1
|
Li X, Li J, Yuan H, Chen Y, Li S, Jiang S, Zha Xi Y, Zhang G, Lu J. Effect of supplementation with Glycyrrhiza uralensis extract and Lactobacillus acidophilus on growth performance and intestinal health in broiler chickens. Front Vet Sci 2024; 11:1436807. [PMID: 39091388 PMCID: PMC11291472 DOI: 10.3389/fvets.2024.1436807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Intestinal microbiota community is an important factor affecting the nutritional and health status of poultry, and its balance is crucial for improving the overall health of poultry. The study aimed to investigate the effect of dietary supplementation with Glycyrrhiza uralensis extract (GUE), Lactobacillus acidophilus (Lac) and their combination (GL) on growth performance and intestinal health in broilers in an 84-day feeding experiment. Supplementary 0.1% GUE and 4.5×107 CFU/g Lac significantly increased average daily gain (ADG), and GL (0.1% GUE and 4.5×107 CFU/g Lac) increased ADG and average daily feed intake (ADFI), and decreased feed conversion rate (FCR) in broilers aged 29 to 84 d and 1 to 84 d. Dietary GUE, Lac and GL increased the superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity and decreased Malondialdehyde (MDA) content in the jejunum mucosa of broilers, and increased secretory IgA (sIgA) content in broilers at 84 d. Moreover, GUE, Lac and GL increased cecal microbial richness and diversity, and modulated microbial community composition. Both GUE and Lac reduced the harmful bacteria Epsilonbacteraeota, Helicobacter, and H. pullorum at 28 d and Proteobacteria, Escherichia, and E. coli at 84 d, while Lac and GL increased beneficial bacteria Lactobacillus and L. gallinarum at 28 d. Compared with individual supplementation, GL markedly increased the SOD activity and the sIgA content, and reduced Helicobacter and Helicobacter pullorum. In conclusion, GUE and Lactobacillus acidophilus as feed additives benefit growth performance and intestinal health, and their combined use shows an even more positive effect in broilers.
Collapse
Affiliation(s)
- Ximei Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jiawei Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Haotian Yuan
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yan Chen
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Shuaibing Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Susu Jiang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
- Department of Animal Science and Technology, Gansu Agriculture Technology College, Lanzhou, China
| | - Yingpai Zha Xi
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Guohua Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jianxiong Lu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
2
|
Effects of Compound Polysaccharides Derived from Astragalus and Glycyrrhiza on Growth Performance, Meat Quality and Antioxidant Function of Broilers Based on Serum Metabolomics and Cecal Microbiota. Antioxidants (Basel) 2022; 11:antiox11101872. [PMID: 36290595 PMCID: PMC9598874 DOI: 10.3390/antiox11101872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
This study aimed to evaluate the effects of dietary supplementation of compound polysaccharides derived from Astragalus and Glycyrrhiza on growth performance, meat quality, antioxidant function, cecal microbiota and serum metabolomics of broilers. A total of 480 one-day-old male Arbor Acres (AA) broilers were randomly divided into four treatments with six replicates comprising 20 broilers each. Treatments: CON group was the basal diet; ANT group was supplemented with Terramycin calcium; LAG group was supplemented with 150 mg/kg Astragalus polysaccharides and 75 mg/kg Glycyrrhiza polysaccharides; HAG group was supplemented with 300 mg/kg Astragalus polysaccharides and 150 mg/kg Glycyrrhiza polysaccharides. The results showed that LAG and HAG supplementation increased growth performance, antioxidant function and meat quality compared with the CON group and ANT group and, especially, the effect of LAG treatment was better than HAG. Analysis of cecal microbiota showed that LAG and HAG supplementation altered cecal microbial diversity and composition in broilers. Serum metabolomics analysis showed that a total of 193 differential metabolites were identified in CON and LAG groups, which were mainly enriched in linoleic acid metabolism and glutathione metabolism pathways. Moreover, there was a close correlation between serum metabolites, cecal microbiota and phenotypic indicators. Conclusion: Dietary supplementation of 150 mg/kg Astragalus polysaccharides and 75 mg/kg Glycyrrhiza polysaccharides could improve the growth performance, antioxidant function and meat quality of broilers by changing the serum metabolites and cecal microbiota composition.
Collapse
|
3
|
Patrick S. A tale of two habitats: Bacteroides fragilis, a lethal pathogen and resident in the human gastrointestinal microbiome. Microbiology (Reading) 2022; 168. [DOI: 10.1099/mic.0.001156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacteroides fragilis
is an obligately anaerobic Gram-negative bacterium and a major colonizer of the human large colon where
Bacteroides
is a predominant genus. During the growth of an individual clonal population, an astonishing number of reversible DNA inversion events occur, driving within-strain diversity. Additionally, the
B. fragilis
pan-genome contains a large pool of diverse polysaccharide biosynthesis loci, DNA restriction/modification systems and polysaccharide utilization loci, which generates remarkable between-strain diversity. Diversity clearly contributes to the success of
B. fragilis
within its normal habitat of the gastrointestinal (GI) tract and during infection in the extra-intestinal host environment. Within the GI tract,
B. fragilis
is usually symbiotic, for example providing localized nutrients for the gut epithelium, but
B. fragilis
within the GI tract may not always be benign. Metalloprotease toxin production is strongly associated with colorectal cancer.
B. fragilis
is unique amongst bacteria; some strains export a protein >99 % structurally similar to human ubiquitin and antigenically cross-reactive, which suggests a link to autoimmune diseases.
B. fragilis
is not a primary invasive enteric pathogen; however, if colonic contents contaminate the extra-intestinal host environment, it successfully adapts to this new habitat and causes infection; classically peritoneal infection arising from rupture of an inflamed appendix or GI surgery, which if untreated, can progress to bacteraemia and death. In this review selected aspects of
B. fragilis
adaptation to the different habitats of the GI tract and the extra-intestinal host environment are considered, along with the considerable challenges faced when studying this highly variable bacterium.
Collapse
Affiliation(s)
- Sheila Patrick
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences Queen’s University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| |
Collapse
|
4
|
Fan Y, Su Q, Chen J, Wang Y, He S. Gut Microbiome Alterations Affect Glioma Development and Foxp3 Expression in Tumor Microenvironment in Mice. Front Oncol 2022; 12:836953. [PMID: 35345443 PMCID: PMC8957261 DOI: 10.3389/fonc.2022.836953] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Glioma is the most common malignant tumor of the central nervous system (CNS), with high degree of malignancy and poor prognosis. The gut microbiome (GM) is composed of microorganisms with different properties and functions, which play an important role in human physiology and biological activities. It has been proved that GM can affect the development of glioma through natural immunity, but whether GM can affect glioma through adaptive immunity and whether there are some microorganisms in the GM that may affect glioma growth still remain unclear. In our study, we evaluated the relationship between GM and glioma. We proved that (I) glioma growth can induce structural changes of mouse GM, including the decreased abundance of Bacteroidia and increased abundance of Firmicutes. (II) GM dysbiosis can downregulate Foxp3 expression in the brain and promote glioma growth. A balanced environment of GM can upregulate the expression of Foxp3 in the brain and delay the development of glioma. (III) The increased abundance of Bacteroidia is associated with accelerated glioma progression, while its decreased abundance is associated with delayed glioma progression, which may be one of the key microorganisms affecting glioma growth. This study is helpful to reveal the relationship between GM and glioma development and provide new ideas for adjuvant therapy of glioma.
Collapse
Affiliation(s)
- Yiqi Fan
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Su
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junxiao Chen
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Wang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuai He
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Russo E, Giudici F, Ricci F, Scaringi S, Nannini G, Ficari F, Luceri C, Niccolai E, Baldi S, D'Ambrosio M, Ramazzotti M, Amedei A. Diving into Inflammation: A Pilot Study Exploring the Dynamics of the Immune-Microbiota Axis in Ileal Tissue Layers of Patients with Crohn's Disease. J Crohns Colitis 2021; 15:1500-1516. [PMID: 33611347 DOI: 10.1093/ecco-jcc/jjab034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS The pathogenesis of Crohn's disease [CD] is still unclear. Disorders in the mucosal immunoregulation and its crosstalk with the microbiota may represent an important component in tissue injury. We aimed to characterize the molecular immune response distribution within the ileal layers and to evaluate the correlated microbiota in pathological/healthy settings comparing first surgery/relapse clinical conditions. METHODS We enrolled 12 CD patients. A comprehensive analysis of an ileal mucosa, submucosa and serosa broad-spectrum cytokine panel was performed through a multiplex approach. In addition, ileal microbiota composition was assessed through next generation sequencing. RESULTS We observed a distinct profile [of IL1-α, IL-1β, IL-4, IL-8, ICAM-1, E-Selectin, P-Selectin, IP-10, IL 6 and IL 18] across the CD vs healthy ileal layers; and a different distribution of IFN- γ, P-Selectin, IL-27 and IL-21 in first surgery vs relapse patients. In addition, the phylum Tenericutes, the family Ruminococcaceae, and the genera Mesoplasma and Mycoplasma were significantly enriched in the pathological setting. Significant microbiota differences were observed between relapse and first surgery patients regarding the class Bacteroidia, and the genera Prevotella, Flavobacterium, Tepidimonas and Escherichia/Shigella. Finally, the abundance of the genus Mycoplasma was positively correlated with IL-18. CONCLUSIONS We describe a dissimilarity of cytokine distribution and microbiota composition within CD and adjacent healthy ileal tissue layers and between first operation and surgical relapse. Our results give potential insight into the dynamics of the gut microbiota-immune axis in CD patients, leading to detection of new biomarkers.
Collapse
Affiliation(s)
- Edda Russo
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Federica Ricci
- Tumor Cell Biology Unit - Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Stefano Scaringi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Ferdinando Ficari
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Cristina Luceri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Mario D'Ambrosio
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical "Mario Serio", Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| |
Collapse
|
6
|
Liu YS, Li S, Wang XF, Xing T, Li JL, Zhu XD, Zhang L, Gao F. Microbiota populations and short-chain fatty acids production in cecum of immunosuppressed broilers consuming diets containing γ-irradiated Astragalus polysaccharides. Poult Sci 2020; 100:273-282. [PMID: 33357691 PMCID: PMC7772697 DOI: 10.1016/j.psj.2020.09.089] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
This study was designed to evaluate the effects of γ-irradiated Astragalus polysaccharides (IAPS) on growth performance, cecal microbiota populations, and concentrations of cecal short-chain fatty acids of immunosuppressed broilers. A total of 144 one-day-old broiler chicks were randomly assigned into 3 groups: nontreated group (control), cyclophosphamide (CPM)-treated groups fed either a basal diet or the diets containing 900 mg/kg IAPS, respectively. On day 16, 18, and 20, broilers in the control group were intramuscularly injected with 0.5 mL sterilized saline (0.75%, wt/vol), and those in the CPM and IAPS groups were intramuscularly injected with 0.5 mL CPM (40 mg/kg of BW). The trial lasted 21 d. Compared with the control group, CPM treatment decreased the broiler average daily gain (ADG) and feed intake (P < 0.05) but did not affect the overall microbial diversity and compositions, as well as the concentrations of cecal acetate, propionate, and butyrate in cecum of broilers (P > 0.05). Dietary IAPS supplementation increased broiler ADG, Shannon index, and decreased Simpson index (P < 0.05). Specifically, broilers fed diets containing IAPS showed lower abundances of Faecalibacterium, Bacteroides, and Butyricicoccus and higher proportions of Ruminococcaceae UCG-014, Negativibacillus, Shuttleworthia, Sellimonas, and Mollicutes RF39_norank, respectively (P < 0.05). The IAPS treatment also increased butyrate concentration (P < 0.05) and tended to elevate acetate concentration (P = 0.052) in cecal digesta. The results indicated that IAPS are effective in increasing the cecal beneficial bacteria and short-chain fatty acids production, contributing to improvement in the growth performance of immunosuppressive broilers. These findings may expand our knowledge about the function of modified Astragalus polysaccharides in broiler chickens.
Collapse
Affiliation(s)
- Y S Liu
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - S Li
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - X F Wang
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - T Xing
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - J L Li
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - X D Zhu
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - L Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - F Gao
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Yekani M, Baghi HB, Naghili B, Vahed SZ, Sóki J, Memar MY. To resist and persist: Important factors in the pathogenesis of Bacteroides fragilis. Microb Pathog 2020; 149:104506. [PMID: 32950639 DOI: 10.1016/j.micpath.2020.104506] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Bacteroides fragilis is a most frequent anaerobic pathogen isolated from human infections, particularly found in the abdominal cavity. Different factors contribute to the pathogenesis and persistence of B. fragilis at infection sites. The knowledge of the virulence factors can provide applicable information for finding alternative options for the antibiotic therapy and treatment of B. fragilis caused infections. Herein, a comprehensive review of the important B. fragilis virulence factors was prepared. In addition to B. fragilis toxin (BFT) and its potential role in the diarrhea and cancer development, some other important virulence factors and characteristics of B. fragilis are described including capsular polysaccharides, iron acquisition, resistance to antimicrobial agents, and survival during the prolonged oxidative stress, quorum sensing, and secretion systems.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee,Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - József Sóki
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Microbiology Department, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Valguarnera E, Wardenburg JB. Good Gone Bad: One Toxin Away From Disease for Bacteroides fragilis. J Mol Biol 2019; 432:765-785. [PMID: 31857085 DOI: 10.1016/j.jmb.2019.12.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023]
Abstract
The human gut is colonized by hundreds of trillions of microorganisms whose acquisition begins during early infancy. Species from the Bacteroides genus are ubiquitous commensals, comprising about thirty percent of the human gut microbiota. Bacteroides fragilis is one of the least abundant Bacteroides species, yet is the most common anaerobe isolated from extraintestinal infections in humans. A subset of B. fragilis strains carry a genetic element that encodes a metalloprotease enterotoxin named Bacteroides fragilis toxin, or BFT. Toxin-bearing strains, or Enterotoxigenic B. fragilis (ETBF) cause acute and chronic intestinal disease in children and adults. Despite this association with disease, around twenty percent of the human population appear to be asymptomatic carriers of ETBF. BFT damages the colonic epithelial barrier by inducing cleavage of the zonula adherens protein E-cadherin and initiating a cell signaling response characterized by inflammation and c-Myc-dependent pro-oncogenic hyperproliferation. As a consequence, mice harboring genetic mutations that predispose to colonic inflammation or tumor formation are uniquely susceptible to toxin-mediated injury. The recent observation of ETBF-bearing biofilms in colon biopsies from humans with colon cancer susceptibility loci strongly suggests that ETBF is a driver of colorectal cancer. This article will address ETBF biology from a host-pathobiont perspective, including clinical data, analysis of molecular mechanisms of disease, and the complex ecological context of the human gut.
Collapse
Affiliation(s)
- Ezequiel Valguarnera
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave. Box 8208, St. Louis, MO 63110
| | - Juliane Bubeck Wardenburg
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave. Box 8208, St. Louis, MO 63110.
| |
Collapse
|
9
|
New and Preliminary Evidence on Altered Oral and Gut Microbiota in Individuals with Autism Spectrum Disorder (ASD): Implications for ASD Diagnosis and Subtyping Based on Microbial Biomarkers. Nutrients 2019; 11:nu11092128. [PMID: 31489949 PMCID: PMC6770733 DOI: 10.3390/nu11092128] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurological and developmental disorder characterized by behavioral and social impairments as well as multiple co-occurring conditions, such as gastrointestinal abnormalities, dental/periodontal diseases, and allergies. The etiology of ASD likely involves interaction between genetic and environmental factors. Recent studies suggest that oral and gut microbiome play important roles in the pathogenesis of inflammation, immune dysfunction, and disruption of the gut–brain axis, which may contribute to ASD pathophysiology. The majority of previous studies used unrelated neurotypical individuals as controls, and they focused on the gut microbiome, with little attention paid to the oral flora. In this pilot study, we used a first degree-relative matched design combined with high fidelity 16S rRNA (ribosomal RNA) gene amplicon sequencing in order to characterize the oral and gut microbiotas of patients with ASD compared to neurotypical individuals, and explored the utility of microbiome markers for ASD diagnosis and subtyping of clinical comorbid conditions. Additionally, we aimed to develop microbiome biomarkers to monitor responses to a subsequent clinical trial using probiotics supplementation. We identified distinct features of gut and salivary microbiota that differed between ASD patients and neurotypical controls. We next explored the utility of some differentially enriched markers for ASD diagnosis and examined the association between the oral and gut microbiomes using network analysis. Due to the tremendous clinical heterogeneity of the ASD population, we explored the relationship between microbiome and clinical indices as an attempt to extract microbiome signatures assocociated with clinical subtypes, including allergies, abdominal pain, and abnormal dietary habits. The diagnosis of ASD currently relies on psychological testing with potentially high subjectivity. Given the emerging role that the oral and gut microbiome plays in systemic diseases, our study will provide preliminary evidence for developing microbial markers that can be used to diagnose or guide treatment of ASD and comorbid conditions. These preliminary results also serve as a starting point to test whether altering the oral and gut microbiome could improve co-morbid conditions in patients with ASD and further modify the core symptoms of ASD.
Collapse
|
10
|
Lower Level of Bacteroides in the Gut Microbiota Is Associated with Inflammatory Bowel Disease: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5828959. [PMID: 27999802 PMCID: PMC5143693 DOI: 10.1155/2016/5828959] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022]
Abstract
Background and Aims. Multiple studies have reported associations between inflammatory bowel disease (IBD) and the flora disequilibrium of Bacteroides. We performed a meta-analysis of the available data to provide a more precise estimate of the association between Bacteroides level in the gut and IBD. Methods. We searched PubMed/MEDLINE, EMBASE, Cochrane Library, Wiley Library, BIOSIS previews, Web of Science, CNKI, and ScienceDirect databases for published literature on IBD and gut microbiota from 1990 to 2016. Quality of all eligible studies was assessed using the Newcastle-Ottawa Quality Assessment Scale (NOS). We compared the level of Bacteroides in IBD patients with that in a control group without IBD, different types of IBD patients, and IBD patients with active phase and in remission. Results. We identified 63 articles, 9 of which contained sufficient data for evaluation. The mean level of Bacteroides was significantly lower in Crohn's disease (CD) and ulcerative colitis (UC) patients in active phase than in normal controls. The level of Bacteroides in remission CD and UC patients was much lower than patients in the control group. Bacteroides level was even lower in patients with CD and UC in active phase than in remission. Conclusions. This analysis suggests that lower levels of Bacteroides are associated with IBD, especially in active phase.
Collapse
|
11
|
Wilson MM, Anderson DE, Bernstein HD. Analysis of the outer membrane proteome and secretome of Bacteroides fragilis reveals a multiplicity of secretion mechanisms. PLoS One 2015; 10:e0117732. [PMID: 25658944 PMCID: PMC4319957 DOI: 10.1371/journal.pone.0117732] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/31/2014] [Indexed: 01/28/2023] Open
Abstract
Bacteroides fragilis is a widely distributed member of the human gut microbiome and an opportunistic pathogen. Cell surface molecules produced by this organism likely play important roles in colonization, communication with other microbes, and pathogenicity, but the protein composition of the outer membrane (OM) and the mechanisms used to transport polypeptides into the extracellular space are poorly characterized. Here we used LC-MS/MS to analyze the OM proteome and secretome of B. fragilis NCTC 9343 grown under laboratory conditions. Of the 229 OM proteins that we identified, 108 are predicted to be lipoproteins, and 61 are predicted to be TonB-dependent transporters. Based on their proximity to genes encoding TonB-dependent transporters, many of the lipoprotein genes likely encode proteins involved in nutrient or small molecule uptake. Interestingly, protease accessibility and biotinylation experiments indicated that an unusually large fraction of the lipoproteins are cell-surface exposed. We also identified three proteins that are members of a novel family of autotransporters, multiple potential type I protein secretion systems, and proteins that appear to be components of a type VI secretion apparatus. The secretome consisted of lipoproteins and other proteins that might be substrates of the putative type I or type VI secretion systems. Our proteomic studies show that B. fragilis differs considerably from well-studied Gram-negative bacteria such as Escherichia coli in both the spectrum of OM proteins that it produces and the range of secretion strategies that it utilizes.
Collapse
Affiliation(s)
- Marlena M. Wilson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - D. Eric Anderson
- Advanced Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Harris D. Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
12
|
Veeranagouda Y, Husain F, Tenorio EL, Wexler HM. Identification of genes required for the survival of B. fragilis using massive parallel sequencing of a saturated transposon mutant library. BMC Genomics 2014; 15:429. [PMID: 24899126 PMCID: PMC4072883 DOI: 10.1186/1471-2164-15-429] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacteroides fragilis is a Gram-negative anaerobe that is normally a human gut commensal; it comprises a small percentage of the gut Bacteroides but is the most frequently isolated Bacteroides from human infections. Identification of the essential genes necessary for the survival of B. fragilis provides novel information which can be exploited for the treatment of bacterial infections. RESULTS Massive parallel sequencing of saturated transposon mutant libraries (two mutant pools of approximately 50,000 mutants each) was used to determine the essential genes for the growth of B. fragilis 638R on nutrient rich medium. Among the 4326 protein coding genes, 550 genes (12.7%) were found to be essential for the survival of B. fragilis 638R. Of the 550 essential genes, only 367 genes were assigned to a Cluster of Orthologous Genes, and about 290 genes had Kyoto Encyclopedia of Genes and Genomes orthologous members. Interestingly, genes with hypothetical functions accounted for 41.3% of essential genes (227 genes), indicating that the functions of a significant percentage of the genes used by B. fragilis 638R are still unknown. Global transcriptome analysis using RNA-Seq indicated that most of the essential genes (92%) are, in fact, transcribed in B. fragilis 638R including most of those coding for hypothetical proteins. Three hundred fifty of the 550 essential genes of B. fragilis 638R are present in Database of Essential Genes. 10.02 and 31% of those are genes included as essential genes for nine species (including Gram-positive pathogenic bacteria). CONCLUSIONS The essential gene data described in this investigation provides a valuable resource to study gene function and pathways involved in B. fragilis survival. Thorough examination of the B. fragilis-specific essential genes and genes that are shared between divergent organisms opens new research avenues that will lead to enhanced understanding of survival strategies used by bacteria in different microniches and under different stress situations.
Collapse
|
13
|
Galvão BPGV, Weber BW, Rafudeen MS, Ferreira EO, Patrick S, Abratt VR. Identification of a collagen type I adhesin of Bacteroides fragilis. PLoS One 2014; 9:e91141. [PMID: 24618940 PMCID: PMC3949742 DOI: 10.1371/journal.pone.0091141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/07/2014] [Indexed: 01/26/2023] Open
Abstract
Bacteroides fragilis is an opportunistic pathogen which can cause life threatening infections in humans and animals. The ability to adhere to components of the extracellular matrix, including collagen, is related to bacterial host colonisation. Collagen Far Western analysis of the B. fragilis outer membrane protein (OMP) fraction revealed the presence two collagen adhesin bands of ∼ 31 and ∼ 34 kDa. The collagen adhesins in the OMP fraction were separated and isolated by two-dimensional SDS-PAGE and also purified by collagen affinity chromatography. The collagen binding proteins isolated by both these independent methods were subjected to tandem mass spectroscopy for peptide identification and matched to a single hypothetical protein encoded by B. fragilis NCTC 9343 (BF0586), conserved in YCH46 (BF0662) and 638R (BF0633) and which is designated in this study as cbp1 (collagen binding protein). Functionality of the protein was confirmed by targeted insertional mutagenesis of the cbp1 gene in B. fragilis GSH18 which resulted in the specific loss of both the ∼ 31 kDa and the ∼ 34 kDa adhesin bands. Purified his-tagged Cbp1, expressed in a B. fragilis wild-type and a glycosylation deficient mutant, confirmed that the cbp1 gene encoded the observed collagen adhesin, and showed that the 34 kDa band represents a glycosylated version of the ∼ 31 kDa protein. Glycosylation did not appear to be required for binding collagen. This study is the first to report the presence of collagen type I adhesin proteins in B. fragilis and to functionally identify a gene encoding a collagen binding protein.
Collapse
Affiliation(s)
| | - Brandon W. Weber
- Structural Biology Research Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Western Cape, South Africa
| | - Mohamed S. Rafudeen
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, RSA
| | - Eliane O. Ferreira
- Departamento de Microbiologia Médica, UFRJ, Instituto de Microbiologia Prof. Paulo de Góes, Ilha do Fundão, Rio de Janeiro, Brazil
- Universidade Federal do Rio de Janeiro - Polo Xerém, Duque de Caxias, Rio de Janeiro, Brazil
| | - Sheila Patrick
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Valerie R. Abratt
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, RSA
- * E-mail:
| |
Collapse
|
14
|
Houston S, Hof R, Honeyman L, Hassler J, Cameron CE. Activation and proteolytic activity of the Treponema pallidum metalloprotease, pallilysin. PLoS Pathog 2012; 8:e1002822. [PMID: 22910436 PMCID: PMC3406077 DOI: 10.1371/journal.ppat.1002822] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/12/2012] [Indexed: 11/19/2022] Open
Abstract
Treponema pallidum is a highly invasive pathogen that undergoes rapid dissemination to establish widespread infection. Previous investigations identified the T. pallidum adhesin, pallilysin, as an HEXXH-containing metalloprotease that undergoes autocatalytic cleavage and degrades laminin and fibrinogen. In the current study we characterized pallilysin's active site, activation requirements, cellular location, and fibrin clot degradation capacity through both in vitro assays and heterologous treponemal expression and degradation studies. Site-directed mutagenesis showed the pallilysin HEXXH motif comprises at least part of the active site, as introduction of three independent mutations (AEXXH [H198A], HAXXH [E199A], and HEXXA [H202A]) abolished pallilysin-mediated fibrinogenolysis but did not adversely affect host component binding. Attainment of full pallilysin proteolytic activity was dependent upon autocatalytic cleavage of an N-terminal pro-domain, a process which could not occur in the HEXXH mutants. Pallilysin was shown to possess a thrombin cleavage site within its N-terminal pro-domain, and in vitro studies confirmed cleavage of pallilysin with thrombin generates a truncated pallilysin fragment that has enhanced proteolytic activity, suggesting pallilysin can also exploit the host coagulation process to facilitate protease activation. Opsonophagocytosis assays performed with viable T. pallidum demonstrated pallilysin is a target of opsonic antibodies, consistent with a host component-interacting, surface-exposed cellular location. Wild-type pallilysin, but not the HEXXA mutant, degraded fibrin clots, and similarly heterologous expression of pallilysin in the non-invasive spirochete Treponema phagedenis facilitated fibrin clot degradation. Collectively these results identify pallilysin as a surface-exposed metalloprotease within T. pallidum that possesses an HEXXH active site motif and requires autocatalytic or host-mediated cleavage of a pro-domain to attain full host component-directed proteolytic activity. Furthermore, our finding that expression of pallilysin confers upon T. phagedenis the capacity to degrade fibrin clots suggests this capability may contribute to the dissemination potential of T. pallidum. Syphilis, caused by the spirochete Treponema pallidum, is a chronic sexually transmitted disease which infects 12 million people annually. Treponema pallidum is highly invasive and undergoes widespread dissemination via the circulatory system. Similar to other invasive pathogens, T. pallidum has been shown to express a host-component-degrading protease, pallilysin, that binds and degrades human fibrinogen and laminin, suggesting a role for pallilysin in bacterial dissemination. Here we identify pallilysin active site residues using mutagenesis and show that, unlike wild-type, mutants fail to degrade fibrinogen. We show that pallilysin is converted into a highly proteolytically active form via truncation of a pro-domain through either autocatalytic cleavage or host-derived, thrombin-mediated cleavage. We also demonstrate that recombinant pallilysin enables clot dissolution and that pallilysin expressed on the surface of the non-invasive spirochete Treponema phagedenis confers the ability to degrade fibrin clots. Further, we show that pallilysin is present on the surface of T. pallidum and thus resides in a cellular location that facilitates direct contact with host components. Our study provides insight into the mechanism of interaction between pallilysin and two important coagulation system proteins, fibrinogen and thrombin, and suggests a novel mechanism that T. pallidum may utilize for dissemination during infection.
Collapse
Affiliation(s)
- Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Rebecca Hof
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Lisa Honeyman
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Julia Hassler
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail:
| |
Collapse
|
15
|
Galvão BPGV, Meggersee RL, Abratt VR. Antibiotic resistance and adhesion potential of Bacteroides fragilis clinical isolates from Cape Town, South Africa. Anaerobe 2011; 17:142-6. [PMID: 21530667 DOI: 10.1016/j.anaerobe.2011.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/01/2011] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
Abstract
The minimum inhibitory concentrations of 23 Bacteroides fragilis clinical isolates from Cape Town, South Africa, were established using the E-test method. Eight percent of the strains were found to be highly resistant to metronidazole (≥256 mg/L) imipenem and cefoxitin. This is an 8% increase in resistance compared to the previous metronidazole susceptibility screening performed in South Africa in 1998. Clindamycin was the most effective antibiotic with all strains showing sensitivity. Most of the strains (65%) were tetracycline resistant, while one strain, B. fragilis GSH15, showed multidrug resistance to metronidazole, imipenem, cefoxitin and tetracycline. PCR screening revealed that none of the strains contained any of the published nim genes. The particle agglutination assay was employed to determine the ability of the isolates to bind the ECM components fibronectin, laminin, mucin and collagen. This revealed that 78% of the clinical isolates adhered to all four ECM components to varying extents, with the strongest being to laminin and weakest to mucin and collagen Type I.
Collapse
Affiliation(s)
- B P G V Galvão
- Department of Molecular and Cellular Biology, University of Cape Town, Rondebosch, South Africa
| | | | | |
Collapse
|
16
|
Murphy EC, Mörgelin M, Cooney JC, Frick IM. Interaction of Bacteroides fragilis and Bacteroides thetaiotaomicron with the kallikrein-kinin system. MICROBIOLOGY-SGM 2011; 157:2094-2105. [PMID: 21527472 PMCID: PMC3167891 DOI: 10.1099/mic.0.046862-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many bacterial pathogens interfere with the contact system (kallikrein-kinin system) in human plasma. Activation of this system has two consequences: cleavage of high-molecular-mass kininogen (HK) resulting in release of the potent proinflammatory peptide bradykinin, and initiation of the intrinsic pathway of coagulation. In this study, two species of the Gram-negative anaerobic commensal organism Bacteroides, namely Bacteroides fragilis and Bacteroides thetaiotaomicron, were found to bind HK and fibrinogen, the major clotting protein, from human plasma as shown by immunoelectron microscopy and Western blot analysis. In addition, these Bacteroides species were capable of activating the contact system at its surface leading to a significant prolongation of the intrinsic coagulation time and also to the release of bradykinin. Members of the genus Bacteroides have been known to act as opportunistic pathogens outside the gut, with B. fragilis being the most common isolate from clinical infections, such as intra-abdominal abscesses and bacteraemia. The present results thus provide more insight into how Bacteroides species cause infection.
Collapse
Affiliation(s)
- Elizabeth C Murphy
- Department of Life Sciences and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.,Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden
| | - Matthias Mörgelin
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden
| | - Jakki C Cooney
- Department of Life Sciences and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| | - Inga-Maria Frick
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
17
|
McDowell A, Gao A, Barnard E, Fink C, Murray PI, Dowson CG, Nagy I, Lambert PA, Patrick S. A novel multilocus sequence typing scheme for the opportunistic pathogen Propionibacterium acnes and characterization of type I cell surface-associated antigens. MICROBIOLOGY-SGM 2011; 157:1990-2003. [PMID: 21511767 DOI: 10.1099/mic.0.049676-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have developed a novel multilocus sequence typing (MLST) scheme and database (http://pubmlst.org/pacnes/) for Propionibacterium acnes based on the analysis of seven core housekeeping genes. The scheme, which was validated against previously described antibody, single locus and random amplification of polymorphic DNA typing methods, displayed excellent resolution and differentiated 123 isolates into 37 sequence types (STs). An overall clonal population structure was detected with six eBURST groups representing the major clades I, II and III, along with two singletons. Two highly successful and global clonal lineages, ST6 (type IA) and ST10 (type IB(1)), representing 64 % of this current MLST isolate collection were identified. The ST6 clone and closely related single locus variants, which comprise a large clonal complex CC6, dominated isolates from patients with acne, and were also significantly associated with ophthalmic infections. Our data therefore support an association between acne and P. acnes strains from the type IA cluster and highlight the role of a widely disseminated clonal genotype in this condition. Characterization of type I cell surface-associated antigens that are not detected in ST10 or strains of type II and III identified two dermatan-sulphate-binding proteins with putative phase/antigenic variation signatures. We propose that the expression of these proteins by type IA organisms contributes to their role in the pathophysiology of acne and helps explain the recurrent nature of the disease. The MLST scheme and database described in this study should provide a valuable platform for future epidemiological and evolutionary studies of P. acnes.
Collapse
Affiliation(s)
- Andrew McDowell
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Anna Gao
- Micropathology Ltd, University of Warwick Science Park, Coventry CV4 7EZ, UK.,School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Emma Barnard
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Colin Fink
- Micropathology Ltd, University of Warwick Science Park, Coventry CV4 7EZ, UK
| | - Philip I Murray
- Academic Unit of Ophthalmology, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B18 7QU, UK
| | - Chris G Dowson
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Istvan Nagy
- Institute for Plant Genomics, Human Biotechnology and Bioenergy, Bay Zoltan Foundation for Applied Research, H-6701, Hungary
| | - Peter A Lambert
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Sheila Patrick
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
18
|
Patrick S, Blakely GW, Houston S, Moore J, Abratt VR, Bertalan M, Cerdeño-Tárraga AM, Quail MA, Corton N, Corton C, Bignell A, Barron A, Clark L, Bentley SD, Parkhill J. Twenty-eight divergent polysaccharide loci specifying within- and amongst-strain capsule diversity in three strains of Bacteroides fragilis. MICROBIOLOGY (READING, ENGLAND) 2010; 156:3255-3269. [PMID: 20829291 PMCID: PMC3090145 DOI: 10.1099/mic.0.042978-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Comparison of the complete genome sequence of Bacteroides fragilis 638R, originally isolated in the USA, was made with two previously sequenced strains isolated in the UK (NCTC 9343) and Japan (YCH46). The presence of 10 loci containing genes associated with polysaccharide (PS) biosynthesis, each including a putative Wzx flippase and Wzy polymerase, was confirmed in all three strains, despite a lack of cross-reactivity between NCTC 9343 and 638R surface PS-specific antibodies by immunolabelling and microscopy. Genomic comparisons revealed an exceptional level of PS biosynthesis locus diversity. Of the 10 divergent PS-associated loci apparent in each strain, none is similar between NCTC 9343 and 638R. YCH46 shares one locus with NCTC 9343, confirmed by mAb labelling, and a second different locus with 638R, making a total of 28 divergent PS biosynthesis loci amongst the three strains. The lack of expression of the phase-variable large capsule (LC) in strain 638R, observed in NCTC 9343, is likely to be due to a point mutation that generates a stop codon within a putative initiating glycosyltransferase, necessary for the expression of the LC in NCTC 9343. Other major sequence differences were observed to arise from different numbers and variety of inserted extra-chromosomal elements, in particular prophages. Extensive horizontal gene transfer has occurred within these strains, despite the presence of a significant number of divergent DNA restriction and modification systems that act to prevent acquisition of foreign DNA. The level of amongst-strain diversity in PS biosynthesis loci is unprecedented.
Collapse
Affiliation(s)
- Sheila Patrick
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Garry W Blakely
- Institute of Cell Biology, University of Edinburgh, Darwin Building, Kings Buildings, Edinburgh EH9 3JR, UK
| | - Simon Houston
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jane Moore
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Valerie R Abratt
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Marcelo Bertalan
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Ana M Cerdeño-Tárraga
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Michael A Quail
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Nicola Corton
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Craig Corton
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Alexandra Bignell
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Andrew Barron
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Louise Clark
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Stephen D Bentley
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Julian Parkhill
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|