1
|
Alarcón Navas SV, Pereira Cardeño EM, Martínez MF, Ortiz Suárez NF, David Castro A, Martínez-Vega RA, Navarro Rosado M, González CI, Rincón Cruz G. Virulence Profiles of Salmonella enterica Isolated from Three Food Matrices Collected from Retail Markets. Foodborne Pathog Dis 2024. [PMID: 39527021 DOI: 10.1089/fpd.2024.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Salmonella enterica is one of the most common foodborne pathogens associated with the consumption of contaminated porcine, dairy, and avian products. Nontyphoidal Salmonella is a major cause of bacterial diarrhea, responsible for ∼150 million cases and 60,000 deaths annually. The main goal of this study was to determine the prevalence of Salmonella spp. and to establish the virulence profile (VP) from genes (avrA, invE, ssaD, sseF, ssaQ, ttrC) and plasmid genes (pefA, spvB, spvC) in isolates obtained from cheese, chicken, and pork sold in food markets in Barrancabermeja, Colombia. A survey was conducted on 100 samples each matrix. The detection of Salmonella spp. followed the ISO 6579:2017 standards modified, and isolates were confirmed using the invA gene. In addition, single polymerase chain reaction assays were developed to detect the nine virulence genes. Salmonella spp. was found in 62%, 32%, and 14% of pork, chicken, and cheese samples, respectively. A total of 277 isolates were biochemically, serologically, and molecularly compatible with Salmonella spp. The most representative serogroups were C and B. Forty-seven combinations of virulence gene were detected; 53.5% of the pork isolates, 46.2% of the cheese isolates, and 39% of the chicken isolates were distributed among VP1, VP2, and VP3 suggesting a higher pathogenic potential. In addition, seven isolates harbored plasmid-encoded virulence genes (spvB and spvC), which are associated with increased invasiveness. The results revealed a higher prevalence of Salmonella spp. in pork and chicken compared with other studies conducted in Colombia. The serogroups identified include serovars that more frequently affect humans Salmonella Enteriditis, Salmonella Newport, and Salmonella Typhimurium. The isolations have the majority of the virulence genes studied. These findings highlight the need to improve control measures and educate food handlers to minimize the presence of Salmonella spp. and its potential transmission.
Collapse
Affiliation(s)
- Sandy V Alarcón Navas
- Grupo de Inmunología y Epidemiología Molecular, Universidad Industrial de Santander, Bucaramanga, Colombia
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Eliana M Pereira Cardeño
- Grupo de Inmunología y Epidemiología Molecular, Universidad Industrial de Santander, Bucaramanga, Colombia
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - María F Martínez
- Grupo de Inmunología y Epidemiología Molecular, Universidad Industrial de Santander, Bucaramanga, Colombia
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | - Alexander David Castro
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
- Centro de Investigaciones Santa Lucía, Instituto Universitario de la Paz, Barrancabermeja, Colombia
| | | | | | - Clara I González
- Grupo de Inmunología y Epidemiología Molecular, Universidad Industrial de Santander, Bucaramanga, Colombia
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Giovanna Rincón Cruz
- Grupo de Inmunología y Epidemiología Molecular, Universidad Industrial de Santander, Bucaramanga, Colombia
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| |
Collapse
|
2
|
Brek T, Gohal GA, Yasir M, Azhar EI, Al-Zahrani IA. Meningitis and Bacteremia by Unusual Serotype of Salmonella enterica Strain: A Whole Genome Analysis. Interdiscip Perspect Infect Dis 2024; 2024:3554734. [PMID: 38558876 PMCID: PMC10980553 DOI: 10.1155/2024/3554734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
Background Although meningitis caused by Salmonella species is relatively rare and accounts for <1% of the confirmed cases in neonates, it is associated with case complications and fatality rates up to 50-70% when compared to other forms of Gram-negative bacilli meningitis. Objectives We conducted an investigation into the first reported case of neonatal meningitis caused by nontyphoidal S. enterica in Jazan, a region in the southwestern part of Saudi Arabia. Methods CSF and blood culture were collected from a female neonate patient to confirm the presence of bacterial meningitis. WGS was conducted to find out the comprehensive genomic characterization of S. enterica isolate. Results A 3-week-old infant was admitted to a local hospital with fever, poor feeding, and hypoactivity. She was diagnosed with Salmonella meningitis and bacteremia caused by S. enterica, which was sensitive to all antimicrobials tested. WGS revealed the specific strain to be S. enterica serotype Johannesburg JZ01, belonging to ST515 and cgMLST 304742. Conclusions We presented a genomic report of rare case of NTS meningitis in an infant who is living in a rural town in Jazan region, Saudi Arabia. Further research is required to understand the impact of host genetic factors on invasive nontyphoidal Salmonella infection.
