1
|
Swain J, Askenasy I, Rudland Nazeer R, Ho PM, Labrini E, Mancini L, Xu Q, Hollendung F, Sheldon I, Dickson C, Welch A, Agbamu A, Godlee C, Welch M. Pathogenicity and virulence of Pseudomonas aeruginosa: Recent advances and under-investigated topics. Virulence 2025; 16:2503430. [PMID: 40353451 PMCID: PMC12087490 DOI: 10.1080/21505594.2025.2503430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/23/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025] Open
Abstract
Pseudomonas aeruginosa is a model for the study of quorum sensing, protein secretion, and biofilm formation. Consequently, it has become one of the most intensely reviewed pathogens, with many excellent articles in the current literature focusing on these aspects of the organism's biology. Here, though, we aim to take a slightly different approach and consider some less well appreciated (but nonetheless important) factors that affect P. aeruginosa virulence. We start by reminding the reader of the global importance of P. aeruginosa infection and that the "virulome" is very niche-specific. Overlooked but obvious questions such as "what prevents secreted protein products from being digested by co-secreted proteases?" are discussed, and we suggest how the nutritional preference(s) of the organism might dictate its environmental reservoirs. Recent studies identifying host genes associated with genetic predisposition towards P. aeruginosa infection (and even infection by specific P. aeruginosa strains) and the role(s) of intracellular P. aeruginosa are introduced. We also discuss the fact that virulence is a high-risk strategy and touch on how expression of the two main classes of virulence factors is regulated. A particular focus is on recent findings highlighting how nutritional status and metabolism are as important as quorum sensing in terms of their impact on virulence, and how co-habiting microbial species at the infection site impact on P. aeruginosa virulence (and vice versa). It is our view that investigation of these issues is likely to dominate many aspects of research into this WHO-designated priority pathogen over the next decade.
Collapse
Affiliation(s)
- Jemima Swain
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Isabel Askenasy
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | | | - Pok-Man Ho
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Edoardo Labrini
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | | | - Qingqing Xu
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | | | | | - Camilla Dickson
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Amelie Welch
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Adam Agbamu
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Camilla Godlee
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, Cambridge University, Cambridge, UK
| |
Collapse
|
2
|
Conaway A, Mould DL, Todorovic I, Hogan DA. Loss of LasR function leads to decreased repression of Pseudomonas aeruginosa PhoB activity at physiological phosphate concentrations. J Bacteriol 2025:e0018924. [PMID: 40366151 DOI: 10.1128/jb.00189-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/07/2025] [Indexed: 05/15/2025] Open
Abstract
The Pseudomonas aeruginosa LasR transcription factor plays a role in quorum sensing (QS) across phylogenetically distinct lineages. However, isolates with loss-of-function mutations in lasR (LasR- strains) are commonly found in diverse settings, including infections where they are associated with worse clinical outcomes. In LasR- strains, the LasR-regulated transcription factor RhlR can also be stimulated by the activity of the two-component system PhoR-PhoB in low-inorganic phosphate (Pi) conditions. Here, we demonstrate a novel link between LasR and PhoB in which the absence of LasR increases PhoB activity at physiological Pi concentrations and increases the Pi concentration necessary for PhoB inhibition. PhoB activity was also less sensitive to repression by Pi in mutants lacking different QS regulators (RhlR and PqsR) and in mutants lacking genes required for QS-induced phenazine production, suggesting that decreased phenazine production is one reason for increased PhoB activity in LasR- strains. In addition, the CbrA-CbrB two-component system, which can be more active in LasR- strains, was necessary for increased PhoB activity in LasR- strains, and loss of the CbrA-CbrB-controlled translational repressor Crc was sufficient to activate PhoB in LasR+ P. aeruginosa. Phenazines and CbrA-CbrB affected PhoB activity independently. The ∆lasR mutant also had PhoB-dependent growth advantages in the Pi-deplete medium and increased virulence-associated gene expression at physiological Pi, in part through reactivation of QS. This work suggests PhoR-PhoB activity may contribute to the fitness and virulence of LasR- P. aeruginosa and subsequent clinical outcomes.IMPORTANCELoss-of-function mutations in the gene encoding the Pseudomonas aeruginosa quorum sensing (QS) regulator LasR occur frequently and are associated with worse clinical outcomes. We have found that LasR- P. aeruginosa have elevated PhoB activity at physiological concentrations of inorganic phosphate (Pi). PhoB activity promotes Pi acquisition as well as the expression of QS and virulence-associated genes. Previous work has shown that PhoB induces RhlR, another QS regulator, in a LasR- mutant in low-Pi conditions. Here, we demonstrate a novel relationship wherein LasR represses PhoB activity through the production of phenazines and Crc-mediated translational repression. This work suggests PhoB activity may contribute to the increased virulence of LasR- P. aeruginosa.
Collapse
Affiliation(s)
- Amy Conaway
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Dallas L Mould
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Igor Todorovic
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Natural and synthetic molecules with potential to enhance biofilm formation and virulence properties in Pseudomonas aeruginosa. Crit Rev Microbiol 2024; 50:830-858. [PMID: 37968960 DOI: 10.1080/1040841x.2023.2282459] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
Pseudomonas aeruginosa can efficiently adapt to changing environmental conditions due to its ubiquitous nature, intrinsic/acquired/adaptive resistance mechanisms, high metabolic versatility, and the production of numerous virulence factors. As a result, P. aeruginosa becomes an opportunistic pathogen, causing chronic infection in the lungs and several organs of patients suffering from cystic fibrosis. Biofilm established by P. aeruginosa in host tissues and medical device surfaces has been identified as a major obstruction to antimicrobial therapy. P. aeruginosa is very likely to be closely associated with the various microorganisms in the host tissues or organs in a pathogenic or nonpathogenic behavior. Aside from host-derived molecules, other beneficial and pathogenic microorganisms produce a diverse range of secondary metabolites that either directly or indirectly favor the persistence of P. aeruginosa. Thus, it is critical to understand how P. aeruginosa interacts with different molecules and ions in the host and abiotic environment to produce extracellular polymeric substances and virulence factors. Thus, the current review discusses how various natural and synthetic molecules in the environment induce biofilm formation and the production of multiple virulence factors.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
4
|
Grassi L, Asfahl KL, Van den Bossche S, Maenhout I, Sass A, Vande Weygaerde Y, Van Braeckel E, Verhasselt B, Boelens J, Tunney MM, Dandekar AA, Coenye T, Crabbé A. Antibiofilm activity of Prevotella species from the cystic fibrosis lung microbiota against Pseudomonas aeruginosa. Biofilm 2024; 7:100206. [PMID: 38975276 PMCID: PMC11225020 DOI: 10.1016/j.bioflm.2024.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
It is increasingly recognized that interspecies interactions may modulate the pathogenicity of Pseudomonas aeruginosa during chronic lung infections. Nevertheless, while the interaction between P. aeruginosa and pathogenic microorganisms co-infecting the lungs has been widely investigated, little is known about the influence of other members of the lung microbiota on the infection process. In this study, we focused on investigating the impact of Prevotella species isolated from the sputum of people with cystic fibrosis (pwCF) on biofilm formation and virulence factor production by P. aeruginosa. Screening of a representative collection of Prevotella species recovered from clinical samples showed that several members of this genus (8 out 10 isolates) were able to significantly reduce biofilm formation of P. aeruginosa PAO1, without impact on growth. Among the tested isolates, the strongest biofilm-inhibitory activity was observed for Prevotella intermedia and Prevotella nigrescens, which caused a reduction of up to 90% in the total biofilm biomass of several P. aeruginosa isolates from pwCF. In addition, a strain-specific effect of P. nigrescens on the ability of P. aeruginosa to produce proteases and pyocyanin was observed, with significant alterations in the levels of these virulence factors detected in LasR mutant strains. Overall, these results suggest that non-pathogenic bacteria from the lung microbiota may regulate pathogenicity traits of P. aeruginosa, and possibly affect the outcome of chronic lung infections.
Collapse
Affiliation(s)
- Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Kyle L. Asfahl
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | - Ine Maenhout
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Yannick Vande Weygaerde
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Eva Van Braeckel
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Bruno Verhasselt
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jerina Boelens
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Michael M. Tunney
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Hsieh YYP, Sun W, Young JM, Cheung R, Hogan DA, Dandekar AA, Malik HS. Widespread fungal-bacterial competition for magnesium lowers bacterial susceptibility to polymyxin antibiotics. PLoS Biol 2024; 22:e3002694. [PMID: 38900845 PMCID: PMC11218974 DOI: 10.1371/journal.pbio.3002694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/02/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024] Open
Abstract
Fungi and bacteria coexist in many polymicrobial communities, yet the molecular basis of their interactions remains poorly understood. Here, we show that the fungus Candida albicans sequesters essential magnesium ions from the bacterium Pseudomonas aeruginosa. To counteract fungal Mg2+ sequestration, P. aeruginosa expresses the Mg2+ transporter MgtA when Mg2+ levels are low. Thus, loss of MgtA specifically impairs P. aeruginosa in co-culture with C. albicans, but fitness can be restored by supplementing Mg2+. Using a panel of fungi and bacteria, we show that Mg2+ sequestration is a general mechanism of fungal antagonism against gram-negative bacteria. Mg2+ limitation enhances bacterial resistance to polymyxin antibiotics like colistin, which target gram-negative bacterial membranes. Indeed, experimental evolution reveals that P. aeruginosa evolves C. albicans-dependent colistin resistance via non-canonical means; antifungal treatment renders resistant bacteria colistin-sensitive. Our work suggests that fungal-bacterial competition could profoundly impact polymicrobial infection treatment with antibiotics of last resort.
Collapse
Affiliation(s)
- Yu-Ying Phoebe Hsieh
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Wanting Sun
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Janet M. Young
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Robin Cheung
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Conaway A, Todorovic I, Mould DL, Hogan DA. Loss of LasR function leads to decreased repression of Pseudomonas aeruginosa PhoB activity at physiological phosphate concentrations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.586856. [PMID: 38585852 PMCID: PMC10996656 DOI: 10.1101/2024.03.27.586856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
While the Pseudomonas aeruginosa LasR transcription factor plays a role in quorum sensing (QS) across phylogenetically-distinct lineages, isolates with loss-of-function mutations in lasR (LasR- strains) are commonly found in diverse settings including infections where they are associated with worse clinical outcomes. In LasR- strains, the transcription factor RhlR, which is controlled by LasR, can be alternately activated in low inorganic phosphate (Pi) concentrations via the two-component system PhoR-PhoB. Here, we demonstrate a new link between LasR and PhoB in which the absence of LasR increases PhoB activity at physiological Pi concentrations and raises the Pi concentration necessary for PhoB inhibition. PhoB activity was also less repressed by Pi in mutants lacking different QS regulators (RhlR and PqsR) and in mutants lacking genes required for the production of QS-regulated phenazines suggesting that decreased phenazine production was one reason for decreased PhoB repression by Pi in LasR- strains. In addition, the CbrA-CbrB two-component system, which is elevated in LasR- strains, was necessary for reduced PhoB repression by Pi and a Δcrc mutant, which lacks the CbrA-CbrB-controlled translational repressor, activated PhoB at higher Pi concentrations than the wild type. The ΔlasR mutant had a PhoB-dependent growth advantage in a medium with no added Pi and increased virulence-determinant gene expression in a medium with physiological Pi, in part through reactivation of QS. This work suggests PhoB activity may contribute to the virulence of LasR- P. aeruginosa and subsequent clinical outcomes.
