1
|
Ding H, Shi K, Hsiao M, Li W, Liu X, Xu J, Yang Y, Zhang R. Two virulent Vibrio campbellii phages with potential for phage therapy in aquaculture. BMC Microbiol 2025; 25:99. [PMID: 40021993 PMCID: PMC11869677 DOI: 10.1186/s12866-025-03803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/04/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND As aquaculture continues to expand globally, diseases caused by Vibrio species are becoming increasingly prevalent. Vibriosis encompasses a range of infections, which can lead to symptoms such as skin lesions, hemorrhaging, and high mortality rates in fish and shellfish, especially in high-density farming systems, resulting in significant economic losses. Simultaneously, the extensive use of antibiotics has fostered the emergence of antibiotic-resistant bacteria, exacerbated disease outbreaks, and complicated control measures. Phage therapy, which leverages bacteriophages as natural antibacterial agents, offers a promising eco-friendly alternative to the antibiotics used in aquaculture. This study aimed to evaluate the potential of two vibriophages for phage therapy in aquaculture. RESULTS Two virulent vibriophages, vB_VcaP_R24D and vB_VcaP_R25D, were isolated from aquaculture wastewater from seafood markets using Vibrio campbellii LMG 11216T as the host strain. The two vibriophages were identified based on their morphology, infection dynamics, host range, genomic features, lytic activity, and environmental stability. Both phages belong to the podovirus morphotype and exhibit a lytic life cycle characterised by a short latent period (< 10 min). Genomic analyses confirmed the absence of lysogenic genes, virulence factors, and antibiotic-resistance genes, thereby ensuring genetic safety. Additionally, both phages demonstrated high stability over a broad range of temperatures (4-45 °C) and pH (3-10). Lytic curve analyses further indicated a robust lytic efficiency during the logarithmic growth phase of the vibriophages. CONCLUSIONS These biological and genomic characteristics highlight the potential of vB_VcaP_R24D and vB_VcaP_R25D as effective biocontrol agents for mitigating vibriosis in aquaculture. Although this study demonstrates their narrow host range, the possibility of phage infection in other untested hosts cannot be entirely excluded. Furthermore, the findings offer valuable insights for future research on phage-host interactions and the development of phage cocktails to improve disease management in aquaculture systems.
Collapse
Affiliation(s)
- Huiyu Ding
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361102, China
| | - Keming Shi
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361102, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Min Hsiao
- Institute of Marine Biology, National Taiwan Ocean University, No.2, Pei-Ning Road, Keelung, Taiwan, 20224, China
| | - Wenqing Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361102, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Liu
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jie Xu
- Center for Regional Ocean & Department of Ocean Science and Technology, Faculty of Science and Technology, University of Macau, Taipa, Macau, China
| | - Yunlan Yang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, 518055, China.
| | - Rui Zhang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Groon LA, Bruns S, Dlugosch L, Wilkes H, Wienhausen G. Effects of vitamin B 12 supply on cellular processes of the facultative vitamin B 12 consumer Vibrio campbellii. Appl Environ Microbiol 2025; 91:e0142224. [PMID: 39840980 PMCID: PMC11837498 DOI: 10.1128/aem.01422-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/08/2024] [Indexed: 01/23/2025] Open
Abstract
Vitamin B12 (cobalamin, herein B12) is a key cofactor for most organisms being involved in essential metabolic processes. In microbial communities, B12 is often scarce, largely because only few prokaryotes can synthesize B12 de novo and are thus considered B12-prototrophs. B12-auxotrophy is mostly manifested by the absence of the B12-independent methionine synthase, MetE. Here, we focus on bacteria that we classified as facultative B12 consumers as they encode both B12-independent and -dependent (MetH) methionine synthases yet largely cannot synthesize B12 de novo. The genus Vibrio belongs to this group, and our work shows that upon B12 supply growth of Vibrio campbellii is accelerated and autoinducer-2 (AI-2) concentrations are enhanced. We speculate that methionine synthesis efficiency, dependent on B12 availability, is linked to AI-2 synthesis. The precursor for AI-2 synthesis is S-adenosyl-L-homocysteine (SAH), which in turn requires methionine as a precursor. In almost all Vibrio species studied, btuF (B12-binding protein), which is required for B12 uptake, and cobD (Adenosylcobinamide-phosphate synthase), which enables remodeling of B12-like compounds, are encoded on the same operon as pfs (or mtnN, Adenosylhomocysteine nucleosidase), the first enzyme in the two-step AI-2 synthesis reaction. Transcriptomic analyses show that virulence factors, such as toxin synthesis, fimbriae formation, and activation of the type-6 secretion system, which have been shown to be regulated by quorum sensing via AI-2, are significantly upregulated in V. campbellii when B12 is available. Our results demonstrate that V. campbellii is a facultative B12 consumer and indicate that B12 availability affects AI-2 levels and thus potentially virulence factor regulation.IMPORTANCEMetabolites play a key role in microbial metabolism and communication. While vitamin B12 is an essential cofactor for important enzymatic reactions, autoinducer-2 mediates interspecies signaling and can regulate the expression of genes that are crucial for virulence and survival. In our study, we hypothesize and present findings how these two important metabolites are linked in Vibrio species. Vibrio campbellii grows without B12 but at an accelerated rate when B12 is present, and we detect higher AI-2 values in cultures with B12 amendment. Transcriptome analyses show how vitamin B12 availability significantly upregulates gene expression of virulence factors such as toxin synthesis, fimbrial formation, and activation of the type-6 secretion system in V. campbellii.
Collapse
Affiliation(s)
- Luna-Agrippina Groon
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Stefan Bruns
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Leon Dlugosch
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Heinz Wilkes
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Gerrit Wienhausen
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
3
|
Priya PS, Boopathi S, Murugan R, Haridevamuthu B, Arshad A, Arockiaraj J. Quorum sensing signals: Aquaculture risk factor. REVIEWS IN AQUACULTURE 2023; 15:1294-1310. [DOI: 10.1111/raq.12774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/28/2022] [Indexed: 10/16/2023]
Abstract
AbstractBacteria produce several virulence factors and cause massive mortality in fish and crustaceans. Abundant quorum sensing (QS) signals and high cell density are essentially required for the production of such virulence factors. Although several strategies have been developed to control aquatic pathogens through antibiotics and QS inhibition, the impact of pre‐existing QS signals in the aquatic environment has been overlooked. QS signals cause detrimental effects on mammalian cells and induce cell death by interfering with multiple cellular pathways. Moreover, QS signals not only function as a messenger, but also annihilate the functions of the host immune system which implies that QS signals should be designated as a major virulence factor. Despite QS signals' role has been well documented in mammalian cells, their impact on aquatic organisms is still at the budding stage. However, many aquatic organisms produce enzymes that degrade and detoxify such QS signals. In addition, physical and chemical factors also determine the stability of the QS signals in the aqueous environment. The balance between QS signals and existing QS signals degrading factors essentially determines the disease progression in aquatic organisms. In this review, we highlight the impact of QS signals on aquatic organisms and further discussed potential alternative strategies to control disease progression.
Collapse
Affiliation(s)
- P. Snega Priya
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Seenivasan Boopathi
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Negeri Sembilan Malaysia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| |
Collapse
|
4
|
Kanarek K, Fridman CM, Bosis E, Salomon D. The RIX domain defines a class of polymorphic T6SS effectors and secreted adaptors. Nat Commun 2023; 14:4983. [PMID: 37591831 PMCID: PMC10435454 DOI: 10.1038/s41467-023-40659-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Bacteria use the type VI secretion system (T6SS) to deliver toxic effectors into bacterial or eukaryotic cells during interbacterial competition, host colonization, or when resisting predation. Identifying effectors is a challenging task, as they lack canonical secretion signals or universally conserved domains. Here, we identify a protein domain, RIX, that defines a class of polymorphic T6SS cargo effectors. RIX is widespread in the Vibrionaceae family and is located at N-termini of proteins containing diverse antibacterial and anti-eukaryotic toxic domains. We demonstrate that RIX-containing proteins are delivered via T6SS into neighboring cells and that RIX is necessary and sufficient for T6SS-mediated secretion. In addition, RIX-containing proteins can enable the T6SS-mediated delivery of other cargo effectors by a previously undescribed mechanism. The identification of RIX-containing proteins significantly enlarges the repertoire of known T6SS effectors, especially those with anti-eukaryotic activities. Furthermore, our findings also suggest that T6SSs may play an underappreciated role in the interactions between vibrios and eukaryotes.
Collapse
Affiliation(s)
- Katarzyna Kanarek
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chaya Mushka Fridman
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Bosis
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel.