Collapse
Affiliation(s)
- Thamer Brek
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Public Health Laboratory, The Regional Laboratory and the Central Blood Bank, Jazan Health Directorate, Jazan, Saudi Arabia
| | - Gassem A. Gohal
- Department of Pediatrics, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Muhammad Yasir
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit-Biosafety Level-3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam I. Azhar
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit-Biosafety Level-3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim A. Al-Zahrani
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit-Biosafety Level-3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Uzairue LI, Shittu OB, Ojo OE, Obuotor TM, Olanipekun G, Ajose T, Arogbonlo R, Medugu N, Ebruke B, Obaro SK. Antimicrobial resistance and virulence genes of invasive Salmonella enterica from children with bacteremia in north-central Nigeria. SAGE Open Med 2023; 11:20503121231175322. [PMID: 37223673 PMCID: PMC10201152 DOI: 10.1177/20503121231175322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
Objectives Bacteremia due to invasive Salmonella enterica has been reported earlier in children in Nigeria. This study aimed to detect the virulence and antibiotic resistance genes of invasive Salmonella enterica from children with bacteremia in north-central Nigeria. Method From June 2015 to June 2018, 4163 blood cultures yielded 83 Salmonella isolates. This is a secondary cross-sectional analysis of the Salmonella isolates. The Salmonella enterica were isolated and identified using standard bacteriology protocol. Biochemical identifications of the Salmonella enterica were made by Phoenix MD 50 identification system. Further identification and confirmation were done with polyvalent antisera O and invA gene. Antimicrobial susceptibility testing was done following clinical and laboratory standard institute guidelines. Resistant genes and virulence genes were determined using a real-time polymerase chain reaction. Result Salmonella typhi 51 (61.4%) was the most prevalent serovar, followed by Salmonella species 13 (15.7%), choleraesuis 8 (9.6%), enteritidis 6 (7.2%), and typhimurium 5 (6.1%). Fifty-one (61.4%) of 83 Salmonella enterica were typhoidal, while 32 (38.6%) were not. Sixty-five (78.3%) of the 83 Salmonella enterica isolates were resistant to ampicillin and trimethoprim-sulfamethoxazole, followed by chloramphenicol 39 (46.7%), tetracycline 41 (41.4%), piperacillin 33 (33.9%), amoxicillin-clavulanate, and streptomycin 21 (25.3%), while cephalothin was 19 (22.9%). Thirty-nine (46.9%) of the 83 Salmonella enterica isolates were multi-drug resistant, and none were extensive drug resistant or pan-drug resistant. A blaTEM 42 (50.6%), floR 32 (38.6%), qnrA 24 (28.9%), tetB 20 (20.1%), tetA 10 (10.0%), and tetG 5 (6.0%) were the antibiotic resistance genes detected. There were perfect agreement between phenotypic and genotypic detection of antimicrobial resistance in tetracycline, ciprofloxacin, and chloramphenicol, while beta-lactam showed κ = 0.60 agreement. All of the Salmonella enterica isolates had the virulence genes invA, sopB, mgtC, and sip4D, while 33 (39.8%), 45 (51.8%), and 2 (2.4%) had ssaQ, spvC, and ljsGI-1, respectively. Conclusion Our findings showed multi-drug resistant Salmonella enterica in children with bacteremia in northern Nigeria. In addition, significant virulence and antimicrobial resistance genes were found in invasive Salmonella enterica in northern Nigeria. Thus, our study emphasizes the need to monitor antimicrobial resistance in Salmonella enterica from invasive sources in Nigeria and supports antibiotic prudence.
Collapse
Affiliation(s)
- Leonard I Uzairue
- Department of Microbiology, Federal
University of Agriculture, Abeokuta, Ogun State, Nigeria
- International Foundation Against
Infectious Disease in Nigeria, Abuja, Nigeria
- Department of Medical Laboratory
Sciences, Federal University Oye Ekiti, Ekiti State, Nigeria
| | - Olufunke B Shittu
- Department of Microbiology, Federal
University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Olufemi E Ojo
- Department of Veterinary Microbiology
and Parasitology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Tolulope M Obuotor
- Department of Microbiology, Federal
University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Grace Olanipekun
- International Foundation Against
Infectious Disease in Nigeria, Abuja, Nigeria
| | - Theresa Ajose
- International Foundation Against
Infectious Disease in Nigeria, Abuja, Nigeria
| | - Ronke Arogbonlo
- International Foundation Against
Infectious Disease in Nigeria, Abuja, Nigeria
| | - Nubwa Medugu
- International Foundation Against
Infectious Disease in Nigeria, Abuja, Nigeria
- Department of Microbiology and
Parasitology, National Hospital, Abuja, FCT, Nigeria
| | - Bernard Ebruke
- International Foundation Against
Infectious Disease in Nigeria, Abuja, Nigeria
| | - Stephen K Obaro
- International Foundation Against
Infectious Disease in Nigeria, Abuja, Nigeria
- Pediatric Infectious Division, the
University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
4
|
Hernández-Ledesma A, Cabrera-Díaz E, Arvizu-Medrano SM, Gómez-Baltazar A, Hernández-Iturriaga M, Godínez-Oviedo A. Virulence and antimicrobial resistance profiles of Salmonella enterica isolated from foods, humans, and the environment in Mexico. Int J Food Microbiol 2023; 391-393:110135. [PMID: 36827747 DOI: 10.1016/j.ijfoodmicro.2023.110135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 02/09/2023] [Indexed: 02/21/2023]
Abstract
Salmonella enterica genotypic and phenotypic characteristics play an important role in its pathogenesis, which could be influenced by its origin. This study evaluated the association among the antimicrobial resistance, virulence, and origin of circulating S. enterica strains in Mexico, isolated from foods, humans, and the environment. The antimicrobial susceptibility to fourteen antibiotics by the Kirby-Bauer method (n = 117), and the presence of thirteen virulence genes by multiplex PCR (n = 153) and by sequence alignments (n = 2963) were evaluated. In addition, a set of S. enterica isolates from Mexico (n = 344) previously characterized according to their genotypic and phenotypic print was included to increase the coverage of the association analysis. Strains with the presence of sopE and strains with the absence of sspH1 were significantly associated with multidrug-resistant (MDR) phenotypes (p < 0.05). The origin of the strains had significant associations with the antimicrobial profiles and some virulence genes (hilA, orgA, sifA, ssaQ, sseL, sspH1, pefA, and spvC) (p < 0.05). Animal-origin food isolates showed the highest frequency of MDR (57.2 %), followed by human isolates (30.0 %). Also, sspH1, pefA, and spvC were found in major frequency in human (32.4 %, 31.0 %, 31.7 %) and animal-origin foods (41.6 %, 10.6 %, 10.6 %) isolates. The findings highlighted that antimicrobial profiles and specific virulence genes of S. enterica strains are related to their origin. Similar genotypic and phenotypic characteristics between human and animal-origin foods isolates were found, suggesting that animal-origin foods isolates are the most responsible for human cases. The revealed associations can be used to improve risk estimation assessments in national food safety surveillance programs.
Collapse
Affiliation(s)
- A Hernández-Ledesma
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Col. Las Campanas, 76010 Querétaro, Qro., Mexico
| | - E Cabrera-Díaz
- Departamento de Salud Pública, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, Mexico
| | - S M Arvizu-Medrano
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Col. Las Campanas, 76010 Querétaro, Qro., Mexico
| | - A Gómez-Baltazar
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Col. Las Campanas, 76010 Querétaro, Qro., Mexico
| | - M Hernández-Iturriaga
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Col. Las Campanas, 76010 Querétaro, Qro., Mexico
| | - A Godínez-Oviedo
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Col. Las Campanas, 76010 Querétaro, Qro., Mexico.