Collapse
Affiliation(s)
- Amy Conaway
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Igor Todorovic
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Dallas L. Mould
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| |
Collapse
|
7
|
Mould DL, Finger CE, Conaway A, Botelho N, Stuut SE, Hogan DA. Citrate cross-feeding by Pseudomonas aeruginosa supports lasR mutant fitness. mBio 2024; 15:e0127823. [PMID: 38259061 PMCID: PMC10865840 DOI: 10.1128/mbio.01278-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Cross-feeding of metabolites between subpopulations can affect cell phenotypes and population-level behaviors. In chronic Pseudomonas aeruginosa lung infections, subpopulations with loss-of-function (LOF) mutations in the lasR gene are common. LasR, a transcription factor often described for its role in virulence factor expression, also impacts metabolism, which, in turn, affects interactions between LasR+ and LasR- genotypes. Prior transcriptomic analyses suggested that citrate, a metabolite secreted by many cell types, induces virulence factor production when both genotypes are together. An unbiased analysis of the intracellular metabolome revealed broad differences including higher levels of citrate in lasR LOF mutants. Citrate consumption by LasR- strains required the CbrAB two-component system, which relieves carbon catabolite repression and is elevated in lasR LOF mutants. Within mixed communities, the citrate-responsive two-component system TctED and its gene targets OpdH (porin) and TctABC (citrate transporter) that are predicted to be under catabolite repression control were induced and required for enhanced RhlR/I-dependent signaling, pyocyanin production, and fitness of LasR- strains. Citrate uptake by LasR- strains markedly increased pyocyanin production in co-culture with Staphylococcus aureus, which also secretes citrate and frequently co-infects with P. aeruginosa. This citrate-induced restoration of virulence factor production by LasR- strains in communities with diverse species or genotypes may offer an explanation for the contrast observed between the markedly deficient virulence factor production of LasR- strains in monocultures and their association with the most severe forms of cystic fibrosis lung infections. These studies highlight the impact of secreted metabolites in mixed microbial communities.IMPORTANCECross-feeding of metabolites can change community composition, structure, and function. Here, we unravel a cross-feeding mechanism between frequently co-observed isolate genotypes in chronic Pseudomonas aeruginosa lung infections. We illustrate an example of how clonally derived diversity in a microbial communication system enables intra- and inter-species cross-feeding. Citrate, a metabolite released by many cells including P. aeruginosa and Staphylococcus aureus, was differentially consumed between genotypes. Since these two pathogens frequently co-occur in the most severe cystic fibrosis lung infections, the cross-feeding-induced virulence factor expression and fitness described here between diverse genotypes exemplify how co-occurrence can facilitate the development of worse disease outcomes.
Collapse
Affiliation(s)
- Dallas L. Mould
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Carson E. Finger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Amy Conaway
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Nico Botelho
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Stacie E. Stuut
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
8
|
Mould DL, Finger CE, Botelho N, Stuut SE, Hogan DA. Citrate cross-feeding between Pseudomonas aerguinosa genotypes supports lasR mutant fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542973. [PMID: 37398089 PMCID: PMC10312601 DOI: 10.1101/2023.05.30.542973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Across the tree of life, clonal populations-from cancer to chronic bacterial infections - frequently give rise to subpopulations with different metabolic phenotypes. Metabolic exchange or cross-feeding between subpopulations can have profound effects on both cell phenotypes and population-level behavior. In Pseudomonas aeruginosa, subpopulations with loss-of-function mutations in the lasR gene are common. Though LasR is often described for its role in density-dependent virulence factor expression, interactions between genotypes suggest potential metabolic differences. The specific metabolic pathways and regulatory genetics enabling such interactions were previously undescribed. Here, we performed an unbiased metabolomics analysis that revealed broad differences in intracellular metabolomes, including higher levels of intracellular citrate in LasR- strains. We found that while both strains secreted citrate, only LasR- strains, consumed citrate in rich media. Elevated activity of the CbrAB two component system which relieves carbon catabolite repression enabled citrate uptake. Within mixed genotype communities, we found that the citrate responsive two component system TctED and its gene targets OpdH (porin) and TctABC (transporter) required for citrate uptake were induced and required for enhanced RhlR signalling and virulence factor expression in LasR- strains. Enhanced citrate uptake by LasR- strains eliminates differences in RhlR activity between LasR+ and LasR- strains thereby circumventing the sensitivity of LasR- strains to quorum sensing controlled exoproducts. Citrate cross feeding also induces pyocyanin production in LasR- strains co-cultured with Staphylococcus aureus, another species known to secrete biologically-active concentrations of citrate. Metabolite cross feeding may play unrecognized roles in competitive fitness and virulence outcomes when different cell types are together. IMPORTANCE Cross-feeding can change community composition, structure and function. Though cross-feeding has predominantly focused on interactions between species, here we unravel a cross-feeding mechanism between frequently co-observed isolate genotypes of Pseudomonas aeruginosa. Here we illustrate an example of how such clonally-derived metabolic diversity enables intraspecies cross-feeding. Citrate, a metabolite released by many cells including P. aeruginosa, was differentially consumed between genotypes, and this cross-feeding induced virulence factor expression and fitness in genotypes associated with worse disease.
Collapse
Affiliation(s)
- Dallas L. Mould
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Carson E. Finger
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Nico Botelho
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Stacie E. Stuut
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Deborah A. Hogan
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| |
Collapse
|
9
|
Mould DL, Finger CE, Botelho N, Stuut SE, Hogan DA. Citrate cross-feeding between Pseudomonas aerguinosa genotypes supports lasR mutant fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542962. [PMID: 37398201 PMCID: PMC10312497 DOI: 10.1101/2023.05.30.542962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Across the tree of life, clonal populations-from cancer to chronic bacterial infections - frequently give rise to subpopulations with different metabolic phenotypes. Metabolic exchange or cross-feeding between subpopulations can have profound effects on both cell phenotypes and population-level behavior. In Pseudomonas aeruginosa, subpopulations with loss-of-function mutations in the lasR gene are common. Though LasR is often described for its role in density-dependent virulence factor expression, interactions between genotypes suggest potential metabolic differences. The specific metabolic pathways and regulatory genetics enabling such interactions were previously undescribed. Here, we performed an unbiased metabolomics analysis that revealed broad differences in intracellular metabolomes, including higher levels of intracellular citrate in LasR- strains. We found that while both strains secreted citrate, only LasR- strains, consumed citrate in rich media. Elevated activity of the CbrAB two component system which relieves carbon catabolite repression enabled citrate uptake. Within mixed genotype communities, we found that the citrate responsive two component system TctED and its gene targets OpdH (porin) and TctABC (transporter) required for citrate uptake were induced and required for enhanced RhlR signalling and virulence factor expression in LasR- strains. Enhanced citrate uptake by LasR- strains eliminates differences in RhlR activity between LasR+ and LasR- strains thereby circumventing the sensitivity of LasR- strains to quorum sensing controlled exoproducts. Citrate cross feeding also induces pyocyanin production in LasR- strains co-cultured with Staphylococcus aureus, another species known to secrete biologically-active concentrations of citrate. Metabolite cross feeding may play unrecognized roles in competitive fitness and virulence outcomes when different cell types are together. IMPORTANCE Cross-feeding can change community composition, structure and function. Though cross-feeding has predominantly focused on interactions between species, here we unravel a cross-feeding mechanism between frequently co-observed isolate genotypes of Pseudomonas aeruginosa. Here we illustrate an example of how such clonally-derived metabolic diversity enables intraspecies cross-feeding. Citrate, a metabolite released by many cells including P. aeruginosa, was differentially consumed between genotypes, and this cross-feeding induced virulence factor expression and fitness in genotypes associated with worse disease.
Collapse
Affiliation(s)
- Dallas L. Mould
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Carson E. Finger
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Nico Botelho
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Stacie E. Stuut
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Deborah A. Hogan
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| |
Collapse
|
10
|
MacAlpine J, Robbins N, Cowen LE. Bacterial-fungal interactions and their impact on microbial pathogenesis. Mol Ecol 2023; 32:2565-2581. [PMID: 35231147 PMCID: PMC11032213 DOI: 10.1111/mec.16411] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
Microbial communities of the human microbiota exhibit diverse effects on human health and disease. Microbial homeostasis is important for normal physiological functions and changes to the microbiota are associated with many human diseases including diabetes, cancer, and colitis. In addition, there are many microorganisms that are either commensal or acquired from environmental reservoirs that can cause diverse pathologies. Importantly, the balance between health and disease is intricately connected to how members of the microbiota interact and affect one another's growth and pathogenicity. However, the mechanisms that govern these interactions are only beginning to be understood. In this review, we outline bacterial-fungal interactions in the human body, including examining the mechanisms by which bacteria govern fungal growth and virulence, as well as how fungi regulate bacterial pathogenesis. We summarize advances in the understanding of chemical, physical, and protein-based interactions, and their role in exacerbating or impeding human disease. We focus on the three fungal species responsible for the majority of systemic fungal infections in humans: Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. We conclude by summarizing recent studies that have mined microbes for novel antimicrobials and antivirulence factors, highlighting the potential of the human microbiota as a rich resource for small molecule discovery.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
11
|
Jean-Pierre F, Hampton TH, Schultz D, Hogan DA, Groleau MC, Déziel E, O'Toole GA. Community composition shapes microbial-specific phenotypes in a cystic fibrosis polymicrobial model system. eLife 2023; 12:81604. [PMID: 36661299 PMCID: PMC9897730 DOI: 10.7554/elife.81604] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Interspecies interactions can drive the emergence of unexpected microbial phenotypes that are not observed when studying monocultures. The cystic fibrosis (CF) lung consists of a complex environment where microbes, living as polymicrobial biofilm-like communities, are associated with negative clinical outcomes for persons with CF (pwCF). However, the current lack of in vitro models integrating the microbial diversity observed in the CF airway hampers our understanding of why polymicrobial communities are recalcitrant to therapy in this disease. Here, integrating computational approaches informed by clinical data, we built a mixed community of clinical relevance to the CF lung composed of Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus sanguinis, and Prevotella melaninogenica. We developed and validated this model biofilm community with multiple isolates of these four genera. When challenged with tobramycin, a front-line antimicrobial used to treat pwCF, the microorganisms in the polymicrobial community show altered sensitivity to this antibiotic compared to monospecies biofilms. We observed that wild-type P. aeruginosa is sensitized to tobramycin in a mixed community versus monoculture, and this observation holds across a range of community relative abundances. We also report that LasR loss-of-function, a variant frequently detected in the CF airway, drives tolerance of P. aeruginosa to tobramycin specifically in the mixed community. Our data suggest that the molecular basis of this community-specific recalcitrance to tobramycin for the P. aeruginosa lasR mutant is increased production of phenazines. Our work supports the importance of studying a clinically relevant model of polymicrobial biofilms to understand community-specific traits relevant to infections.
