1
|
Wang K, Liu Y, Liu R, Belqadi W, Zeng W, Yu R, Wu X. Isolation, Sphalerite Bioleaching, and Whole Genome Sequencing of Acidithiobacillus ferriphilus QBS3 from Zinc-Rich Sulfide Mine Drainage. Life (Basel) 2025; 15:792. [PMID: 40430218 PMCID: PMC12113256 DOI: 10.3390/life15050792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
The genus Acidithiobacillus has been widely used in bioleaching, and novel strains in this genus, such as A. ferriphilus, have also been confirmed to possess bioleaching capabilities. In this study, an Acidithiobacillus ferriphilus strain, QBS3, was isolated from zinc-rich sulfide mine drainage using the gradient dilution method. QBS3 is a Gram-negative, 1.3 µm rod-shaped bacterium with small red colonies. It showed a high iron oxidation efficiency of 0.361 g/(L·h) and a sulfur oxidation efficiency of 0.206 g/(L·d). QBS3 has sphalerite bioleaching ability; using QBS3 for pure sphalerite bioleaching, 18.8% of zinc was extracted in 14 days at 1% pulp density. Whole genome sequencing was performed on QBS3. Functional prediction showed that 9.13% of the genes were involved in replication, recombination, and repair. Bioleaching-related genes were analyzed, including iron and sulfur oxidation genes, and carbon and nitrogen fixation genes. For iron oxidation, the Cyc2→RusA pathway and Iro→RusB pathway were found in QBS3. In terms of sulfur oxidation, QBS3 has an incomplete SOX system and lacks the SDO gene, but Rho and Trx may complement the SOX system, enabling QBS3 to oxidize sulfur. QBS3 has multiple sets of carbon fixation genes, and nitrogen fixation genes were also identified. A hypothetical sphalerite bioleaching model is proposed; this study provides a theoretical basis for the zinc sulfide ore bioleaching industry.
Collapse
Affiliation(s)
- Kan Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (K.W.); (R.L.); (W.B.); (W.Z.); (R.Y.); (X.W.)
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Yuandong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (K.W.); (R.L.); (W.B.); (W.Z.); (R.Y.); (X.W.)
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Run Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (K.W.); (R.L.); (W.B.); (W.Z.); (R.Y.); (X.W.)
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Wissal Belqadi
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (K.W.); (R.L.); (W.B.); (W.Z.); (R.Y.); (X.W.)
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (K.W.); (R.L.); (W.B.); (W.Z.); (R.Y.); (X.W.)
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (K.W.); (R.L.); (W.B.); (W.Z.); (R.Y.); (X.W.)
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (K.W.); (R.L.); (W.B.); (W.Z.); (R.Y.); (X.W.)
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China
| |
Collapse
|
2
|
Li Y, Chen Y, Kang L, Cao Z, Lv J, Wang S, Guo C, Wang J. Metagenomic analysis reveals enhanced sludge dewaterability through acidified sludge inoculation: Regulation of Fe (II) oxidation electron transport pathway. BIORESOURCE TECHNOLOGY 2024; 412:131367. [PMID: 39216705 DOI: 10.1016/j.biortech.2024.131367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The bioleaching utilizing indigenous microbial inoculation can continuously improve the dewaterability of sludge. In this study, metagenomic analysis was innovative employed to identify the key microorganisms and functional genes that affect the dewatering performance of sludge in the bioleaching conditioning process. The results demonstrated that long-term repeated inoculation of acidified sludge resulted in increased abundance of many functional genes associated with the transport of carbohydrate and amino acid. Additionally, genes encoding key iron transport proteins (such as afuA, fhuC, and fhuD) and genes related to electron transfer carriers in ferrous iron oxidation process (such as rus and cyc2) were significantly enriched, thereby promoting the improvement of sludge dewatering performance through enhanced iron oxidation. Notably, Acidithiobacillus, Betaproteobacteria, and Hyphomicrobium were the major sources of functional genes. This study reveals the microscopic mechanisms underlying the improvement of sludge dewaterability through bioleaching based on mixed culture from a novel perspective of gene metabolism.
Collapse
Affiliation(s)
- Yunbei Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Yiwen Chen
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Lizan Kang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhong Cao
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jinghua Lv
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shipeng Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Chao Guo
- Zhengzhou Moda Environmental Protection Technology Co., Ltd., Zhengzhou, China
| | - Junqiang Wang
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| |
Collapse
|
3
|
Ullrich SR, Fuchs H, Schlömann M. Shedding light on the electron transfer chain of a moderately acidophilic iron oxidizer: characterization of recombinant HiPIP-41, CytC-18 and CytC-78 derived from Ferrovum sp. PN-J47-F6. Res Microbiol 2024; 175:104088. [PMID: 37348744 DOI: 10.1016/j.resmic.2023.104088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
Efficient electron transfer from the donor to the acceptor couple presents a necessary requirement for acidophilic and neutrophilic iron oxidizers due to the low energy yield of aerobic ferrous iron oxidation. Involved periplasmic electron carriers are very diverse in these bacteria and show adaptations to the respective thermodynamic constraints such as a more positive redox potential reported for extreme acidophilic Acidithiobacillus spp. Respiratory chain candidates of moderately acidophilic members of the genus Ferrovum share similarities with both their neutrophilic iron oxidizing relatives and the more distantly related Acidithiobacillus spp. We examined our previous omics-based conclusions on the potential electron transfer chain in Ferrovum spp. by characterizing the three redox protein candidates CytC-18, CytC-78 and HiPIP-41 of strain PN-J47-F6 which were produced as recombinant proteins in Eschericha coli. UV/Vis-based redox assays suggested that HiPIP-41 has a very positive redox potential while redox potentials of CytC-18 and CytC-78 are more negative than their counterparts in Acidithiobacillus spp. Far Western dot blotting demonstrated interactions between all three recombinant redox proteins while redox assays showed the electron transfer from HiPIP-41 to either of the cytochromes. Altogether, CytC-18, CytC-78 and HiPIP-41 indeed represent very likely candidates of the electron transfer in Ferrovum sp. PN-J4-F6.
Collapse
Affiliation(s)
- Sophie R Ullrich
- TU Bergakademie Freiberg, Institute for Biological Sciences, Leipziger Strasse 29, Freiberg, Germany.
| | - Helena Fuchs
- TU Bergakademie Freiberg, Institute for Biological Sciences, Leipziger Strasse 29, Freiberg, Germany
| | - Michael Schlömann
- TU Bergakademie Freiberg, Institute for Biological Sciences, Leipziger Strasse 29, Freiberg, Germany
| |
Collapse
|
4
|
Jones S, Santini JM. Mechanisms of bioleaching: iron and sulfur oxidation by acidophilic microorganisms. Essays Biochem 2023; 67:685-699. [PMID: 37449416 PMCID: PMC10427800 DOI: 10.1042/ebc20220257] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Bioleaching offers a low-input method of extracting valuable metals from sulfide minerals, which works by exploiting the sulfur and iron metabolisms of microorganisms to break down the ore. Bioleaching microbes generate energy by oxidising iron and/or sulfur, consequently generating oxidants that attack sulfide mineral surfaces, releasing target metals. As sulfuric acid is generated during the process, bioleaching organisms are typically acidophiles, and indeed the technique is based on natural processes that occur at acid mine drainage sites. While the overall concept of bioleaching appears straightforward, a series of enzymes is required to mediate the complex sulfur oxidation process. This review explores the mechanisms underlying bioleaching, summarising current knowledge on the enzymes driving microbial sulfur and iron oxidation in acidophiles. Up-to-date models are provided of the two mineral-defined pathways of sulfide mineral bioleaching: the thiosulfate and the polysulfide pathway.