| |
Collapse
|
5
|
Serotypes, Antibiotic Resistance Genes, and Salmonella Pathogenicity Island Genes of Salmonella from Patients in a Hospital in Weifang, China. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-128675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Salmonella is an important foodborne pathogen that causes diarrhea in humans worldwide. Objectives: This study aimed to determine the serotype distribution, antibiotic-resistant genes, and Salmonella pathogenicity island (SPI) genes of clinical isolates of Salmonella in Weifang. Methods: A total of 111 Salmonella strains were collected from Weifang People’s Hospital between 2018 and 2020 and subjected to serotyping using the Kauffmann-White antigen table. Meanwhile, the polymerase chain reaction detected eleven SPI1-6 genes and six antibiotic resistance genes. Results: Among the 111 Salmonella strains, 17 serotypes were identified, with S. Typhimurium, S. Typhi, and S. Enteritidis being the most prevalent. The hilA, ssaB, sseC, marT, siiE, pipB, sopB, and pagN SPI1-6 genes were all found during analysis. The InvA, misL, and siiD genes were detected at 98.2, 97.30, and 97.30% rates, respectively. Also, sul2 and blaTEM were the most prevalent antibiotic resistance genes in this investigation, accounting for 68.47 and 21.62% of the total, respectively. Conclusions: Salmonella isolated from the clinical samples was found to have a diversity of serotypes and possessed various SPI and antibiotic resistance genes.
Collapse
|
6
|
Godínez-Oviedo A, Cabrera-Díaz E, Palacios-Marmolejo A, Pérez-Covarrubias OB, Vargas-Daniel RC, Tamplin ML, Bowman JP, Hernández-Iturriaga M. Detection, quantification, and characterization of Salmonella enterica in mango, tomato, and raw chicken purchased in the central region of Mexico. J Food Sci 2021; 87:370-382. [PMID: 34954835 DOI: 10.1111/1750-3841.16003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022]
Abstract
To estimate human exposure to Salmonella enterica, it is essential to understand the pathogen distribution and characteristics. Prevalence and concentration of S. enterica were determined in mango, tomato, and raw chicken samples purchased in three states (Aguascalientes, Querétaro, and Guadalajara) located in the central region of Mexico during two seasons. In addition, S. enterica isolates were characterized by absence/presence of 13 virulence genes (chromosomal, prophage, and plasmid) and resistance to 14 antibiotics. A total of 300 samples of mango, 272 of tomato, and 354 of raw chicken were analyzed. The mean of the prevalence (24.9%) and concentration (-0.61 Log MPN/g) of S. enterica in chicken was higher than in mango (1.3%, -1.7 Log MPN/g) and tomato (1.1%, -1.7 Log MPN). Among S. enterica isolates (284), there were 7 different virulotypes, belonging 68.7% of isolates to V2; there was high variability in the presence of mobile genetic elements. The occurrence of specific mobile elements ranged from 81.4% to 11.3% among isolates. Among the isolates, 91.5% were resistant to at least one antibiotic with ampicillin being the most frequent; 54.9% of isolates were multidrug resistant. Data from this study can be used for quantitative microbial risk assessment of S. enterica related to mango, tomato, and raw chicken consumption in the central region of Mexico. PRACTICAL APPLICATION: Data on the prevalence and concentration of Salmonella enterica obtained in this study can be used to estimate the exposure assessment for the consumption of mango, tomato, and chicken in the central region of Mexico. In addition, the characteristics of the S. enterica isolates could be used to select representative strains for future studies to evaluate the intraspecies variability.
Collapse
Affiliation(s)
- Angélica Godínez-Oviedo
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario Cerro de las Campanas S/N, Querétaro, México
| | - Elisa Cabrera-Díaz
- Departamento de Salud Pública, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, México
| | | | - Olga Berenice Pérez-Covarrubias
- Departamento de Salud Pública, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, México
| | | | - Mark L Tamplin
- Food Safety and Innovation Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - John P Bowman
- Food Safety and Innovation Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Montserrat Hernández-Iturriaga
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario Cerro de las Campanas S/N, Querétaro, México
| |
Collapse
|
7
|
Analysis of In Vivo Transcriptome of Intracellular Bacterial Pathogen Salmonella enterica serovar Typhmurium Isolated from Mouse Spleen. Pathogens 2021; 10:pathogens10070823. [PMID: 34209260 PMCID: PMC8308634 DOI: 10.3390/pathogens10070823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important intracellular pathogen that poses a health threat to humans. This study tries to clarify the mechanism of Salmonella survival and reproduction in the host. In this study, high-throughput sequencing analysis was performed on RNA extracted from the strains isolated from infected mouse spleens and an S. Typhimurium reference strain (ATCC 14028) based on the BGISEQ-500 platform. A total of 1340 significant differentially expressed genes (DEGs) were screened. Functional annotation revealed DEGs associated with regulation, metabolism, transport and binding, pathogenesis, and motility. Through data mining and literature retrieval, 26 of the 58 upregulated DEGs (FPKM > 10) were not reported to be related to the adaptation to intracellular survival and were classified as candidate key genes (CKGs) for survival and proliferation in vivo. Our data contribute to our understanding of the mechanisms used by Salmonella to regulate virulence gene expression whilst replicating inside mammalian cells.
Collapse
|
8
|
Al-Maqbali AA, Al-Abri SS, Vidyanand V, Al-Abaidani I, Al-Balushi AS, Bawikar S, El Amir E, Al-Azri S, Kumar R, Al-Rashdi A, Al-Jardani AK. Community Foodborne of Salmonella Weltevreden Outbreak at Northern Governorate, Sultanate of Oman. J Epidemiol Glob Health 2021; 11:224-229. [PMID: 33969949 PMCID: PMC8242109 DOI: 10.2991/jegh.k.210404.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/05/2021] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVES To investigate the course of a community gastroenteritis outbreak by Salmonella and implement interventional activities and roles to prevent occurring such an outbreak in the future. METHODS From August 27 to 2 September 2015, 101 individuals were reported among a local community. All affected individuals had a history of food consumption at a local restaurant. A rapid response team conducted active surveillance and interview with the affected individuals and workers of the restaurant. Food items and stools from food handlers and affected individuals were cultured and sent for genotyping. An environmental audit of the restaurant had been conducted. RESULTS The total majority of the affected individuals were male and more than 70% belonged to the young age group from 15 to 45 years. Out of the total, 97% had diarrhea, 70% fever, 56% abdominal cramps and 49% vomiting. All those affected were managed symptomatically except for 14 cases admitted for intravenous rehydration. Breakdown of food safety and basic personal hygiene were detected in the environment of the restaurant and among the workers. There are 39 out of 49 stool cultures of cases, six out of 18 food handlers, and five food samples were positive for Salmonella spp. The identical DNA fingerprinting pattern among S. Weltevreden strains originating from human cases and food was detected. CONCLUSION This is the first reported community foodborne of S. Weltevreden outbreak in Oman. The importance of food safety and rigors environmental safety is emphasized. Basic personal hygiene and training of food handlers in restaurants are recommended with public health measurements.
Collapse
Affiliation(s)
- Ali A Al-Maqbali
- Ministry of Health, Directorate of Communicable Disease Surveillance and Control-NBG, Sohar, Oman
| | - Seif S Al-Abri
- Ministry of Health, Directorate General of Disease Surveillance and Control, Muscat, Oman
| | - V Vidyanand
- Ministry of Health, Directorate of Communicable Disease Surveillance and Control-NBG, Sohar, Oman
| | - Idris Al-Abaidani
- Ministry of Health, Directorate General of Disease Surveillance and Control, Muscat, Oman
| | - Amal S Al-Balushi
- Ministry of Health, Directorate of Communicable Disease Surveillance and Control-NBG, Sohar, Oman
| | - Shyam Bawikar
- Ministry of Health, Directorate General of Disease Surveillance and Control, Muscat, Oman
| | - Emadeldin El Amir
- Ministry of Health, Directorate of Communicable Disease Surveillance and Control-NBG, Sohar, Oman
| | - Saleh Al-Azri
- Ministry of Health, Central Public Health Laboratory, Muscat, Oman
| | - Rajesh Kumar
- Ministry of Health, Central Public Health Laboratory, Muscat, Oman
| | - Azza Al-Rashdi
- Ministry of Health, Central Public Health Laboratory, Muscat, Oman
| | | |
Collapse
|
9
|
Genomic investigation of antimicrobial resistance determinants and virulence factors in Salmonella enterica serovars isolated from contaminated food and human stool samples in Brazil. Int J Food Microbiol 2021; 343:109091. [PMID: 33639477 DOI: 10.1016/j.ijfoodmicro.2021.109091] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/07/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022]
Abstract