Collapse
Affiliation(s)
- Fabrice Jean-Pierre
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche ScientifiqueLavalCanada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche ScientifiqueLavalCanada
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| |
Collapse
|
12
|
Alam F, Blair JMA, Hall RA. Transcriptional profiling of Pseudomonas aeruginosa mature single- and dual-species biofilms in response to meropenem. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001271. [PMID: 36748572 PMCID: PMC9993114 DOI: 10.1099/mic.0.001271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen frequently isolated from chronic infections of the cystic fibrosis lung and burn wounds, and is a major cause of antimicrobial-resistant nosocomial infections. P. aeruginosa is frequently co-isolated with the opportunistic fungal pathogen Candida albicans, with the presence of C. albicans in dual-species biofilms promoting tolerance to meropenem. Here, transcription profiling of mature P. aeruginosa single- or dual-species biofilms was carried out to understand the molecular mechanism(s) by which C. albicans enhances meropenem tolerance. C. albicans appeared to have a mild impact on the transcriptome of P. aeruginosa mature biofilms, with most differentially regulated genes being involved in interkingdom interactions (i.e. quorum sensing and phenazine biosynthesis). The addition of meropenem to mature single- or dual-species biofilms resulted in a significant bacterial transcriptional response, including the induction of the beta-lactamase, ampC, genes involved in biofilm formation. P. aeruginosa elicited a similar transcriptional response to meropenem in the presence of C. albicans, but C. albicans promoted the expression of additional efflux pumps, which could play roles in increasing the tolerance of P. aeruginosa to meropenem.
Collapse
Affiliation(s)
- Farhana Alam
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Rebecca A Hall
- Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| |
Collapse
|
13
|
Pham LHP, Colon-Ascanio M, Ou J, Ly K, Hu P, Choy JS, Luo X. Probing mutual interactions between Pseudomonas aeruginosa and Candida albicans in a biofabricated membrane-based microfluidic platform. LAB ON A CHIP 2022; 22:4349-4358. [PMID: 36239125 PMCID: PMC9756269 DOI: 10.1039/d2lc00728b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbes are typically found in multi-species (polymicrobial) communities. Cooperative and competitive interactions between species, mediated by diffusible factors and physical contact, leads to highly dynamic communities that undergo changes in composition diversity and size. Infections can be more severe or more difficult to treat when caused by multiple species. Interactions between species can improve the ability of one or more species to tolerate anti-microbial treatments and host defenses. Pseudomonas aeruginosa (Pa), a ubiquitous bacterium, and the opportunistic pathogenic yeast, Candida albicans (Ca), are frequently found together in cystic fibrosis lung infections and wound infections. While significant progress has been made in determining interactions between Pa and Ca, there are still important questions that remain unanswered. Here, we probe the mutual interactions between Pa and Ca in a custom-made microfluidic device using biopolymer chitosan membranes that support cross-species communication. By assembling microbes in physically separated, chemically communicating populations or bringing into direct interactions in a mixed culture, in situ polymicrobial growth and biofilm morphology were qualitatively characterized and quantified. Our work reveals new dynamic details of their mutual interactions including cooperation, competition, invasion, and biofilm formation. The membrane-based microfluidic platform can be further developed to understand the polymicrobial interactions within a controlled interactive microenvironment to improve microbial infection prevention and treatment.
Collapse
Affiliation(s)
- Le Hoang Phu Pham
- Department of Mechanical Engineering, School of Engineering, The Catholic University of America, Washington, DC 20064, USA.
| | - Mariliz Colon-Ascanio
- Department of Biology, School of Arts and Sciences, The Catholic University of America, Washington, DC 20064, USA.
| | - Jin Ou
- Department of Biology, School of Arts and Sciences, The Catholic University of America, Washington, DC 20064, USA.
| | - Khanh Ly
- Department of Biomedical Engineering, School of Engineering, The Catholic University of America, Washington, DC 20064, USA
| | - Piao Hu
- Department of Mechanical Engineering, School of Engineering, The Catholic University of America, Washington, DC 20064, USA.
| | - John S Choy
- Department of Biology, School of Arts and Sciences, The Catholic University of America, Washington, DC 20064, USA.
| | - Xiaolong Luo
- Department of Mechanical Engineering, School of Engineering, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
14
|
Effect of Biogenic Silver Nanoparticles on the Quorum-Sensing System of Pseudomonas aeruginosa PAO1 and PA14. Microorganisms 2022; 10:microorganisms10091755. [PMID: 36144357 PMCID: PMC9504124 DOI: 10.3390/microorganisms10091755] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
The increase in multidrug-resistant microorganisms represents a global threat requiring the development novel strategies to fight bacterial infection. This study aimed to assess the effect of silver nanoparticles (bio-AgNPs) on bacterial growth, biofilm formation, production of virulence factors, and expression of genes related to the quorum-sensing (QS) system of P. aeruginosa PAO1 and PA14. Biofilm formation and virulence assays were performed with bio-AgNPs. RT-qPCR was carried out to determine the effect of bio-AgNPs on the QS regulatory genes lasI, lasR, rhlI, rhlR, pqsA, and mvfR. Bio-AgNPs had an MIC value of 62.50 μM, for both strains. Phenotypic and genotypic assays were carried out using sub-MIC values. Experimental results showed that treatment with sub-MICs of bio-AgNPs reduced (p < 0.05) the motility and rhamnolipids and elastase production in P. aeruginosa PAO1. In PA14, bio-AgNPs stimulated swarming and twitching motilities as well as biofilm formation and elastase and pyocyanin production. Bio-AgNP treatment increased (p < 0.05) the expression of QS genes in PAO1 and PA14. Despite the different phenotypic behaviors in both strains, both showed an increase in the expression of QS genes. Demonstrating that the bio-AgNPs acted in the induction of regulation. The possible mechanism underlying the action of bio-AgNPs involves the induction of the rhl and/or pqs system of PAO1 and of the las and/or pqs system of PA14. These results suggest that exposure to low concentrations of bio-AgNPs may promote the expression of QS regulatory genes in P. aeruginosa, consequently inducing the production of virulence factors such as elastase, pyocyanin, and biofilms.
Collapse
|
15
|
Cook J, Hui JPM, Zhang J, Kember M, Berrué F, Zhang J, Cheng Z. Production of quorum sensing-related metabolites and phytoalexins during Pseudomonas aeruginosa-Brassica napus interaction. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001212. [PMID: 35980361 PMCID: PMC11449044 DOI: 10.1099/mic.0.001212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that has been shown to interact with many organisms throughout the domains of life, including plants. How this broad-host-range bacterium interacts with each of its diverse hosts, especially the metabolites that mediate these interactions, is not completely known. In this work, we used a liquid culture root infection system to collect plant and bacterial metabolites on days 1, 3 and 5 post-P. aeruginosa (strain PA14) infection of the oilseed plant, canola (Brassica napus). Using MS-based metabolomics approaches, we identified the overproduction of quorum sensing (QS)-related (both signalling molecules and regulated products) metabolites by P. aeruginosa while interacting with canola plants. However, the P. aeruginosa infection induced the production of several phytoalexins, which is a part of the hallmark plant defence response to microbes. The QS system of PA14 appears to only mediate part of the canola-P. aeruginosa metabolomic interactions, as the use of isogenic mutant strains of each of the three QS signalling branches did not significantly affect the induction of the phytoalexin brassilexin, while induction of spirobrassinin was significantly decreased. Interestingly, a treatment of purified QS molecules in the absence of bacteria was not able to induce any phytoalexin production, suggesting that active bacterial colonization is required for eliciting phytoalexin production. Furthermore, we identified that brassilexin, the only commercially available phytoalexin that was detected in this study, demonstrated a MIC of 400 µg ml-1 against P. aeruginosa PA14. The production of phytoalexins can be an effective component of canola innate immunity to keep potential infections by the opportunistic pathogen P. aeruginosa at bay.
Collapse
Affiliation(s)
- Jamie Cook
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joseph P. M. Hui
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Halifax, Nova Scotia, Canada
| | - Janie Zhang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michaela Kember
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Fabrice Berrué
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Halifax, Nova Scotia, Canada
| | - Junzeng Zhang
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Halifax, Nova Scotia, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
16
|
Niemiec MJ, Kapitan M, Himmel M, Döll K, Krüger T, Köllner TG, Auge I, Kage F, Alteri CJ, Mobley HL, Monsen T, Linde S, Nietzsche S, Kniemeyer O, Brakhage AA, Jacobsen ID. Augmented Enterocyte Damage During Candida albicans and Proteus mirabilis Coinfection. Front Cell Infect Microbiol 2022; 12:866416. [PMID: 35651758 PMCID: PMC9149288 DOI: 10.3389/fcimb.2022.866416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
The human gut acts as the main reservoir of microbes and a relevant source of life-threatening infections, especially in immunocompromised patients. There, the opportunistic fungal pathogen Candida albicans adapts to the host environment and additionally interacts with residing bacteria. We investigated fungal-bacterial interactions by coinfecting enterocytes with the yeast Candida albicans and the Gram-negative bacterium Proteus mirabilis resulting in enhanced host cell damage. This synergistic effect was conserved across different P. mirabilis isolates and occurred also with non-albicans Candida species and C. albicans mutants defective in filamentation or candidalysin production. Using bacterial deletion mutants, we identified the P. mirabilis hemolysin HpmA to be the key effector for host cell destruction. Spatially separated coinfections demonstrated that synergism between Candida and Proteus is induced by contact, but also by soluble factors. Specifically, we identified Candida-mediated glucose consumption and farnesol production as potential triggers for Proteus virulence. In summary, our study demonstrates that coinfection of enterocytes with C. albicans and P. mirabilis can result in increased host cell damage which is mediated by bacterial virulence factors as a result of fungal niche modification via nutrient consumption and production of soluble factors. This supports the notion that certain fungal-bacterial combinations have the potential to result in enhanced virulence in niches such as the gut and might therefore promote translocation and dissemination.