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Enciso-Ibarra J, Roque A, Bolán-Mejia C, Enciso-Ibarra K, González-Castillo A, Gomez-Gil B. Vibrio eleionomae sp. nov., isolated from shrimp ( Penaeus vannamei) pond water. Int J Syst Evol Microbiol 2023; 73. [PMID: 37167075 DOI: 10.1099/ijsem.0.005866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
A novel Vibrio strain (CAIM 722T=SW9T=DSM 24596T) was isolated in 2003 from water of a shrimp (Penaeus vannamei) culture pond located in Los Mochis, Sinaloa, Mexico, and taxonomically characterized using a polyphasic approach. The 16S rRNA gene sequence clustered within those of the genus Vibrio, showing high similarity to the type strains of the Porteresiae clade. Multilocus sequence analysis using eight housekeeping genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA, topA and 16S rRNA) and phylogenetic analysis with 139 single-copy genes showed that the strain forms an independent branch. Whole genome sequencing and genomic analyses (average nucleotide identity, OrthoANI, average amino acid identity and in silico DNA-DNA hybridization) produced values well below the thresholds for species delineation with all methods tested. In addition, a phenotypic characterization was performed to support the description and differentiation of the novel strain from related taxa. The results obtained demonstrate that the strain represent a novel species, for which the name Vibrio eleionomae sp. nov. is proposed.
Collapse
Affiliation(s)
| | - Ana Roque
- Institut de Recerca i Tecnologia Agroalimentaries, Centre d'Aquicultura, Crta: Poble Nou, Km 5,5. La Ràpita, 43540, Spain
| | - Carmen Bolán-Mejia
- CIAD, A.C., Mazatlán Unit for Aquaculture, AP. 711 Mazatlán, Sinaloa 82000, Mexico
| | - Karen Enciso-Ibarra
- CIAD, A.C., Mazatlán Unit for Aquaculture, AP. 711 Mazatlán, Sinaloa 82000, Mexico
| | - Adrián González-Castillo
- Universidad Politécnica de Sinaloa, Programa Académico de Ingeniería en Biotecnología, Carretera Municipal Libre Km.3 Mazatlán-Higueras, Mazatlán, Sinaloa 82199, Mexico
| | - Bruno Gomez-Gil
- CIAD, A.C., Mazatlán Unit for Aquaculture, AP. 711 Mazatlán, Sinaloa 82000, Mexico
| |
Collapse
|
6
|
Shinde AH, Sonpal V, Maiti P, Haldar S. Evaluation of a synbiotic formulation for water remediation in a shrimp pond. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65990-66001. [PMID: 37093374 DOI: 10.1007/s11356-023-27006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
In recent years, the use of probiotic bacteria has attracted the interest of the marine shrimp farming industry. However, there are certain limitations pertaining to the practical application of many commercially available probiotics. Here, a thoroughly screened optimal consortium of three indigenous sulfur probiotics was tested for antibiotic susceptibility and was found to be safe, with each culture being sensitive to all the tested antibiotics. Further, de-potash vinasse (DPV), an environmental hazard, was tested for its prebiotic potential, and its 1% (w/v) concentration was found to be effective for long-term viability (> 66 days) of the probiotic cultures and safe for Artemia. The synbiotic formulation was tested first in a lab-scale microcosm setup successfully and subsequently tried on a shrimp farm; it was observed that the product was congruent to the efficiency of a commercial probiotic regarding almost all physicochemical parameters, sulfide, nitrate-N, nitrite-N, phytoplankton sustenance, Pseudomonas count, coliform count, and heterotrophic count. In addition, it was significantly efficient in maintaining pH, reducing ammonia-N and phosphate-P, Vibrio and Aeromonas count, and a net increase in the yield of shrimp biomass by 625 kg, thus proving to be a better alternative than one of the already available remediation methods.
Collapse
Affiliation(s)
- Ambika H Shinde
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vasavdutta Sonpal
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
| | - Pratyush Maiti
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Process Design and Engineering Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
| | - Soumya Haldar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Prevalence, Antibiotics Resistance and Plasmid Profiling of Vibrio spp. Isolated from Cultured Shrimp in Peninsular Malaysia. Microorganisms 2022; 10:microorganisms10091851. [PMID: 36144453 PMCID: PMC9505939 DOI: 10.3390/microorganisms10091851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Vibrio is the most common bacterium associated with diseases in crustaceans. Outbreaks of vibriosis pose a serious threat to shrimp production. Therefore, antibiotics are commonly used as preventative and therapeutic measures. Unfortunately, improper use of antibiotics leads to antibiotic resistance. Nevertheless, information on the occurrence of Vibrio spp. and antibiotic use in shrimp, particularly in Malaysia, is minimal. This study aimed to provide information on the occurrence of Vibrio spp., its status of antibiotic resistance and the plasmid profiles of Vibrio spp. isolated from cultured shrimp in Peninsular Malaysia. Shrimp were sampled from seven farms that were located in different geographical regions of Peninsular Malaysia. According to the observations, 85% of the shrimp were healthy, whereas 15% were unhealthy. Subsequently, 225 presumptive Vibrio isolates were subjected to biochemical tests and molecular detection using the pyrH gene. The isolates were also tested for antibiotic susceptibility against 16 antibiotics and were subjected to plasmid profiling. Eventually, 13 different Vibrio spp. were successfully isolated and characterized using the pyrH gene. They were the following: V. parahaemolyticus (55%), V. communis (9%), V. campbellii (8%), V. owensii (7%), V. rotiferianus (5%), Vibrio spp. (4%), V. alginolyticus (3%), V. brasiliensis (2%), V. natriegens (2%), V. xuii (1%), V. harveyi (1%), V. hepatarius (0.4%) and P. damselae (3%). Antibiotic susceptibility profiles revealed that all isolates were resistant to penicillin G (100%), but susceptible to norfloxacin (96%). Furthermore, 16% of the isolates revealed MAR of less than 0.2, while 84% were greater than 0.2. A total of 125 isolates harbored plasmids with molecular weights between 1.0 and above 10 kb, detected among the resistant isolates. The resistant isolates were mediated by both chromosomal and plasmid factors. These findings support the use of surveillance data on the emerging patterns of antimicrobial-resistance and plasmid profiles of Vibrio spp. in shrimp farms. The findings from this study can be used to develop a better disease management strategy for shrimp farming.
Collapse
|
8
|
Shinde AH, Sharma A, Doshi S, Kumar MA, Haldar S. Isolation and screening of sulfur-oxidizing bacteria from coast of Bhavnagar, India, and formulation of consortium for bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54136-54149. [PMID: 35294687 DOI: 10.1007/s11356-022-19610-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Reduced sulfur compounds are a nuisance in coastal industries causing heavy economical as well as ecological loss. One such compound, hydrogen sulfide, is proven toxic to aquatic animals as it interferes with their respiration and metabolism as well as overall development, thereby causing direct increase in mortality. Typically, 96-h LC50 values to freshwater and marine fishes are 0-25µM and 525-700µM, respectively. Management of sulfide and other reduced sulfur compounds from aquaculture water and sediment using bioremediating sulfur-oxidizing bacteria as probiotics has attracted attention in recent decades due to its efficiency and minimized environmental effects. In the present study, 201 native and indigenous probiotic candidates were isolated, from various coastal environments. The prospective candidates were screened based on pH reduction and 19 sulfur-oxidizing bacteria were selected and tested for salt tolerance. Further screening was done based on biosafety, ability to produce sulfate by oxidizing thiosulfate, and 16S rRNA-based identification to obtain nine probiotic candidates. Three strains (Enterobacter ludwigii HS1-SOB, Pseudomonas stutzeri B6-SOB, and Cytobacillus firmus C8-SOB) exerting highest sulfate-ion production were selected for formulating a probiotic consortium using mixture design matrix. The optimal composition was determined to be equal ratios of the three isolates that yielded 0.083 mM of sulfate from thiosulfate broth medium at room temperature in 7 days. This is a standalone report of sulfur-oxidizing probiotic consortium composed of the said bacteria. The consortium may be used as a strong tool for remediation of reduced sulfur in aquaculture and associated coastal environments.
Collapse
Affiliation(s)
- Ambika H Shinde
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashwini Sharma
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
| | - Saksham Doshi
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
| | - Madhava Anil Kumar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Soumya Haldar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Reyes G, Betancourt I, Andrade B, Panchana F, Román R, Sorroza L, Trujillo LE, Bayot B. Microbiome of Penaeus vannamei Larvae and Potential Biomarkers Associated With High and Low Survival in Shrimp Hatchery Tanks Affected by Acute Hepatopancreatic Necrosis Disease. Front Microbiol 2022; 13:838640. [PMID: 35615516 PMCID: PMC9125206 DOI: 10.3389/fmicb.2022.838640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is an emerging bacterial disease of cultured shrimp caused mainly by Vibrio parahaemolyticus, which harbors the lethal PirAB toxin genes. Although Penaeus vannamei (P. vannamei) postlarvae are susceptible to AHPND, the changes in the bacterial communities through the larval stages affected by the disease are unknown. We characterized, through high-throughput sequencing, the microbiome of P. vannamei larvae infected with AHPND-causing bacteria through the larval stages and compared the microbiome of larvae collected from high- and low-survival tanks. A total of 64 tanks from a commercial hatchery were sampled at mysis 3, postlarvae 4, postlarvae 7, and postlarvae 10 stages. PirAB toxin genes were detected by PCR and confirmed by histopathology analysis in 58 tanks. Seven from the 58 AHPND-positive tanks exhibited a survival rate higher than 60% at harvest, despite the AHPND affectation, being selected for further analysis, whereas 51 tanks exhibited survival rates lower than 60%. A random sample of 7 out of these 51 AHPND-positive tanks was also selected. Samples collected from the selected tanks were processed for the microbiome analysis. The V3–V4 hypervariable regions of the 16S ribosomal RNA (rRNA) gene of the samples collected from both the groups were sequenced. The Shannon diversity index was significantly lower at the low-survival tanks. The microbiomes were significantly different between high- and low-survival tanks at M3, PL4, PL7, but not at PL10. Differential abundance analysis determined that biomarkers associated with high and low survival in shrimp hatchery tanks affected with AHPND. The genera Bacillus, Vibrio, Yangia, Roseobacter, Tenacibaculum, Bdellovibrio, Mameliella, and Cognatishimia, among others, were enriched in the high-survival tanks. On the other hand, Gilvibacter, Marinibacterium, Spongiimonas, Catenococcus, and Sneathiella, among others, were enriched in the low-survival tanks. The results can be used to develop applications to prevent losses in shrimp hatchery tanks affected by AHPND.