This study investigated the antimicrobial resistance determinants, virulence factors and identified serovars in 37 Salmonella enterica strains isolated from human stool and contaminated foods linked to outbreaks that occurred in Brazil over 7 years using whole genome sequencing (WGS). Phylogenetic analysis of selected serovars (S. Typhimurium, S. Infantis, S. London, and S. Johannesburg) was performed. Ten distinct serovars were identified and, 51% of the tested strains (n = 19) showed disagreement with the previous conventional serotyping. The antimicrobial resistance (AMR) determinants or plasmids varied among the strains. Resistome analysis revealed the presence of resistance genes to aminoglycosides [aac (6')-laa, aph (3″)-lb, aph (6)-ld, aadA1 and aadA2], sulfonamides (sul1), trimethoprin (dfrA8), fosfomycin (fosA7) and tetracyclines (tetA, tetB, tetC), as well as point mutations in parC (T57S) and gyrA (S83F). Plasmidome showed the presence of IncHI2, IncHI2A, IncFIB (S), IncFII (S), IncI1 and p0111 plasmids. Eight Salmonella pathogenicity islands and up to 102 stress and/or virulence genes were identified in the evaluated genomes. Virulence genes of K88 fimbrial adhesin were first reported in S. enterica (S. Pomona, S. Bredeney and S. Mbandaka strains). pilW gene was first identified in S. Pomona. Phylogenetic analysis showed that some serovars circulated in Brazil for decades, primarily within the poultry production chain. Findings highlighted the virulence and AMR determinants in strains that may lead to recurring food outbreaks.
Collapse
|
10
|
Obe T, Nannapaneni R, Schilling W, Zhang L, McDaniel C, Kiess A. Prevalence of Salmonella enterica on poultry processing equipment after completion of sanitization procedures. Poult Sci 2020; 99:4539-4548. [PMID: 32867998 PMCID: PMC7598133 DOI: 10.1016/j.psj.2020.05.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 01/10/2023] Open
Abstract
Salmonella is a poultry-borne pathogen that causes illness throughout the world. Consequently, it is critical to control Salmonella during the process of converting broilers to poultry meat. Sanitization of a poultry processing facility, including processing equipment, is a crucial control measure that is utilized by poultry integrators. However, prevalence of Salmonella on equipment after sanitization and its potential risk to food safety has not been evaluated thoroughly. Therefore, the objective of this study was to evaluate the persistence of Salmonella on poultry processing equipment before and following cleaning and sanitization procedure. A total of 15 locations within 6 commercial processing plants were sampled at 3 time points: (A) after processing; (B) after cleaning; and (C) after sanitization, on 3 separate visits for a total of 135 samples per plant. Salmonella-positive isolates were recovered from samples using the United States Department of Agriculture MLG 4.09 conventional method. Presumptive Salmonella colonies were subjected to biochemical tests for confirmation. Salmonella isolates recovered after sanitization were serotyped and tested for the presence of specific virulence genes. A completely randomized design with a 6 × 3 × 15 factorial arrangement was utilized to analyze the results for Salmonella prevalence between processing plants. Means were separated using Fishers protected least significant difference when P ≤ 0.05. For Salmonella prevalence between processing plants, differences (P < 0.0001) were observed in the 6 plants tested where the maximum and minimum prevalence was 29.6 and 7.4%, respectively. As expected, there was a difference (P < 0.0001) in the recovery of Salmonella because of sampling time. Salmonella prevalence at time A (36%) was significantly higher, whereas there was no difference between time B (12%) and C (9%). There was a location effect (P < 0.0001) for the prevalence of Salmonella with the head puller, picker, cropper, and scalder having a significantly higher prevalence when compared with several other locations. At sampling time C, a trend toward a difference (P = 0.0899) was observed for Salmonella prevalence between the 6 plants, whereas significant differences were observed because of location (P = 0.0031). Five prominent Salmonella enterica serovars were identified, including Kentucky, Schwarzengrund, Enteritidis, Liverpool, and Typhimurium with S. Kentucky being the most prevalent. PCR analysis of 8 Salmonella virulence genes showed that the invA, sipB, spiA, sseC, and fimA were detected in all isolates, whereas genes carried on plasmids and/or fimbriae varied remarkably among all isolates. This study established Salmonella prevalence and persistence in poultry processing facilities after antimicrobial application through sanitization procedures which could result in contamination of poultry carcasses and food safety risks because of poultry meat.
Collapse
Affiliation(s)
- Tomi Obe
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Rama Nannapaneni
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA
| | - Wes Schilling
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Chris McDaniel
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Aaron Kiess
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
11
|
Nimnoi P, Pongsilp N. Distribution and expression of virulence genes in potentially pathogenic bacteria isolated from seafood in Thailand. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1842502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Pongrawee Nimnoi
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, Thailand
| | - Neelawan Pongsilp
- Department of Microbiology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
12
|
El-Shibiny A, El-Sahhar S. Bacteriophages: the possible solution to treat infections caused by pathogenic bacteria. Can J Microbiol 2017; 63:865-879. [PMID: 28863269 DOI: 10.1139/cjm-2017-0030] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since their discovery in 1915, bacteriophages have been used to treat bacterial infections in animals and humans because of their unique ability to infect their specific bacterial hosts without affecting other bacterial populations. The research carried out in this field throughout the 20th century, largely in Georgia, part of USSR and Poland, led to the establishment of phage therapy protocols. However, the discovery of penicillin and sulfonamide antibiotics in the Western World during the 1930s was a setback in the advancement of phage therapy. The misuse of antibiotics has reduced their efficacy in controlling pathogens and has led to an increase in the number of antibiotic-resistant bacteria. As an alternative to antibiotics, bacteriophages have become a topic of interest with the emergence of multidrug-resistant bacteria, which are a threat to public health. Recent studies have indicated that bacteriophages can be used indirectly to detect pathogenic bacteria or directly as biocontrol agents. Moreover, they can be used to develop new molecules for clinical applications, vaccine production, drug design, and in the nanomedicine field via phage display.
Collapse
Affiliation(s)
- Ayman El-Shibiny
- University of Science and Technology, Zewail City of Science and Technology, Sheikh Zayed District, 12588, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Sheikh Zayed District, 12588, Giza, Egypt
| | - Salma El-Sahhar
- University of Science and Technology, Zewail City of Science and Technology, Sheikh Zayed District, 12588, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Sheikh Zayed District, 12588, Giza, Egypt
| |
Collapse
|
13
|
Saikia L, Sharma A, Nath R, Choudhury G, Borah AK. Salmonella Weltevreden food poisoning in a tea garden of Assam: An outbreak investigation. Indian J Med Microbiol 2015; 33:503-6. [DOI: 10.4103/0255-0857.167347] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Osman KM, Marouf SH, Zolnikov TR, AlAtfeehy N. Isolation and characterization of Salmonella enterica in day-old ducklings in Egypt. Pathog Glob Health 2013; 108:37-48. [PMID: 24548159 DOI: 10.1179/2047773213y.0000000118] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Importing day-old ducklings (DOD) unknowingly infected with non-typhoid Salmonella (NTS) may be associated with disease risk. Domestic and international trade may enhance this risk. Salmonella enterica serovars, their virulence genes combinations and antibiotic resistance, garner attention for their potentiality to contribute to the adverse health effects on populations throughout the world. The aim of this study was to estimate the risk of imported versus domestic DOD as potential carriers of NTS. The results confirm the prevalence of salmonellosis in imported ducklings was 18·5% (25/135), whereas only 12% (9/75) of cases were determined in the domestic ducklings. Fourteen serovars (Salmonella enteritidis, Salmonella kisii, Salmonella typhimurium, Salmonella gaillac, Salmonella uno, Salmonella eingedi, Salmonella shubra, Salmonella bardo, Salmonella inganda, Salmonella kentucky, Salmonella stanley, Salmonella virchow, Salmonella haifa, and Salmonella anatum) were isolated from the imported ducklings, whereas only S. enteritidis, S. typhimurium, S. virchow, and S. shubra were isolated from the domestic ducklings. The isolated Salmonella serovars were 100% susceptible to only colistin sulphate and 100% resistant to lincomycin. The 14 Salmonella serovars were screened for 11 virulence genes (invA, avrA, ssaQ, mgtC, siiD, sopB, gipA, sodC1, sopE1, spvC, and bcfC) by PCR. The invA, sopB, and bcfC genes were detected in 100% of the Salmonella serovars; alternatively, the gipA gene was absent in all of the isolated Salmonella serovars. The 11 virulent genes were not detected in either of S. stanley or S. haifa serovars. The results confirm an association between antibiotic resistance and virulence of Salmonella in the DOD. This study confirms the need for a country adherence to strict public health and food safety regimes.
Collapse
|
15
|
Deekshit VK, Kumar BK, Rai P, Rohit A, Karunasagar I. Simultaneous detection of Salmonella pathogenicity island 2 and its antibiotic resistance genes from seafood. J Microbiol Methods 2013; 93:233-8. [PMID: 23545447 DOI: 10.1016/j.mimet.2013.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 01/19/2023]
Abstract
Salmonella enterica serovars are virulent pathogens of humans and animals with many strains possessing multiple drug resistance traits. They have been found to carry resistance to ampicillin, chloramphenicol, florfenicol, streptomycin, sulfonamides, and tetracycline (ACSSuT-resistant). A rapid and sensitive multiplex PCR (mPCR)-based assay was developed for the detection of Salmonella serovars from seafood. Six sets of primers which are one primer pair targeting Salmonella specific gene invA (284 bp), two Salmonella pathogenicity island 2 (SPI-2) genes ssaT (780 bp) and sseF (888 bp) and three antibiotic resistance genes floR (198 bp), sul1 (425 bp), tetG (550 bp) were used for the study. The specificity and sensitivity of the assay were tested by spiking shrimp/fish/clam homogenate with viable cells of Salmonella. This assay allows for the cost effective and reliable detection of pathogenic Salmonella enterica from seafood. The mPCR developed in the present study proved to be a potent analytical tool for the rapid identification of multidrug-resistant Salmonella serovars from seafood.
Collapse
Affiliation(s)
- Vijaya Kumar Deekshit
- Department of Fisheries Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore 575002, India
| | | | | | | | | |
Collapse
|
16
|
Bezuidt O, Pierneef R, Mncube K, Lima-Mendez G, Reva ON. Mainstreams of horizontal gene exchange in enterobacteria: consideration of the outbreak of enterohemorrhagic E. coli O104:H4 in Germany in 2011. PLoS One 2011; 6:e25702. [PMID: 22022434 PMCID: PMC3195076 DOI: 10.1371/journal.pone.0025702] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/08/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Escherichia coli O104:H4 caused a severe outbreak in Europe in 2011. The strain TY-2482 sequenced from this outbreak allowed the discovery of its closest relatives but failed to resolve ways in which it originated and evolved. On account of the previous statement, may we expect similar upcoming outbreaks to occur recurrently or spontaneously in the future? The inability to answer these questions shows limitations of the current comparative and evolutionary genomics methods. PRINCIPAL FINDINGS The study revealed oscillations of gene exchange in enterobacteria, which originated from marine γ-Proteobacteria. These mobile genetic elements have become recombination hotspots and effective 'vehicles' ensuring a wide distribution of successful combinations of fitness and virulence genes among enterobacteria. Two remarkable peculiarities of the strain TY-2482 and its relatives were observed: i) retaining the genetic primitiveness by these strains as they somehow avoided the main fluxes of horizontal gene transfer which effectively penetrated other enetrobacteria; ii) acquisition of antibiotic resistance genes in a plasmid genomic island of β-Proteobacteria origin which ontologically is unrelated to the predominant genomic islands of enterobacteria. CONCLUSIONS Oscillations of horizontal gene exchange activity were reported which result from a counterbalance between the acquired resistance of bacteria towards existing mobile vectors and the generation of new vectors in the environmental microflora. We hypothesized that TY-2482 may originate from a genetically primitive lineage of E. coli that has evolved in confined geographical areas and brought by human migration or cattle trade onto an intersection of several independent streams of horizontal gene exchange. Development of a system for monitoring the new and most active gene exchange events was proposed.
Collapse
Affiliation(s)
- Oliver Bezuidt
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, South Africa
| | - Rian Pierneef
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, South Africa
| | - Kingdom Mncube
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, South Africa
| | - Gipsi Lima-Mendez
- Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Université Libre de Bruxelles, Bruxelles, Belgium
| | - Oleg N. Reva
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, South Africa
- * E-mail:
| |
Collapse
|