Collapse
Affiliation(s)
- Maria Joanna Niemiec
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care, Jena, Germany
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care, Jena, Germany
| | - Maximilian Himmel
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Kristina Döll
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Thomas Krüger
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Tobias G. Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Isabel Auge
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Franziska Kage
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Christopher J. Alteri
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Harry L.T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Tor Monsen
- Department Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Susanne Linde
- Center for Electron Microscopy, University Hospital, Jena, Germany
| | - Sandor Nietzsche
- Center for Electron Microscopy, University Hospital, Jena, Germany
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Axel A. Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Ilse D. Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- *Correspondence: Ilse D. Jacobsen,
| |
Collapse
|
17
|
Phage Infection Restores PQS Signaling and Enhances Growth of a Pseudomonas aeruginosa lasI Quorum-Sensing Mutant. J Bacteriol 2022; 204:e0055721. [PMID: 35389255 PMCID: PMC9112912 DOI: 10.1128/jb.00557-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Chemical communication between bacteria and between bacteria and the bacteriophage (phage) viruses that prey on them can shape the outcomes of phage-bacterial encounters. Quorum sensing (QS) is a bacterial cell-to-cell communication process that promotes collective undertaking of group behaviors. QS relies on the production, release, accumulation, and detection of signal molecules called autoinducers. Phages can exploit QS-mediated communication to manipulate their hosts and maximize their own survival. In the opportunistic pathogen Pseudomonas aeruginosa, the LasI/R QS system induces the RhlI/R QS system, and in opposing manners, these two systems control the QS system that relies on the autoinducer called PQS. A P. aeruginosa ΔlasI mutant is impaired in PQS synthesis, leading to accumulation of the precursor molecule HHQ, and HHQ suppresses growth of the P. aeruginosa ΔlasI strain. We show that, in response to a phage infection, the P. aeruginosa ΔlasI mutant reactivates QS, which, in turn, restores pqsH expression, enabling conversion of HHQ into PQS. Moreover, downstream QS target genes encoding virulence factors are induced. Additionally, phage-infected P. aeruginosa ΔlasI cells transiently exhibit superior growth compared to uninfected cells. IMPORTANCE Clinical isolates of P. aeruginosa frequently harbor mutations in particular QS genes. Here, we show that infection by select temperate phages restores QS, a cell-to-cell communication mechanism in a P. aeruginosa QS mutant. Restoration of QS increases expression of genes encoding virulence factors. Thus, phage infection of select P. aeruginosa strains may increase bacterial pathogenicity, underscoring the importance of characterizing phage-host interactions in the context of bacterial mutants that are relevant in clinical settings.
Collapse
|
18
|
Yan K, Yin H, Wang J, Cai Y. Subtle relationships between Pseudomonas aeruginosa and fungi in patients with cystic fibrosis. Acta Clin Belg 2022; 77:425-435. [PMID: 33242290 DOI: 10.1080/17843286.2020.1852850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cystic fibrosis (CF) is one of the most common hereditary lung diseases. Pseudomonas aeruginosa (PA), Aspergillus fumigatus (AF) and Candida albicans (CA) are the principal bacterial and fungal pathogens in the airways of CF patients. The interactions of coexisting bacterial-fungal pathogens are of great interest. In the present work, we reviewed the literature of available in vitro and in vivo studies, whereas most of the reports have shown that PA inhibits the growth of fungi through restriction of iron uptake and secretion of toxic substances. Fungi may also affect the growth or virulence of PA through their secreted molecules. To clarify the bacterial-fungal interaction, more in-depth and detailed studies are still needed, which will provide a better understanding of species, microbial population dynamics, and related mechanisms in CF patients.
Collapse
Affiliation(s)
| | | | | | - Yun Cai
- Department of Pharmacy, MedicalSupplies Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
19
|
Lu L, Tang Q, Li H, Li Z. Damming river shapes distinct patterns and processes of planktonic bacterial and microeukaryotic communities. Environ Microbiol 2022; 24:1760-1774. [PMID: 35018701 DOI: 10.1111/1462-2920.15872] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/21/2021] [Accepted: 12/07/2021] [Indexed: 02/01/2023]
Abstract
Planktonic bacterial and microeukaryotic communities play important roles in biogeochemical cycles, but their biogeographic patterns and community assembly processes in large damming rivers still remain unclear. In this study, 16S rRNA and 18S rRNA coding genes were used for sample sequencing analysis of planktonic bacterial and microeukaryotic communities in the upper Yangtze River. The upper Yangtze River was divided into dam-affected zones and river zones based on the influence of dams. The results showed that there were significant differences in the bacterial and microeukaryotic communities between the two zones and that dams significantly reduced the α-diversity of the bacterial communities. Co-occurrence network analysis indicated that networks in the river zone were denser than those in the dam-affected zone. The relationships among species in bacterial networks were more complex than those in microeukaryotic networks. Dispersal limitation and ecological drift were the main processes influencing planktonic bacterial and microeukaryotic communities in the dam-affected zone respectively, whereas the role of deterministic processes increased in the river zone. Anthropogenic activities and hydraulic conditions affected suspended sediment and controlled microbial diversity in the river zone. These results suggest that dams impact planktonic bacteria more strongly than planktonic microeukaryotes, indicating that the distribution patterns and processes of the bacterial and microeukaryotic communities in large rivers are significantly different.
Collapse
Affiliation(s)
- Lunhui Lu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Qiong Tang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.,Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Hang Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Zhe Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| |
Collapse
|
20
|
Delago A, Gregor R, Dubinsky L, Dandela R, Hendler A, Krief P, Rayo J, Aharoni A, Meijler MM. A Bacterial Quorum Sensing Molecule Elicits a General Stress Response in Saccharomyces cerevisiae. Front Microbiol 2021; 12:632658. [PMID: 34603220 PMCID: PMC8481950 DOI: 10.3389/fmicb.2021.632658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteria assess their population density through a chemical communication mechanism termed quorum sensing, in order to coordinate group behavior. Most research on quorum sensing has focused primarily on its role as an intraspecies chemical signaling mechanism that enables the regulation of certain phenotypes through targeted gene expression. However, in recent years several seminal studies have revealed important phenomena in which quorum sensing molecules appear to serve additional roles as interspecies signals that may regulate microbial ecology. In this study, we asked whether the budding yeast Saccharomyces cerevisiae can sense chemical signals from prokaryotes. When exposed to a variety of quorum sensing molecules from different bacterial species and from Candida albicans we found that N-(3-oxododecanoyl)-L-homoserine lactone (C12) from the opportunistic human pathogen Pseudomonas aeruginosa induces a remarkable stress response in yeast. Microarray experiments confirmed and aided in interpreting these findings, showing a unique and specific expression pattern that differed significantly from the response to previously described stress factors. We further characterized this response and report preliminary findings on the molecular basis for the recognition of C12 by the yeast.
Collapse
Affiliation(s)
- Antonia Delago
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Rachel Gregor
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Luba Dubinsky
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Rambabu Dandela
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Adi Hendler
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Pnina Krief
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Josep Rayo
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Amir Aharoni
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Michael M Meijler
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
21
|
Mochochoko BM, Ezeokoli OT, Sebolai O, Albertyn J, Pohl CH. Role of the high-affinity reductive iron acquisition pathway of Candida albicans in prostaglandin E2 production, virulence, and interaction with Pseudomonas aeruginosa. Med Mycol 2021; 59:869-881. [PMID: 33862618 DOI: 10.1093/mmy/myab015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/06/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Components of the iron reductive pathway of Candida albicans have been implicated in the production of prostaglandin E2 (PGE2) and virulence. However, it is unknown whether other components of this pathway influence PGE2. We investigated the role of the iron reductive pathway of C. albicans in biofilm formation, PGE2 production, and virulence in Caenorhabditis elegans. Additionally, as the co-occurrence of C. albicans and Pseudomonas aeruginosa in host tissues is frequent and involves competition for host-associated iron, we examined the effects of this interaction. Deletion of multicopper oxidase gene, FET99, and iron permease genes, FTH1 and FTH2, affected biofilm metabolic activity, and for the FTH2 mutant, also biofilm morphology. Deletion of CCC1 (vacuolar iron transporter) and CCC2 (P-type ATPase copper importer) also influenced biofilm morphology. For PGE2 production, deletion of FET99, FTH1, FTH2, CCC1, and CCC2 caused a significant reduction by monomicrobial biofilms, while FTH2deletion caused the highest reduction in polymicrobial biofilms. URA3 positive mutants of FET99 and FTH2 demonstrated attenuated virulence in C. elegans, potentially due to the inability of mutants to form hyphae in vivo. Deductively, the role of the iron reductive pathway in PGE2 synthesis is indirect, possibly due to their role in iron homeostasis. LAY SUMMARY Iron uptake is vital for disease-causing microbes like Candida albicans. Using strains deficient in some iron-uptake genes, we show that iron-uptake genes, especially FET99 and FTH2, play a role in biofilm formation, prostaglandin production, and virulence in the nematode infection model.
Collapse
Affiliation(s)
- Bonang M Mochochoko
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9300, South Africa
| | - Obinna T Ezeokoli
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9300, South Africa
| | - Olihile Sebolai
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9300, South Africa
| | - Jacobus Albertyn
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9300, South Africa
| | - Carolina H Pohl
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
22
|
Khalid S, Keller NP. Chemical signals driving bacterial-fungal interactions. Environ Microbiol 2021; 23:1334-1347. [PMID: 33511714 DOI: 10.1111/1462-2920.15410] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Microorganisms reside in diverse environmental communities where interactions become indispensable due to close physical associations. These interactions are driven by chemical communication among different microbial kingdoms, particularly between fungi and bacteria. Knowledge about these communication signals provides useful information about the nature of microbial interactions and allows predictions of community development in diverse environments. Here, we provide an update on the role of small signalling molecules in fungal-bacterial interactions with focus on agricultural and medicinal environments. This review highlights the range of - and response to - diverse biochemicals produced by both kingdoms with view to harnessing their properties towards drug discovery applications.
