers have evolved in C. jejuni genomes due to molecular drivers associated with the mutational patterns of these polyC/G repeats, rather than by selection for particular switching rates, and that factors other than mutational drift are responsible for generating genetic diversity during host colonization by this bacterial pathogen.
Collapse
|
37
|
Kim JS, Artymovich KA, Hall DF, Smith EJ, Fulton R, Bell J, Dybas L, Mansfield LS, Tempelman R, Wilson DL, Linz JE. Passage of Campylobacter jejuni through the chicken reservoir or mice promotes phase variation in contingency genes Cj0045 and Cj0170 that strongly associates with colonization and disease in a mouse model. MICROBIOLOGY-SGM 2012; 158:1304-1316. [PMID: 22343355 DOI: 10.1099/mic.0.057158-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Human illness due to Camplyobacter jejuni infection is closely associated with consumption of poultry products. We previously demonstrated a 50 % shift in allele frequency (phase variation) in contingency gene Cj1139 (wlaN) during passage of C. jejuni NCTC11168 populations through Ross 308 broiler chickens. We hypothesized that phase variation in contingency genes during chicken passage could promote subsequent colonization and disease in humans. To test this hypothesis, we passaged C. jejuni strains NCTC11168, 33292, 81-176, KanR4 and CamR2 through broiler chickens and analysed the ability of passaged and non-passaged populations to colonize C57BL6 IL-10-deficient mice, our model for human colonization and disease. We utilized fragment analysis and nucleotide sequence analysis to measure phase variation in contingency genes. Passage through the chicken reservoir promoted phase variation in five specific contingency genes, and these 'successful' populations colonized mice. When phase variation did not occur in these same five contingency genes during chicken passage, these 'unsuccessful' populations failed to colonize mice. Phase variation during chicken passage generated small insertions or deletions (indels) in the homopolymeric tract (HT) in contingency genes. Single-colony isolates of C. jejuni strain KanR4 carrying an allele of contingency gene Cj0170 with a10G HT colonized mice at high frequency and caused disease symptoms, whereas single-colony isolates carrying the 9G allele failed to colonize mice. Supporting results were observed for the successful 9G allele of Cj0045 in strain 33292. These data suggest that phase variation in Cj0170 and Cj0045 is strongly associated with mouse colonization and disease, and that the chicken reservoir can play an active role in natural selection, phase variation and disease.
Collapse
Affiliation(s)
- Joo-Sung Kim
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Katherine A Artymovich
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - David F Hall
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Eric J Smith
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Richard Fulton
- Animal Health Diagnostic Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Julia Bell
- National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| | - Leslie Dybas
- National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| | - Linda S Mansfield
- Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA.,National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| | - Robert Tempelman
- Center for Statistical Training and Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - David L Wilson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - John E Linz
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.,National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
38
|
The prevalence of Campylobacter amongst a free-range broiler breeder flock was primarily affected by flock age. PLoS One 2011; 6:e22825. [PMID: 22174732 PMCID: PMC3236184 DOI: 10.1371/journal.pone.0022825] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/02/2011] [Indexed: 01/10/2023] Open
Abstract
Campylobacter successfully colonizes broiler chickens, but little is known about the longer term natural history of colonization, since most flocks are slaughtered at an immature age. In this study, the prevalence and genetic diversity of Campylobacter colonizing a single free-range broiler breeder flock was investigated over the course of a year. The age of the flock was the most important factor in determining both the prevalence and diversity of Campylobacter over time. There was no correlation with season, temperature, the amount of rain and sunshine, or the dynamics of colonization amongst geographically and temporally matched broiler flocks. The higher prevalence rates coincided with the age at which broiler chickens are typically slaughtered, but then in the absence of bio-security or other intervention methods, and despite changes in flock management, the prevalence fell to significantly lower levels for the remainder of the study. The genetic diversity of Campylobacter increased as the flock aged, implying that genotypes were accumulated within the flock and may persist for a long time. A better understanding of the ecology of Campylobacter within commercial chicken flocks will allow the design of more effective farm-based interventions.
Collapse
|
39
|
Gripp E, Hlahla D, Didelot X, Kops F, Maurischat S, Tedin K, Alter T, Ellerbroek L, Schreiber K, Schomburg D, Janssen T, Bartholomäus P, Hofreuter D, Woltemate S, Uhr M, Brenneke B, Grüning P, Gerlach G, Wieler L, Suerbaum S, Josenhans C. Closely related Campylobacter jejuni strains from different sources reveal a generalist rather than a specialist lifestyle. BMC Genomics 2011; 12:584. [PMID: 22122991 PMCID: PMC3283744 DOI: 10.1186/1471-2164-12-584] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/28/2011] [Indexed: 11/22/2022] Open
Abstract
Background Campylobacter jejuni and Campylobacter coli are human intestinal pathogens of global importance. Zoonotic transmission from livestock animals or animal-derived food is the likely cause for most of these infections. However, little is known about their general and host-specific mechanisms of colonization, or virulence and pathogenicity factors. In certain hosts, Campylobacter species colonize persistently and do not cause disease, while they cause acute intestinal disease in humans. Results Here, we investigate putative host-specificity using phenotypic characterization and genome-wide analysis of genetically closely related C. jejuni strains from different sources. A collection of 473 fresh Campylobacter isolates from Germany was assembled between 2006 and 2010 and characterized using MLST. A subset of closely related C. jejuni strains of the highly prevalent sequence type ST-21 was selected from different hosts and isolation sources. PCR typing of strain-variable genes provided evidence that some genes differed between these strains. Furthermore, phenotypic variation of these strains was tested using the following criteria: metabolic variation, protein expression patterns, and eukaryotic cell interaction. The results demonstrated remarkable phenotypic diversity within the ST-21 group, which however did not correlate with isolation source. Whole genome sequencing was performed for five ST-21 strains from chicken, human, bovine, and food sources, in order to gain insight into ST-21 genome diversity. The comparisons showed extensive genomic diversity, primarily due to recombination and gain of phage-related genes. By contrast, no genomic features associated with isolation source or host were identified. Conclusions The genome information and phenotypic data obtained in vitro and in a chicken infection model provided little evidence of fixed adaptation to a specific host. Instead, the dominant C. jejuni ST-21 appeared to be characterized by phenotypic flexibility and high genetic microdiversity, revealing properties of a generalist. High genetic flexibility might allow generalist variants of C. jejuni to reversibly express diverse fitness factors in changing environments.
Collapse
Affiliation(s)
- Eugenia Gripp
- Institute for Medical Microbiology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sanad YM, Kassem II, Abley M, Gebreyes W, LeJeune JT, Rajashekara G. Genotypic and phenotypic properties of cattle-associated Campylobacter and their implications to public health in the USA. PLoS One 2011; 6:e25778. [PMID: 22046247 PMCID: PMC3198382 DOI: 10.1371/journal.pone.0025778] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 09/09/2011] [Indexed: 01/24/2023] Open
Abstract
Since cattle are a major source of food and the cattle industry engages people from farms to processing plants and meat markets, it is conceivable that beef-products contaminated with Campylobacter spp. would pose a significant public health concern. To better understand the epidemiology of cattle-associated Campylobacter spp. in the USA, we characterized the prevalence, genotypic and phenotypic properties of these pathogens. Campylobacter were detected in 181 (19.2%) out of 944 fecal samples. Specifically, 71 C. jejuni, 132 C. coli, and 10 other Campylobacter spp. were identified. The prevalence of Campylobacter varied regionally and was significantly (P<0.05) higher in fecal samples collected from the South (32.8%) as compared to those from the North (14.8%), Midwest (15.83%), and East (12%). Pulsed Field Gel Electrophoresis (PFGE) analysis showed that C. jejuni and C. coli isolates were genotypically diverse and certain genotypes were shared across two or more of the geographic locations. In addition, 13 new C. jejuni and two C. coli sequence types (STs) were detected by Multi Locus Sequence Typing (MLST). C. jejuni associated with clinically human health important sequence type, ST-61 which was not previously reported in the USA, was identified in the present study. Most frequently observed clonal complexes (CC) were CC ST-21, CC ST-42, and CC ST-61, which are also common in humans. Further, the cattle associated C. jejuni strains showed varying invasion and intracellular survival capacity; however, C. coli strains showed a lower invasion and intracellular survival potential compared to C. jejuni strains. Furthermore, many cattle associated Campylobacter isolates showed resistance to several antimicrobials including ciprofloxacin, erythromycin, and gentamicin. Taken together, our results highlight the importance of cattle as a potential reservoir for clinically important Campylobacter.
Collapse
Affiliation(s)
- Yasser M Sanad
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | | | | | | | | | | |
Collapse
|
41
|
Wassenaar TM. Following an imaginary Campylobacter population from farm to fork and beyond: a bacterial perspective. Lett Appl Microbiol 2011; 53:253-63. [PMID: 21762185 DOI: 10.1111/j.1472-765x.2011.03121.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been known for decades that poultry meat is the most common single source for campylobacteriosis, yet the problem has not been solved. This review identifies some of the reasons why our attempts to reduce the incidence of this pathogen have largely failed. Based on the literature, the events a virtual population of Campylobacter may encounter, from growing in the gut of a broiler to eventually infecting humans and causing disease, are reviewed. Most steps in the farm-to-fork process are well studied, though there are gaps in our knowledge about survival and spread of Campylobacter populations before they enter the farm. Key events in the farm-to-fork chain that are suitable targets for prevention and control, to reduce food-borne campylobacteriosis, are indicated. Novel insights into the pathogenic mechanism responsible for disease in humans are summarized, which hypothesize that an overactive immune response is the reason for the typical inflammatory diarrhoea. A role of genetic microheterogeneity within a clonal population in this chain of events is being proposed here. The human host is not necessary for the survival of the bacterial species, nor have these bacteria specifically evolved to cause disease in that host. More likely, the species evolved for a commensal life in birds, and human disease can be considered as collateral damage owing to an unfortunate host-microbe interaction. The indirect environmental burden that results from poultry production should not be ignored as it may pose a diffuse, but possibly significant risk factor for disease.
Collapse
Affiliation(s)
- T M Wassenaar
- Molecular Microbiology and Genomics Consultants, Zotzenheim, Germany.
| |
Collapse
|
42
|
Standing genetic variation in contingency loci drives the rapid adaptation of Campylobacter jejuni to a novel host. PLoS One 2011; 6:e16399. [PMID: 21283682 PMCID: PMC3025981 DOI: 10.1371/journal.pone.0016399] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/15/2010] [Indexed: 12/02/2022] Open
Abstract
The genome of the food-borne pathogen Campylobacter jejuni contains multiple highly mutable sites, or contingency loci. It has been suggested that standing variation at these loci is a mechanism for rapid adaptation to a novel environment, but this phenomenon has not been shown experimentally. In previous work we showed that the virulence of C. jejuni NCTC11168 increased after serial passage through a C57BL/6 IL-10-/- mouse model of campylobacteriosis. Here we sought to determine the genetic basis of this adaptation during passage. Re-sequencing of the 1.64Mb genome to 200-500X coverage allowed us to define variation in 23 contingency loci to an unprecedented depth both before and after in vivo adaptation. Mutations in the mouse-adapted C. jejuni were largely restricted to the homopolymeric tracts of thirteen contingency loci. These changes cause significant alterations in open reading frames of genes in surface structure biosynthesis loci and in genes with only putative functions. Several loci with open reading frame changes also had altered transcript abundance. The increase in specific phases of contingency loci during in vivo passage of C. jejuni, coupled with the observed virulence increase and the lack of other types of genetic changes, is the first experimental evidence that these variable regions play a significant role in C. jejuni adaptation and virulence in a novel host.
Collapse
|