Collapse
Affiliation(s)
- Guillermo Reyes
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
- Facultad de Ciencias de la Vida (FCV), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
- *Correspondence: Guillermo Reyes,
| | - Irma Betancourt
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Betsy Andrade
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Fanny Panchana
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Rubén Román
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Lita Sorroza
- Facultad de Ciencias Agropecuarias, Universidad Técnica de Machala, Machala, Ecuador
| | - Luis E. Trujillo
- Industrial Biotechnology Research Group, Center for Nanoscience and Nanotechnology (CENCINAT), Universidad de las Fuerzas Armadas (ESPE), Sangolquí, Ecuador
| | - Bonny Bayot
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
- Facultad de Ingeniería Marítima y Ciencias del Mar (FIMCM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
- Bonny Bayot,
| |
Collapse
|
10
|
Rehman S, Gora A, Kizhakudan J, Ilamparuthi S, Anbarasu M, Sanil NK, Laxmilatha P. Identification, characterization and infection dynamics of Vibrio strains in phyllosoma of Thenus unimaculatus. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Saima Rehman
- Marine Biotechnology Division, Madras Research Centre of ICAR-Central Marine Fisheries Research Institute, Chennai, India
| | - Adnan Gora
- Marine Biotechnology Division, Madras Research Centre of ICAR-Central Marine Fisheries Research Institute, Chennai, India
| | - Joe Kizhakudan
- Mariculture Division, Madras Research Centre of ICAR- Central Marine Fisheries Research Institute, Chennai, India
| | - Santoshi Ilamparuthi
- Marine Biotechnology Division, Madras Research Centre of ICAR-Central Marine Fisheries Research Institute, Chennai, India
| | - Mahalingam Anbarasu
- Mariculture Division, Madras Research Centre of ICAR- Central Marine Fisheries Research Institute, Chennai, India
| | - N. K. Sanil
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute, Kochi, India
| | - Pappurajam Laxmilatha
- Molluscan Fisheries Division, ICAR-Central Marine Fisheries Research Institute, Kochi, India
| |
Collapse
|
11
|
Tocopherol and phytol possess anti-quorum sensing mediated anti-infective behavior against Vibrio campbellii in aquaculture: An in vitro and in vivo study. Microb Pathog 2021; 161:105221. [PMID: 34627940 DOI: 10.1016/j.micpath.2021.105221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 01/21/2023]
Abstract
Phytocompounds have long been well recognized in medicine and pharmacy. The natural compounds are frequently utilized as the fundamental resource in the development of novel therapeutic agents to treat bacterial infections. The rapid emergence of bacterial infections, particularly caused by Vibrio species, is seen as a serious concern for the development of aquaculture industries, resulting in substantial economic losses throughout the world. Notably, the presence of Vibrio campbellii in aquatic environments will be extremely problematic, leading to significant mortality in aquatic organisms. As a result, novel therapeutic agents are desperately needed to treat such diseases. This is the first research to demonstrate that plant-derived active compounds, tocopherol and phytol, are effective against V. campbellii infection in tomato clownfish. The findings showed that tocopherol and phytol significantly decreased the production of biofilm and virulence factors such as hemolysin, protease, lipase, hydrophobic index, and swimming motility in V. campbellii, without influencing the bacterial growth. In vivo experiments with tomato clownfish also proved that these phytocompound treatments significantly increased the survival rates of infected fishes by hindering the intestinal colonization of V. campbellii in tomato clownfish. Further, the disease protection efficacy against the pathognomonic sign of V. campbellii-infection was verified by histopathological investigation of the gills, gut, and kidney. Altogether, the results suggest that tocopherol and phytol could be promising therapeutic agents for the treatment of V. campbellii infections in aquaculture.
Collapse
|
12
|
King WL, Kaestli M, Siboni N, Padovan A, Christian K, Mills D, Seymour J, Gibb K. Pearl Oyster Bacterial Community Structure Is Governed by Location and Tissue-Type, but Vibrio Species Are Shared Among Oyster Tissues. Front Microbiol 2021; 12:723649. [PMID: 34434182 PMCID: PMC8381468 DOI: 10.3389/fmicb.2021.723649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022] Open
Abstract
Diseases of bivalves of aquacultural importance, including the valuable Australian silver-lipped pearl oyster (Pinctada maxima), have been increasing in frequency and severity. The bivalve microbiome is linked to health and disease dynamics, particularly in oysters, with putative pathogens within the Vibrio genus commonly implicated in oyster diseases. Previous studies have been biased toward the Pacific oyster because of its global dominance in oyster aquaculture, while much less is known about the microbiome of P. maxima. We sought to address this knowledge gap by characterizing the P. maxima bacterial community, and we hypothesized that bacterial community composition, and specifically the occurrence of Vibrio, will vary according to the sampled microenvironment. We also predicted that the inside shell swab bacterial composition could represent a source of microbial spillover biofilm into the solid pearl oyster tissues, thus providing a useful predictive sampling environment. We found that there was significant heterogeneity in bacterial composition between different pearl oyster tissues, which is consistent with patterns reported in other bivalve species and supports the hypothesis that each tissue type represents a unique microenvironment for bacterial colonization. We suggest that, based on the strong effect of tissue-type on the pearl oyster bacterial community, future studies should apply caution when attempting to compare microbial patterns from different locations, and when searching for disease agents. The lack of association with water at each farm also supported the unique nature of the microbial communities in oyster tissues. In contrast to the whole bacterial community, there was no significant difference in the Vibrio community among tissue types nor location. These results suggest that Vibrio species are shared among different pearl oyster tissues. In particular, the similarity between the haemolymph, inside shell and solid tissues, suggests that the haemolymph and inside shell environment is a source of microbial spillover into the oyster tissues, and a potentially useful tool for non-destructive routine disease testing and early warning surveillance. These data provide important foundational information for future studies identifying the factors that drive microbial assembly in a valuable aquaculture species.
Collapse
Affiliation(s)
- William L King
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Mirjam Kaestli
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Anna Padovan
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Keith Christian
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - David Mills
- Genecology Research Centre, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Justin Seymour
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Karen Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
13
|
Kumar S, Kumar CB, Rajendran V, Abishaw N, Anand PSS, Kannapan S, Nagaleekar VK, Vijayan KK, Alavandi SV. Delineating virulence of Vibrio campbellii: a predominant luminescent bacterial pathogen in Indian shrimp hatcheries. Sci Rep 2021; 11:15831. [PMID: 34349168 PMCID: PMC8339124 DOI: 10.1038/s41598-021-94961-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Luminescent vibriosis is a major bacterial disease in shrimp hatcheries and causes up to 100% mortality in larval stages of penaeid shrimps. We investigated the virulence factors and genetic identity of 29 luminescent Vibrio isolates from Indian shrimp hatcheries and farms, which were earlier presumed as Vibrio harveyi. Haemolysin gene-based species-specific multiplex PCR and phylogenetic analysis of rpoD and toxR identified all the isolates as V. campbellii. The gene-specific PCR revealed the presence of virulence markers involved in quorum sensing (luxM, luxS, cqsA), motility (flaA, lafA), toxin (hly, chiA, serine protease, metalloprotease), and virulence regulators (toxR, luxR) in all the isolates. The deduced amino acid sequence analysis of virulence regulator ToxR suggested four variants, namely A123Q150 (AQ; 18.9%), P123Q150 (PQ; 54.1%), A123P150 (AP; 21.6%), and P123P150 (PP; 5.4% isolates) based on amino acid at 123rd (proline or alanine) and 150th (glutamine or proline) positions. A significantly higher level of the quorum-sensing signal, autoinducer-2 (AI-2, p = 2.2e-12), and significantly reduced protease activity (p = 1.6e-07) were recorded in AP variant, whereas an inverse trend was noticed in the Q150 variants AQ and PQ. The pathogenicity study in Penaeus (Litopenaeus) vannamei juveniles revealed that all the isolates of AQ were highly pathogenic with Cox proportional hazard ratio 15.1 to 32.4 compared to P150 variants; PP (5.4 to 6.3) or AP (7.3 to 14). The correlation matrix suggested that protease, a metalloprotease, was positively correlated with pathogenicity (p > 0.05) and negatively correlated (p < 0.05) with AI-2 and AI-1. The syntenic organization of toxS-toxR-htpG operon in V. campbellii was found to be similar to pathogenic V. cholerae suggesting a similar regulatory role. The present study emphasizes that V. campbellii is a predominant pathogen in Indian shrimp hatcheries, and ToxR plays a significant role as a virulence regulator in the quorum sensing-protease pathway. Further, the study suggests that the presence of glutamine at 150th position (Q150) in ToxR is crucial for the pathogenicity of V. campbellii.
Collapse
Affiliation(s)
- Sujeet Kumar
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| | - Chandra Bhushan Kumar
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India ,grid.473401.50000 0001 2301 4227ICAR - National Bureau of Fish Genetic Resources, Canal Ring Road, Dilkusha Marg, Lucknow, 226002 India
| | - Vidya Rajendran
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| | - Nishawlini Abishaw
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| | - P. S. Shyne Anand
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| | - S. Kannapan
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| | - Viswas K. Nagaleekar
- grid.417990.20000 0000 9070 5290ICAR -Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 India
| | - K. K. Vijayan
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| | - S. V. Alavandi
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| |
Collapse
|
14
|
The polar flagellar transcriptional regulatory network in Vibrio campbellii deviates from canonical Vibrio species. J Bacteriol 2021; 203:e0027621. [PMID: 34339299 DOI: 10.1128/jb.00276-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Swimming motility is a critical virulence factor in pathogenesis for numerous Vibrio species. Vibrio campbellii DS40M4 is a wild isolate that has been recently established as a highly tractable model strain for bacterial genetics studies. We sought to exploit the tractability and relevance of this strain for characterization of flagellar gene regulation in V. campbellii. Using comparative genomics, we identified homologs of V. campbellii flagellar and chemotaxis genes conserved in other members of the Vibrionaceae and determined the transcriptional profile of these loci using differential RNA-seq. We systematically deleted all 63 predicted flagellar and chemotaxis genes in V. campbellii and examined their effects on motility and flagellum production. We specifically focused on the core regulators of the flagellar hierarchy established in other vibrios: RpoN (σ54), FlrA, FlrC, and FliA. Our results show that V. campbellii transcription of flagellar and chemotaxis genes is governed by a multi-tiered regulatory hierarchy similar to other motile Vibrio species. However, there are several critical differences in V. campbellii: (i) the σ54-dependent regulator FlrA is dispensable for motility, (ii) the flgA, fliEFGHIJ, flrA, and flrBC operons do not require σ54 for expression, and (iii) FlrA and FlrC co-regulate class II genes. Our model proposes that the V. campbellii flagellar transcriptional hierarchy has three classes of genes, in contrast to the four-class hierarchy in Vibrio cholerae. Our genetic and phenotypic dissection of the V. campbellii flagellar regulatory network highlights the differences that have evolved in flagellar regulation across the Vibrionaceae. Importance Vibrio campbellii is a Gram-negative bacterium that is free-living and ubiquitous in marine environments and is an important global pathogen of fish and shellfish. Disruption of the flagellar motor significantly decreases host mortality of V. campbellii, suggesting that motility is a key factor in pathogenesis. Using this model organism, we identified >60 genes that encode proteins with predicted structural, mechanical, or regulatory roles in function of the single polar flagellum in V. campbellii. We systematically tested strains containing single deletions of each gene to determine the impact on motility and flagellum production. Our studies have uncovered differences in the regulatory network and function of several genes in V. campbellii as compared to established systems in Vibrio cholerae and Vibrio parahaemolyticus.
Collapse
|
15
|
Kumar SB, Shinde AH, Behere MJ, Italia D, Haldar S. Simple, rapid and on spot dye-based sensor for the detection of Vibrio load in shrimp culture farms. Arch Microbiol 2021; 203:3525-3532. [PMID: 33942157 DOI: 10.1007/s00203-021-02333-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/19/2022]
Abstract
For the detection of Vibrio bacteria, a kit involving two-step method was developed. In the in first step, a specific media was added in the water sample which selectively promote the growth of vibrios and inhibit the growth of other bacteria. The second step involved addition of dye-based sensor (already developed in our previous work) in the sample which detect the active Vibrio and changed the colour of the sample to red/pink. The vibrio detection kit was optimised on five different species of Vibrio (V. cholerae, V. parahaemolyticus, V. campbellii, V. harveyi and V. proteolyticus) and two negative control bacteria (Escherichia coli and Bacillus subtilis). The kit was further evaluated on aquaculture pond water and probiotics used in aquaculture farms. It successfully estimated Vibrio concentration of all the five strains in aquaculture ponds. The negative control bacteria and probiotics were not sensed by the kit. Hence, the kit developed here is perfect for the detection of Vibrio, especially in aquaculture farms.
Collapse
Affiliation(s)
- Sweta Binod Kumar
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, GB Marg, Bhavnagar, 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ambika Hemant Shinde
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, GB Marg, Bhavnagar, 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Maheshawari Jagadishbhai Behere
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, GB Marg, Bhavnagar, 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dhruvi Italia
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, GB Marg, Bhavnagar, 364002, India
| | - Soumya Haldar
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, GB Marg, Bhavnagar, 364002, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Anas A, Sukumaran V, Nampullipurackal Devarajan D, Maniyath S, Chekidhenkuzhiyil J, Mary A, Parakkaparambil Kuttan S, Tharakan B. Probiotics inspired from natural ecosystem to inhibit the growth of Vibrio spp. causing white gut syndrome in Litopenaeus vannamei. 3 Biotech 2021; 11:66. [PMID: 33489684 PMCID: PMC7803865 DOI: 10.1007/s13205-020-02618-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022] Open
Abstract
Probiotics inspired by host-microbe interactions in the natural ecosystem are propitious in controlling bacterial infections in aquaculture and veterinary systems. Here we report the isolation and characterization of pathogenic Vibrio spp. and lactic acid bacteria from an intensive culture system of Litopenaeus vannamei and natural ecosystem, respectively. The pathogen isolated from the gut of L. vannamei showing the symptoms of white gut disease were identified as V. parahaemolyticus and V. campbelli. Both the pathogens expressed the virulence genes, rtxA, and tcpA and were showing multiple antibiotic resistance (MAR) index of more than 0.5. The lactic acid bacteria isolated from the sediment and gut of benthic organisms (shrimp and polychaetes) collected from a tropical estuary were classified as member of 9 OTUs such as Pediococcus stilessi, Lactobacillus fermentum, L. rhamnosus, Weissella cibaria, Enterococcus durans, E. fecalis, Streptococcus gallolyticus and L. garvieae. Majority of these isolates were facultative in nature and were able to tolerate gastric juice and bile salt. Out of 83 bacteria isolated from sediment and gut, 36 showed abilities to reduce the pH of culture medium to less than five. Many of these isolates (34 Nos.) showed production of hydrolytic enzymes and secondary metabolites with antagonistic activity against both the pathogens (1 No.) or separately toward V. parahaemolyticus (9 Nos.) and V. campbelli (11 Nos.). Overall, the current study proposes a natural ecosystem as a potential source of lactic acid bacteria with probiotic potentials to prevent the vibriosis disease outbreaks in shrimp aquaculture systems. Further studies are required to understand the abilities of lactic acid bacteria to colonize shrimp intestine, stimulate immune system and manipulate microbiome. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02618-2.
Collapse
Affiliation(s)
- Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Cochin, Kochi, India
| | - Vrinda Sukumaran
- CSIR-National Institute of Oceanography, Regional Centre Cochin, Kochi, India
| | | | - Shijina Maniyath
- CSIR-National Institute of Oceanography, Regional Centre Cochin, Kochi, India
| | | | - Ann Mary
- CSIR-National Institute of Oceanography, Regional Centre Cochin, Kochi, India
| | | | - Balu Tharakan
- CSIR-National Institute of Oceanography, Regional Centre Cochin, Kochi, India
| |
Collapse
|
17
|
Influence of microalgal lipids from Chlorella variabilis (ATCC PTA 12198) in reducing the virulence factors of multidrug-resistant Vibrio cholerae variant strains. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Lomelí-Ortega CO, Martínez-Sández AJ, Barajas-Sandoval DR, Reyes AG, Magallón-Barajas F, Veyrand-Quíros B, Gannon L, Harrison C, Michniewski S, Millard A, Quiroz-Guzmán E. Isolation and characterization of vibriophage vB_Vc_SrVc9: an effective agent in preventing Vibrio campbellii infections in brine shrimp nauplii (Artemia franciscana). J Appl Microbiol 2020; 131:36-49. [PMID: 33222338 DOI: 10.1111/jam.14937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/25/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022]
Abstract
AIMS This study describes the physicochemical and genomic characterization of phage vB_Vc_SrVc9 and its potential for phage therapy application against a pathogenic Vibrio campbellii strain. METHODS AND RESULTS A lytic phage vB_Vc_SrVc9 against V. campbellii was isolated from shrimp farm sediment, and characterized physicochemical and genomically. The use of vB_Vc_SrVc9 phage increased the survival in brine shrimp Artemia franciscana and reduced presumptive V. campbellii to nondetectable numbers. Genomic analysis showed a genome with a single contig of 43·15 kb, with 49 predicted genes and no tRNAs, capable of recognizing and generating complete inhibition zones of three Vibrio sp. CONCLUSIONS To our knowledge vB_Vc_SrVc9 is a lytic phage that could be used against Vibrio infections, reducing vibrio presence without any apparent impact over the natural microbiota at the family level in 28 libraries tested. SIGNIFICANCE AND IMPACT OF THE STUDY vB_Vc_SrVC9 is a novel phage and ecofriendly alternative for therapeutic applications and biotechnological purposes because is stable at different environmental conditions, has the potential to eliminate several strains, and has a short latent period with a good burst size. Therefore, the use of phages, which are natural killers of bacteria, represents a promising strategy to reduce the mortality of farmed organisms caused by pathogenic bacteria.
Collapse
Affiliation(s)
- C O Lomelí-Ortega
- Centro de Investigaciones Biológicas del Noroeste S.C., Av. Instituto Politécnico Nacional, La Paz, Baja California Sur, México
| | - A J Martínez-Sández
- Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, México
| | - D R Barajas-Sandoval
- Centro de Investigaciones Biológicas del Noroeste S.C., Av. Instituto Politécnico Nacional, La Paz, Baja California Sur, México
| | - A G Reyes
- CONACYT-CIBNOR Av. Instituto Politécnico Nacional, La Paz, Baja California Sur, México
| | - F Magallón-Barajas
- Centro de Investigaciones Biológicas del Noroeste S.C., Av. Instituto Politécnico Nacional, La Paz, Baja California Sur, México
| | - B Veyrand-Quíros
- Centro de Investigaciones Biológicas del Noroeste S.C., Av. Instituto Politécnico Nacional, La Paz, Baja California Sur, México
| | - L Gannon
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - C Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - S Michniewski
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - A Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - E Quiroz-Guzmán
- CONACYT-CIBNOR Av. Instituto Politécnico Nacional, La Paz, Baja California Sur, México
| |
Collapse
|
19
|
Spatiotemporal Dynamics of Free-Living and Particle-Associated Vibrio Communities in the Northern Chinese Marginal Seas. Appl Environ Microbiol 2019; 85:AEM.00217-19. [PMID: 30824453 DOI: 10.1128/aem.00217-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/17/2019] [Indexed: 12/28/2022] Open
Abstract
Vibrio species are associated with human health and play important roles in the carbon cycle. The interest in the Vibrio ecology in marine pelagic environments has increased in recent years, and the correlations between the Vibrio community structure and various environmental factors have been demonstrated. However, the identification of planktonic Vibrio species and their relationship with particulate matter are unclear. Here, we elucidated the spatiotemporal dynamics of Vibrio diversity and in relation to environmental factors in the northern Chinese marginal seas, which feature complex and ever-changing environmental conditions. Vibrio abundance derived from quantitative PCR analysis was higher in summer (∼1.4 × 106 copies liter-1) than in winter (∼1.9 × 105 copies liter-1). Interestingly, the average amount of free-living (on a 0.22-μm-pore-size filter membrane) Vibrio was higher (∼3.89 times) than that of particle-associated Vibrio (on a 3-μm-pore-size filter membrane), making it likely that the preferential lifestyle of the planktonic Vibrio community was free living. Shifts in Vibrio community composition identified by high-throughput amplicon sequencing of the Vibrio-specific 16S rRNA gene were observed at both spatial and temporal scales, which were mainly driven by temperature, dissolved oxygen, ammonium, salinity, nitrite, and phosphate. The most prominent operational taxonomic units in summer were closely related to Vibrio campbellii and Vibrio caribbeanicus and shifted to those affiliated with Vibrio atlanticus in winter. Our study demonstrated abundant and diverse Vibrio populations in the northern Chinese marginal seas, contributing to a better understanding of their potential ecological roles in these ecosystems.IMPORTANCE The dynamics of Vibrio communities have been shown in many marine habitats that are close to land, including estuary or harbor areas. Here, we investigated the spatiotemporal dynamics of Vibrio populations in the northern Chinese marginal seas, spanning a wide spatial scale. We showed that the abundances of the Vibrio population in the present study were higher than those in most previously studied areas and that Vibrio species are more likely to adopt a free-living lifestyle. Moreover, our results expanded upon previous results by showing a clear shift in the dominant Vibrio species from summer to winter, which was mainly attributable to the reduction in the abundance of dominant species in summer. Overall, this work contributes to the understanding of the ecology of the Vibrio communities in the marginal seas.
Collapse
|
20
|
Torres M, Dessaux Y, Llamas I. Saline Environments as a Source of Potential Quorum Sensing Disruptors to Control Bacterial Infections: A Review. Mar Drugs 2019; 17:md17030191. [PMID: 30934619 PMCID: PMC6471967 DOI: 10.3390/md17030191] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Saline environments, such as marine and hypersaline habitats, are widely distributed around the world. They include sea waters, saline lakes, solar salterns, or hypersaline soils. The bacteria that live in these habitats produce and develop unique bioactive molecules and physiological pathways to cope with the stress conditions generated by these environments. They have been described to produce compounds with properties that differ from those found in non-saline habitats. In the last decades, the ability to disrupt quorum-sensing (QS) intercellular communication systems has been identified in many marine organisms, including bacteria. The two main mechanisms of QS interference, i.e., quorum sensing inhibition (QSI) and quorum quenching (QQ), appear to be a more frequent phenomenon in marine aquatic environments than in soils. However, data concerning bacteria from hypersaline habitats is scarce. Salt-tolerant QSI compounds and QQ enzymes may be of interest to interfere with QS-regulated bacterial functions, including virulence, in sectors such as aquaculture or agriculture where salinity is a serious environmental issue. This review provides a global overview of the main works related to QS interruption in saline environments as well as the derived biotechnological applications.
Collapse
Affiliation(s)
- Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Yves Dessaux
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
| |
Collapse
|
21
|
Efficacy assessment of commercially available natural products and antibiotics, commonly used for mitigation of pathogenic Vibrio outbreaks in Ecuadorian Penaeus (Litopenaeus) vannamei hatcheries. PLoS One 2019; 14:e0210478. [PMID: 30699138 PMCID: PMC6353134 DOI: 10.1371/journal.pone.0210478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/25/2018] [Indexed: 12/02/2022] Open
Abstract
Bacterial diseases cause high mortality in Penaeus (Litopenaeus) vannamei postlarvae. Therefore, appropriate application of efficient therapeutic products is of vital importance for disease control. This study evaluated through in vitro analyses the antimicrobial effectiveness of commercial therapeutic products used for P. vannamei bacterial diseases and antibiotics against pathogenic Vibrio strains circulating in Ecuadorian hatcheries. Twenty strains were isolated from 31 larvae samples with high bacterial counts from 10 hatcheries collected during mortality events. The strains virulence was verified through challenge tests with Artemia franciscana nauplii and P. vannamei postlarvae. Through 16S rRNA sequence analysis, strains showed a great similarity to the Vibrio sequences reported as pathogens, with 95% belonging to the Harveyi clade. Through antibiograms and minimal inhibitory concentration (MIC) in vitro tests we found that furazolidone, ciprofloxacin, chloramphenicol, norfloxacin, nalidixic acid, florfenicol, fosfomycin and enrofloxacin inhibited the growth of all or most of the strains. Less efficient antibiotics were penicillin, oxytetracycline and tetracycline. A multiple antibiotic resistance (MAR) index of 0.23 showed some level of resistance to antibiotics, with two MAR prevalent patterns (Penicillin-Oxytetracycline and Penicillin-Oxytetracycline-Tetracycline). From a total of 16 natural products (five probiotics, nine organic acids and two essential oils), only three (one probiotic, one organic acid and one essential oil) were effective to control most of the strains. Shrimp producers can apply relatively simple in vitro analyses, such as those employed in this study, to help take adequate management decisions to reduce the impact of bacterial diseases and increase profit.
Collapse
|
22
|
Martín-Rodríguez AJ, Álvarez-Méndez SJ, Overå C, Baruah K, Lourenço TM, Norouzitallab P, Bossier P, Martín VS, Fernández JJ. The 9 H-Fluoren Vinyl Ether Derivative SAM461 Inhibits Bacterial Luciferase Activity and Protects Artemia franciscana From Luminescent Vibriosis. Front Cell Infect Microbiol 2018; 8:368. [PMID: 30467537 PMCID: PMC6236115 DOI: 10.3389/fcimb.2018.00368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/03/2018] [Indexed: 11/13/2022] Open
Abstract
Vibrio campbellii is a major pathogen in aquaculture. It is a causative agent of the so-called “luminescent vibriosis,” a life-threatening condition caused by bioluminescent Vibrio spp. that often involves mass mortality of farmed shrimps. The emergence of multidrug resistant Vibrio strains raises a concern and poses a challenge for the treatment of this infection in the coming years. Inhibition of bacterial cell-to-cell communication or quorum sensing (QS) has been proposed as an alternative to antibiotic therapies. Aiming to identify novel QS disruptors, the 9H-fluroen-9yl vinyl ether derivative SAM461 was found to thwart V. campbellii bioluminescence, a QS-regulated phenotype. Phenotypic and gene expression analyses revealed, however, that the mode of action of SAM461 was unrelated to QS inhibition. Further evaluation with purified Vibrio fischeri and NanoLuc luciferases revealed enzymatic inhibition at micromolar concentrations. In silico analysis by molecular docking suggested binding of SAM461 in the active site cavities of both luciferase enzymes. Subsequent in vivo testing of SAM461 with gnotobiotic Artemia franciscana nauplii demonstrated naupliar protection against V. campbellii infection at low micromolar concentrations. Taken together, these findings suggest that suppression of luciferase activity could constitute a novel paradigm in the development of alternative anti-infective chemotherapies against luminescent vibriosis, and pave the ground for the chemical synthesis and biological characterization of derivatives with promising antimicrobial prospects.
Collapse
Affiliation(s)
- Alberto J Martín-Rodríguez
- Instituto Universitario de Bio-Orgánica "Antonio González", Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sergio J Álvarez-Méndez
- Instituto Universitario de Bio-Orgánica "Antonio González", Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain
| | - Caroline Overå
- Institute of Biophysics and Biophysical Chemistry, University of Regensburg, Regensburg, Germany
| | - Kartik Baruah
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tânia Margarida Lourenço
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Parisa Norouzitallab
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Víctor S Martín
- Instituto Universitario de Bio-Orgánica "Antonio González", Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain
| | - José J Fernández
- Instituto Universitario de Bio-Orgánica "Antonio González", Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain
| |
Collapse
|
23
|
Dar Y, Salomon D, Bosis E. The Antibacterial and Anti-Eukaryotic Type VI Secretion System MIX-Effector Repertoire in Vibrionaceae. Mar Drugs 2018; 16:md16110433. [PMID: 30400344 PMCID: PMC6267618 DOI: 10.3390/md16110433] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
Vibrionaceae is a widespread family of aquatic bacteria that includes emerging pathogens and symbionts. Many Vibrionaceae harbor a type VI secretion system (T6SS), which is a secretion apparatus used to deliver toxins, termed effectors, into neighboring cells. T6SSs mediate both antibacterial and anti-eukaryotic activities. Notably, antibacterial effectors are encoded together with a gene that encodes a cognate immunity protein so as to antagonize the toxicity of the effector. The MIX (Marker for type sIX effectors) domain has been previously defined as a marker of T6SS effectors carrying polymorphic C-terminal toxins. Here, we set out to identify the Vibrionaceae MIX-effector repertoire and to analyze the various toxin domains they carry. We used a computational approach to search for the MIX-effectors in the Vibrionaceae genomes, and grouped them into clusters based on the C-terminal toxin domains. We classified MIX-effectors as either antibacterial or anti-eukaryotic, based on the presence or absence of adjacent putative immunity genes, respectively. Antibacterial MIX-effectors carrying pore-forming, phospholipase, nuclease, peptidoglycan hydrolase, and protease activities were found. Furthermore, we uncovered novel virulence MIX-effectors. These are encoded by “professional MIXologist” strains that employ a cocktail of antibacterial and anti-eukaryotic MIX-effectors. Our findings suggest that certain Vibrionaceae adapted their antibacterial T6SS to mediate interactions with eukaryotic hosts or predators.
Collapse
Affiliation(s)
- Yasmin Dar
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Eran Bosis
- Department of Biotechnology Engineering, ORT Braude College of Engineering, Karmiel 2161002, Israel.
| |
Collapse
|
24
|
Complete Genome Sequences of Two Bioluminescent Vibrio campbellii Strains Isolated from Biofouling Communities in the Bay of Bengal. GENOME ANNOUNCEMENTS 2018; 6:6/20/e00422-18. [PMID: 29773633 PMCID: PMC5958271 DOI: 10.1128/genomea.00422-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Vibrio campbellii is a pathogen of aquatic animals and has been proposed as a bacterial partner in the formation of bioluminescent milky seas. We present here the complete genome sequences assembled from Illumina and Oxford Nanopore data for two bioluminescent Vibrio campbellii strains (BoB-53 and BoB-90) isolated from biofouled moorings in the Bay of Bengal.
Collapse
|
25
|
Rodrigues EM, Morais DK, Pylro VS, Redmile-Gordon M, de Oliveira JA, Roesch LFW, Cesar DE, Tótola MR. Aliphatic Hydrocarbon Enhances Phenanthrene Degradation by Autochthonous Prokaryotic Communities from a Pristine Seawater. MICROBIAL ECOLOGY 2018; 75:688-700. [PMID: 28971238 DOI: 10.1007/s00248-017-1078-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
The microbial diversity and functioning around oceanic islands is poorly described, despite its importance for ecosystem homeostasis. Here, we aimed to verify the occurrence of microbe-driven phenanthrene co-oxidation in the seawater surrounding the Trindade Island (Brazil). We also used Next-Generation Sequencing to evaluate the effects of aliphatic and polycyclic aromatic hydrocarbons (PAHs) on these microbial community assemblies. Microcosms containing seawater from the island enriched with either labelled (9-14C) or non-labelled phenanthrene together with hexadecane, weathered oil, fluoranthene or pyrene, and combinations of these compounds were incubated. Biodegradation of phenanthrene-9-14C was negatively affected in the presence of weathered oil and PAHs but increased in the presence of hexadecane. PAH contamination caused shifts in the seawater microbial community-from a highly diverse one dominated by Alphaproteobacteria to less diverse communities dominated by Gammaproteobacteria. Furthermore, the combination of PAHs exerted a compounded negative influence on the microbial community, reducing its diversity and thus functional capacity of the ecosystem. These results advance our understanding of bacterial community dynamics in response to contrasting qualities of hydrocarbon contamination. This understanding is fundamental in the application and monitoring of bioremediation strategies if accidents involving oil spillages occur near Trindade Island and similar ecosystems.
Collapse
Affiliation(s)
- Edmo Montes Rodrigues
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Daniel Kumazawa Morais
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Institute of Sciences (CAS), Prague, Czech Republic
| | - Victor Satler Pylro
- Soil Microbiology Laboratory, Department of Soil Science, "Luiz de Queiroz" College of Agriculture, ESALQ/USP, Piracicaba, São Paulo, Brazil
| | - Marc Redmile-Gordon
- Department of Sustainable Soils and Grassland Systems, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Juraci Alves de Oliveira
- Laboratório de Biofísica Ambiental, Departamento de Biologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Luiz Fernando Wurdig Roesch
- Centro para Pesquisa Interdisciplinar em Biotecnologia, CIP-Biotec, Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul, Brazil
| | - Dionéia Evangelista Cesar
- Laboratório de Ecologia e Biologia Molecular de Microrganismos, Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Marcos Rogério Tótola
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
26
|
Characterization of N-Acyl Homoserine Lactones in Vibrio tasmaniensis LGP32 by a Biosensor-Based UHPLC-HRMS/MS Method. SENSORS 2017; 17:s17040906. [PMID: 28425948 PMCID: PMC5426830 DOI: 10.3390/s17040906] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 12/13/2022]
Abstract
Since the discovery of quorum sensing (QS) in the 1970s, many studies have demonstrated that Vibrio species coordinate activities such as biofilm formation, virulence, pathogenesis, and bioluminescence, through a large group of molecules called N-acyl homoserine lactones (AHLs). However, despite the extensive knowledge on the involved molecules and the biological processes controlled by QS in a few selected Vibrio strains, less is known about the overall diversity of AHLs produced by a broader range of environmental strains. To investigate the prevalence of QS capability of Vibrio environmental strains we analyzed 87 Vibrio spp. strains from the Banyuls Bacterial Culture Collection (WDCM911) for their ability to produce AHLs. This screening was based on three biosensors, which cover a large spectrum of AHLs, and revealed that only 9% of the screened isolates produced AHLs in the defined experimental conditions. Among these AHL-producing strains, Vibrio tasmaniensis LGP32 is a well-known pathogen of bivalves. We further analyzed the diversity of AHLs produced by this strain using a sensitive bioguided UHPLC-HRMS/MS approach (Ultra-High-Performance Liquid Chromatography followed by High-Resolution tandem Mass Spectrometry) and we identified C10-HSL, OH-C12-HSL, oxo-C12-HSL and C14:1-HSL as QS molecules. This is the first report that documents the production of AHL by Vibrio tasmaniensis LGP32.
Collapse
|
27
|
Rivera-Cancel G, Orth K. Biochemical basis for activation of virulence genes by bile salts in Vibrio parahaemolyticus. Gut Microbes 2017; 8:366-373. [PMID: 28129014 PMCID: PMC5570421 DOI: 10.1080/19490976.2017.1287655] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bile salts act as a stressor to bacteria that transit the intestinal tract. Enteric pathogens have hijacked bile as an intestinal signal to regulate virulence factors. We recently demonstrated that Vibrio parahemolyticus senses bile salts via a heterodimeric receptor formed by the periplasmic domains of inner-membrane proteins VtrA and VtrC. Crystal structures of the periplasmic complex reveal that VtrA and VtrC form a β-barrel that binds bile salts in its hydrophobic interior to activate the VtrA cytoplasmic DNA-binding domain. Proteins with the same domain arrangement as VtrA and VtrC are widespread in Vibrio and related bacteria, where they are involved in regulating virulence and other unknown functions. Here we discuss our findings and review current knowledge on VtrA and VtrC homologs. We propose that signaling by these membrane-bound transcription factors can be advantageous for the regulation of membrane and secretory proteins.
Collapse
Affiliation(s)
- Giomar Rivera-Cancel
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA,CONTACT Kim Orth
| |
Collapse
|
28
|
Wang X, Zhang Y, Qin G, Luo W, Lin Q. A novel pathogenic bacteria (Vibrio fortis) causing enteritis in cultured seahorses, Hippocampus erectus Perry, 1810. JOURNAL OF FISH DISEASES 2016; 39:765-769. [PMID: 26466548 DOI: 10.1111/jfd.12411] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/24/2015] [Accepted: 07/24/2015] [Indexed: 06/05/2023]
Affiliation(s)
- X Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Y Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - G Qin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - W Luo
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Q Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
29
|
Genome Sequence of Vibrio campbellii Strain UMTGB204, a Marine Bacterium Isolated from a Green Barrel Tunicate. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00210-15. [PMID: 25814609 PMCID: PMC4384149 DOI: 10.1128/genomea.00210-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vibrio campbellii strain UMTGB204 was isolated from a green barrel tunicate. The genome of this strain comprises 5,652,224 bp with 5,014 open reading frames, 9 rRNAs, and 116 tRNAs. It contains genes related to virulence and environmental tolerance. Gene clusters for the biosynthesis of nonribosomal peptides and bacteriocin were also identified.
Collapse
|
30
|
Tapia-Paniagua ST, Vidal S, Lobo C, Prieto-Álamo MJ, Jurado J, Cordero H, Cerezuela R, García de la Banda I, Esteban MA, Balebona MC, Moriñigo MA. The treatment with the probiotic Shewanella putrefaciens Pdp11 of specimens of Solea senegalensis exposed to high stocking densities to enhance their resistance to disease. FISH & SHELLFISH IMMUNOLOGY 2014; 41:209-221. [PMID: 25149590 DOI: 10.1016/j.fsi.2014.08.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
Aquaculture industry exposes fish to acute stress events, such as high stocking density, and a link between stress and higher susceptibility to diseases has been concluded. Several studies have demonstrated increased stress tolerance of fish treated with probiotics, but the mechanisms involved have not been elucidated. Shewanella putrefaciens Pdp11 is a strain isolated from healthy gilthead seabream (Sparus aurata L.) and it is considered as probiotics. The aim of this study was to evaluate the effect of the dietary administration of this probiotics on the stress tolerance of Solea senegalensis specimens farmed under high stocking density (PHD) compared to a group fed a commercial diet and farmed under the same conditions (CHD). In addition, during the experiment, a natural infectious outbreak due to Vibrio species affected fish farmed under crowding conditions. Changes in the microbiota and histology of intestine and in the transcription of immune response genes were evaluated at 19 and 30 days of the experiment. Mortality was observed after 9 days of the beginning of the experiment in CHD and PHD groups, it being higher in the CHD group. Fish farmed under crowding stress showed reduced expression of genes at 19 day probiotic feeding. On the contrary, a significant increase in immune related gene expression was detected in CHD fish at 30 day, whereas the gene expression in fish from PHD group was very similar to that showed in specimens fed and farmed with the conventional conditions. In addition, the dietary administration of S. putrefaciens Pdp11 produced an important modulation of the intestinal microbiota, which was significantly correlated with the high number of goblet cells detected in fish fed the probiotic diet.
Collapse
Affiliation(s)
- S T Tapia-Paniagua
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - S Vidal
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - C Lobo
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander, 39080 Santander, Spain
| | - M J Prieto-Álamo
- Universidad de Córdoba, Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Ctra. Madrid, Km. 396, 14071 Córdoba, Spain
| | - J Jurado
- Universidad de Córdoba, Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Ctra. Madrid, Km. 396, 14071 Córdoba, Spain
| | - H Cordero
- Universidad de Murcia, Departamento de Biología Celular e Histología, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - R Cerezuela
- Universidad de Murcia, Departamento de Biología Celular e Histología, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - I García de la Banda
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander, 39080 Santander, Spain
| | - M A Esteban
- Universidad de Murcia, Departamento de Biología Celular e Histología, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - M C Balebona
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - M A Moriñigo
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071 Málaga, Spain.
| |
Collapse
|
31
|
Draft Genome Sequence of Vibrio fortis Dalian14 Isolated from Diseased Sea Urchin (Strongylocentrotus intermedius). GENOME ANNOUNCEMENTS 2014; 2:2/4/e00409-14. [PMID: 24994792 PMCID: PMC4081992 DOI: 10.1128/genomea.00409-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Here, we report the draft genome sequence of Vibrio fortis Dalian14 isolated from diseased sea urchin (Strongylocentrotus intermedius) during disease outbreaks in North China. The availability of this genome sequence will facilitate the study of the mechanisms of pathogenicity and evolution of Vibrio species.
Collapse
|
32
|
Optimization of multilocus sequence analysis for identification of species in the genus Vibrio. Appl Environ Microbiol 2014; 80:5359-65. [PMID: 24951781 DOI: 10.1128/aem.01206-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Multilocus sequence analysis (MLSA) is an important method for identification of taxa that are not well differentiated by 16S rRNA gene sequences alone. In this procedure, concatenated sequences of selected genes are constructed and then analyzed. The effects that the number and the order of genes used in MLSA have on reconstruction of phylogenetic relationships were examined. The recA, rpoA, gapA, 16S rRNA gene, gyrB, and ftsZ sequences from 56 species of the genus Vibrio were used to construct molecular phylogenies, and these were evaluated individually and using various gene combinations. Phylogenies from two-gene sequences employing recA and rpoA in both possible gene orders were different. The addition of the gapA gene sequence, producing all six possible concatenated sequences, reduced the differences in phylogenies to degrees of statistical (bootstrap) support for some nodes. The overall statistical support for the phylogenetic tree, assayed on the basis of a reliability score (calculated from the number of nodes having bootstrap values of ≥ 80 divided by the total number of nodes) increased with increasing numbers of genes used, up to a maximum of four. No further improvement was observed from addition of the fifth gene sequence (ftsZ), and addition of the sixth gene (gyrB) resulted in lower proportions of strongly supported nodes. Reductions in the numbers of strongly supported nodes were also observed when maximum parsimony was employed for tree construction. Use of a small number of gene sequences in MLSA resulted in accurate identification of Vibrio species.
Collapse
|
33
|
Wendling CC, Batista FM, Wegner KM. Persistence, seasonal dynamics and pathogenic potential of Vibrio communities from Pacific oyster hemolymph. PLoS One 2014; 9:e94256. [PMID: 24728233 PMCID: PMC3984124 DOI: 10.1371/journal.pone.0094256] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/11/2014] [Indexed: 12/02/2022] Open
Abstract
Bacteria of the genus Vibrio occur at a continuum from free-living to symbiotic life forms, including opportunists and pathogens, that can contribute to severe diseases, for instance summer mortality events of Pacific oysters Crassostrea gigas. While most studies focused on Vibrio isolated from moribund oysters during mortality outbreaks, investigations of the Vibrio community in healthy oysters are rare. Therefore, we characterized the persistence, diversity, seasonal dynamics, and pathogenicity of the Vibrio community isolated from healthy Pacific oysters. In a reciprocal transplant experiment we repeatedly sampled hemolymph from adult Pacific oysters to differentiate population from site-specific effects during six months of in situ incubation in the field. We characterized virulence phenotypes and genomic diversity based on multilocus sequence typing in a total of 70 Vibrio strains. Based on controlled infection experiments we could show that strains with the ability to colonize healthy adult oysters can also have the potential to induce high mortality rates on larvae. Diversity and abundance of Vibrio varied significantly over time with highest values during and after spawning season. Vibrio communities from transplanted and stationary oysters converged over time, indicating that communities were not population specific, but rather assemble from the surrounding environment forming communities, some of which can persist over longer periods.
Collapse
Affiliation(s)
- Carolin C. Wendling
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, Coastal Ecology, List, Schleswig-Holstein, Germany
| | - Frederico M. Batista
- Instituto Português do Mar e da Atmosfera, Estação de Moluscicultura de Tavira, Olhão, Portugal
| | - K. Mathias Wegner
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, Coastal Ecology, List, Schleswig-Holstein, Germany
| |
Collapse
|
34
|
Su P, Wang DX, Ding SX, Zhao J. Isolation and diversity of natural product biosynthetic genes of cultivable bacteria associated with marine sponge Mycale sp. from the coast of Fujian, China. Can J Microbiol 2014; 60:217-25. [DOI: 10.1139/cjm-2013-0785] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The marine sponge Mycale sp., a potential source of natural bioactive products, is widely distributed along the coast of Fujian, China. The cultivable bacterial community associated with Mycale sp., the antibacterial activities, and the PKS (polyketide synthase) and NRPS (nonribosomal peptide synthetase) gene diversity of these bacteria were investigated. Phylogenetic analysis of the 16S rRNA gene showed that the 51 isolates from Mycale sp. belonged to Actinobacteria, Bacteroidetes, Gammaproteobacteria, Alphaproteobacteria, and Firmicutes. Among them, some bacteria were first isolated from marine sponge. The 20 isolates with antimicrobial activities were primarily clustered within the groups Actinobacteria, Gammaproteobacteria, and Bacillus. Strain HNS054, which showed 99% similarity to Streptomyces labedae, exhibited the strongest antimicrobial activity against Gram-positive bacteria (Staphylococcus aureus MTCC 1430, Bacillus subtilis MTCC 441) and Vibrio species. The screening of natural product biosynthetic genes revealed that 8 Actinobacteria species with antimicrobial activities possessed PKS-KS (ketosynthase) or NRPS-A domains, and the Nocardiopsis species contained a hybrid or mixed PKS–NRPS system. The phylogenetic analysis of the amino acid sequences indicated that the identified KS domains clustered with those from diverse bacterial groups, including Actinobacteria, Alphaproteobacteria, Cyanobacteria, and Firmicutes. Most KS domain sequences had high homology (>80%) to type I KSs, but the KS domain of Nocardiopsis sp. strain HNS048 had 77% similarity to the type II KS domain of Burkholderia gladioli. The NRPS-A domains of the 8 isolates were grouped into the Gammaproteobacteria, Actinobacteria, and Firmicutes groups. The NRPS-A gene of strain HNS052, identified as Nocardiopsis cyriacigeorgica, showed only 54% similarity to Rhodococcus opacus. All results suggested that Mycale sp. harboured diverse bacteria that could contribute to the production of novel bioactive substances in the future.
Collapse
Affiliation(s)
- Pei Su
- College of Ocean and Earth Science of Xiamen University, Xiangan District, Building Zhou Long Quan, B2-213, Xiamen 361005, People’s Republic of China
| | - De-Xiang Wang
- College of Ocean and Earth Science of Xiamen University, Xiangan District, Building Zhou Long Quan, B2-213, Xiamen 361005, People’s Republic of China
| | - Shao-Xiong Ding
- College of Ocean and Earth Science of Xiamen University, Xiangan District, Building Zhou Long Quan, B2-213, Xiamen 361005, People’s Republic of China
| | - Jing Zhao
- College of Ocean and Earth Science of Xiamen University, Xiangan District, Building Zhou Long Quan, B2-213, Xiamen 361005, People’s Republic of China
| |
Collapse
|
35
|
Huang HH, Liu XL, Xiang JH, Wang P. Selection of Vibrio harveyi-resistant Litopenaeus vannamei via a three-round challenge selection with a pathogenic strain of V. harveyi. FISH & SHELLFISH IMMUNOLOGY 2013; 35:328-333. [PMID: 23665547 DOI: 10.1016/j.fsi.2013.04.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/07/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
To obtain Vibrio harveyi-resistant Litopenaeus vannamei shrimp used for study on immune response of shrimp avoid vibriosis, a three-round challenge selection procedure was applied. In this procedure, resistant shrimp were selected gradually via three rounds challenge experiment with a pathogenic strain of V. harveyi at a median and controllable lethal dose of 96-h LD50 (the median lethal dose). After this procedure, the cumulative mortality of selected shrimp during 96 h after injection of V. harveyi at 2.0 × 10(6) cfu shrimp(-1) significantly decreased from 93.3% to 26.7%, the hours of beginning of death and the hours of attaining of the maximum cumulative mortality of shrimp prolonged from 4 h and 10 h to 8 h and 24 h, respectively. The LD50 of 6 h, 12 h, 24 h, 48 h and 96 h of selected shrimp significantly increased to 1.4 ± 0.1 × 10(7) (p < 0.01), 5.5 ± 0.4 × 10(6) (p < 0.01), 3.1 ± 0.2 × 10(6) (p < 0.01), 2.7 ± 0.1 × 10(6) (p < 0.01) and 2.7 ± 0.1 × 10(6) cfu shrimp(-1) (p < 0.01), about 15.9, 15.3, 9.4, 10.0 and 10.4 times of that of normal shrimp, respectively. In conclusion, the resistance of shrimp to Vibrio significantly increased after the three-round challenge selection procedure.
Collapse
Affiliation(s)
- Hai-Hong Huang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | | | | | | |
Collapse
|
36
|
Chisada SI, Shimizu K, Kamada H, Matsunaga N, Okino N, Ito M. Vibrios adhere to epithelial cells in the intestinal tract of red sea bream,Pagrus major,utilizing GM4 as an attachment site. FEMS Microbiol Lett 2013; 341:18-26. [DOI: 10.1111/1574-6968.12082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Shin-ichi Chisada
- Department of Bioscience and Biotechnology; Graduate School of Bioresource and Bioenvironmental Sciences; Kyushu University; Fukuoka; Japan
| | - Kohei Shimizu
- Department of Bioscience and Biotechnology; Graduate School of Bioresource and Bioenvironmental Sciences; Kyushu University; Fukuoka; Japan
| | - Haruna Kamada
- Department of Bioscience and Biotechnology; Graduate School of Bioresource and Bioenvironmental Sciences; Kyushu University; Fukuoka; Japan
| | - Naoyuki Matsunaga
- Department of Bioscience and Biotechnology; Graduate School of Bioresource and Bioenvironmental Sciences; Kyushu University; Fukuoka; Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology; Graduate School of Bioresource and Bioenvironmental Sciences; Kyushu University; Fukuoka; Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology; Graduate School of Bioresource and Bioenvironmental Sciences; Kyushu University; Fukuoka; Japan
| |
Collapse
|
37
|
Light and transmission electron microscopy of Vibrio campbellii infection in gnotobiotic Artemia franciscana and protection offered by a yeast mutant with elevated cell wall glucan. Vet Microbiol 2012; 158:337-43. [DOI: 10.1016/j.vetmic.2012.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/15/2012] [Accepted: 02/17/2012] [Indexed: 11/19/2022]
|
38
|
Labreuche Y, Pallandre L, Ansquer D, Herlin J, Wapotro B, Le Roux F. Pathotyping of Vibrio isolates by multiplex PCR reveals a risk of virulent strain spreading in New Caledonian shrimp farms. MICROBIAL ECOLOGY 2012; 63:127-138. [PMID: 22001997 DOI: 10.1007/s00248-011-9951-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/22/2011] [Indexed: 05/31/2023]
Abstract
Two recurring syndromes threaten the viability of the shrimp industry in New Caledonia, which represents the second largest export business. The "Syndrome 93" is a cold season disease due to Vibrio penaeicida affecting all shrimp farms, while the "Summer Syndrome" is a geographically restricted vibriosis caused by a virulent lineage of Vibrio nigripulchritudo. Microbiological procedures for diagnosis of these diseases are time-consuming and do not have the ability to discriminate the range of virulence potentials of V. nigripulchritudo. In this study, we developed a multiplex PCR method to simultaneously detect these two bacterial species and allow for pathotype discrimination. The detection limits of this assay, that includes an internal amplification control to eliminate any false-negative results, were determined at 10 pg purified DNA and 200 cfu/ml. After confirming the effectiveness of our method using experimentally infected animals, its accuracy was compared to standard biochemical methods during a field survey using 94 samples collected over 3 years from shrimp farms encountering mortality events. The multiplex PCR showed very high specificity for the detection of V. penaeicida and V. nigripulchritudo (inclusivity and exclusivity 100%) and allowed us to detect the spreading of highly pathogenic isolates of V. nigripulchritudo to a farm adjoining the "Summer Syndrome area." This assay represents a simple, rapid, and cost-effective diagnostic tool for implementing timely risk management decisions but also understanding the seasonal and geographical distribution of these pathogens.
Collapse
Affiliation(s)
- Yannick Labreuche
- Département Lagons, Ecosystèmes et Aquaculture Durable en Nouvelle-Calédonie, IFREMER, Station de St. Vincent, B.P. 2059, 98846, Nouméa cedex, Nouvelle-Calédonie, France.
| | | | | | | | | | | |
Collapse
|