Collapse
Affiliation(s)
- Saima Khalid
- Department of Microbiology, Women University Mardan, Mardan, Pakistan
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
23
|
|
24
|
Grainha T, Jorge P, Alves D, Lopes SP, Pereira MO. Unraveling Pseudomonas aeruginosa and Candida albicans Communication in Coinfection Scenarios: Insights Through Network Analysis. Front Cell Infect Microbiol 2020; 10:550505. [PMID: 33262953 PMCID: PMC7686562 DOI: 10.3389/fcimb.2020.550505] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Modern medicine is currently facing huge setbacks concerning infection therapeutics as microorganisms are consistently knocking down every antimicrobial wall set before them. The situation becomes more worrying when taking into account that, in both environmental and disease scenarios, microorganisms present themselves as biofilm communities that are often polymicrobial. This comprises a competitive advantage, with interactions between different species altering host responses, antimicrobial effectiveness, microbial pathogenesis and virulence, usually augmenting the severity of the infection and contributing for the recalcitrance towards conventional therapy. Pseudomonas aeruginosa and Candida albicans are two opportunistic pathogens often co-isolated from infections, mainly from mucosal tissues like the lung. Despite the billions of years of co-existence, this pair of microorganisms is a great example on how little is known about cross-kingdom interactions, particularly within the context of coinfections. Given the described scenario, this study aimed to collect, curate, and analyze all published experimental information on the molecular basis of P. aeruginosa and C. albicans interactions in biofilms, in order to shed light into key mechanisms that may affect infection prognosis, increasing this area of knowledge. Publications were optimally retrieved from PubMed and Web of Science and classified as to their relevance. Data was then systematically and manually curated, analyzed, and further reconstructed as networks. A total of 641 interactions between the two pathogens were annotated, outputting knowledge on important molecular players affecting key virulence mechanisms, such as hyphal growth, and related genes and proteins, constituting potential therapeutic targets for infections related to these bacterial-fungal consortia. Contrasting interactions were also analyzed, and quorum-sensing inhibition approaches were highlighted. All annotated data was made publicly available at www.ceb.uminho.pt/ISCTD, a database already containing similar data for P. aeruginosa and Staphylococcus aureus communication. This will allow researchers to cut on time and effort when studying this particular subject, facilitating the understanding of the basis of the inter-species and inter-kingdom interactions and how it can be modulated to help design alternative and more effective tailored therapies. Finally, data deposition will serve as base for future dataset integration, whose analysis will hopefully give insights into communications in more complex and varied biofilm communities.
Collapse
Affiliation(s)
- Tânia Grainha
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Paula Jorge
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Diana Alves
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Susana Patrícia Lopes
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Maria Olívia Pereira
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
25
|
Abstract
Interactions among microbes are key drivers of evolutionary progress and constantly shape ecological niches. Microorganisms rely on chemical communication to interact with each other and surrounding organisms. They synthesize natural products as signaling molecules, antibiotics, or modulators of cellular processes that may be applied in agriculture and medicine. Whereas major insight has been gained into the principles of intraspecies interaction, much less is known about the molecular basis of interspecies interplay. In this review, we summarize recent progress in the understanding of chemically mediated bacterial-fungal interrelations. We discuss pairwise interactions among defined species and systems involving additional organisms as well as complex interactions among microbial communities encountered in the soil or defined as microbiota of higher organisms. Finally, we give examples of how the growing understanding of microbial interactions has contributed to drug discovery and hypothesize what may be future directions in studying and engineering microbiota for agricultural or medicinal purposes.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07745 Jena, Germany
| |
Collapse
|
26
|
Mould DL, Botelho NJ, Hogan DA. Intraspecies Signaling between Common Variants of Pseudomonas aeruginosa Increases Production of Quorum-Sensing-Controlled Virulence Factors. mBio 2020; 11:e01865-20. [PMID: 32843558 PMCID: PMC7448281 DOI: 10.1128/mbio.01865-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa damages hosts through the production of diverse secreted products, many of which are regulated by quorum sensing (QS). The lasR gene, which encodes a central QS regulator, is frequently mutated in clinical isolates from chronic infections, and loss of LasR function (LasR-) generally impairs the activity of downstream QS regulators RhlR and PqsR. We found that in cocultures containing LasR+ and LasR- strains, LasR- strains hyperproduce the RhlR/RhlI-regulated antagonistic factors pyocyanin and rhamnolipids in diverse models and media and in different strain backgrounds. Diffusible QS autoinducers produced by the wild type were not required for this effect. Using transcriptomics, genetics, and biochemical approaches, we uncovered a reciprocal interaction between wild-type and lasR mutant pairs wherein the iron-scavenging siderophore pyochelin produced by the lasR mutant induced citrate release and cross-feeding from the wild type. Citrate, a metabolite often secreted in low iron environments, stimulated RhlR signaling and RhlI levels in LasR-but not in LasR+ strains. These studies reveal the potential for complex interactions between recently diverged, genetically distinct isolates within populations from single chronic infections.IMPORTANCE Coculture interactions between lasR loss-of-function and LasR+ Pseudomonas aeruginosa strains may explain the worse outcomes associated with the presence of LasR- strains. More broadly, this report illustrates how interactions within a genotypically diverse population, similar to those that frequently develop in natural settings, can promote unpredictably high virulence factor production.
Collapse
Affiliation(s)
- Dallas L Mould
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Nico J Botelho
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A Hogan
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
27
|
Pseudomonas aeruginosa PA14 Enhances the Efficacy of Norfloxacin against Staphylococcus aureus Newman Biofilms. J Bacteriol 2020; 202:JB.00159-20. [PMID: 32661077 DOI: 10.1128/jb.00159-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
The thick mucus within the airways of individuals with cystic fibrosis (CF) promotes frequent respiratory infections that are often polymicrobial. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most prevalent pathogens that cause CF pulmonary infections, and both are among the most common etiologic agents of chronic wound infections. Furthermore, the ability of P. aeruginosa and S. aureus to form biofilms promotes the establishment of chronic infections that are often difficult to eradicate using antimicrobial agents. In this study, we found that multiple LasR-regulated exoproducts of P. aeruginosa, including 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), siderophores, phenazines, and rhamnolipids, likely contribute to the ability of P. aeruginosa PA14 to shift S. aureus Newman norfloxacin susceptibility profiles. Here, we observe that exposure to P. aeruginosa exoproducts leads to an increase in intracellular norfloxacin accumulation by S. aureus We previously showed that P. aeruginosa supernatant dissipates the S. aureus membrane potential, and furthermore, depletion of the S. aureus proton motive force recapitulates the effect of the P. aeruginosa PA14 supernatant on shifting norfloxacin sensitivity profiles of biofilm-grown S. aureus Newman. From these results, we hypothesize that exposure to P. aeruginosa PA14 exoproducts leads to increased uptake of the drug and/or an impaired ability of S. aureus Newman to efflux norfloxacin. Surprisingly, the effect observed here of P. aeruginosa PA14 exoproducts on S. aureus Newman susceptibility to norfloxacin seemed to be specific to these strains and this antibiotic. Our results illustrate that microbially derived products can alter the ability of antimicrobial agents to kill bacterial biofilms.IMPORTANCE Pseudomonas aeruginosa and Staphylococcus aureus are frequently coisolated from multiple infection sites, including the lungs of individuals with cystic fibrosis (CF) and nonhealing diabetic foot ulcers. Coinfection with P. aeruginosa and S. aureus has been shown to produce worse outcomes compared to infection with either organism alone. Furthermore, the ability of these pathogens to form biofilms enables them to cause persistent infection and withstand antimicrobial therapy. In this study, we found that P. aeruginosa-secreted products dramatically increase the ability of the antibiotic norfloxacin to kill S. aureus biofilms. Understanding how interspecies interactions alter the antibiotic susceptibility of bacterial biofilms may inform treatment decisions and inspire the development of new therapeutic strategies.
Collapse
|
28
|
Conditional antagonism in co-cultures of Pseudomonas aeruginosa and Candida albicans: An intersection of ethanol and phosphate signaling distilled from dual-seq transcriptomics. PLoS Genet 2020; 16:e1008783. [PMID: 32813693 PMCID: PMC7480860 DOI: 10.1371/journal.pgen.1008783] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/09/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa and Candida albicans are opportunistic pathogens whose interactions involve the secreted products ethanol and phenazines. Here, we describe the role of ethanol in mixed-species co-cultures by dual-seq analyses. P. aeruginosa and C. albicans transcriptomes were assessed after growth in mono-culture or co-culture with either ethanol-producing C. albicans or a C. albicans mutant lacking the primary ethanol dehydrogenase, Adh1. Analysis of the RNA-Seq data using KEGG pathway enrichment and eADAGE methods revealed several P. aeruginosa responses to C. albicans-produced ethanol including the induction of a non-canonical low-phosphate response regulated by PhoB. C. albicans wild type, but not C. albicans adh1Δ/Δ, induces P. aeruginosa production of 5-methyl-phenazine-1-carboxylic acid (5-MPCA), which forms a red derivative within fungal cells and exhibits antifungal activity. Here, we show that C. albicans adh1Δ/Δ no longer activates P. aeruginosa PhoB and PhoB-regulated phosphatase activity, that exogenous ethanol complements this defect, and that ethanol is sufficient to activate PhoB in single-species P. aeruginosa cultures at permissive phosphate levels. The intersection of ethanol and phosphate in co-culture is inversely reflected in C. albicans; C. albicans adh1Δ/Δ had increased expression of genes regulated by Pho4, the C. albicans transcription factor that responds to low phosphate, and Pho4-dependent phosphatase activity. Together, these results show that C. albicans-produced ethanol stimulates P. aeruginosa PhoB activity and 5-MPCA-mediated antagonism, and that both responses are dependent on local phosphate concentrations. Further, our data suggest that phosphate scavenging by one species improves phosphate access for the other, thus highlighting the complex dynamics at play in microbial communities. Pseudomonas aeruginosa and Candida albicans are opportunistic pathogens that are frequently isolated from co-infections. Using a combination of dual-seq transcriptomics and genetics approaches, we found that ethanol produced by C. albicans stimulates the PhoB regulon in P. aeruginosa asynchronously with activation of the Pho4 regulon in C. albicans. We validated our result by showing that PhoB plays multiple roles in co-culture including orchestrating the competition for phosphate and the production of 5-methyl-phenazine-1-carboxylic acid; the P. aeruginosa phenazine response to C. albicans-produced ethanol depends on phosphate availability. The conditional stimulation of antifungal production in response to sub-inhibitory concentrations of ethanol only under phosphate limitation highlights the importance of considering nutrient concentrations in the analysis of co-culture interactions and suggests that the low-phosphate response in one species influences phosphate availability for the other.
Collapse
|
29
|
Kovács R, Majoros L. Fungal Quorum-Sensing Molecules: A Review of Their Antifungal Effect against Candida Biofilms. J Fungi (Basel) 2020; 6:jof6030099. [PMID: 32630687 PMCID: PMC7559060 DOI: 10.3390/jof6030099] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023] Open
Abstract
The number of effective therapeutic strategies against biofilms is limited; development of novel therapies is urgently needed to treat a variety of biofilm-associated infections. Quorum sensing is a special form of microbial cell-to-cell communication that is responsible for the release of numerous extracellular molecules, whose concentration is proportional with cell density. Candida-secreted quorum-sensing molecules (i.e., farnesol and tyrosol) have a pivotal role in morphogenesis, biofilm formation, and virulence. Farnesol can mediate the hyphae-to-yeast transition, while tyrosol has the opposite effect of inducing transition from the yeast to hyphal form. A number of questions regarding Candida quorum sensing remain to be addressed; nevertheless, the literature shows that farnesol and tyrosol possess remarkable antifungal and anti-biofilm effect at supraphysiological concentration. Furthermore, previous in vitro and in vivo data suggest that they may have a potent adjuvant effect in combination with certain traditional antifungal agents. This review discusses the most promising farnesol- and tyrosol-based in vitro and in vivo results, which may be a foundation for future development of novel therapeutic strategies to combat Candida biofilms.