Collapse
Affiliation(s)
- Sarah Jones
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, WC1E 6BT, U.K
- Institute of Structural and Molecular Biology, Division of Biosciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, U.K
| | - Joanne M Santini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, WC1E 6BT, U.K
| |
Collapse
|
5
|
Li Q, Yang Y, Ma J, Sun J, Li G, Zhang R, Cui Z, Li T, Liu X. Sulfur enhancement effects for uranium bioleaching in column reactors from a refractory uranium ore. Front Microbiol 2023; 14:1107649. [PMID: 36778865 PMCID: PMC9911114 DOI: 10.3389/fmicb.2023.1107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
The feasibility of sulfur enhancement for uranium bioleaching in column reactors was assessed with a designed mixed Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferriphilum from a refractory uranium ore. The uranium extraction reached 86.2% with the sulfur enhancement (1 g/kg) in 77 days leaching process, increased by 12.6% vs. the control without sulfur addition. The kinetic analysis showed that uranium bioleaching with sulfur enhancement in columns followed an internal diffusion through the product layer-controlled model. Ore residue characteristics indicated that sulfur enhancement could strengthen the porosity of passivation layer, improving the ore permeability. Notably, bacterial community analysis showed that sulfur enhancement at 1 g/kg could make the iron-oxidizing and sulfur-oxidizing bacteria on the ore surface maintain a good balance (approx. 1:1), and thus decomposing ore more effectively. Lastly, a possible mechanism model for uranium bioleaching with sulfur enhancement was proposed.
Collapse
Affiliation(s)
- Qian Li
- School of Resources and Environment and Safety Engineering, University of South China, Hengyang, China,Key Discipline Laboratory for National Defence of Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, China,*Correspondence: Qian Li ✉
| | - Yu Yang
- School of Resources and Environment and Safety Engineering, University of South China, Hengyang, China,Key Discipline Laboratory for National Defence of Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, China
| | - Jinfang Ma
- School of Resources and Environment and Safety Engineering, University of South China, Hengyang, China,Key Discipline Laboratory for National Defence of Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, China
| | - Jing Sun
- School of Resources and Environment and Safety Engineering, University of South China, Hengyang, China,Key Discipline Laboratory for National Defence of Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, China
| | - Guangyue Li
- School of Resources and Environment and Safety Engineering, University of South China, Hengyang, China,Key Discipline Laboratory for National Defence of Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, China
| | - Ruiyong Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China,Ruiyong Zhang ✉
| | - Zhao Cui
- School of Resources and Environment and Safety Engineering, University of South China, Hengyang, China,Key Discipline Laboratory for National Defence of Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, China
| | - Ting Li
- School of Resources and Environment and Safety Engineering, University of South China, Hengyang, China,Key Discipline Laboratory for National Defence of Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, China
| | - Xiaobei Liu
- School of Resources and Environment and Safety Engineering, University of South China, Hengyang, China,Key Discipline Laboratory for National Defence of Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, China
| |
Collapse
|
6
|
Sand W, Schippers A, Hedrich S, Vera M. Progress in bioleaching: fundamentals and mechanisms of microbial metal sulfide oxidation - part A. Appl Microbiol Biotechnol 2022; 106:6933-6952. [PMID: 36194263 PMCID: PMC9592645 DOI: 10.1007/s00253-022-12168-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
Abstract Bioleaching of metal sulfides is performed by diverse microorganisms. The dissolution of metal sulfides occurs via two chemical pathways, either the thiosulfate or the polysulfide pathway. These are determined by the metal sulfides’ mineralogy and their acid solubility. The microbial cell enables metal sulfide dissolution via oxidation of iron(II) ions and inorganic sulfur compounds. Thereby, the metal sulfide attacking agents iron(III) ions and protons are generated. Cells are active either in a planktonic state or attached to the mineral surface, forming biofilms. This review, as an update of the previous one (Vera et al., 2013a), summarizes some recent discoveries relevant to bioleaching microorganisms, contributing to a better understanding of their lifestyle. These comprise phylogeny, chemical pathways, surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, cell–cell communication, molecular biology, and biofilm lifestyle. Recent advances from genetic engineering applied to bioleaching microorganisms will allow in the future to better understand important aspects of their physiology, as well as to open new possibilities for synthetic biology applications of leaching microbial consortia. Key points • Leaching of metal sulfides is strongly enhanced by microorganisms • Biofilm formation and extracellular polymer production influences bioleaching • Cell interactions in mixed bioleaching cultures are key for process optimization
Collapse
Affiliation(s)
- Wolfgang Sand
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany. .,Faculty of Chemistry, University Duisburg-Essen, Essen, Germany.
| | - Axel Schippers
- Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, Germany
| | - Sabrina Hedrich
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Mario Vera
- Instituto de Ingeniería Biológica y Médica, Escuelas de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Departamento de Ingeniería Hidráulica y Ambiental, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
7
|
Muñoz-Villagrán C, Grossolli-Gálvez J, Acevedo-Arbunic J, Valenzuela X, Ferrer A, Díez B, Levicán G. Characterization and genomic analysis of two novel psychrotolerant Acidithiobacillus ferrooxidans strains from polar and subpolar environments. Front Microbiol 2022; 13:960324. [PMID: 36090071 PMCID: PMC9449456 DOI: 10.3389/fmicb.2022.960324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The bioleaching process is carried out by aerobic acidophilic iron-oxidizing bacteria that are mainly mesophilic or moderately thermophilic. However, many mining sites are located in areas where the mean temperature is lower than the optimal growth temperature of these microorganisms. In this work, we report the obtaining and characterization of two psychrotolerant bioleaching bacterial strains from low-temperature sites that included an abandoned mine site in Chilean Patagonia (PG05) and an acid rock drainage in Marian Cove, King George Island in Antarctic (MC2.2). The PG05 and MC2.2 strains showed significant iron-oxidation activity and grew optimally at 20°C. Genome sequence analyses showed chromosomes of 2.76 and 2.84 Mbp for PG05 and MC2.2, respectively, and an average nucleotide identity estimation indicated that both strains clustered with the acidophilic iron-oxidizing bacterium Acidithiobacillus ferrooxidans. The Patagonian PG05 strain had a high content of genes coding for tolerance to metals such as lead, zinc, and copper. Concordantly, electron microscopy revealed the intracellular presence of polyphosphate-like granules, likely involved in tolerance to metals and other stress conditions. The Antarctic MC2.2 strain showed a high dosage of genes for mercury resistance and low temperature adaptation. This report of cold-adapted cultures of the At. ferrooxidans species opens novel perspectives to satisfy the current challenges of the metal bioleaching industry.
Collapse
Affiliation(s)
- Claudia Muñoz-Villagrán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Jonnathan Grossolli-Gálvez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Javiera Acevedo-Arbunic
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Ximena Valenzuela
- Programa de Biorremediación, Campus Patagonia, Universidad Austral de Chile, Valdivia, Chile
| | - Alonso Ferrer
- Núcleo de Química y Bioquímica, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Beatriz Díez
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, Santiago, Chile
- Center for Genome Regulation (CRG), Santiago, Chile
| | - Gloria Levicán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
- *Correspondence: Gloria Levicán,
| |
Collapse
|
8
|
Expression, purification, characterization and direct electrochemistry of two HiPIPs from Acidithiobacillus caldus SM-1. Anal Biochem 2022; 650:114724. [DOI: 10.1016/j.ab.2022.114724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
|
9
|
Malik L, Hedrich S. Ferric Iron Reduction in Extreme Acidophiles. Front Microbiol 2022; 12:818414. [PMID: 35095822 PMCID: PMC8790237 DOI: 10.3389/fmicb.2021.818414] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Biochemical processes are a key element of natural cycles occurring in the environment and enabling life on earth. With regard to microbially catalyzed iron transformation, research predominantly has focused on iron oxidation in acidophiles, whereas iron reduction played a minor role. Microbial conversion of ferric to ferrous iron has however become more relevant in recent years. While there are several reviews on neutrophilic iron reducers, this article summarizes the research on extreme acidophilic iron reducers. After the first reports of dissimilatory iron reduction by acidophilic, chemolithoautotrophic Acidithiobacillus strains and heterotrophic Acidiphilium species, many other prokaryotes were shown to reduce iron as part of their metabolism. Still, little is known about the exact mechanisms of iron reduction in extreme acidophiles. Initially, hypotheses and postulations for the occurring mechanisms relied on observations of growth behavior or predictions based on the genome. By comparing genomes of well-studied neutrophilic with acidophilic iron reducers (e.g., Ferroglobus placidus and Sulfolobus spp.), it became clear that the electron transport for iron reduction proceeds differently in acidophiles. Moreover, transcriptomic investigations indicated an enzymatically-mediated process in Acidithiobacillus ferrooxidans using respiratory chain components of the iron oxidation in reverse. Depending on the strain of At. ferrooxidans, further mechanisms were postulated, e.g., indirect iron reduction by hydrogen sulfide, which may form by disproportionation of elemental sulfur. Alternative scenarios include Hip, a high potential iron-sulfur protein, and further cytochromes. Apart from the anaerobic iron reduction mechanisms, sulfur-oxidizing acidithiobacilli have been shown to mediate iron reduction at low pH (< 1.3) under aerobic conditions. This presumably non-enzymatic process may be attributed to intermediates formed during sulfur/tetrathionate and/or hydrogen oxidation and has already been successfully applied for the reductive bioleaching of laterites. The aim of this review is to provide an up-to-date overview on ferric iron reduction by acidophiles. The importance of this process in anaerobic habitats will be demonstrated as well as its potential for application.
Collapse
Affiliation(s)
- Luise Malik
- Research Group Biohydrometallurgy and Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Sabrina Hedrich
- Research Group Biohydrometallurgy and Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
10
|
Liu Y, Wang Y, Wang Z, Gao T. Characteristics of iron cycle and its driving mechanism during the development of biological soil crusts associated with desert revegetation. SOIL BIOLOGY AND BIOCHEMISTRY 2022; 164:108487. [DOI: 10.1016/j.soilbio.2021.108487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
|
11
|
Genomic evolution of the class Acidithiobacillia: deep-branching Proteobacteria living in extreme acidic conditions. THE ISME JOURNAL 2021; 15:3221-3238. [PMID: 34007059 PMCID: PMC8528912 DOI: 10.1038/s41396-021-00995-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 02/04/2023]
Abstract
Members of the genus Acidithiobacillus, now ranked within the class Acidithiobacillia, are model bacteria for the study of chemolithotrophic energy conversion under extreme conditions. Knowledge of the genomic and taxonomic diversity of Acidithiobacillia is still limited. Here, we present a systematic analysis of nearly 100 genomes from the class sampled from a wide range of habitats. Some of these genomes are new and others have been reclassified on the basis of advanced genomic analysis, thus defining 19 Acidithiobacillia lineages ranking at different taxonomic levels. This work provides the most comprehensive classification and pangenomic analysis of this deep-branching class of Proteobacteria to date. The phylogenomic framework obtained illuminates not only the evolutionary past of this lineage, but also the molecular evolution of relevant aerobic respiratory proteins, namely the cytochrome bo3 ubiquinol oxidases.
Collapse
|
12
|
Nguyen TH, Won S, Ha MG, Nguyen DD, Kang HY. Bioleaching for environmental remediation of toxic metals and metalloids: A review on soils, sediments, and mine tailings. CHEMOSPHERE 2021; 282:131108. [PMID: 34119723 DOI: 10.1016/j.chemosphere.2021.131108] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Owing to industrial evolution, a huge mass of toxic metals, including Co, Cu, Cr, Mn, Ni, Pb, and Zn, and metalloids, such as As and Sb, has inevitably been released into the natural environment and accumulated in soils or sediments. Along with modern industrialization, many mineral mines have been explored and exploited to provide materials for industries. Mining industries also generate a vast amount of waste, such as mine tailings, which contain a high concentration of toxic metals and metalloids. Due to the low economic status, a majority of mine tailings are simply disposed into the surrounding environments, without any treatment. The mobilization and migration of toxic metals and metalloids from soils, sediments, and mining wastes to water systems via natural weathering processes put both the ecological system and human health at high risk. Considering both economic and environmental aspects, bioleaching is a preferable option for removing the toxic metals and metalloids because of its low cost and environmental safety. This chapter reviews the recent approaches of bioleaching for removing toxic metals and metalloids from soils, sediments, and mining wastes. The comparison between bioleaching and chemical leaching of various waste sources is also discussed in terms of efficiency and environmental safety. Additionally, the advanced perspectives of bioleaching for environmental remediation with consideration of other influencing factors are reviewed for future studies and applications.
Collapse
Affiliation(s)
| | - Sangmin Won
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea.
| | - Myung-Gyu Ha
- Korea Basic Science Institute, Busan Center, Busan 46742, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy and Engineering, Kyonggi University, Suwon 16227, South Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
13
|
Inaba Y, Kernan T, West AC, Banta S. Dispersion of sulfur creates a valuable new growth medium formulation that enables earlier sulfur oxidation in relation to iron oxidation in Acidithiobacillus ferrooxidans cultures. Biotechnol Bioeng 2021; 118:3225-3238. [PMID: 34086346 DOI: 10.1002/bit.27847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/19/2023]
Abstract
Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotroph that is commonly reported to exhibit diauxic population growth behavior where ferrous iron is oxidized before elemental sulfur when both are available, despite the higher energy content of sulfur. We have discovered sulfur dispersion formulations that enables sulfur oxidation before ferrous iron oxidation. The oxidation of dispersed sulfur can lower the culture pH within days below the range where aerobic ferrous iron oxidation can occur. Thus, ferric iron reduction can be observed quickly which had previously been reported over extended incubation periods with untreated sulfur. Therefore, we demonstrate that this substrate utilization pattern is strongly dependent on the cell loading in relation to sulfur concentration, sulfur surface hydrophobicity, and the pH of the culture. Our dispersed sulfur formulation, lig-sulfur, can be used to support the rapid antibiotic selection of plasmid-transformed cells, which is not possible in liquid cultures where ferrous iron is the main source of energy for these acidophiles. Furthermore, we find that media containing lig-sulfur supports higher production of green fluorescent protein compared to media containing ferrous iron. The use of dispersed sulfur is a valuable new tool for the development of engineered A. ferrooxidans strains and it provides a new method to control iron and sulfur oxidation behaviors.
Collapse
Affiliation(s)
- Yuta Inaba
- Department of Chemical Engineering, Columbia University, New York, USA
| | - Timothy Kernan
- Department of Chemical Engineering, Columbia University, New York, USA
| | - Alan C West
- Department of Chemical Engineering, Columbia University, New York, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, USA
| |
Collapse
|
14
|
Suhadolnik MLS, Costa PS, Castro GM, Lobo FP, Nascimento AMA. Comprehensive insights into arsenic- and iron-redox genes, their taxonomy and associated environmental drivers deciphered by a meta-analysis. ENVIRONMENT INTERNATIONAL 2021; 146:106234. [PMID: 33181412 DOI: 10.1016/j.envint.2020.106234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/23/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
In nature, arsenic (As) and iron (Fe) biotransformation are interconnected, influencing local As mobility and toxicity. While As- or Fe-metabolizing microorganisms are widely documented, knowledge concerning their cycling genes, associated with geophysicochemical data and taxonomic distribution, remains scarce. We performed a meta-analysis to explore the distribution and environmental importance of As- and Fe-redox genes (AsRGs and FeRGs) and predict their significant correlations and hosts. The most abundant and ubiquitous AsRGs and FeRGs were arsC and ccoN, respectively. The ccoN gene had the highest frequency at pH ≥ 9.1, in which dissolved Fe(II) is scarce, possibly contributing to enhanced host survival. Fe(III) oxidation genes iro and ccoN appear to be associated with As(V) detoxification in mesophilic environments. No correlation was observed between Fe(III) reduction gene omcB and arsenate reductase genes. Cytochromes with putative roles in Fe-redox reactions were identified (including yceJ and fbcH) and were significantly correlated with As(V) reduction genes under diverse geophysicochemical conditions. The taxonomies of AsRGs and FeRGs-carrying contigs revealed great diversity, among which various, such as Chlamydea (arsC) and Firmicutes (omcB), were previously undescribed. Nearly all (98.9%) of the AsRGs and FeRGs were not carried by any plasmid sequences. This meta-analysis expands our understanding of the global environmental, taxonomic and functional microbiome involved in As- and Fe-redox transformations. Moreover, these findings should help guide studies on putative in vivo functional roles of cytochromes in Fe-redox pathways.
Collapse
Affiliation(s)
- Maria Luíza S Suhadolnik
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Patrícia S Costa
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Giovanni M Castro
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Francisco P Lobo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Andréa M A Nascimento
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
15
|
Akob DM, Hallenbeck M, Beulig F, Fabisch M, Küsel K, Keffer JL, Woyke T, Shapiro N, Lapidus A, Klenk HP, Chan CS. Mixotrophic Iron-Oxidizing Thiomonas Isolates from an Acid Mine Drainage-Affected Creek. Appl Environ Microbiol 2020; 86:e01424-20. [PMID: 33008825 PMCID: PMC7688216 DOI: 10.1128/aem.01424-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022] Open
Abstract
Natural attenuation of heavy metals occurs via coupled microbial iron cycling and metal precipitation in creeks impacted by acid mine drainage (AMD). Here, we describe the isolation, characterization, and genomic sequencing of two iron-oxidizing bacteria (FeOB) species: Thiomonas ferrovorans FB-6 and Thiomonas metallidurans FB-Cd, isolated from slightly acidic (pH 6.3), Fe-rich, AMD-impacted creek sediments. These strains precipitated amorphous iron oxides, lepidocrocite, goethite, and magnetite or maghemite and grew at a pH optimum of 5.5. While Thiomonas spp. are known as mixotrophic sulfur oxidizers and As oxidizers, the FB strains oxidized Fe, which suggests they can efficiently remove Fe and other metals via coprecipitation. Previous evidence for Thiomonas sp. Fe oxidation is largely ambiguous, possibly because of difficulty demonstrating Fe oxidation in heterotrophic/mixotrophic organisms. Therefore, we also conducted a genomic analysis to identify genetic mechanisms of Fe oxidation, other metal transformations, and additional adaptations, comparing the two FB strain genomes with 12 other Thiomonas genomes. The FB strains fall within a relatively novel group of Thiomonas strains that includes another strain (b6) with solid evidence of Fe oxidation. Most Thiomonas isolates, including the FB strains, have the putative iron oxidation gene cyc2, but only the two FB strains possess the putative Fe oxidase genes mtoAB The two FB strain genomes contain the highest numbers of strain-specific gene clusters, greatly increasing the known Thiomonas genetic potential. Our results revealed that the FB strains are two distinct novel species of Thiomonas with the genetic potential for bioremediation of AMD via iron oxidation.IMPORTANCE As AMD moves through the environment, it impacts aquatic ecosystems, but at the same time, these ecosystems can naturally attenuate contaminated waters via acid neutralization and catalyzing metal precipitation. This is the case in the former Ronneburg uranium-mining district, where AMD impacts creek sediments. We isolated and characterized two iron-oxidizing Thiomonas species that are mildly acidophilic to neutrophilic and that have two genetic pathways for iron oxidation. These Thiomonas species are well positioned to naturally attenuate AMD as it discharges across the landscape.
Collapse
Affiliation(s)
| | - Michelle Hallenbeck
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, Newark, Delaware, USA
| | - Felix Beulig
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Fabisch
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Kirsten Küsel
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Jessica L Keffer
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, Newark, Delaware, USA
| | - Tanja Woyke
- Joint Genome Institute, U.S. Department of Energy, Berkeley, California, USA
| | - Nicole Shapiro
- Joint Genome Institute, U.S. Department of Energy, Berkeley, California, USA
| | - Alla Lapidus
- Joint Genome Institute, U.S. Department of Energy, Berkeley, California, USA
- Center for Algorithmic Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Clara S Chan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, Newark, Delaware, USA
| |
Collapse
|
16
|
Gupta D, Guzman MS, Bose A. Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications. ACTA ACUST UNITED AC 2020; 47:863-876. [DOI: 10.1007/s10295-020-02309-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 02/05/2023]
Abstract
Abstract
Microbes exchange electrons with their extracellular environment via direct or indirect means. This exchange is bidirectional and supports essential microbial oxidation–reduction processes, such as respiration and photosynthesis. The microbial capacity to use electrons from insoluble electron donors, such as redox-active minerals, poised electrodes, or even other microbial cells is called extracellular electron uptake (EEU). Autotrophs with this capability can thrive in nutrient and soluble electron donor-deficient environments. As primary producers, autotrophic microbes capable of EEU greatly impact microbial ecology and play important roles in matter and energy flow in the biosphere. In this review, we discuss EEU-driven autotrophic metabolisms, their mechanism and physiology, and highlight their ecological, evolutionary, and biotechnological implications.
Collapse
Affiliation(s)
- Dinesh Gupta
- grid.4367.6 0000 0001 2355 7002 Department of Biology Washington University in St. Louis One Brookings Drive 63130 St. Louis MO USA
| | - Michael S Guzman
- grid.250008.f 0000 0001 2160 9702 Biosciences and Biotechnology Division Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA USA
| | - Arpita Bose
- grid.4367.6 0000 0001 2355 7002 Department of Biology Washington University in St. Louis One Brookings Drive 63130 St. Louis MO USA
| |
Collapse
|
17
|
Acidithiobacillus ferrianus sp. nov.: an ancestral extremely acidophilic and facultatively anaerobic chemolithoautotroph. Extremophiles 2020; 24:329-337. [PMID: 31980944 PMCID: PMC7040056 DOI: 10.1007/s00792-020-01157-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/10/2020] [Indexed: 01/21/2023]
Abstract
Strain MG, isolated from an acidic pond sediment on the island of Milos (Greece), is proposed as a novel species of ferrous iron- and sulfur-oxidizing Acidithiobacillus. Currently, four of the eight validated species of this genus oxidize ferrous iron, and strain MG shares many key characteristics with these four, including the capacities for catalyzing the oxidative dissolution of pyrite and for anaerobic growth via ferric iron respiration. Strain MG also grows aerobically on hydrogen and anaerobically on hydrogen coupled to ferric iron reduction. While the 16S rRNA genes of the iron-oxidizing Acidi-thiobacillus species (and strain MG) are located in a distinct phylogenetic clade and are closely related (98–99% 16S rRNA gene identity), genomic relatedness indexes (ANI/dDDH) revealed strong genomic divergence between strain MG and all sequenced type strains of the taxon, and placed MG as the first cultured representative of an ancestral phylotype of iron oxidizing acidithiobacilli. Strain MG is proposed as a novel species, Acidithiobacillus ferrianus sp. nov. The type strain is MGT (= DSM 107098T = JCM 33084T). Similar strains have been found as isolates or indicated by cloned 16S rRNA genes from several mineral sulfide mine sites.
Collapse
|
18
|
Falagán C, Moya-Beltrán A, Castro M, Quatrini R, Johnson DB. Acidithiobacillus sulfuriphilus sp. nov.: an extremely acidophilic sulfur-oxidizing chemolithotroph isolated from a neutral pH environment. Int J Syst Evol Microbiol 2019; 69:2907-2913. [PMID: 31274405 DOI: 10.1099/ijsem.0.003576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The genus Acidithiobacillus currently includes seven species with validly published names, which fall into two major groups, those that can oxidize ferrous iron and those that do not. All seven species can use zero-valent sulfur and reduced sulfur oxy-anions as electron donors, are obligately chemolithotrophic and acidophilic bacteria with pH growth optima below 3.0. The 16S rRNA gene of a novel strain (CJ-2T) isolated from circum-neutral pH mine drainage showed 95-97 % relatedness to members of the genus Acidithiobacillus. Digital DNA-DNA hybridization (dDDH) values between strains and whole-genome pairwise comparisons between the CJ-2T strain and the reference genomes available for members of the genus Acidithiobacillus confirmed that CJ-2Trepresents a novel species of this genus. CJ-2T is a strict aerobe, oxidizes zero-valent sulfur and reduced inorganic sulfur compounds but does not use ferrous iron or hydrogen as electron donors. The isolate is mesophilic (optimum growth temperature 25-28 °C) and extremely acidophilic (optimum growth pH 3.0), though its pH optimum and maximum were significantly higher than those of non-iron-oxidising acidithiobacilli with validly published names. The major fatty acids of CJ-2T were C18 : 1ω7c, C:16 : 1ω7c/iso-C15 : 0 2-OH, C16 : 0 and C19 : 0 cyclo ω8c and the major respiratory quinone present was Q8. The name Acidithiobacillussulfuriphilus sp. nov. is proposed, the type strain is CJ-2T (=DSM 105150T=KCTC 4683T).
Collapse
Affiliation(s)
- Carmen Falagán
- Present address: Environmental Sustainability Institute and Camborne School of Mines, College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK.,School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK
| | - Ana Moya-Beltrán
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile.,Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Matías Castro
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Raquel Quatrini
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile.,Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago, Chile
| | - D Barrie Johnson
- School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK
| |
Collapse
|
19
|
Torrenegra JD, Agudelo-Morimitsu LC, Márquez-Godoy MA, Hernández-Ortiz JP. Active fluid with Acidithiobacillus ferrooxidans: correlations between swimming and the oxidation route. J Biol Phys 2019; 45:193-211. [PMID: 31073789 PMCID: PMC6548800 DOI: 10.1007/s10867-019-09524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/10/2019] [Indexed: 11/30/2022] Open
Abstract
To explore engineering platforms towards 'active bacterial baths', we grow and characterize native and commercial strains of Acidithiobacillus ferrooxidans to promote swimming locomotion. Three different energy sources were used, namely elemental sulfur, ferrous sulfate, and pyrite. The characteristics of the culture, such as pH, Eh, and the concentration of cells and ions, are monitored to seek correlations between the oxidation route and the transport mechanism. We found that only elemental sulfur induces swimming mobility in the commercial DSMZ - 24,419 strain, while ferrous sulfate and the sulfide mineral, pyrite, did not activate swimming on any strain. The bacterial mean squared displacement and the mean velocity are measured to provide a quantitative description of the bacterial mobility. We found that, even if the A. ferrooxidans strain is grown in a sulfur-rich environment, it preferentially oxidizes iron when an iron-based material is included in the media. Similar to other species, once the culture pH decreases below 1.2, the active locomotion is inhibited. The engineering control and activation of swimming in bacterial cultures offer fertile grounds towards applications of active suspensions such as energy-efficient bioleaching, mixing, drug delivery, and bio-sensing.
Collapse
Affiliation(s)
- Juan D Torrenegra
- Departamento de Materiales y Minerales, Universidad Nacional de Colombia, Sede Medellín, Calle 75 # 79A-51, Bloque M17, Faculty of Mines, Medellín, Colombia, 050034
- Colombia/Wisconsin One-Health Consortium, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia, 050034
| | - Liliam C Agudelo-Morimitsu
- Departamento de Materiales y Minerales, Universidad Nacional de Colombia, Sede Medellín, Calle 75 # 79A-51, Bloque M17, Faculty of Mines, Medellín, Colombia, 050034
- Colombia/Wisconsin One-Health Consortium, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia, 050034
| | - Marco A Márquez-Godoy
- Departamento de Materiales y Minerales, Universidad Nacional de Colombia, Sede Medellín, Calle 75 # 79A-51, Bloque M17, Faculty of Mines, Medellín, Colombia, 050034
| | - Juan P Hernández-Ortiz
- Departamento de Materiales y Minerales, Universidad Nacional de Colombia, Sede Medellín, Calle 75 # 79A-51, Bloque M17, Faculty of Mines, Medellín, Colombia, 050034.
- Colombia/Wisconsin One-Health Consortium, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia, 050034.
- The Biotechnology Center, University of Wisconsin-Madison, Madison, WI, 53706-1691, USA.
| |
Collapse
|
20
|
Zhan Y, Yang M, Zhang S, Zhao D, Duan J, Wang W, Yan L. Iron and sulfur oxidation pathways of Acidithiobacillus ferrooxidans. World J Microbiol Biotechnol 2019; 35:60. [PMID: 30919119 DOI: 10.1007/s11274-019-2632-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
Acidithiobacillus ferrooxidans is a gram-negative, autotrophic and rod-shaped bacterium. It can gain energy through the oxidation of Fe(II) and reduced inorganic sulfur compounds for bacterial growth when oxygen is sufficient. It can be used for bio-leaching and bio-oxidation and contributes to the geobiochemical circulation of metal elements and nutrients in acid mine drainage environments. The iron and sulfur oxidation pathways of A. ferrooxidans play key roles in bacterial growth and survival under extreme circumstances. Here, the electrons transported through the thermodynamically favourable pathway for the reduction to H2O (downhill pathway) and against the redox potential gradient reduce to NAD(P)(H) (uphill pathway) during the oxidation of Fe(II) were reviewed, mainly including the electron transport carrier, relevant operon and regulation of its expression. Similar to the electron transfer pathway, the sulfur oxidation pathway of A. ferrooxidans, related genes and operons, sulfur oxidation mechanism and sulfur oxidase system are systematically discussed.
Collapse
Affiliation(s)
- Yue Zhan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Mengran Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Jiangong Duan
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, Gansu Province, People's Republic of China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China. .,College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
21
|
Singh VK, Singh AL, Singh R, Kumar A. Iron oxidizing bacteria: insights on diversity, mechanism of iron oxidation and role in management of metal pollution. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42398-018-0024-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Fan W, Peng Y, Meng Y, Zhang W, Zhu N, Wang J, Guo C, Li J, Du H, Dang Z. Transcriptomic Analysis Reveals Reduced Inorganic Sulfur Compound Oxidation Mechanism in Acidithiobacillus ferriphilus. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Salt Stress-Induced Loss of Iron Oxidoreduction Activities and Reacquisition of That Phenotype Depend on rus Operon Transcription in Acidithiobacillus ferridurans. Appl Environ Microbiol 2018; 84:AEM.02795-17. [PMID: 29374029 DOI: 10.1128/aem.02795-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/14/2018] [Indexed: 01/08/2023] Open
Abstract
The type strain of the mineral-oxidizing acidophilic bacterium Acidithiobacillus ferridurans was grown in liquid medium containing elevated concentrations of sodium chloride with hydrogen as electron donor. While it became more tolerant to chloride, after about 1 year, the salt-stressed acidophile was found to have lost its ability to oxidize iron, though not sulfur or hydrogen. Detailed molecular examination revealed that this was due to an insertion sequence, ISAfd1, which belongs to the ISPepr1 subgroup of the IS4 family, having been inserted downstream of the two promoters PI and PII of the rus operon (which codes for the iron oxidation pathway in this acidophile), thereby preventing its transcription. The ability to oxidize iron was regained on protracted incubation of the culture inoculated onto salt-free solid medium containing ferrous iron and incubated under hydrogen. Two revertant strains were obtained. In one, the insertion sequence ISAfd1 had been excised, leaving an 11-bp signature, while in the other an ∼2,500-bp insertion sequence (belonging to the IS66 family) was detected in the downstream inverted repeat of ISAfd1 The transcriptional start site of the rus operon in the second revertant strain was downstream of the two ISs, due to the creation of a new "hybrid" promoter. The loss and subsequent regaining of the ability of A. ferriduransT to reduce ferric iron were concurrent with those observed for ferrous iron oxidation, suggesting that these two traits are closely linked in this acidophile.IMPORTANCE Iron-oxidizing acidophilic bacteria have primary roles in the oxidative dissolution of sulfide minerals, a process that underpins commercial mineral-processing biotechnologies ("biomining"). Most of these prokaryotes have relatively low tolerance to chloride, which limits their activities when only saline or brackish waters are available. The study showed that it was possible to adapt a typical iron-oxidizing acidophile to grow in the presence of salt concentrations similar to those in seawater, but in so doing they lost their ability to oxidize iron, though not sulfur or hydrogen. The bacterium regained its capacity for oxidizing iron when the salt stress was removed but simultaneously reverted to tolerating lower concentrations of salt. These results suggest that the bacteria that have the main roles in biomining operations could survive but become ineffective in cases where saline or brackish waters are used for irrigation.
Collapse
|
24
|
Norris PR, Laigle L, Slade S. Cytochromes in anaerobic growth of Acidithiobacillus ferrooxidans. Microbiology (Reading) 2018; 164:383-394. [DOI: 10.1099/mic.0.000616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Paul R. Norris
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Present address: Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Ludovic Laigle
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Present address: The Native Antigen Company, Langford Locks, Kidlington, Oxford, OX5 1LH, UK
| | - Susan Slade
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Present address: Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, UK
| |
Collapse
|
25
|
Gumulya Y, Boxall NJ, Khaleque HN, Santala V, Carlson RP, Kaksonen AH. In a quest for engineering acidophiles for biomining applications: challenges and opportunities. Genes (Basel) 2018; 9:E116. [PMID: 29466321 PMCID: PMC5852612 DOI: 10.3390/genes9020116] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/27/2022] Open
Abstract
Biomining with acidophilic microorganisms has been used at commercial scale for the extraction of metals from various sulfide ores. With metal demand and energy prices on the rise and the concurrent decline in quality and availability of mineral resources, there is an increasing interest in applying biomining technology, in particular for leaching metals from low grade minerals and wastes. However, bioprocessing is often hampered by the presence of inhibitory compounds that originate from complex ores. Synthetic biology could provide tools to improve the tolerance of biomining microbes to various stress factors that are present in biomining environments, which would ultimately increase bioleaching efficiency. This paper reviews the state-of-the-art tools to genetically modify acidophilic biomining microorganisms and the limitations of these tools. The first part of this review discusses resilience pathways that can be engineered in acidophiles to enhance their robustness and tolerance in harsh environments that prevail in bioleaching. The second part of the paper reviews the efforts that have been carried out towards engineering robust microorganisms and developing metabolic modelling tools. Novel synthetic biology tools have the potential to transform the biomining industry and facilitate the extraction of value from ores and wastes that cannot be processed with existing biomining microorganisms.
Collapse
Affiliation(s)
- Yosephine Gumulya
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
| | - Naomi J Boxall
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
| | - Himel N Khaleque
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
| | - Ville Santala
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology (TUT), Tampere, 33101, Finland.
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Montana State University (MSU), Bozeman, MT 59717, USA.
| | - Anna H Kaksonen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
26
|
Ai C, Liang Y, Miao B, Chen M, Zeng W, Qiu G. Identification and Analysis of a Novel Gene Cluster Involves in Fe 2+ Oxidation in Acidithiobacillus ferrooxidans ATCC 23270, a Typical Biomining Acidophile. Curr Microbiol 2018; 75:818-826. [PMID: 29464360 DOI: 10.1007/s00284-018-1453-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/12/2018] [Indexed: 11/26/2022]
Abstract
Iron-oxidizing Acidithiobacillus spp. are applied worldwide in biomining industry to extract metals from sulfide minerals. They derive energy for survival through Fe2+ oxidation and generate Fe3+ for the dissolution of sulfide minerals. However, molecular mechanisms of their iron oxidation still remain elusive. A novel two-cytochrome-encoding gene cluster (named tce gene cluster) encoding a high-molecular-weight cytochrome c (AFE_1428) and a c4-type cytochrome c552 (AFE_1429) in A. ferrooxidans ATCC 23270 was first identified in this study. Bioinformatic analysis together with transcriptional study showed that AFE_1428 and AFE_1429 were the corresponding paralog of Cyc2 (AFE_3153) and Cyc1 (AFE_3152) which were encoded by the extensively studied rus operon and had been proven involving in ferrous iron oxidation. Both AFE_1428 and AFE_1429 contained signal peptide and the classic heme-binding motif(s) as their corresponding paralog. The modeled structure of AFE_1429 showed high resemblance to Cyc1. AFE_1428 and AFE_1429 were preferentially transcribed as their corresponding paralogs in the presence of ferrous iron as sole energy source as compared with sulfur. The tce gene cluster is highly conserved in the genomes of four phylogenetic-related A. ferrooxidans strains that were originally isolated from different sites separated with huge geographical distance, which further implies the importance of this gene cluster. Collectively, AFE_1428 and AFE_1429 involve in Fe2+ oxidation like their corresponding paralog by integrating with the metalloproteins encoded by rus operon. This study provides novel insights into the Fe2+ oxidation mechanism in Fe2+-oxidizing A. ferrooxidans ssp.
Collapse
Affiliation(s)
- Chenbing Ai
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yuting Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Bo Miao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Miao Chen
- CSIRO Process Science and Engineering, Clayton, VIC, Australia
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China.
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
- CSIRO Process Science and Engineering, Clayton, VIC, Australia.
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China.
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
27
|
High reactivity of deep biota under anthropogenic CO 2 injection into basalt. Nat Commun 2017; 8:1063. [PMID: 29051484 PMCID: PMC5648843 DOI: 10.1038/s41467-017-01288-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 09/01/2017] [Indexed: 11/21/2022] Open
Abstract
Basalts are recognized as one of the major habitats on Earth, harboring diverse and active microbial populations. Inconsistently, this living component is rarely considered in engineering operations carried out in these environments. This includes carbon capture and storage (CCS) technologies that seek to offset anthropogenic CO2 emissions into the atmosphere by burying this greenhouse gas in the subsurface. Here, we show that deep ecosystems respond quickly to field operations associated with CO2 injections based on a microbiological survey of a basaltic CCS site. Acidic CO2-charged groundwater results in a marked decrease (by ~ 2.5–4) in microbial richness despite observable blooms of lithoautotrophic iron-oxidizing Betaproteobacteria and degraders of aromatic compounds, which hence impact the aquifer redox state and the carbon fate. Host-basalt dissolution releases nutrients and energy sources, which sustain the growth of autotrophic and heterotrophic species whose activities may have consequences on mineral storage. The impacts of carbon capture and storage (CCS) on subsurface microorganisms are poorly understood. Here, the authors show that deep ecosystems respond quickly to CO2 injections and that the environmental consequences of their metabolic activities need to be properly assessed for sustainable CCS in basalt.
Collapse
|
28
|
Tran TTT, Mangenot S, Magdelenat G, Payen E, Rouy Z, Belahbib H, Grail BM, Johnson DB, Bonnefoy V, Talla E. Comparative Genome Analysis Provides Insights into Both the Lifestyle of Acidithiobacillus ferrivorans Strain CF27 and the Chimeric Nature of the Iron-Oxidizing Acidithiobacilli Genomes. Front Microbiol 2017; 8:1009. [PMID: 28659871 PMCID: PMC5468388 DOI: 10.3389/fmicb.2017.01009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
The iron-oxidizing species Acidithiobacillus ferrivorans is one of few acidophiles able to oxidize ferrous iron and reduced inorganic sulfur compounds at low temperatures (<10°C). To complete the genome of At. ferrivorans strain CF27, new sequences were generated, and an update assembly and functional annotation were undertaken, followed by a comparative analysis with other Acidithiobacillus species whose genomes are publically available. The At. ferrivorans CF27 genome comprises a 3,409,655 bp chromosome and a 46,453 bp plasmid. At. ferrivorans CF27 possesses genes allowing its adaptation to cold, metal(loid)-rich environments, as well as others that enable it to sense environmental changes, allowing At. ferrivorans CF27 to escape hostile conditions and to move toward favorable locations. Interestingly, the genome of At. ferrivorans CF27 exhibits a large number of genomic islands (mostly containing genes of unknown function), suggesting that a large number of genes has been acquired by horizontal gene transfer over time. Furthermore, several genes specific to At. ferrivorans CF27 have been identified that could be responsible for the phenotypic differences of this strain compared to other Acidithiobacillus species. Most genes located inside At. ferrivorans CF27-specific gene clusters which have been analyzed were expressed by both ferrous iron-grown and sulfur-attached cells, indicating that they are not pseudogenes and may play a role in both situations. Analysis of the taxonomic composition of genomes of the Acidithiobacillia infers that they are chimeric in nature, supporting the premise that they belong to a particular taxonomic class, distinct to other proteobacterial subgroups.
Collapse
Affiliation(s)
- Tam T T Tran
- Aix-Marseille Université, CNRS, LCBMarseille, France
| | - Sophie Mangenot
- Laboratoire de Biologie Moléculaire pour l'Etude des Génomes, C.E.A., Institut de Génomique - GenoscopeEvry, France
| | - Ghislaine Magdelenat
- Laboratoire de Biologie Moléculaire pour l'Etude des Génomes, C.E.A., Institut de Génomique - GenoscopeEvry, France
| | - Emilie Payen
- Laboratoire de Biologie Moléculaire pour l'Etude des Génomes, C.E.A., Institut de Génomique - GenoscopeEvry, France
| | - Zoé Rouy
- CNRS UMR8030, CEA/DSV/IG/Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le MétabolismeEvry, France
| | | | - Barry M Grail
- College of Natural Sciences, Bangor UniversityBangor, United Kingdom
| | - D Barrie Johnson
- College of Natural Sciences, Bangor UniversityBangor, United Kingdom
| | | | | |
Collapse
|
29
|
Ccorahua-Santo R, Eca A, Abanto M, Guerra G, Ramírez P. Physiological and comparative genomic analysis of Acidithiobacillus ferrivorans PQ33 provides psychrotolerant fitness evidence for oxidation at low temperature. Res Microbiol 2017; 168:482-492. [DOI: 10.1016/j.resmic.2017.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 11/24/2022]
|
30
|
Nuñez H, Moya-Beltrán A, Covarrubias PC, Issotta F, Cárdenas JP, González M, Atavales J, Acuña LG, Johnson DB, Quatrini R. Molecular Systematics of the Genus Acidithiobacillus: Insights into the Phylogenetic Structure and Diversification of the Taxon. Front Microbiol 2017; 8:30. [PMID: 28154559 PMCID: PMC5243848 DOI: 10.3389/fmicb.2017.00030] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Abstract
The acidithiobacilli are sulfur-oxidizing acidophilic bacteria that thrive in both natural and anthropogenic low pH environments. They contribute to processes that lead to the generation of acid rock drainage in several different geoclimatic contexts, and their properties have long been harnessed for the biotechnological processing of minerals. Presently, the genus is composed of seven validated species, described between 1922 and 2015: Acidithiobacillus thiooxidans, A. ferrooxidans, A. albertensis, A. caldus, A. ferrivorans, A. ferridurans, and A. ferriphilus. However, a large number of Acidithiobacillus strains and sequence clones have been obtained from a variety of ecological niches over the years, and many isolates are thought to vary in phenotypic properties and cognate genetic traits. Moreover, many isolates remain unclassified and several conflicting specific assignments muddle the picture from an evolutionary standpoint. Here we revise the phylogenetic relationships within this species complex and determine the phylogenetic species boundaries using three different typing approaches with varying degrees of resolution: 16S rRNA gene-based ribotyping, oligotyping, and multi-locus sequencing analysis (MLSA). To this end, the 580 16S rRNA gene sequences affiliated to the Acidithiobacillus spp. were collected from public and private databases and subjected to a comprehensive phylogenetic analysis. Oligotyping was used to profile high-entropy nucleotide positions and resolve meaningful differences between closely related strains at the 16S rRNA gene level. Due to its greater discriminatory power, MLSA was used as a proxy for genome-wide divergence in a smaller but representative set of strains. Results obtained indicate that there is still considerable unexplored diversity within this genus. At least six new lineages or phylotypes, supported by the different methods used herein, are evident within the Acidithiobacillus species complex. Although the diagnostic characteristics of these subgroups of strains are as yet unresolved, correlations to specific metadata hint to the mechanisms behind econiche-driven divergence of some of the species/phylotypes identified. The emerging phylogenetic structure for the genus outlined in this study can be used to guide isolate selection for future population genomics and evolutionary studies in this important acidophile model.
Collapse
Affiliation(s)
- Harold Nuñez
- Microbial Ecophysiology Laboratory, Fundación Ciencia & VidaSantiago, Chile
| | - Ana Moya-Beltrán
- Microbial Ecophysiology Laboratory, Fundación Ciencia & VidaSantiago, Chile
- Faculty of Biological Sciences, Andres Bello UniversitySantiago, Chile
| | | | - Francisco Issotta
- Microbial Ecophysiology Laboratory, Fundación Ciencia & VidaSantiago, Chile
| | | | - Mónica González
- Microbial Ecophysiology Laboratory, Fundación Ciencia & VidaSantiago, Chile
| | - Joaquín Atavales
- Microbial Ecophysiology Laboratory, Fundación Ciencia & VidaSantiago, Chile
| | - Lillian G. Acuña
- Microbial Ecophysiology Laboratory, Fundación Ciencia & VidaSantiago, Chile
| | | | - Raquel Quatrini
- Microbial Ecophysiology Laboratory, Fundación Ciencia & VidaSantiago, Chile
| |
Collapse
|
31
|
Blake II RC, Anthony MD, Bates JD, Hudson T, Hunter KM, King BJ, Landry BL, Lewis ML, Painter RG. In situ Spectroscopy Reveals that Microorganisms in Different Phyla Use Different Electron Transfer Biomolecules to Respire Aerobically on Soluble Iron. Front Microbiol 2016; 7:1963. [PMID: 28008327 PMCID: PMC5143472 DOI: 10.3389/fmicb.2016.01963] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
Absorbance spectra were collected on 12 different live microorganisms, representing six phyla, as they respired aerobically on soluble iron at pH 1.5. A novel integrating cavity absorption meter was employed that permitted accurate absorbance measurements in turbid suspensions that scattered light. Illumination of each microorganism yielded a characteristic spectrum of electrochemically reduced colored prosthetic groups. A total of six different patterns of reduced-minus-oxidized difference spectra were observed. Three different spectra were obtained with members of the Gram-negative eubacteria. Acidithiobacillus, representing Proteobacteria, yielded a spectrum in which cytochromes a and c and a blue copper protein were all prominent. Acidihalobacter, also representing the Proteobacteria, yielded a spectrum in which both cytochrome b and a long-wavelength cytochrome a were clearly visible. Two species of Leptospirillum, representing the Nitrospirae, both yielded spectra that were dominated by a cytochrome with a reduced peak at 579 nm. Sulfobacillus and Alicyclobacillus, representing the Gram-positive Firmicutes, both yielded spectra dominated by a-type cytochromes. Acidimicrobium and Ferrimicrobium, representing the Gram-positive Actinobacteria, also yielded spectra dominated by a-type cytochromes. Acidiplasma and Ferroplasma, representing the Euryarchaeota, both yielded spectra dominated by a ba3-type of cytochrome. Metallosphaera and Sulfolobus, representing the Crenarchaeota, both yielded spectra dominated by the same novel cytochrome as that observed in the Nitrospirae and a new, heretofore unrecognized redox-active prosthetic group with a reduced peak at around 485 nm. These observations are consistent with the hypothesis that individual acidophilic microorganisms that respire aerobically on iron utilize one of at least six different types of electron transfer pathways that are characterized by different redox-active prosthetic groups. In situ absorbance spectroscopy is shown to be a useful complement to existing means of investigating the details of energy conservation in intact microorganisms under physiological conditions.
Collapse
Affiliation(s)
| | - Micah D. Anthony
- College of Pharmacy, Xavier University of Louisiana, New OrleansLA, USA
| | - Jordan D. Bates
- College of Pharmacy, Xavier University of Louisiana, New OrleansLA, USA
| | - Theresa Hudson
- Department of Biology, Xavier University of Louisiana, New OrleansLA, USA
| | - Kamilya M. Hunter
- Department of Biology, Xavier University of Louisiana, New OrleansLA, USA
| | - Brionna J. King
- Department of Biology, Xavier University of Louisiana, New OrleansLA, USA
| | - Bria L. Landry
- Department of Biology, Xavier University of Louisiana, New OrleansLA, USA
| | - Megan L. Lewis
- Department of Biology, Xavier University of Louisiana, New OrleansLA, USA
| | | |
Collapse
|
32
|
Zhang X, Liu X, Liang Y, Fan F, Zhang X, Yin H. Metabolic diversity and adaptive mechanisms of iron- and/or sulfur-oxidizing autotrophic acidophiles in extremely acidic environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:738-751. [PMID: 27337207 DOI: 10.1111/1758-2229.12435] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
Many studies have investigated the mechanisms underlying the survival and growth of certain organisms in extremely acidic environments known to be harmful to most prokaryotes and eukaryotes. Acidithiobacillus and Leptospirillum spp. are dominant bioleaching bacteria widely used in bioleaching systems, which are characterized by extremely acidic environments. To survive and grow in such settings, these acidophiles utilize shared molecular mechanisms that allow life in extreme conditions. In this review, we have summarized the results of published genomic analyses, which underscore the ability of iron- and/or sulfur-oxidizing autotrophic acidophiles belonging to the genera Acidithiobacillus and Leptospirillum to adapt to acidic environmental conditions. Several lines of evidence point at the metabolic diversity and multiplicity of pathways involved in the survival of these organisms. The ability to thrive in adverse environments requires versatile activation of structural and functional adaptive responses, including bacterial adhesion, motility, and resistance to heavy metals. We have highlighted recent developments centered on the key survival mechanisms employed by dominant extremophiles, and have laid the foundation for future studies focused on the ability of acidophiles to thrive in extremely acidic environments.
Collapse
Affiliation(s)
- Xian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Fenliang Fan
- Key Laboratory of Plant Nutrition and Fertilizer, Beijing, China
| | - Xiaoxia Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Beijing, China
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
33
|
Ueoka N, Kouzuma A, Watanabe K. Missing Iron-Oxidizing Acidophiles Highly Sensitive to Organic Compounds. Microbes Environ 2016; 31:244-8. [PMID: 27356527 PMCID: PMC5017800 DOI: 10.1264/jsme2.me16086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The genus Acidithiobacillus includes iron-oxidizing lithoautotrophs that thrive in acidic mine environments. Acidithiobacillus ferrooxidans is a representative species and has been extensively studied for its application to the bioleaching of precious metals. In our attempts to cultivate the type strain of A. ferrooxidans (ATCC 23270T), repeated transfers to fresh inorganic media resulted in the emergence of cultures with improved growth traits. Strains were isolated from the resultant culture by forming colonies on inorganic silica-gel plates. A representative isolate (strain NU-1) was unable to form colonies on agarose plates and was more sensitive to organics, such as glucose, than the type strain of A. ferrooxidans. Strain NU-1 exhibited superior growth traits in inorganic iron media to those of other iron-oxidizing acidithiobacilli, suggesting its potential for industrial applications. A draft genome of NU-1 uncovered unique features in catabolic enzymes, indicating that this strain is not a mutant of the A. ferrooxidans type strain. Our results indicate that the use of inorganic silica-gel plates facilitates the isolation of as-yet-unexamined iron-oxidizing acidithiobacilli from environmental samples and enrichment cultures.
Collapse
Affiliation(s)
- Nagayoshi Ueoka
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences
| | | | | |
Collapse
|
34
|
Mamani S, Moinier D, Denis Y, Soulère L, Queneau Y, Talla E, Bonnefoy V, