1
|
Khandelwal H, Mutyala S, Kim M, Kong DS, Kim JR. Whole-cell redox biosensor for triclosan detection: Integrating spectrophotometric and electrochemical detection. Bioelectrochemistry 2025; 164:108921. [PMID: 39904301 DOI: 10.1016/j.bioelechem.2025.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Organic pollutants like bisphenol, acetaminophen, and triclosan, widely used in healthcare products, pose environmental risks and act as endocrine disruptors. These pollutants can alter the intracellular redox balance, making engineered whole-cell redox biosensors valuable for their detection. This study utilized the SoxRS regulatory system in bacteria, which responds to oxidative stress through NADP+/NADPH levels by modulating gene expression of SoxS through the SoxS promoter (pSoxS). A plasmid containing SoxR-pSoxS and the LacZ reporter gene was constructed and introduced into E. coli BL21 (ΔLacZ SoxRS+). The LacZ gene enabled dual detection using O-nitrophenyl-β-galactopyranoside (ONPG) for spectrophotometric detection or p-aminophenyl β-D-galactopyranoside (PAPG) for electrochemical detection. The whole-cell pRUSL12 redox biosensor was activated by redox inducers such as pyocyanin and methyl viologen, measurable via β-galactosidase assays. Among pollutants tested, triclosan specifically repressed SoxR:pSoxS::lacZ activity in the presence of pyocyanin or methyl viologen. Optimization identified pyocyanin as the more effective inducer for triclosan detection, with the biosensor capable of detecting triclosan in the 100-400 µg/L range. These redox-based biosensors offer a powerful tool for monitoring metabolic redox changes and identifying specific organic pollutants in the environment.
Collapse
Affiliation(s)
- Himanshu Khandelwal
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sakuntala Mutyala
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Minsoo Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Da Seul Kong
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environmental Energy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
2
|
Yilmaz S, Kanis B, Hogers RA, Benito-Vaquerizo S, Kahnt J, Glatter T, Dronsella B, Erb TJ, Suarez-Diez M, Claassens NJ. System-level characterization of engineered and evolved formatotrophic E. coli strains. Synth Syst Biotechnol 2025; 10:650-666. [PMID: 40166614 PMCID: PMC11957790 DOI: 10.1016/j.synbio.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/15/2025] [Accepted: 03/02/2025] [Indexed: 04/02/2025] Open
Abstract
One-carbon compounds, such as formate, are promising and sustainable feedstocks for microbial bioproduction of fuels and chemicals. Growth of Escherichia coli on formate was recently achieved by introducing the reductive glycine pathway (rGlyP) into its genome, which is theoretically the most energy-efficient aerobic formate assimilation pathway. While adaptive laboratory evolution was used to enhance the growth rate and biomass yield significantly, still the best performing formatotrophic E. coli strain did not approach the theoretical optimal biomass yield of the rGlyP. In this study, we investigated these previously engineered formatotrophic E. coli strains to find out why the biomass yield was sub-optimal and how it may be improved. Through a combination of metabolic modelling, genomic and proteomic analysis, we identified several potential metabolic bottlenecks and future targets for optimization. This study also reveals further insights in the evolutionary mutations and related changes in proteome allocation that supported the already substantially improved growth of formatotrophic E. coli strains. This systems-level analysis provides key insights to realize high-yield, fast growing formatotrophic strains for future bioproduction.
Collapse
Affiliation(s)
- Suzan Yilmaz
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| | - Boas Kanis
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
| | - Rensco A.H. Hogers
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
| | - Sara Benito-Vaquerizo
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jörg Kahnt
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Beau Dronsella
- Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tobias J. Erb
- Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology, Marburg, Germany
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
| | - Nico J. Claassens
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
3
|
Seregina TA, Shakulov RS, Sklyarova SA, Mironov AS. Disruptions of rpiAB Genes Encoding Ribose-5-Phosphate Isomerases in E. coli Increases Sensitivity of Bacteria to Antibiotics. Cells 2024; 13:1915. [PMID: 39594664 PMCID: PMC11592462 DOI: 10.3390/cells13221915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
In Escherichia coli cells, the main enzymes involved in pentose interconversion are ribose-5-phosphate isomerases RpiA and RpiB and ribulose-5-phosphate epimerase Rpe. The inactivation of rpiAB limits ribose-5-phosphate (R5P) synthesis via the oxidative branch of the pentose phosphate pathway (PPP) and unexpectedly results in antibiotic supersensitivity. This type of metabolism is accompanied by significant changes in the level of reducing equivalents of NADPH and glutathione, as well as a sharp drop in the ATP pool. However, this redox and energy imbalance does not lead to the activation of the soxRS oxidative stress defense system but the increased sensitivity to oxidants paraquat and H2O2. The deletion of rpiAB leads to a significant increase in the activity of transketalase (Tkt), a key enzyme of the nonoxidative branch of the PPP and increased sensitivity to ribose added in the growth medium. The phenotype of supersensitivity of rpiAB to antibiotics and ribose can be suppressed by activating the utilization of sedoheptulose-7-phosphate, which originates from R5P, to LPS synthesis or limitation of nucleoside catabolism by the inactivation of the DeoB enzyme, responsible for conversion of ribose-1-phospate to R5P. Our results indicate that the induction of unidirectional synthesis of R5P is the cause of supersensitivity to antibiotics in rpiAB mutant.
Collapse
|
4
|
Moreno A, Quereda-Moraleda I, Lozano-Vallhonrat C, Buñuel-Escudero M, Botha S, Kupitz C, Lisova S, Sierra R, Mariani V, Schleissner P, Gee LB, Dörner K, Schmidt C, Han H, Kloos M, Smyth P, Valerio J, Schulz J, de Wijn R, Melo DVM, Round A, Trost F, Sobolev E, Juncheng E, Sikorski M, Bean R, Martínez-Júlvez M, Martin-Garcia JM, Medina M. New insights into the function and molecular mechanisms of Ferredoxin-NADP + reductase from Brucella ovis. Arch Biochem Biophys 2024; 762:110204. [PMID: 39522858 DOI: 10.1016/j.abb.2024.110204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Bacterial ferredoxin(flavodoxin)-NADP+ reductases (FPR) primarily catalyze the transfer of reducing equivalents from NADPH to ferredoxin (or flavodoxin) to provide low potential reducing equivalents for the oxidoreductive metabolism. In addition, they can be implicated in regulating reactive oxygen species levels. Here we assess the functionality of FPR from B. ovis to understand its potential roles in the bacteria physiology. We prove that this FPR is active with the endogenous [2Fe-2S] Fdx ferredoxin, exhibiting a KMFdx in the low micromolar range. At the molecular level, this study provides with the first structures of an FPR at room temperature obtained by serial femtosecond crystallography, envisaging increase in flexibility at both the adenine nucleotide moiety of FAD and the C-terminal tail. The produced microcrystals are in addition suitable for future mix-and-inject time-resolved studies with the NADP+/H coenzyme either at synchrotrons or XFELs. Furthermore, the study also predicts the ability of FPR to simultaneously interact with Fdx and NADP+/H.
Collapse
Affiliation(s)
- Andrea Moreno
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), and GBsC (Unizar) join Unit to CSIC, Universidad de Zaragoza, 50018 Zaragoza, Spain; Departamento de Biología, Facultad de Ciencias, Universidad de los Andes, Venezuela
| | - Isabel Quereda-Moraleda
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid, Spain
| | - Celia Lozano-Vallhonrat
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid, Spain
| | - María Buñuel-Escudero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Sabine Botha
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, USA
| | | | - Stella Lisova
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Ray Sierra
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Valerio Mariani
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | - Leland B Gee
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), and GBsC (Unizar) join Unit to CSIC, Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Jose Manuel Martin-Garcia
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid, Spain.
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), and GBsC (Unizar) join Unit to CSIC, Universidad de Zaragoza, 50018 Zaragoza, Spain.
| |
Collapse
|
5
|
Palavecino A, Sartorio MG, Carrillo N, Cortez N, Bortolotti A. The extremophilic Andean isolate Acinetobacter sp. Ver3 expresses two ferredoxin-NADP + reductase isoforms with different catalytic properties. FEBS Lett 2024; 598:670-683. [PMID: 38433717 DOI: 10.1002/1873-3468.14826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 03/05/2024]
Abstract
Ferredoxin/flavodoxin-NADPH reductases (FPRs) catalyze the reversible electron transfer between NADPH and ferredoxin/flavodoxin. The Acinetobacter sp. Ver3 isolated from high-altitude Andean lakes contains two isoenzymes, FPR1ver3 and FPR2ver3. Absorption spectra of these FPRs revealed typical features of flavoproteins, consistent with the use of FAD as a prosthetic group. Spectral differences indicate distinct electronic arrangements for the flavin in each enzyme. Steady-state kinetic measurements show that the enzymes display catalytic efficiencies in the order of 1-6 μm-1·s-1, although FPR1ver3 exhibited higher kcat values compared to FPR2ver3. When flavodoxinver3 was used as a substrate, both reductases exhibited dissimilar behavior. Moreover, only FPR1ver3 is induced by oxidative stimuli, indicating that the polyextremophile Ver3 has evolved diverse strategies to cope with oxidative environments.
Collapse
Affiliation(s)
- Alejandro Palavecino
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (UNR & CONICET), Universidad Nacional de Rosario, Argentina
| | - Mariana Gabriela Sartorio
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (UNR & CONICET), Universidad Nacional de Rosario, Argentina
| | - Néstor Carrillo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (UNR & CONICET), Universidad Nacional de Rosario, Argentina
| | - Néstor Cortez
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (UNR & CONICET), Universidad Nacional de Rosario, Argentina
| | - Ana Bortolotti
- Área Biofísica, Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas., Universidad Nacional de Rosario (UNR & CONICET), Rosario, Argentina
| |
Collapse
|
6
|
Abstract
Environments inhabited by Enterobacteriaceae are diverse and often stressful. This is particularly true for Escherichia coli and Salmonella during host association in the gastrointestinal systems of animals. There, E. coli and Salmonella must survive exposure to various antimicrobial compounds produced or ingested by their host. A myriad of changes to cellular physiology and metabolism are required to achieve this feat. A central regulatory network responsible for sensing and responding to intracellular chemical stressors like antibiotics are the Mar, Sox, and Rob systems found throughout the Enterobacteriaceae. Each of these distinct regulatory networks controls expression of an overlapping set of downstream genes whose collective effects result in increased resistance to a wide array of antimicrobial compounds. This collection of genes is known as the mar-sox-rob regulon. This review will provide an overview of the mar-sox-rob regulon and molecular architecture of the Mar, Sox, and Rob systems.
Collapse
Affiliation(s)
- Lon M. Chubiz
- Department of Biology, University of Missouri–St. Louis, St. Louis, Missouri, USA
- Biochemistry and Biotechnology Program, University of Missouri–St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Seregina TA, Petrushanko IY, Zaripov PI, Shakulov RS, A. Sklyarova S, Mitkevich VA, Makarov AA, Mironov AS. Activation of Purine Biosynthesis Suppresses the Sensitivity of E. coli gmhA Mutant to Antibiotics. Int J Mol Sci 2023; 24:16070. [PMID: 38003258 PMCID: PMC10671730 DOI: 10.3390/ijms242216070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Inactivation of enzymes responsible for biosynthesis of the cell wall component of ADP-glycero-manno-heptose causes the development of oxidative stress and sensitivity of bacteria to antibiotics of a hydrophobic nature. The metabolic precursor of ADP-heptose is sedoheptulose-7-phosphate (S7P), an intermediate of the non-oxidative branch of the pentose phosphate pathway (PPP), in which ribose-5-phosphate and NADPH are generated. Inactivation of the first stage of ADP-heptose synthesis (ΔgmhA) prevents the outflow of S7P from the PPP, and this mutant is characterized by a reduced biosynthesis of NADPH and of the Glu-Cys-Gly tripeptide, glutathione, molecules known to be involved in the resistance to oxidative stress. We found that the derepression of purine biosynthesis (∆purR) normalizes the metabolic equilibrium in PPP in ΔgmhA mutants, suppressing the negative effects of gmhA mutation likely via the over-expression of the glycine-serine pathway that is under the negative control of PurR and might be responsible for the enhanced synthesis of NADPH and glutathione. Consistently, the activity of the soxRS system, as well as the level of glutathionylation and oxidation of proteins, indicative of oxidative stress, were reduced in the double ΔgmhAΔpurR mutant compared to the ΔgmhA mutant.
Collapse
|
8
|
Pauleta SR, Grazina R, Carepo MS, Moura JJ, Moura I. Iron-sulfur clusters – functions of an ancient metal site. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:105-173. [DOI: 10.1016/b978-0-12-823144-9.00116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Characterization of components of a reducing system for SoxR in the cytoplasmic membrane of Escherichia coli. J Microbiol 2022; 60:387-394. [DOI: 10.1007/s12275-022-1667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 11/26/2022]
|
10
|
Méndez V, Rodríguez-Castro L, Durán RE, Padrón G, Seeger M. The OxyR and SoxR transcriptional regulators are involved in a broad oxidative stress response in Paraburkholderia xenovorans LB400. Biol Res 2022; 55:7. [PMID: 35184754 PMCID: PMC8859910 DOI: 10.1186/s40659-022-00373-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/13/2022] [Indexed: 11/29/2022] Open
Abstract
Background Aerobic metabolism generates reactive oxygen species that may cause critical harm to the cell. The aim of this study is the characterization of the stress responses in the model aromatic-degrading bacterium Paraburkholderia xenovorans LB400 to the oxidizing agents paraquat and H2O2. Methods Antioxidant genes were identified by bioinformatic methods in the genome of P. xenovorans LB400, and the phylogeny of its OxyR and SoxR transcriptional regulators were studied. Functionality of the transcriptional regulators from strain LB400 was assessed by complementation with LB400 SoxR of null mutant P. aeruginosa ΔsoxR, and the construction of P. xenovorans pIZoxyR that overexpresses OxyR. The effects of oxidizing agents on P. xenovorans were studied measuring bacterial susceptibility, survival and ROS formation after exposure to paraquat and H2O2. The effects of these oxidants on gene expression (qRT-PCR) and the proteome (LC–MS/MS) were quantified. Results P. xenovorans LB400 possesses a wide repertoire of genes for the antioxidant defense including the oxyR, ahpC, ahpF, kat, trxB, dpsA and gorA genes, whose orthologous genes are regulated by the transcriptional regulator OxyR in E. coli. The LB400 genome also harbors the soxR, fumC, acnA, sodB, fpr and fldX genes, whose orthologous genes are regulated by the transcriptional regulator SoxR in E. coli. The functionality of the LB400 soxR gene was confirmed by complementation of null mutant P. aeruginosa ΔsoxR. Growth, susceptibility, and ROS formation assays revealed that LB400 cells were more susceptible to paraquat than H2O2. Transcriptional analyses indicated the upregulation of the oxyR, ahpC1, katE and ohrB genes in LB400 cells after exposure to H2O2, whereas the oxyR, fumC, ahpC1, sodB1 and ohrB genes were induced in presence of paraquat. Proteome analysis revealed that paraquat induced the oxidative stress response proteins AhpCF and DpsA, the universal stress protein UspA and the RNA chaperone CspA. Both oxidizing agents induced the Ohr protein, which is involved in organic peroxide resistance. Notably, the overexpression of the LB400 oxyR gene in P. xenovorans significantly decreased the ROS formation and the susceptibility to paraquat, suggesting a broad OxyR-regulated antioxidant response. Conclusions This study showed that P. xenovorans LB400 possess a broad range oxidative stress response, which explain the high resistance of this strain to the oxidizing compounds paraquat and H2O2. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00373-7.
Collapse
|
11
|
Vazulka S, Schiavinato M, Wagenknecht M, Cserjan-Puschmann M, Striedner G. Interaction of Periplasmic Fab Production and Intracellular Redox Balance in Escherichia coli Affects Product Yield. ACS Synth Biol 2022; 11:820-834. [PMID: 35041397 PMCID: PMC8859853 DOI: 10.1021/acssynbio.1c00502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibody fragments such as Fab's require the formation of disulfide bonds to achieve a proper folding state. During their recombinant, periplasmic expression in Escherichia coli, oxidative folding is mediated by the DsbA/DsbB system in concert with ubiquinone. Thereby, overexpression of Fab's is linked to the respiratory chain, which is not only immensely important for the cell's energy household but also known as a major source of reactive oxygen species. However, the effects of an increased oxidative folding demand and the consequently required electron flux via ubiquinone on the host cell have not been characterized so far. Here, we show that Fab expression in E. coli BL21(DE3) interfered with the intracellular redox balance, thereby negatively impacting host cell performance. Production of four different model Fab's in lab-scale fed-batch cultivations led to increased oxygen consumption rates and strong cell lysis. An RNA sequencing analysis revealed transcription activation of the oxidative stress-responsive soxS gene in the Fab-producing strains. We attributed this to the accumulation of intracellular superoxide, which was measured using flow cytometry. An exogenously supplemented ubiquinone analogue improved Fab yields up to 82%, indicating that partitioning of the quinone pool between aerobic respiration and oxidative folding limited ubiquinone availability and hence disulfide bond formation capacity. Combined, our results provide a more in-depth understanding of the profound effects that periplasmic Fab expression and in particular disulfide bond formation has on the host cell. Thereby, we show new possibilities to elaborate cell engineering and process strategies for improved host cell fitness and process outcome.
Collapse
Affiliation(s)
- Sophie Vazulka
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Matteo Schiavinato
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Martin Wagenknecht
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
12
|
Monchietti P, López Rivero AS, Ceccarelli EA, Catalano‐Dupuy DL. A new catalytic mechanism of bacterial ferredoxin-NADP + reductases due to a particular NADP + binding mode. Protein Sci 2021; 30:2106-2120. [PMID: 34382711 PMCID: PMC8442965 DOI: 10.1002/pro.4166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 08/01/2021] [Indexed: 01/19/2023]
Abstract
Ferredoxin-NADP+ reductases (FNRs) are ubiquitous flavoenzymes involved in redox metabolisms. FNRs catalyze the reversible electron transfer between NADP(H) and ferredoxin or flavodoxin. They are classified as plant- and mitochondrial-type FNR. Plant-type FNRs are divided into plastidic and bacterial classes. The plastidic FNRs show turnover numbers between 20 and 100 times higher than bacterial enzymes and these differences have been related to their physiological functions. We demonstrated that purified Escherichia coli FPR (EcFPR) contains tightly bound NADP+ , which does not occur in plastidic type FNRs. The three-dimensional structure of EcFPR evidenced that NADP+ interacts with three arginines (R144, R174, and R184) which could generate a very high affinity and structured site. These arginines are conserved in other bacterial FNRs but not in the plastidic enzymes. We have cross-substituted EcFPR arginines with residues present in analogous positions in the Pisum sativum FNR (PsFNR) and replaced these amino acids by arginines in PsFNR. We analyzed all proteins by structural, kinetic, and stability studies. We found that EcFPR mutants do not contain bound NADP+ and showed increased Km for this nucleotide. The EcFPR activity was inhibited by NADP+ but this behavior disappeared as arginines were removed. A NADP+ analog of the nicotinamide portion produced an activating effect on EcFPR and promoted the NADP+ release. Our results give evidence for a new model of NADP+ binding and catalysis in bacterial FNRs.We propose that this tight NADP+ binding constitutes an essential catalytic and regulatory mechanism of bacterial FNRs involved in redox homeostasis.
Collapse
Affiliation(s)
- Paula Monchietti
- Instituto de Biología Molecular y Celular de Rosario (IBR)CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y EsmeraldaRosarioArgentina
| | - Arleth S. López Rivero
- Instituto de Biología Molecular y Celular de Rosario (IBR)CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y EsmeraldaRosarioArgentina
- Grupo de Investigaciones en Gestión Ecológica y Agroindustrial, Universidad Libre SecBarranquillaColombia
| | - Eduardo A. Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR)CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y EsmeraldaRosarioArgentina
| | - Daniela L. Catalano‐Dupuy
- Instituto de Biología Molecular y Celular de Rosario (IBR)CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y EsmeraldaRosarioArgentina
| |
Collapse
|
13
|
Olavarria K, Carnet A, van Renselaar J, Quakkelaar C, Cabrera R, Guedes da Silva L, Smids AL, Villalobos PA, van Loosdrecht MCM, Wahl SA. An NADH preferring acetoacetyl-CoA reductase is engaged in poly-3-hydroxybutyrate accumulation in Escherichia coli. J Biotechnol 2020; 325:207-216. [PMID: 33122026 DOI: 10.1016/j.jbiotec.2020.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 01/08/2023]
Abstract
Oxygen supply implies higher production cost and reduction of maximum theoretical yields. Thus, generation of fermentation products is more cost-effective. Aiming to find a key piece for the production of (poly)-3-hydroxybutyrate (PHB) as a fermentation product, here we characterize an acetoacetyl-CoA reductase, isolated from a Candidatus Accumulibacter phosphatis-enriched mixed culture, showing a (kcatNADH/KMNADH)/(kcatNADPH/KMNADPH)>500. Further kinetic analyses indicate that, at physiological concentrations, this enzyme clearly prefers NADH, presenting the strongest NADH preference so far observed among the acetoacetyl-CoA reductases. Structural and kinetic analyses indicate that residues between E37 and P41 have an important role for the observed NADH preference. Moreover, an operon was assembled combining the phaCA genes from Cupriavidus necator and the gene encoding for this NADH-preferring acetoacetyl-CoA reductase. Escherichia coli cells expressing that assembled operon showed continuous accumulation of PHB under oxygen limiting conditions and PHB titer increased when decreasing the specific oxygen consumption rate. Taken together, these results show that it is possible to generate PHB as a fermentation product in E. coli, opening opportunities for further protein/metabolic engineering strategies envisioning a more efficient anaerobic production of PHB.
Collapse
Affiliation(s)
- Karel Olavarria
- Departement Biotechnologie, Faculteit Technische Natuurwetenschappen, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Netherlands.
| | - Alexandre Carnet
- Departement Biotechnologie, Faculteit Technische Natuurwetenschappen, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Netherlands.
| | - Joachim van Renselaar
- Departement Biotechnologie, Faculteit Technische Natuurwetenschappen, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Netherlands.
| | - Caspar Quakkelaar
- Departement Biotechnologie, Faculteit Technische Natuurwetenschappen, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Netherlands.
| | - Ricardo Cabrera
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Región Metropolitana, Chile.
| | - Leonor Guedes da Silva
- Departement Biotechnologie, Faculteit Technische Natuurwetenschappen, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Netherlands.
| | - Aron L Smids
- Departement Biotechnologie, Faculteit Technische Natuurwetenschappen, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Netherlands.
| | - Pablo Andres Villalobos
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Región Metropolitana, Chile.
| | - Mark C M van Loosdrecht
- Departement Biotechnologie, Faculteit Technische Natuurwetenschappen, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Netherlands.
| | - S Aljoscha Wahl
- Departement Biotechnologie, Faculteit Technische Natuurwetenschappen, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Netherlands.
| |
Collapse
|
14
|
Kaur S, Benov LT. Methylene blue induces the soxRS regulon of Escherichia coli. Chem Biol Interact 2020; 329:109222. [PMID: 32771325 DOI: 10.1016/j.cbi.2020.109222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022]
Abstract
Extensive application of methylene blue (MB) for therapeutic and diagnostic purposes, and reports for unwanted side effects, demand better understanding of the mechanisms of biological action of this thiazine dye. Because MB is redox-active, its biological activities have been attributed to transfer of electrons, generation of reactive oxygen species, and antioxidant action. Results of this study show that MB is more toxic to a superoxide dismutase-deficient Escherichia coli mutant than to its SOD-proficient parent, which indicates that superoxide anion radical is involved. Incubation of E. coli with MB induced the enzymes fumarase C, SOD, nitroreductase A, and glucose-6-phosphate dehydrogenase, all controlled by the soxRS regulon. Induction of these enzymes was prevented by blocking protein synthesis with chloramphenicol and was not observed when soxRS-negative mutants were incubated with MB. These results show that MB is capable of inducing the soxRS regulon of E. coli, which plays a key role in protecting bacteria against oxidative stress and redox-cycling compounds. Irrespective of the abundance of heme-containing proteins in living cells, which are preferred acceptors of electrons from the reduced form of MB, reduction of oxygen to superoxide radical still takes place. Induction of the soxRS regulon suggests that in humans, beneficial effects of MB could be attributed to activation of redox-sensitive transcription factors like Nrf2 and FoxO. If defense systems are compromised or genes coding for protective proteins are not induced, MB would have deleterious effects.
Collapse
Affiliation(s)
- Simranbir Kaur
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait
| | - Ludmil T Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
15
|
Giachino A, Waldron KJ. Copper tolerance in bacteria requires the activation of multiple accessory pathways. Mol Microbiol 2020; 114:377-390. [DOI: 10.1111/mmi.14522] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Andrea Giachino
- Biosciences Institute Faculty of Medical Sciences Newcastle University Newcastle upon Tyne UK
| | - Kevin J. Waldron
- Biosciences Institute Faculty of Medical Sciences Newcastle University Newcastle upon Tyne UK
| |
Collapse
|
16
|
Spielmann A, Brack Y, van Beek H, Flachbart L, Sundermeyer L, Baumgart M, Bott M. NADPH biosensor-based identification of an alcohol dehydrogenase variant with improved catalytic properties caused by a single charge reversal at the protein surface. AMB Express 2020; 10:14. [PMID: 31955268 PMCID: PMC6969876 DOI: 10.1186/s13568-020-0946-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/06/2020] [Indexed: 01/29/2023] Open
Abstract
Alcohol dehydrogenases (ADHs) are used in reductive biotransformations for the production of valuable chiral alcohols. In this study, we used a high-throughput screening approach based on the NADPH biosensor pSenSox and fluorescence-activated cell sorting (FACS) to search for variants of the NADPH-dependent ADH of Lactobacillus brevis (LbADH) with improved activity for the reduction of 2,5-hexanedione to (2R,5R)-hexanediol. In a library of approx. 1.4 × 106 clones created by random mutagenesis we identified the variant LbADHK71E. Kinetic analysis of the purified enzyme revealed that LbADHK71E had a ~ 16% lowered KM value and a 17% higher Vmax for 2,5-hexanedione compared to the wild-type LbADH. Higher activities were also observed for the alternative substrates acetophenone, acetylpyridine, 2-hexanone, 4-hydroxy-2-butanone, and methyl acetoacetate. K71 is solvent-exposed on the surface of LbADH and not located within or close to the active site. Therefore, K71 is not an obvious target for rational protein engineering. The study demonstrates that high-throughput screening using the NADPH biosensor pSenSox represents a powerful method to find unexpected beneficial mutations in NADPH-dependent alcohol dehydrogenases that can be favorable in industrial biotransformations.
Collapse
|
17
|
He YU, Wang S, Yin X, Sun F, He B, Liu X. Comparison of Extracellular Proteins from Virulent and Avirulent Vibrio parahaemolyticus Strains To Identify Potential Virulence Factors. J Food Prot 2020; 83:155-162. [PMID: 31860395 DOI: 10.4315/0362-028x.jfp-19-188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vibrio parahaemolyticus is a leading seafood-borne pathogen that causes gastroenteritis, septicemia, and serious wound infections due to the actions of virulence-associated proteins. We compared the extracellular proteins of nonvirulent JHY20 and virulent ATCC 33847 V. parahaemolyticus reference strains. Eighteen extracellular proteins were identified from secretory profiles, and 11 (68.75%) of the 16 proteins in ATCC 33847 are associated with virulence and/or protection against adverse conditions: trigger factor, chaperone SurA, aspartate-semialdehyde dehydrogenase, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, glutamate 5-kinase, alanine dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, outer membrane protein OmpV, ribosome-associated inhibitor A, chaperone protein Skp, and universal stress protein. Two nontoxic-related proteins, amino acid ABC transporter substrate-binding protein and an uncharacterized protein, were identified in JHY20. The results provide a theoretical basis for supporting safety risk assessment of aquatic foods, illuminate the pathogenic mechanisms of V. parahaemolyticus, and assist the identification of novel vaccine candidates for foodborne pathogens.
Collapse
Affiliation(s)
- Y U He
- College of Food (Biotechnology) Engineering.,Key Construction Laboratory of Food Resources Development and the Quality Safety, Xuzhou University of Technology, Jiangsu, Xuzhou 221018, People's Republic of China
| | - Shuai Wang
- College of Food (Biotechnology) Engineering.,Key Construction Laboratory of Food Resources Development and the Quality Safety, Xuzhou University of Technology, Jiangsu, Xuzhou 221018, People's Republic of China
| | | | - Fengjiao Sun
- Logistics & Security Department, Shanghai Civil Aviation College, Shanghai 201300, People's Republic of China
| | - Bin He
- Environment Monitoring Station, Zaozhuang Municipal Bureau of Ecology and Environment, Shandong 277100, People's Republic of China
| | - Xiao Liu
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
18
|
Improved tolerance of Escherichia coli to oxidative stress by expressing putative response regulator homologs from Antarctic bacteria. J Microbiol 2019; 58:131-141. [PMID: 31872373 DOI: 10.1007/s12275-020-9290-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
Response regulator (RR) is known a protein that mediates cell's response to environmental changes. The effect of RR from extremophiles was still under investigation. In this study, response regulator homologs were mined from NGS data of Antarctic bacteria and overexpressed in Escherichia coli. Sixteen amino acid sequences were annotated corresponding to response regulators related to the two-component regulatory systems; of these, 3 amino acid sequences (DRH632, DRH1601 and DRH577) with high homology were selected. These genes were cloned in pRadGro and expressed in E. coli. The transformant strains were subjected to various abiotic stresses including oxidative, osmotic, thermal stress, and acidic stress. There was found that the robustness of E. coli to abiotic stress was increased in the presence of these response regulator homologs. Especially, recombinant E. coli overexpressing drh632 had the highest survival rate in oxidative, hypothermic, osmotic, and acidic conditions. Recombinant E. coli overexpressing drh1601 showed the highest tolerance level to osmotic stress. These results will be applicable for development of recombinant strains with high tolerance to abiotic stress.
Collapse
|
19
|
Pérez-Amigot D, Taleb V, Boneta S, Anoz-Carbonell E, Sebastián M, Velázquez-Campoy A, Polo V, Martínez-Júlvez M, Medina M. Towards the competent conformation for catalysis in the ferredoxin-NADP + reductase from the Brucella ovis pathogen. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148058. [PMID: 31394095 DOI: 10.1016/j.bbabio.2019.148058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/19/2019] [Accepted: 08/02/2019] [Indexed: 02/02/2023]
Abstract
Brucella ovis encodes a bacterial subclass 1 ferredoxin-NADP(H) reductase (BoFPR) that, by similarity with other FPRs, is expected either to deliver electrons from NADPH to the redox-based metabolism and/or to oxidize NADPH to regulate the soxRS regulon that protects bacteria against oxidative damage. Such potential roles for the pathogen survival under infection conditions make of interest to understand and to act on the BoFPR mechanism. Here, we investigate the NADP+/H interaction and NADPH oxidation by hydride transfer (HT) to BoFPR. Crystal structures of BoFPR in free and in complex with NADP+ hardly differ. The latter shows binding of the NADP+ adenosine moiety, while its redox-reactive nicotinamide protrudes towards the solvent. Nonetheless, pre-steady-state kinetics show formation of a charge-transfer complex (CTC-1) prior to the hydride transfer, as well as conversion of CTC-1 into a second charge-transfer complex (CTC-2) concomitantly with the HT event. Thus, during catalysis nicotinamide and flavin reacting rings stack. Kinetic data also identify the HT itself as the rate limiting step in the reduction of BoFPR by NADPH, as well as product release limiting the overall reaction. Using all-atom molecular dynamics simulations with a thermal effect approach we are able to visualise a potential transient catalytically competent interaction of the reacting rings. Simulations indicate that the architecture of the FAD folded conformation in BoFPR might be key in catalysis, pointing to its adenine as an element to orient the reactive atoms in conformations competent for HT.
Collapse
Affiliation(s)
- Daniel Pérez-Amigot
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Víctor Taleb
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Sergio Boneta
- Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, 50018 Zaragoza, Spain; Departamento de Química Física, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - María Sebastián
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, 50018 Zaragoza, Spain; Aragon Institute for Health Research (IIS-Aragon), Zaragoza 50009, Spain; Biomedical Research Networking Center in Digestive and Hepatic Diseases (CIBERehd), Madrid, Spain; Fundacion ARAID, Government of Aragon, Zaragoza 50018, Spain
| | - Víctor Polo
- Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, 50018 Zaragoza, Spain; Departamento de Química Física, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, 50018 Zaragoza, Spain.
| |
Collapse
|
20
|
Kent R, Dixon N. Systematic Evaluation of Genetic and Environmental Factors Affecting Performance of Translational Riboswitches. ACS Synth Biol 2019; 8:884-901. [PMID: 30897329 PMCID: PMC6492952 DOI: 10.1021/acssynbio.9b00017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Since their discovery, riboswitches have been attractive tools for the user-controlled regulation of gene expression in bacterial systems. Riboswitches facilitate small molecule mediated fine-tuning of protein expression, making these tools of great use to the synthetic biology community. However, the use of riboswitches is often restricted due to context dependent performance and limited dynamic range. Here, we report the drastic improvement of a previously developed orthogonal riboswitch achieved through in vivo functional selection and optimization of flanking coding and noncoding sequences. The behavior of the derived riboswitches was mapped under a wide array of growth and induction conditions, using a structured Design of Experiments approach. This approach successfully improved the maximal protein expression levels 8.2-fold relative to the original riboswitches, and the dynamic range was improved to afford riboswitch dependent control of 80-fold. The optimized orthogonal riboswitch was then integrated downstream of four endogenous stress promoters, responsive to phosphate starvation, hyperosmotic stress, redox stress, and carbon starvation. These responsive stress promoter-riboswitch devices were demonstrated to allow for tuning of protein expression up to ∼650-fold in response to both environmental and cellular stress responses and riboswitch dependent attenuation. We envisage that these riboswitch stress responsive devices will be useful tools for the construction of advanced genetic circuits, bioprocessing, and protein expression.
Collapse
Affiliation(s)
- R. Kent
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - N. Dixon
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
21
|
Spielmann A, Baumgart M, Bott M. NADPH-related processes studied with a SoxR-based biosensor in Escherichia coli. Microbiologyopen 2018; 8:e00785. [PMID: 30585443 PMCID: PMC6612552 DOI: 10.1002/mbo3.785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 01/24/2023] Open
Abstract
NADPH plays a crucial role in cellular metabolism for biosynthesis and oxidative stress responses. We previously developed the genetically encoded NADPH biosensor pSenSox based on the transcriptional regulator SoxR of Escherichia coli, its target promoter PsoxS and eYFP as fluorescent reporter. Here, we used pSenSox to study the influence of various parameters on the sensor output in E. coliduring reductive biotransformation of methyl acetoacetate (MAA) to (R)-methyl 3-hydroxybutyrate (MHB) by the strictly NADPH-dependent alcohol dehydrogenase of Lactobacillus brevis (LbAdh). Redox-cycling drugs such as paraquat and menadione strongly activated the NADPH biosensor and mechanisms responsible for this effect are discussed. Absence of the RsxABCDGE complex and/or RseC caused an enhanced biosensor response, supporting a function as SoxR-reducing system. Absence of the membrane-bound transhydrogenase PntAB caused an increased biosensor response, whereas the lack of the soluble transhydrogenase SthA or of SthA and PntAB was associated with a strongly decreased response. These data support the opposing functions of PntAB in NADP+ reduction and of SthA in NADPH oxidation. In summary, the NADPH biosensor pSenSox proved to be a useful tool to study NADPH-related processes in E. coli.
Collapse
Affiliation(s)
- Alina Spielmann
- IBG‐1: Biotechnology, Institute of Bio‐ and GeosciencesForschungszentrum JülichJülichGermany
| | - Meike Baumgart
- IBG‐1: Biotechnology, Institute of Bio‐ and GeosciencesForschungszentrum JülichJülichGermany
| | - Michael Bott
- IBG‐1: Biotechnology, Institute of Bio‐ and GeosciencesForschungszentrum JülichJülichGermany
| |
Collapse
|
22
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out multiple functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters with small/redox-active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial reprogramming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances: Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high-resolution structural data. Although this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
23
|
Kostyuk AI, Panova AS, Bilan DS, Belousov VV. Redox biosensors in a context of multiparameter imaging. Free Radic Biol Med 2018; 128:23-39. [PMID: 29630928 DOI: 10.1016/j.freeradbiomed.2018.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/18/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
A wide variety of genetically encoded fluorescent biosensors are available to date. Some of them have already contributed significantly to our understanding of biological processes occurring at cellular and organismal levels. Using such an approach, outstanding success has been achieved in the field of redox biology. The probes allowed researchers to observe, for the first time, the dynamics of important redox parameters in vivo during embryogenesis, aging, the inflammatory response, the pathogenesis of various diseases, and many other processes. Given the differences in the readout and spectra of the probes, they can be used in multiparameter imaging in which several processes are monitored simultaneously in the cell. Intracellular processes form an extensive network of interactions. For example, redox changes are often accompanied by changes in many other biochemical reactions related to cellular metabolism and signaling. Therefore, multiparameter imaging can provide important information concerning the temporal and spatial relationship of various signaling and metabolic processes. In this review, we will describe the main types of genetically encoded biosensors, the most frequently used readout, and their use in multiplexed imaging mode.
Collapse
Affiliation(s)
- Alexander I Kostyuk
- Faculty of Biology, Moscow State University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Anastasiya S Panova
- Faculty of Biology, Moscow State University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Institute for Cardiovascular Physiology, Georg August University Göttingen, Göttingen D-37073, Germany.
| |
Collapse
|
24
|
Thomson NM, Shirai T, Chiapello M, Kondo A, Mukherjee KJ, Sivaniah E, Numata K, Summers DK. Efficient 3-Hydroxybutyrate Production by QuiescentEscherichia coliMicrobial Cell Factories is Facilitated by Indole-Induced Proteomic and Metabolomic Changes. Biotechnol J 2018; 13:e1700571. [DOI: 10.1002/biot.201700571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/09/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Nicholas M. Thomson
- Enzyme Research Team; RIKEN Centre for Sustainable Resource Science; Wako-shi 351-0198 Japan
- Department of Genetics; University of Cambridge; Cambridge CB2 3EH UK
| | - Tomokazu Shirai
- Cell Factory Research Team; RIKEN Centre for Sustainable Resource Science; Yokohama 230-0045 Japan
| | - Marco Chiapello
- Cambridge Centre for Proteomics; University of Cambridge; Cambridge CB2 1QR UK
| | - Akihiko Kondo
- Cell Factory Research Team; RIKEN Centre for Sustainable Resource Science; Yokohama 230-0045 Japan
| | | | - Easan Sivaniah
- Institute for Integrated Cell-Material Sciences (iCeMS); Kyoto University; Kyoto 606-8501 Japan
| | - Keiji Numata
- Enzyme Research Team; RIKEN Centre for Sustainable Resource Science; Wako-shi 351-0198 Japan
| | - David K. Summers
- Department of Genetics; University of Cambridge; Cambridge CB2 3EH UK
| |
Collapse
|
25
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out a wide range of functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters towards small/redox active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial re-programming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances. Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high resolution structural data. Though this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry , University of East Anglia , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| | - Nick E Le Brun
- University of East Anglia, School of Chemistry , University plain , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| |
Collapse
|
26
|
Balaban CL, Banchio C, Ceccarelli EA. TAT-mediated transduction of bacterial redox proteins generates a cytoprotective effect on neuronal cells. PLoS One 2017; 12:e0184617. [PMID: 28886198 PMCID: PMC5591030 DOI: 10.1371/journal.pone.0184617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/28/2017] [Indexed: 12/23/2022] Open
Abstract
Cell penetrating peptides, also known as protein transduction domains, have the capacity to ubiquitously cross cellular membranes carrying many different cargos with negligible cytotoxicity. As a result, they have emerged as a powerful tool for macromolecular delivery-based therapies. In this study, catalytically active bacterial Ferredoxin-NADP+ reductase (LepFNR) and Heme oxygenase (LepHO) fused to the HIV TAT-derived protein transduction peptide (TAT) were efficiently transduced to neuroblastoma SHSY-5Y cells. Proteins entered the cells through an endocytic pathway showing a time/concentration dependent mechanism that was clearly modulated by the nature of the cargo protein. Since ferredoxin-NADP+ reductases and heme oxygenases have been implicated in mechanisms of oxidative stress defense, neuroblastoma cells simultaneously transduced with TAT-LepFNR and TAT-LepHO were challenged by H2O2 incubations to judge the cytoprotective power of these bacterial enzymes. Accumulation of reactive oxygen species was significantly reduced in these transduced neuronal cells. Moreover, measurements of metabolic viability, membrane integrity, and cell survival indicated that these cells showed a better tolerance to oxidative stress. Our results open the possibility for the application of transducible active redox proteins to overcome the damage elicited by oxidative stress in cells and tissues.
Collapse
Affiliation(s)
- Cecilia L. Balaban
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina
| | - Claudia Banchio
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina
| | - Eduardo A. Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina
- * E-mail:
| |
Collapse
|
27
|
Khan Z, Rehman A, Nisar MA, Zafar S, Zerr I. Biosorption behavior and proteomic analysis of Escherichia coli P4 under cadmium stress. CHEMOSPHERE 2017; 174:136-147. [PMID: 28161514 DOI: 10.1016/j.chemosphere.2017.01.132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
Bacteria develop a variety of adaptations at transcriptomic, metabolomic and proteomic levels in order to survive potentially damaging environmental perturbations. Present study is exploring the fluctuations in proteome of E. coli P4 to knob Cd+2-induced cytotoxicity. An attempt was also made to integrate all these approaches to gain comprehensive insight of Cd+2 stress response in E. coli P4. This study is exposing the altered behavior of various proteins and their underlying metabolic pathways which have previously not been reported with reference to Cd+2 stress such as sulfoquinovose biosynthesis and degradation pathway. Some of the responses studied on all integrated levels followed same dynamics and strategies to conserve energy by down regulating carbohydrate metabolism (depicted by the repression of succinyl-CoA ligase) and growth stasis (down regulation of ftsZ). Moreover, proteomic analysis clearly revealed the affection of Cd+2 stress on various proteins expression including Rrf, MdaB, DapA, GpmA,Cdd, FabI, DsbA, ZnuA and YihW found modulating key cellular metabolic pathways enabling E. coli P4 to withstand Cd+2-induced toxic effects. Furthermore, over-expression of Mn-SOD provided evidence that Cd+2exposure induces superoxide free radicals mediated oxidative stress rather than hydrogen peroxide (H2O2). EnvZ/OmpR -a two component cell envelope regulatory system was observed operating to homeostat the cell's internal environment. Cd+2 bioremediation potential of E. coli P4 and its kinetic and thermodynamic basis were studied by applying different isotherm models which nominated E. coli P4 a good bioresource for green chemistry to eradicate environmental Cd+2.
Collapse
Affiliation(s)
- Zaman Khan
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Abdul Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| |
Collapse
|
28
|
Tanner AW, Carabetta VJ, Martinie RJ, Mashruwala AA, Boyd JM, Krebs C, Dubnau D. The RicAFT (YmcA-YlbF-YaaT) complex carries two [4Fe-4S] 2+ clusters and may respond to redox changes. Mol Microbiol 2017; 104:837-850. [PMID: 28295778 DOI: 10.1111/mmi.13667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2017] [Indexed: 01/10/2023]
Abstract
During times of environmental insult, Bacillus subtilis undergoes developmental changes leading to biofilm formation, sporulation and competence. Each of these states is regulated in part by the phosphorylated form of the master response regulator Spo0A (Spo0A∼P). The phosphorylation state of Spo0A is controlled by a multi-component phosphorelay. RicA, RicF and RicT (previously YmcA, YlbF and YaaT) have been shown to be important regulatory proteins for multiple developmental fates. These proteins directly interact and form a stable complex, which has been proposed to accelerate the phosphorelay. Indeed, this complex is sufficient to stimulate the rate of phosphotransfer amongst the phosphorelay proteins in vitro. In this study, we demonstrate that two [4Fe-4S]2+ clusters can be assembled on the complex. As with other iron-sulfur cluster-binding proteins, the complex was also found to bind FAD, hinting that these cofactors may be involved in sensing the cellular redox state. This work provides the first comprehensive characterization of an iron-sulfur protein complex that regulates Spo0A∼P levels. Phylogenetic and genetic evidence suggests that the complex plays a broader role beyond stimulation of the phosphorelay.
Collapse
Affiliation(s)
- Andrew W Tanner
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Valerie J Carabetta
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA.,Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Ryan J Martinie
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ameya A Mashruwala
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David Dubnau
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA.,Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| |
Collapse
|
29
|
Bott M, Eggeling L. Novel Technologies for Optimal Strain Breeding. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 159:227-254. [PMID: 27872965 DOI: 10.1007/10_2016_33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The implementation of a knowledge-based bioeconomy requires the rapid development of highly efficient microbial production strains that are able to convert renewable carbon sources to value-added products, such as bulk and fine chemicals, pharmaceuticals, or proteins at industrial scale. Starting from classical strain breeding by random mutagenesis and screening in the 1950s via rational design by metabolic engineering initiated in the 1970s, a range of powerful new technologies have been developed in the past two decades that can revolutionize future strain engineering. In particular, next-generation sequencing technologies combined with new methods of genome engineering and high-throughput screening based on genetically encoded biosensors have allowed for new concepts. In this chapter, selected new technologies relevant for breeding microbial production strains with a special emphasis on amino acid producers will be summarized.
Collapse
Affiliation(s)
- Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Lothar Eggeling
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
30
|
Arnold AR, Grodick MA, Barton JK. DNA Charge Transport: from Chemical Principles to the Cell. Cell Chem Biol 2016; 23:183-197. [PMID: 26933744 DOI: 10.1016/j.chembiol.2015.11.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 11/30/2022]
Abstract
The DNA double helix has captured the imagination of many, bringing it to the forefront of biological research. DNA has unique features that extend our interest into areas of chemistry, physics, material science, and engineering. Our laboratory has focused on studies of DNA charge transport (CT), wherein charges can efficiently travel long molecular distances through the DNA helix while maintaining an exquisite sensitivity to base pair π-stacking. Because DNA CT chemistry reports on the integrity of the DNA duplex, this property may be exploited to develop electrochemical devices to detect DNA lesions and DNA-binding proteins. Furthermore, studies now indicate that DNA CT may also be used in the cell by, for example, DNA repair proteins, as a cellular diagnostic, in order to scan the genome to localize efficiently to damage sites. In this review, we describe this evolution of DNA CT chemistry from the discovery of fundamental chemical principles to applications in diagnostic strategies and possible roles in biology.
Collapse
Affiliation(s)
- Anna R Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael A Grodick
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jacqueline K Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
31
|
Karimova DN, Manukhov IV, Gnuchikh EY, Karimov IF, Deryabin DG. Reactive oxygen and nitrogen species’ effect on lux-biosensors based on Escherichia coli and Salmonella typhimurium. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816030078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Evaluation of the potential of alkylresorcinols as superoxide anion scavengers and sox-regulon modulators using nitroblue tetrazolium and bioluminescent cell-based assays. Cell Mol Biol Lett 2015. [PMID: 26204391 DOI: 10.2478/s11658-014-0222-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The antioxidant activities of five alkylresorcinol (AR) homologs with alkyl chains of 1, 3, 5 6 and 12 carbon atoms were studied using molecular and cellular assays for superoxide anions (O2.-). The effect of ARs as superoxide anion scavengers was assessed using the photochemical reaction of spontaneous photo-reduced flavin re-oxidation. In this system, ARs reaction with O2.- produced dye derivatives, as C6- and C12-AR prevented the O2.--induced conversion of nitroblue tetrazolium into formazan in AR-containing mixtures. The influence of ARs on soxS gene expression and bacterial cell viability was studied with the luminescent Escherichia coli K12 MG1655 psoxS'::luxCDABE-AmpR strain, showing low basal light emission. This increased significantly during paraquatinduced oxidative stress as a consequence of the simultaneous transcription of soxS-gene and lux-gene fusion. ARs with alkyl chains containing 5-12 carbon atoms at concentrations of 0.1-1.0 μM weakly induced soxS-gene expression, whereas 1-10 mM repressed it. This respectively increased or decreased the bacterial cell resistance to O2.- -related oxidative stress. AR derivatives lost their protective activity from reactions with superoxide anions, which required increased soxS gene expression for cell viability. These results show the dual nature of ARs, which possess direct antioxidant properties and the ability to indirectly regulate the activity of cellular antioxidative defense mechanisms.
Collapse
|
33
|
Abstract
Bacteria live in a toxic world in which their competitors excrete hydrogen peroxide or superoxide-generating redox-cycling compounds. They protect themselves by activating regulons controlled by the OxyR, PerR, and SoxR transcription factors. OxyR and PerR sense peroxide when it oxidizes key thiolate or iron moieties, respectively; they then induce overlapping sets of proteins that defend their vulnerable metalloenzymes. An additional role for OxyR in detecting electrophilic compounds is possible. In some nonenteric bacteria, SoxR appears to control the synthesis and export of redox-cycling compounds, whereas in the enteric bacteria it defends the cell against the same agents. When these compounds oxidize its iron-sulfur cluster, SoxR induces proteins that exclude, excrete, or modify them. It also induces enzymes that defend the cell against the superoxide that such compounds make. Recent work has brought new insight into the biochemistry and physiology of these responses, and comparative studies have clarified their evolutionary histories.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801;
| |
Collapse
|
34
|
Luebke JL, Giedroc DP. Cysteine sulfur chemistry in transcriptional regulators at the host-bacterial pathogen interface. Biochemistry 2015; 54:3235-49. [PMID: 25946648 DOI: 10.1021/acs.biochem.5b00085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hosts employ myriad weapons to combat invading microorganisms as an integral feature of the host-bacterial pathogen interface. This interface is dominated by highly reactive small molecules that collectively induce oxidative stress. Successful pathogens employ transcriptional regulatory proteins that sense these small molecules directly or indirectly via a change in the ratio of reduced to oxidized low-molecular weight (LMW) thiols that collectively comprise the redox buffer in the cytoplasm. These transcriptional regulators employ either a prosthetic group or reactive cysteine residue(s) to effect changes in the transcription of genes that encode detoxification and repair systems that is driven by regulator conformational switching between high-affinity and low-affinity DNA-binding states. Cysteine harbors a highly polarizable sulfur atom that readily undergoes changes in oxidation state in response to oxidative stress to produce a range of regulatory post-translational modifications (PTMs), including sulfenylation (S-hydroxylation), mixed disulfide bond formation with LMW thiols (S-thiolation), di- and trisulfide bond formation, S-nitrosation, and S-alkylation. Here we discuss several examples of structurally characterized cysteine thiol-specific transcriptional regulators that sense changes in cellular redox balance, focusing on the nature of the cysteine PTM itself and the interplay of small molecule oxidative stressors in mediating a specific transcriptional response.
Collapse
Affiliation(s)
- Justin L Luebke
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
35
|
Kobayashi K, Fujikawa M, Kozawa T. Binding of promoter DNA to SoxR protein decreases the reduction potential of the [2Fe-2S] cluster. Biochemistry 2014; 54:334-9. [PMID: 25490746 DOI: 10.1021/bi500931w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The [2Fe-2S] transcriptional factor SoxR, a member of the MerR family, functions as a sensor of oxidative stress in Escherichia coli. The transcriptional activity of SoxR is regulated by the reversible oxidation and reduction of [2Fe-2S] clusters. Electrochemistry measurements on DNA-modified electrodes have shown a dramatic shift in the reduction potential of SoxR from -290 to +200 mV with the promoter DNA-bound [ Gorodetsky , A. A. , Dietrich , L. E. P. , Lee , P. E. , Demple , B. , , Newman , D. K. , and Barton , J. K. ( 2008 ) DNA binding shifts the reduction potential of the transcription factor SoxR , Proc. Natl. Acad. Sci. U.S.A. 105 , 3684 - 3689 ]. To determine the change of the SoxR reduction potential using the new condition, the one-electron oxidation-reduction properties of [2Fe-2S] cluster in SoxR were investigated in the absence and presence of the DNA. The [2Fe-2S] cluster of SoxR was completely reduced by nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CRP) in the presence of a NADPH generating system (glucose 6-dehydrogenase and glucose-6 phosphate), indicating that CRP can serve as an NADPH-dependent electron carrier for SoxR. The reduction potential of SoxR was measured from equilibrium data coupled with NADPH and CRP in the presence of electron mediators. The reduction potentials of DNA-bound and DNA-free states of SoxR were -320 and -293 mV versus NHE (normal hydrogen electrode), respectively. These results indicate that DNA binding causes a moderate shift in the reduction potential of SoxR.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University , Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | | | | |
Collapse
|
36
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part II. {[Fe2S2](SγCys)4} proteins. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Maccario L, Vogel TM, Larose C. Potential drivers of microbial community structure and function in Arctic spring snow. Front Microbiol 2014; 5:413. [PMID: 25147550 PMCID: PMC4124603 DOI: 10.3389/fmicb.2014.00413] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/21/2014] [Indexed: 01/31/2023] Open
Abstract
The Arctic seasonal snowpack can extend at times over a third of the Earth’s land surface. This chemically dynamic environment interacts constantly with different environmental compartments such as atmosphere, soil and meltwater, and thus, strongly influences the entire biosphere. However, the microbial community associated with this habitat remains poorly understood. Our objective was to investigate the functional capacities, diversity and dynamics of the microorganisms in snow and to test the hypothesis that their functional signature reflects the snow environment. We applied a metagenomic approach to nine snow samples taken over 2 months during the spring season. Fungi, Bacteroidetes, and Proteobacteria were predominant in metagenomic datasets and changes in community structure were apparent throughout the field season. Functional data that strongly correlated with chemical parameters like mercury or nitrogen species supported that this variation could be explained by fluctuations in environmental conditions. Through inter-environmental comparisons we examined potential drivers of snowpack microbial community functioning. Known cold adaptations were detected in all compared environments without any apparent differences in their relative abundance, implying that adaptive mechanisms related to environmental factors other than temperature may play a role in defining the snow microbial community. Photochemical reactions and oxidative stress seem to be decisive parameters in structuring microbial communities inside Arctic snowpacks.
Collapse
Affiliation(s)
- Lorrie Maccario
- CNRS UMR 5005, Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon Ecully, France
| | - Timothy M Vogel
- CNRS UMR 5005, Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon Ecully, France
| | - Catherine Larose
- CNRS UMR 5005, Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon Ecully, France
| |
Collapse
|
38
|
Koul V, Adholeya A, Kochar M. Sphere of influence of indole acetic acid and nitric oxide in bacteria. J Basic Microbiol 2014; 55:543-53. [PMID: 24913042 DOI: 10.1002/jobm.201400224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/26/2014] [Indexed: 11/11/2022]
Abstract
Bacterial biosynthesis of the phytohormone, indole-3-acetic acid (IAA) is well established and along with the diffusible gaseous molecule, nitric oxide (NO) is known to positively regulate the developmental processes of plant roots. IAA and NO act as signaling molecules in plant-microbe interactions as they modulate the gene expression in both, plants and microorganisms. Although IAA and NO may not be required for essential bacterial physiological processes, numerous studies point towards a crosstalk between IAA and NO in the rhizosphere. In this review, we describe various IAA and NO-responsive or sensing genes/proteins/regulators. There is also growing evidence for the interaction of IAA and NO with other plant growth regulators and the involvement of NO with the quorum sensing system in biofilm formation and virulence. This interactive network can greatly impact the host plant-microbe interactions in the soil. Coupled with this, the specialized σ(54) -dependent transcription observed in some of the IAA and NO-influenced genes can confer inducibility to these traits in bacteria and may allow the expression of IAA and NO-influenced microbial genes in nutrient limiting or changing environmental conditions for the benefit of plants.
Collapse
Affiliation(s)
- Vatsala Koul
- TERI Deakin Nanobiotechnology Centre, Biotechnology and Bioresources Division, The Energy and Resources Institute, Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi, India
| | | | | |
Collapse
|
39
|
Siedler S, Bringer S, Polen T, Bott M. NADPH-dependent reductive biotransformation with Escherichia coli and its pfkA deletion mutant: influence on global gene expression and role of oxygen supply. Biotechnol Bioeng 2014; 111:2067-75. [PMID: 24771245 DOI: 10.1002/bit.25271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/25/2014] [Accepted: 04/14/2014] [Indexed: 11/11/2022]
Abstract
An Escherichia coli ΔpfkA mutant lacking the major phosphofructokinase possesses a partially cyclized pentose phosphate pathway leading to an increased NADPH per glucose ratio. This effect decreases the amount of glucose required for NADPH regeneration in reductive biotransformations, such as the conversion of methyl acetoacetate (MAA) to (R)-methyl 3-hydroxybutyrate (MHB) by an alcohol dehydrogenase from Lactobacillus brevis. Here, global transcriptional analyses were performed to study regulatory responses during reductive biotransformation. DNA microarray analysis revealed amongst other things increased expression of soxS, supporting previous results indicating that a high NADPH demand contributes to the activation of SoxR, the transcriptional activator of soxS. Furthermore, several target genes of the ArcAB two-component system showed a lower mRNA level in the reference strain than in the ΔpfkA mutant, pointing to an increased QH2 /Q ratio in the reference strain. This prompted us to analyze yields and productivities of MAA reduction to MHB under different oxygen regimes in a bioreactor. Under anaerobic conditions, the specific MHB production rates of both strains were comparable (7.4 ± 0.2 mmolMHB h(-1) gcdw (-1) ) and lower than under conditions of 15% dissolved oxygen, where those of the reference strain (12.8 mmol h(-1) gcdw (-1) ) and of the ΔpfkA mutant (11.0 mmol h(-1) gcdw (-1) ) were 73% and 49% higher. While the oxygen transfer rate (OTR) of the reference strain increased after the addition of MAA, presumably due to the oxidation of the acetate accumulated before MAA addition, the OTR of the ΔpfkA strain strongly decreased, indicating a very low respiration rate despite sufficient oxygen supply. The latter effect can likely be attributed to a restricted conversion of NADPH into NADH via the soluble transhydrogenase SthA, as the enzyme is outcompeted in the presence of MAA by the recombinant NADPH-dependent alcohol dehydrogenase. The differences in respiration rates can explain the suggested higher ArcAB activity in the reference strain.
Collapse
Affiliation(s)
- Solvej Siedler
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | | | | | | |
Collapse
|
40
|
Moyano AJ, Tobares RA, Rizzi YS, Krapp AR, Mondotte JA, Bocco JL, Saleh MC, Carrillo N, Smania AM. A long-chain flavodoxin protects Pseudomonas aeruginosa from oxidative stress and host bacterial clearance. PLoS Genet 2014; 10:e1004163. [PMID: 24550745 PMCID: PMC3923664 DOI: 10.1371/journal.pgen.1004163] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/20/2013] [Indexed: 12/12/2022] Open
Abstract
Long-chain flavodoxins, ubiquitous electron shuttles containing flavin mononucleotide (FMN) as prosthetic group, play an important protective role against reactive oxygen species (ROS) in various microorganisms. Pseudomonas aeruginosa is an opportunistic pathogen which frequently has to face ROS toxicity in the environment as well as within the host. We identified a single ORF, hereafter referred to as fldP (for flavodoxin from P. aeruginosa), displaying the highest similarity in length, sequence identity and predicted secondary structure with typical long-chain flavodoxins. The gene was cloned and expressed in Escherichia coli. The recombinant product (FldP) could bind FMN and exhibited flavodoxin activity in vitro. Expression of fldP in P. aeruginosa was induced by oxidative stress conditions through an OxyR-independent mechanism, and an fldP-null mutant accumulated higher intracellular ROS levels and exhibited decreased tolerance to H2O2 toxicity compared to wild-type siblings. The mutant phenotype could be complemented by expression of a cyanobacterial flavodoxin. Overexpression of FldP in a mutT-deficient P. aeruginosa strain decreased H2O2-induced cell death and the hypermutability caused by DNA oxidative damage. FldP contributed to the survival of P. aeruginosa within cultured mammalian macrophages and in infected Drosophila melanogaster, which led in turn to accelerated death of the flies. Interestingly, the fldP gene is present in some but not all P. aeruginosa strains, constituting a component of the P. aeruginosa accessory genome. It is located in a genomic island as part of a self-regulated polycistronic operon containing a suite of stress-associated genes. The collected results indicate that the fldP gene encodes a long-chain flavodoxin, which protects the cell from oxidative stress, thereby expanding the capabilities of P. aeruginosa to thrive in hostile environments. Coping with toxic reactive oxygen species (ROS) generated as by-products of aerobic metabolism is a major challenge for O2-thriving organisms, which deploy multilevel responses to prevent ROS-triggered damage, including membrane modifications, induction of antioxidant and repair systems and/or replacement of ROS-sensitive targets by resistant isofunctional versions, among others. The opportunistic pathogen Pseudomonas aeruginosa is frequently exposed to ROS in the environment as well as within the host, and we describe herein a new response by which this microorganism can deal with oxidative stress. This pathway depends on a previously uncharacterized gene that we named fldP (for flavodoxin from P. aeruginosa), which encodes a flavoprotein that belongs to the family of long-chain flavodoxins. FldP exhibited a protective role against ROS-dependent physiological and mutational damage, and contributed to the survival of P. aeruginosa during in vivo infection of flies as well as within mammalian macrophagic cells. Thus, fldP increases the adaptive repertoire of P. aeruginosa to face oxidative stress.
Collapse
Affiliation(s)
- Alejandro J. Moyano
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Romina A. Tobares
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yanina S. Rizzi
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adriana R. Krapp
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Juan A. Mondotte
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR3569, Paris, France
| | - José L. Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR3569, Paris, France
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Andrea M. Smania
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
41
|
Siedler S, Schendzielorz G, Binder S, Eggeling L, Bringer S, Bott M. SoxR as a single-cell biosensor for NADPH-consuming enzymes in Escherichia coli. ACS Synth Biol 2014; 3:41-7. [PMID: 24283989 DOI: 10.1021/sb400110j] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An ultra-high-throughput screening system for NADPH-dependent enzymes, such as stereospecific alcohol dehydrogenases, was established. It is based on the [2Fe-2S] cluster-containing transcriptional regulator SoxR of Escherichia coli that activates expression of soxS in the oxidized but not in the reduced state of the cluster. As SoxR is kept in its reduced state by NADPH-dependent reductases, an increased NADPH demand of the cell counteracts SoxR reduction and increases soxS expression. We have taken advantage of these properties by placing the eyfp gene under the control of the soxS promoter and analyzed the response of E. coli cells expressing an NADPH-dependent alcohol dehydrogenase from Lactobacillus brevis (LbAdh), which reduces methyl acetoacetate to (R)-methyl 3-hydroxybutyrate. Under suitable conditions, the specific fluorescence of the cells correlated with the substrate concentration added and with LbAdh enzyme activity, supporting the NADPH responsiveness of the sensor. These properties enabled sorting of single cells harboring wild-type LbAdh from those with lowered or without LbAdh activity by fluorescence-activated cell sorting (FACS). In a proof-of-principle application, the system was used successfully to screen a mutant LbAdh library for variants showing improved activity with the substrate 4-methyl-2-pentanone.
Collapse
Affiliation(s)
- Solvej Siedler
- IBG-1:
Biotechnology, Institute
of Bio- and Geosciences, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Georg Schendzielorz
- IBG-1:
Biotechnology, Institute
of Bio- and Geosciences, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Stephan Binder
- IBG-1:
Biotechnology, Institute
of Bio- and Geosciences, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Lothar Eggeling
- IBG-1:
Biotechnology, Institute
of Bio- and Geosciences, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Stephanie Bringer
- IBG-1:
Biotechnology, Institute
of Bio- and Geosciences, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Michael Bott
- IBG-1:
Biotechnology, Institute
of Bio- and Geosciences, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
42
|
Urbano SB, Di Capua C, Cortez N, Farías ME, Alvarez HM. Triacylglycerol accumulation and oxidative stress in Rhodococcus species: differential effects of pro-oxidants on lipid metabolism. Extremophiles 2014; 18:375-84. [DOI: 10.1007/s00792-013-0623-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 12/29/2013] [Indexed: 11/28/2022]
|
43
|
Kobayashi K, Fujikawa M, Kozawa T. Oxidative stress sensing by the iron-sulfur cluster in the transcription factor, SoxR. J Inorg Biochem 2013; 133:87-91. [PMID: 24332474 DOI: 10.1016/j.jinorgbio.2013.11.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 11/28/2022]
Abstract
All bacteria are continuously exposed to environmental and/or endogenously active oxygen and nitrogen compounds and radicals. To reduce the deleterious effects of these reactive species, most bacteria have evolved specific sensor proteins that regulate the expression of enzymes that detoxify these species and repair proteins. Some bacterial transcriptional regulators containing an iron-sulfur cluster are involved in coordinating these physiological responses. Mechanistic and structural information can show how these regulators function, in particular, how chemical interactions at the cluster drive subsequent regulatory responses. The [2Fe-2S] transcription factor SoxR (superoxide response) functions as a bacterial sensor of oxidative stress and nitric oxide (NO). This review focuses on the mechanisms by which SoxR proteins respond to oxidative stress.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | - Mayu Fujikawa
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takahiro Kozawa
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
44
|
McCloskey D, Gangoiti JA, King ZA, Naviaux RK, Barshop BA, Palsson BO, Feist AM. A model-driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K-12 MG1655 that is biochemically and thermodynamically consistent. Biotechnol Bioeng 2013; 111:803-15. [PMID: 24249002 DOI: 10.1002/bit.25133] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/30/2013] [Accepted: 10/07/2013] [Indexed: 12/24/2022]
Abstract
The advent of model-enabled workflows in systems biology allows for the integration of experimental data types with genome-scale models to discover new features of biology. This work demonstrates such a workflow, aimed at establishing a metabolomics platform applied to study the differences in metabolomes between anaerobic and aerobic growth of Escherichia coli. Constraint-based modeling was utilized to deduce a target list of compounds for downstream method development. An analytical and experimental methodology was developed and tailored to the compound chemistry and growth conditions of interest. This included the construction of a rapid sampling apparatus for use with anaerobic cultures. The resulting genome-scale data sets for anaerobic and aerobic growth were validated by comparison to previous small-scale studies comparing growth of E. coli under the same conditions. The metabolomics data were then integrated with the E. coli genome-scale metabolic model (GEM) via a sensitivity analysis that utilized reaction thermodynamics to reconcile simulated growth rates and reaction directionalities. This analysis highlighted several optimal network usage inconsistencies, including the incorrect use of the beta-oxidation pathway for synthesis of fatty acids. This analysis also identified enzyme promiscuity for the pykA gene, that is critical for anaerobic growth, and which has not been previously incorporated into metabolic models of E coli.
Collapse
Affiliation(s)
- Douglas McCloskey
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0412
| | | | | | | | | | | | | |
Collapse
|
45
|
Nicoloff H, Andersson DI. Lon protease inactivation, or translocation of thelongene, potentiate bacterial evolution to antibiotic resistance. Mol Microbiol 2013; 90:1233-48. [DOI: 10.1111/mmi.12429] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Hervé Nicoloff
- Department of Medical Biochemistry and Microbiology; Uppsala University; SE-751 23 Uppsala Sweden
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology; Uppsala University; SE-751 23 Uppsala Sweden
| |
Collapse
|
46
|
Singh AK, Shin JH, Lee KL, Imlay JA, Roe JH. Comparative study of SoxR activation by redox-active compounds. Mol Microbiol 2013; 90:983-96. [PMID: 24112649 DOI: 10.1111/mmi.12410] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2013] [Indexed: 12/27/2022]
Abstract
SoxR from Escherichia coli and related enterobacteria is activated by a broad range of redox-active compounds through oxidation or nitrosylation of its [2Fe-2S] cluster. Activated SoxR then induces SoxS, which subsequently activates more than 100 genes in response. In contrast, non-enteric SoxRs directly activate their target genes in response to redox-active compounds that include endogenously produced metabolites. We compared the responsiveness of SoxRs from Streptomyces coelicolor (ScSoxR), Pseudomonas aeruginosa (PaSoxR) and E. coli (EcSoxR), all expressed in S. coelicolor, towards natural or synthetic redox-active compounds. EcSoxR responded to all compounds examined, whereas ScSoxR was insensitive to oxidants such as paraquat (Eh -440 mV) and menadione sodium bisulphite (Eh -45 mV) and to NO generators. PaSoxR was insensitive only to some NO generators. Whole-cell EPR analysis of SoxRs expressed in E. coli revealed that the [2Fe-2S](1+) of ScSoxR was not oxidizable by paraquat, differing from EcSoxR and PaSoxR. The mid-point redox potential of purified ScSoxR was determined to be -185 ± 10 mV, higher by approximately 100 mV than those of EcSoxR and PaSoxR, supporting its limited response to paraquat. The overall sensitivity profile indicates that both redox potential and kinetic reactivity determine the differential responses of SoxRs towards various oxidants.
Collapse
Affiliation(s)
- Atul K Singh
- Laboratory of Molecular Microbiology, School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, 151-747, Korea
| | | | | | | | | |
Collapse
|
47
|
Nitrofurantoin, phenazopyridine, and the superoxide-response regulon soxRS of Escherichia coli. J Infect Chemother 2013; 19:1135-40. [PMID: 23793794 DOI: 10.1007/s10156-013-0635-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
Nitrofurantoin and phenazopyridine are two drugs commonly used against urinary tract infections. Both compounds exert oxidative damage in patients deficient in glucose-6-phosphate dehydrogenase. This study was done to assess the interactions of these drugs with the soxRS regulon of Escherichia coli, a superoxide-defense system (that includes a nitroreductase that yields the active metabolite of nitrofurantoin) involved in antibiotic multi-resistance. The effects of either nitrofurantoin or phenazopyridine, upon strains with different soxRS genotypes, were measured as minimum inhibitory concentrations (MICs) and growth curves. Also, the ability of these drugs to induce the expression of a soxS'::lacZ gene fusion was assessed. The effect of antibiotics in the presence of phenazopyridine, paraquat (a known soxRS inducer), or an efflux inhibitor, was measured using the disk diffusion method. A strain constitutively expressing the soxRS regulon was slightly more susceptible to nitrofurantoin, and more resistant to phenazopyridine, compared to wild-type and soxRS-deleted strains, during early treatment, but 24-h MICs were the same (8 mg/l nitrofurantoin, 1,000 mg/l phenazopyridine) for all strains. Both compounds were capable of inducing the expression of a soxS'::lacZ fusion, but less than paraquat. Subinhibitory concentrations of phenazopyridine increased the antimicrobial effect of ampicillin, chloramphenicol, tetracycline, and nitrofurantoin. The induction or constitutive expression of the soxRS regulon seems to be a disadvantage for E. coli during nitrofurantoin exposure; but might be an advantage during phenazopyridine exposure, indicating that the latter compound could act as a selective pressure for mutations related to virulence and antibiotic multi-resistance.
Collapse
|
48
|
Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 2013; 11:443-54. [PMID: 23712352 DOI: 10.1038/nrmicro3032] [Citation(s) in RCA: 1063] [Impact Index Per Article: 88.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxic environments are hazardous. Molecular oxygen adventitiously abstracts electrons from many redox enzymes, continuously forming intracellular superoxide and hydrogen peroxide. These species can destroy the activities of metalloenzymes and the integrity of DNA, forcing organisms to protect themselves with scavenging enzymes and repair systems. Nevertheless, elevated levels of oxidants quickly poison bacteria, and both microbial competitors and hostile eukaryotic hosts exploit this vulnerability by assaulting these bacteria with peroxides or superoxide-forming antibiotics. In response, bacteria activate elegant adaptive strategies. In this Review, I summarize our current knowledge of oxidative stress in Escherichia coli, the model organism for which our understanding of damage and defence is most well developed.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
49
|
Coba de la Peña T, Redondo FJ, Fillat MF, Lucas MM, Pueyo JJ. Flavodoxin overexpression confers tolerance to oxidative stress in beneficial soil bacteria and improves survival in the presence of the herbicides paraquat and atrazine. J Appl Microbiol 2013; 115:236-46. [PMID: 23594228 DOI: 10.1111/jam.12224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/09/2013] [Accepted: 04/14/2013] [Indexed: 12/01/2022]
Abstract
AIM To determine whether expression of a cyanobacterial flavodoxin in soil bacteria of agronomic interest confers protection against the widely used herbicides paraquat and atrazine. METHODS AND RESULTS The model bacterium Escherichia coli, the symbiotic nitrogen-fixing bacterium Ensifer meliloti and the plant growth-promoting rhizobacterium Pseudomonas fluorescens Aur6 were transformed with expression vectors containing the flavodoxin gene of Anabaena variabilis. Expression of the cyanobacterial protein was confirmed by Western blot. Bacterial tolerance to oxidative stress was tested in solid medium supplemented with hydrogen peroxide, paraquat or atrazine. In all three bacterial strains, flavodoxin expression enhanced tolerance to the oxidative stress provoked by hydrogen peroxide and by the reactive oxygen species-inducing herbicides, witnessed by the enhanced survival of the transformed bacteria in the presence of these oxidizing agents. CONCLUSIONS Flavodoxin overexpression in beneficial soil bacteria confers tolerance to oxidative stress and improves their survival in the presence of the herbicides paraquat and atrazine. Flavodoxin could be considered as a general antioxidant resource to face oxidative challenges in different micro-organisms. SIGNIFICANCE AND IMPACT OF THE STUDY The use of plant growth-promoting rhizobacteria or nitrogen-fixing bacteria with enhanced tolerance to oxidative stress in contaminated soils is of significant agronomic interest. The enhanced tolerance of flavodoxin-expressing bacteria to atrazine and paraquat points to potential applications in herbicide-treated soils.
Collapse
Affiliation(s)
- T Coba de la Peña
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | |
Collapse
|
50
|
Baez A, Shiloach J. Escherichia coli avoids high dissolved oxygen stress by activation of SoxRS and manganese-superoxide dismutase. Microb Cell Fact 2013; 12:23. [PMID: 23497217 PMCID: PMC3605374 DOI: 10.1186/1475-2859-12-23] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/21/2013] [Indexed: 11/17/2022] Open
Abstract
Background High concentrations of reactive oxygen species (ROS) were reported to cause oxidative stress to E. coli cells associated with reduced or inhibited growth. The high ROS concentrations described in these reports were generated by exposing the bacteria to H2O2 and superoxide-generating chemicals which are non-physiological growth conditions. However, the effect of molecular oxygen on oxidative stress response has not been evaluated. Since the use of oxygen-enriched air is a common strategy to support high density growth of E. coli, it was important to investigate the effect of high dissolved oxygen concentrations on the physiology and growth of E. coli and the way it responds to oxidative stress. Results To determine the effect of elevated oxygen concentrations on the growth characteristics, specific gene expression and enzyme activity in E. coli, the parental and SOD-deficient strain were evaluated when the dissolved oxygen (dO2) level was increased from 30% to 300%. No significant differences in the growth parameters were observed in the parental strain except for a temporary decrease of the respiration and acetate accumulation profile. By performing transcriptional analysis, it was determined that the parental strain responded to the oxidative stress by activating the SoxRS regulon. However, following the dO2 switch, the SOD-deficient strain activated both the SoxRS and OxyR regulons but it was unable to resume its initial growth rate. Conclusion The transcriptional analysis and enzyme activity results indicated that when E. coli is exposed to dO2 shift, the superoxide stress regulator SoxRS is activated and causes the stimulation of the superoxide dismutase system. This enables the E. coli to protect itself from the poisoning effects of oxygen. The OxyR protecting system was not activated, indicating that H2O2 did not increase to stressing levels.
Collapse
Affiliation(s)
- Antonino Baez
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|