Collapse
Affiliation(s)
- Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +0036-52-255-425; Fax: +0036-52-255-424
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
30
|
Farnesol and Tyrosol: Secondary Metabolites with a Crucial quorum-sensing Role in Candida Biofilm Development. Genes (Basel) 2020; 11:genes11040444. [PMID: 32325685 PMCID: PMC7231263 DOI: 10.3390/genes11040444] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023] Open
Abstract
When living in biological and interactive communities, microorganisms use quorum-sensing mechanisms for their communication. According to cell density, bacteria and fungi can produce signaling molecules (e.g., secondary metabolites), which participate, for example, in the regulation of gene expression and coordination of collective behavior in their natural niche. The existence of these secondary metabolites plays a main role in competence, colonization of host tissues and surfaces, morphogenesis, and biofilm development. Therefore, for the design of new antibacterials or antifungals and understanding on how these mechanisms occur, to inhibit the secretion of quorum-sensing (e.g., farnesol and tyrosol) molecules leading the progress of microbial infections seems to be an interesting option. In yeasts, farnesol has a main role in the morphological transition, inhibiting hyphae production in a concentration-dependent manner, while tyrosol has a contrary function, stimulating transition from spherical cells to germ tube form. It is beyond doubt that secretion of both molecules by fungi has not been fully described, but specific meaning for their existence has been found. This brief review summarizes the important function of these two compounds as signaling chemicals participating mainly in Candida morphogenesis and regulatory mechanisms.
Collapse
|
31
|
Alam F, Catlow D, Di Maio A, Blair JMA, Hall RA. Candida albicans enhances meropenem tolerance of Pseudomonas aeruginosa in a dual-species biofilm. J Antimicrob Chemother 2020; 75:925-935. [PMID: 31865379 PMCID: PMC7069478 DOI: 10.1093/jac/dkz514] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/18/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is an opportunistic bacterium that infects the airways of cystic fibrosis patients, surfaces of surgical and burn wounds, and indwelling medical devices. Patients are prone to secondary fungal infections, with Candida albicans being commonly co-isolated with P. aeruginosa. Both P. aeruginosa and C. albicans are able to form extensive biofilms on the surfaces of mucosa and medical devices. OBJECTIVES To determine whether the presence of C. albicans enhances antibiotic tolerance of P. aeruginosa in a dual-species biofilm. METHODS Single- and dual-species biofilms were established in microtitre plates and the survival of each species was measured following treatment with clinically relevant antibiotics. Scanning electron microscopy and confocal microscopy were used to visualize biofilm structure. RESULTS C. albicans enhances P. aeruginosa biofilm tolerance to meropenem at the clinically relevant concentration of 5 mg/L. This effect is specific to biofilm cultures and is dependent upon C. albicans extracellular matrix polysaccharides, mannan and glucan, with C. albicans cells deficient in glycosylation structures not enhancing P. aeruginosa tolerance to meropenem. CONCLUSIONS We propose that fungal mannan and glucan secreted into the extracellular matrix of P. aeruginosa/C. albicans dual-species biofilms play a central role in enhancing P. aeruginosa tolerance to meropenem, which has direct implications for the treatment of coinfected patients.
Collapse
Affiliation(s)
- Farhana Alam
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Dominic Catlow
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alessandro Di Maio
- Birmingham Advanced Light Microscopy, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Rebecca A Hall
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NZ, UK
| |
Collapse
|
32
|
O’Brien TJ, Welch M. A Continuous-Flow Model for in vitro Cultivation of Mixed Microbial Populations Associated With Cystic Fibrosis Airway Infections. Front Microbiol 2019; 10:2713. [PMID: 31824471 PMCID: PMC6883238 DOI: 10.3389/fmicb.2019.02713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
The airways of people with cystic fibrosis (CF) provide a nutrient-rich environment which favours colonisation by a variety of bacteria and fungi. Although the dominant pathogen associated with CF airway infections is Pseudomonas aeruginosa, it is becoming increasingly clear that inter-species interactions between P. aeruginosa and other colonists in the airways may have a large impact on microbial physiology and virulence. However, there are currently no suitable experimental models that permit long-term co-culture of P. aeruginosa with other CF-associated pathogens. Here, we redress this problem by describing a "3R's-compliant" continuous-flow in vitro culture model which enables long-term co-culture of three representative CF-associated microbes: P. aeruginosa, Staphylococcus aureus and Candida albicans. Although these species rapidly out-compete one another when grown together or in pairs in batch culture, we show that in a continuously-fed setup, they can be maintained in a very stable, steady-state community. We use our system to show that even numerically (0.1%) minor species can have a major impact on intercellular signalling by P. aeruginosa. Importantly, we also show that co-culturing does not appear to influence species mutation rates, further reinforcing the notion that the system favours stability rather than divergence. The model is experimentally tractable and offers an inexpensive yet robust means of investigating inter-species interactions between CF pathogens.
Collapse
Affiliation(s)
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
33
|
Chávez-Andrade GM, Tanomaru-Filho M, Basso Bernardi MI, de Toledo Leonardo R, Faria G, Guerreiro-Tanomaru JM. Antimicrobial and biofilm anti-adhesion activities of silver nanoparticles and farnesol against endodontic microorganisms for possible application in root canal treatment. Arch Oral Biol 2019; 107:104481. [DOI: 10.1016/j.archoralbio.2019.104481] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 11/29/2022]
|
34
|
Reen FJ, McGlacken GP, O'Gara F. The expanding horizon of alkyl quinolone signalling and communication in polycellular interactomes. FEMS Microbiol Lett 2019; 365:4953739. [PMID: 29718276 DOI: 10.1093/femsle/fny076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/25/2018] [Indexed: 02/07/2023] Open
Abstract
Population dynamics within natural ecosystems is underpinned by microbial diversity and the heterogeneity of host-microbe and microbe-microbe interactions. Small molecule signals that intersperse between species have been shown to govern many virulence-related processes in established and emerging pathogens. Understanding the capacity of microbes to decode diverse languages and adapt to the presence of 'non-self' cells will provide an important new direction to the understanding of the 'polycellular' interactome. Alkyl quinolones (AQs) have been described in the ESKAPE pathogen Pseudomonas aeruginosa, the primary agent associated with mortality in patients with cystic fibrosis and the third most prevalent nosocomial pathogen worldwide. The role of these molecules in governing the physiology and virulence of P. aeruginosa and other pathogens has received considerable attention, while a role in interspecies and interkingdom communication has recently emerged. Herein we discuss recent advances in our understanding of AQ signalling and communication in the context of microbe-microbe and microbe-host interactions. The integrated knowledge from these systems-based investigations will facilitate the development of new therapeutics based on the AQ framework that serves to disarm the pathogenesis of P. aeruginosa and competing pathogens.
Collapse
Affiliation(s)
- F Jerry Reen
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard P McGlacken
- School of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, USA
| |
Collapse
|
35
|
Skopelja-Gardner S, Theprungsirikul J, Lewis KA, Hammond JH, Carlson KM, Hazlett HF, Nymon A, Nguyen D, Berwin BL, Hogan DA, Rigby WFC. Regulation of Pseudomonas aeruginosa-Mediated Neutrophil Extracellular Traps. Front Immunol 2019; 10:1670. [PMID: 31379861 PMCID: PMC6657737 DOI: 10.3389/fimmu.2019.01670] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is the most prevalent opportunistic pathogen in the airways of cystic fibrosis (CF) patients. The pulmonary disorder is characterized by recurrent microbial infections and an exaggerated host inflammatory immune response led primarily by influx of neutrophils. Under these conditions, chronic colonization with P. aeruginosa is associated with diminished pulmonary function and increased morbidity and mortality. P. aeruginosa has a wide array of genetic mechanisms that facilitate its persistent colonization of the airway despite extensive innate host immune responses. Loss of function mutations in the quorum sensing regulatory gene lasR have been shown to confer survival advantage and a more pathogenic character to P. aeruginosa in CF patients. However, the strategies used by LasR-deficient P. aeruginosa to modulate neutrophil-mediated bactericidal functions are unknown. We sought to understand the role of LasR in P. aeruginosa-mediated neutrophil extracellular trap (NET) formation, an important anti-microbial mechanism deployed by neutrophils, the first-line responder in the infected airway. We observe mechanistic and phenotypic differences between NETs triggered by LasR-sufficient and LasR-deficient P. aeruginosa strains. We uncover that LasR-deficient P. aeruginosa strains fail to induce robust NET formation in both human and murine neutrophils, independently of bacterial motility or LPS expression. LasR does not mediate NET release via downstream quorum sensing signaling pathways but rather via transcriptional regulation of virulence factors, including, but not restricted to, LasB elastase and LasA protease. Finally, our studies uncover the differential requirements for NADPH oxidase in NET formation triggered by different P. aeruginosa strains.
Collapse
Affiliation(s)
- Sladjana Skopelja-Gardner
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Jomkuan Theprungsirikul
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kimberley A Lewis
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - John H Hammond
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kyrsten M Carlson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Haley F Hazlett
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Amanda Nymon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Dao Nguyen
- Department of Microbiology and Immunology, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Brent L Berwin
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - William F C Rigby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States.,Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
36
|
Scott JE, O'Toole GA. The Yin and Yang of Streptococcus Lung Infections in Cystic Fibrosis: a Model for Studying Polymicrobial Interactions. J Bacteriol 2019; 201:e00115-19. [PMID: 30885933 PMCID: PMC6509657 DOI: 10.1128/jb.00115-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The streptococci are increasingly recognized as a core component of the cystic fibrosis (CF) lung microbiome, yet the role that they play in CF lung disease is unclear. The presence of the Streptococcus milleri group (SMG; also known as the anginosus group streptococci [AGS]) correlates with exacerbation when these microbes are the predominant species in the lung. In contrast, microbiome studies have indicated that an increased relative abundance of streptococci in the lung, including members of the oral microflora, correlates with impacts on lung disease less severe than those caused by other CF-associated microflora, indicating a complex role for this genus in the context of CF. Recent findings suggest that streptococci in the CF lung microenvironment may influence the growth and/or virulence of other CF pathogens, as evidenced by increased virulence factor production by Pseudomonas aeruginosa when grown in coculture with oral streptococci. Conversely, the presence of P. aeruginosa can enhance the growth of streptococci, including members of the SMG, a phenomenon that could be exacerbated by the fact that streptococci are not susceptible to some of the frontline antibiotics used to treat P. aeruginosa infections. Collectively, these studies indicate the necessity for further investigation into the role of streptococci in the CF airway to determine how these microbes, alone or via interactions with other CF-associated pathogens, might influence CF lung disease, for better or for worse. We also propose that the interactions of streptococci with other CF pathogens is an ideal model to study clinically relevant microbial interactions.
Collapse
Affiliation(s)
- Jessie E Scott
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
37
|
Ethanol Stimulates Trehalose Production through a SpoT-DksA-AlgU-Dependent Pathway in Pseudomonas aeruginosa. J Bacteriol 2019; 201:JB.00794-18. [PMID: 30936375 DOI: 10.1128/jb.00794-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa frequently resides among ethanol-producing microbes, making its response to the microbially produced concentrations of ethanol relevant to understanding its biology. Our transcriptome analysis found that genes involved in trehalose metabolism were induced by low concentrations of ethanol, and biochemical assays showed that levels of intracellular trehalose increased significantly upon growth with ethanol. The increase in trehalose was dependent on the TreYZ pathway but not other trehalose-metabolic enzymes (TreS or TreA). The sigma factor AlgU (AlgT), a homolog of RpoE in other species, was required for increased expression of the treZ gene and trehalose levels, but induction was not controlled by the well-characterized proteolysis of its anti-sigma factor, MucA. Growth with ethanol led to increased SpoT-dependent (p)ppGpp accumulation, which stimulates AlgU-dependent transcription of treZ and other AlgU-regulated genes through DksA, a (p)ppGpp and RNA polymerase binding protein. Ethanol stimulation of trehalose also required acylhomoserine lactone (AHL)-mediated quorum sensing (QS), as induction was not observed in a ΔlasR ΔrhlR strain. A network analysis using a model, eADAGE, built from publicly available P. aeruginosa transcriptome data sets (J. Tan, G. Doing, K. A. Lewis, C. E. Price, et al., Cell Syst 5:63-71, 2017, https://doi.org/10.1016/j.cels.2017.06.003) provided strong support for our model in which treZ and coregulated genes are controlled by both AlgU- and AHL-mediated QS. Consistent with (p)ppGpp- and AHL-mediated quorum-sensing regulation, ethanol, even when added at the time of culture inoculation, stimulated treZ transcript levels and trehalose production in cells from post-exponential-phase cultures but not in cells from exponential-phase cultures. These data highlight the integration of growth and cell density cues in the P. aeruginosa transcriptional response to ethanol.IMPORTANCE Pseudomonas aeruginosa is often found with bacteria and fungi that produce fermentation products, including ethanol. At concentrations similar to those produced by environmental microbes, we found that ethanol stimulated expression of trehalose-biosynthetic genes and cellular levels of trehalose, a disaccharide that protects against environmental stresses. The induction of trehalose by ethanol required the alternative sigma factor AlgU through DksA- and SpoT-dependent (p)ppGpp. Trehalose accumulation also required AHL quorum sensing and occurred only in post-exponential-phase cultures. This work highlights how cells integrate cell density and growth cues in their responses to products made by other microbes and reveals a new role for (p)ppGpp in the regulation of AlgU activity.
Collapse
|
38
|
Rowan-Nash AD, Korry BJ, Mylonakis E, Belenky P. Cross-Domain and Viral Interactions in the Microbiome. Microbiol Mol Biol Rev 2019; 83:e00044-18. [PMID: 30626617 PMCID: PMC6383444 DOI: 10.1128/mmbr.00044-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The importance of the microbiome to human health is increasingly recognized and has become a major focus of recent research. However, much of the work has focused on a few aspects, particularly the bacterial component of the microbiome, most frequently in the gastrointestinal tract. Yet humans and other animals can be colonized by a wide array of organisms spanning all domains of life, including bacteria and archaea, unicellular eukaryotes such as fungi, multicellular eukaryotes such as helminths, and viruses. As they share the same host niches, they can compete with, synergize with, and antagonize each other, with potential impacts on their host. Here, we discuss these major groups making up the human microbiome, with a focus on how they interact with each other and their multicellular host.
Collapse
Affiliation(s)
- Aislinn D Rowan-Nash
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
39
|
Mantravadi PK, Kalesh KA, Dobson RCJ, Hudson AO, Parthasarathy A. The Quest for Novel Antimicrobial Compounds: Emerging Trends in Research, Development, and Technologies. Antibiotics (Basel) 2019; 8:E8. [PMID: 30682820 PMCID: PMC6466574 DOI: 10.3390/antibiotics8010008] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 12/11/2022] Open
Abstract
Pathogenic antibiotic resistant bacteria pose one of the most important health challenges of the 21st century. The overuse and abuse of antibiotics coupled with the natural evolutionary processes of bacteria has led to this crisis. Only incremental advances in antibiotic development have occurred over the last 30 years. Novel classes of molecules, such as engineered antibodies, antibiotic enhancers, siderophore conjugates, engineered phages, photo-switchable antibiotics, and genome editing facilitated by the CRISPR/Cas system, are providing new avenues to facilitate the development of antimicrobial therapies. The informatics revolution is transforming research and development efforts to discover novel antibiotics. The explosion of nanotechnology and micro-engineering is driving the invention of antimicrobial materials, enabling the cultivation of "uncultivable" microbes and creating specific and rapid diagnostic technologies. Finally, a revival in the ecological aspects of microbial disease management, the growth of prebiotics, and integrated management based on the "One Health" model, provide additional avenues to manage this health crisis. These, and future scientific and technological developments, must be coupled and aligned with sound policy and public awareness to address the risks posed by rising antibiotic resistance.
Collapse
Affiliation(s)
| | | | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800 Christchurch, New Zealand.
| | - André O Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, 85 Lomb Memorial Dr, Rochester, NY 14623, USA.
| | - Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, 85 Lomb Memorial Dr, Rochester, NY 14623, USA.
| |
Collapse
|
40
|
Barriuso J, Hogan DA, Keshavarz T, Martínez MJ. Role of quorum sensing and chemical communication in fungal biotechnology and pathogenesis. FEMS Microbiol Rev 2018; 42:627-638. [PMID: 29788231 DOI: 10.1093/femsre/fuy022] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/17/2018] [Indexed: 12/18/2022] Open
Abstract
Microbial cells do not live in isolation in their environment, but rather they communicate with each other using chemical signals. This sophisticated mode of cell-to-cell signalling, known as quorum sensing, was first discovered in bacteria, and coordinates the behaviour of microbial population behaviour in a cell-density-dependent manner. More recently, these mechanisms have been described in eukaryotes, particularly in fungi, where they regulate processes such as pathogenesis, morphological differentiation, secondary metabolite production and biofilm formation. In this manuscript, we review the information available to date on these processes in yeast, dimorphic fungi and filamentous fungi. We analyse the diverse chemical 'languages' used by different groups of fungi, their possible cross-talk and interkingdom interactions with other organisms. We discuss the existence of these mechanisms in multicellular organisms, the ecophysiological role of QS in fungal colonisation and the potential applications of these mechanisms in biotechnology and pathogenesis.
Collapse
Affiliation(s)
- Jorge Barriuso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Tajalli Keshavarz
- Department of Life Sciences, Faculty of Science and Technology, University of Westminster, London W1W 6UW, UK
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
41
|
Nevalainen H, Kaur J, Han Z, Kautto L, Ramsperger M, Meyer W, Chen SCA. Biological, biochemical and molecular aspects of Scedosporium aurantiacum, a primary and opportunistic fungal pathogen. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Almeida FAD, Vargas ELG, Carneiro DG, Pinto UM, Vanetti MCD. Virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of quorum sensing and biofilm formation in Salmonella. Microb Pathog 2018; 121:369-388. [PMID: 29763730 DOI: 10.1016/j.micpath.2018.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/17/2018] [Accepted: 05/11/2018] [Indexed: 02/08/2023]
Abstract
Salmonella belongs to the Enterobacteriaceae family which is widely distributed in the environment due to its adaptive capacity to stress conditions. In addition, Salmonella is able to perform a type of cell-to-cell communication called quorum sensing, which leads to differential gene expression. The quorum sensing system mediated by AI-1, acyl homoserine lactones (AHLs), is incomplete in Salmonella because the luxI homolog gene, which encodes for AI-1 synthase, is missing in the genome. However, a homologue of LuxR, known as SdiA, is present and allows the detection of signaling molecules produced by other species of bacteria, leading to regulation of gene expression, mainly related to virulence and biofilm formation. Thus, in view of the importance of quorum sensing on the physiology regulation of microorganisms, the aim of the present study was to perform a virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs (NASIDs) for inhibition of quorum sensing by molecular docking and biofilm formation in Salmonella. In general, most plant compounds and all NSAIDs bound in, at least, one of the three modeled structures of SdiA proteins of Salmonella Enteritidis PT4 578. In addition, many tested compounds had higher binding affinities than the AHLs and the furanones which are inducers and inhibitors of quorum sensing, respectively. The Z-phytol and lonazolac molecules were good candidates for the in vitro inhibition tests of quorum sensing mediated by AI-1 and biofilm formation in Salmonella. Thus, this study directs future prospecting of plant extracts for inhibition of quorum sensing mechanism depending on AHL and biofilm formation. In addition, the use of inhibitors of quorum sensing and biofilm formation can be combined with antibiotics for better treatment efficacy, as well as the use of these compounds to design new drugs.
Collapse
Affiliation(s)
- Felipe Alves de Almeida
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Department of Nutrition, Universidade Federal de Juiz de Fora, Governador Valadares, MG, Brazil
| | | | | | - Uelinton Manoel Pinto
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
43
|
O'Brien S, Fothergill JL. The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung. FEMS Microbiol Lett 2018; 364:3958795. [PMID: 28859314 PMCID: PMC5812498 DOI: 10.1093/femsle/fnx128] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is a major pathogen in the lungs of cystic fibrosis (CF) patients. However, it is now recognised that a diverse microbial community exists in the airways comprising aerobic and anaerobic bacteria as well as fungi and viruses. This rich soup of microorganisms provides ample opportunity for interspecies interactions, particularly when considering secreted compounds. Here, we discuss how P. aeruginosa-secreted products can have community-wide effects, with the potential to ultimately shape microbial community dynamics within the lung. We focus on three well-studied traits associated with worsening clinical outcome in CF: phenazines, siderophores and biofilm formation, and discuss how secretions can shape interactions between P. aeruginosa and other commonly encountered members of the lung microbiome: Staphylococcus aureus, the Burkholderia cepacia complex, Candida albicans and Aspergillus fumigatus. These interactions may shape the evolutionary trajectory of P. aeruginosa while providing new opportunities for therapeutic exploitation of the CF lung microbiome.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Center for Adaptation to a Changing Environment (ACE), ETH Zürich, 8092 Zürich, Switzerland.,Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7B3, UK
| |
Collapse
|
44
|
Chapelais-Baron M, Goubet I, Péteri R, Pereira MDF, Mignot T, Jabveneau A, Rosenfeld E. Colony analysis and deep learning uncover 5-hydroxyindole as an inhibitor of gliding motility and iridescence in Cellulophaga lytica. MICROBIOLOGY-SGM 2018; 164:308-321. [PMID: 29458680 DOI: 10.1099/mic.0.000617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Iridescence is an original type of colouration that is relatively widespread in nature but has been either incompletely described or entirely neglected in prokaryotes. Recently, we reported a brilliant 'pointillistic' iridescence in agar-grown colony biofilms of Cellulophaga lytica and some other marine Flavobacteria that exhibit gliding motility. Bacterial iridescence is created by a unique self-organization of sub-communities of cells, but the mechanisms underlying such living photonic crystals are unknown. In this study, we used Petri dish assays to screen a large panel of potential activators or inhibitors of C. lytica's iridescence. Derivatives potentially interfering with quorum-sensing and other communication or biofilm formation processes were tested, as well as metabolic poisons or algal exoproducts. We identified an indole derivative, 5-hydroxyindole (5HI, 250 µM) which inhibited both gliding and iridescence at the colonial level. 5HI did not affect growth or cell respiration. At the microscopic level, phase-contrast imaging confirmed that 5HI inhibits the gliding motility of cells. Moreover, the lack of iridescence correlated with a perturbation of self-organization of the cell sub-communities in both the WT and a gliding-negative mutant. This effect was proved using recent advances in machine learning (deep neuronal networks). In addition to its effect on colony biofilms, 5HI was found to stimulate biofilm formation in microplates. Our data are compatible with possible roles of 5HI or marine analogues in the eco-biology of iridescent bacteria.
Collapse
Affiliation(s)
- Maylis Chapelais-Baron
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Isabelle Goubet
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Renaud Péteri
- Laboratoire Mathématiques, Image et Applications EA 3165, Université de La Rochelle, La Rochelle, France
| | - Maria de Fatima Pereira
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France.,Université de Caen Normandie, UNICAEN, CERMN - EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE Boulevard Becquerel, F-14032 Caen, France
| | - Tâm Mignot
- UMR 7283 CNRS Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, University of Aix-Marseille, Marseille, France
| | - Apolline Jabveneau
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Eric Rosenfeld
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| |
Collapse
|
45
|
Zhang I, Pletcher SD, Goldberg AN, Barker BM, Cope EK. Fungal Microbiota in Chronic Airway Inflammatory Disease and Emerging Relationships with the Host Immune Response. Front Microbiol 2017; 8:2477. [PMID: 29312187 PMCID: PMC5733051 DOI: 10.3389/fmicb.2017.02477] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/29/2017] [Indexed: 12/22/2022] Open
Abstract
The respiratory tract is a complex system that is inhabited by niche-specific communities of microbes including bacteria, fungi, and viruses. These complex microbial assemblages are in constant contact with the mucosal immune system and play a critical role in airway health and immune homeostasis. Changes in the composition and diversity of airway microbiota are frequently observed in patients with chronic inflammatory diseases including chronic rhinosinusitis (CRS), cystic fibrosis, allergy, and asthma. While the bacterial microbiome of the upper and lower airways has been the focus of many recent studies, the contribution of fungal microbiota to inflammation is an emerging research interest. Within the context of allergic airway disease, fungal products are important allergens and fungi are potent inducers of inflammation. In addition, murine models have provided experimental evidence that fungal microbiota in peripheral organs, notably the gastrointestinal (GI) tract, influence pulmonary health. In this review, we explore the role of the respiratory and GI microbial communities in chronic airway inflammatory disease development with a specific focus on fungal microbiome interactions with the airway immune system and fungal-bacterial interactions that likely contribute to inflammatory disease. These findings are discussed in the context of clinical and immunological features of fungal-mediated disease in CRS, allergy, and asthmatic patients. While this field is still nascent, emerging evidence suggests that dysbiotic fungal and bacterial microbiota interact to drive or exacerbate chronic airway inflammatory disease.
Collapse
Affiliation(s)
- Irene Zhang
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Steven D. Pletcher
- Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Andrew N. Goldberg
- Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Bridget M. Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Emily K. Cope
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
46
|
Bergeron AC, Seman BG, Hammond JH, Archambault LS, Hogan DA, Wheeler RT. Candida albicans and Pseudomonas aeruginosa Interact To Enhance Virulence of Mucosal Infection in Transparent Zebrafish. Infect Immun 2017; 85:e00475-17. [PMID: 28847848 PMCID: PMC5649025 DOI: 10.1128/iai.00475-17] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/10/2017] [Indexed: 01/02/2023] Open
Abstract
Polymicrobial infections often include both fungi and bacteria and can complicate patient treatment and resolution of infection. Cross-kingdom interactions among bacteria, fungi, and/or the immune system during infection can enhance or block virulence mechanisms and influence disease progression. The fungus Candida albicans and the bacterium Pseudomonas aeruginosa are coisolated in the context of polymicrobial infection at a variety of sites throughout the body, including mucosal tissues such as the lung. In vitro, C. albicans and P. aeruginosa have a bidirectional and largely antagonistic relationship. Their interactions in vivo remain poorly understood, specifically regarding host responses in mediating infection. In this study, we examine trikingdom interactions using a transparent juvenile zebrafish to model mucosal lung infection and show that C. albicans and P. aeruginosa are synergistically virulent. We find that high C. albicans burden, fungal epithelial invasion, swimbladder edema, and epithelial extrusion events serve as predictive factors for mortality in our infection model. Longitudinal analyses of fungal, bacterial, and immune dynamics during coinfection suggest that enhanced morbidity is associated with exacerbated C. albicans pathogenesis and elevated inflammation. The P. aeruginosa quorum-sensing-deficient ΔlasR mutant also enhances C. albicans pathogenicity in coinfection and induces extrusion of the swimbladder. Together, these observations suggest that C. albicans-P. aeruginosa cross talk in vivo can benefit both organisms to the detriment of the host.
Collapse
Affiliation(s)
- Audrey C Bergeron
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Brittany G Seman
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - John H Hammond
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Linda S Archambault
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert T Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| |
Collapse
|
47
|
Bouyahya A, Dakka N, Et-Touys A, Abrini J, Bakri Y. Medicinal plant products targeting quorum sensing for combating bacterial infections. ASIAN PAC J TROP MED 2017; 10:729-743. [DOI: 10.1016/j.apjtm.2017.07.021] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 01/18/2023] Open
|
48
|
Quorum sensing by farnesol revisited. Curr Genet 2017; 63:791-797. [DOI: 10.1007/s00294-017-0683-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 12/18/2022]
|
49
|
Rodrigues ME, Lopes SP, Pereira CR, Azevedo NF, Lourenço A, Henriques M, Pereira MO. Polymicrobial Ventilator-Associated Pneumonia: Fighting In Vitro Candida albicans-Pseudomonas aeruginosa Biofilms with Antifungal-Antibacterial Combination Therapy. PLoS One 2017; 12:e0170433. [PMID: 28114348 PMCID: PMC5256963 DOI: 10.1371/journal.pone.0170433] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/04/2017] [Indexed: 11/17/2022] Open
Abstract
The polymicrobial nature of ventilator-associated pneumonia (VAP) is now evident, with mixed bacterial-fungal biofilms colonizing the VAP endotracheal tube (ETT) surface. The microbial interplay within this infection may contribute for enhanced pathogenesis and exert impact towards antimicrobial therapy. Consequently, the high mortality/morbidity rates associated to VAP and the worldwide increase in antibiotic resistance has promoted the search for novel therapeutic strategies to fight VAP polymicrobial infections. Under this scope, this work aimed to assess the activity of mono- vs combinational antimicrobial therapy using one antibiotic (Polymyxin B; PolyB) and one antifungal (Amphotericin B; AmB) agent against polymicrobial biofilms of Pseudomonas aeruginosa and Candida albicans. The action of isolated antimicrobials was firstly evaluated in single- and polymicrobial cultures, with AmB being more effective against C. albicans and PolyB against P. aeruginosa. Mixed planktonic cultures required equal or higher antimicrobial concentrations. In biofilms, only PolyB at relatively high concentrations could reduce P. aeruginosa in both monospecies and polymicrobial populations, with C. albicans displaying only punctual disturbances. PolyB and AmB exhibited a synergistic effect against P. aeruginosa and C. albicans mixed planktonic cultures, but only high doses (256 mg L-1) of PolyB were able to eradicate polymicrobial biofilms, with P. aeruginosa showing loss of cultivability (but not viability) at 2 h post-treatment, whilst C. albicans only started to be inhibited after 14 h. In conclusion, combination therapy involving an antibiotic and an antifungal agent holds an attractive therapeutic option to treat severe bacterial-fungal polymicrobial infections. Nevertheless, optimization of antimicrobial doses and further clinical pharmacokinetics/pharmacodynamics and toxicodynamics studies underpinning the optimal use of these drugs are urgently required to improve therapy effectiveness and avoid reinfection.
Collapse
Affiliation(s)
- Maria E Rodrigues
- Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Susana P Lopes
- Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Cláudia R Pereira
- Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Nuno F Azevedo
- LEPABE-Dep. of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Anália Lourenço
- Departamento de Informática-Universidade de Vigo, ESEI-Escuela Superior de Ingeniería Informática, Edificio politécnico, Campus Universitario As Lagoas, Ourense, Spain.,Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Mariana Henriques
- Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Maria O Pereira
- Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
50
|
Mousa WK, Athar B, Merwin NJ, Magarvey NA. Antibiotics and specialized metabolites from the human microbiota. Nat Prod Rep 2017; 34:1302-1331. [DOI: 10.1039/c7np00021a] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human microbiota associated with each body site produce specialized molecules to kill human pathogens. Advanced bioinformatics tools will help to discover unique microbiome chemistry.
Collapse
Affiliation(s)
- Walaa K. Mousa
- Departments of Biochemistry and Biomedical Sciences & Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
- Canada L8S 4K1
| | - Bilal Athar
- Departments of Biochemistry and Biomedical Sciences & Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
- Canada L8S 4K1
| | - Nishanth J. Merwin
- Departments of Biochemistry and Biomedical Sciences & Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
- Canada L8S 4K1
| | - Nathan A. Magarvey
- Departments of Biochemistry and Biomedical Sciences & Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
- Canada L8S 4K1
| |
Collapse
|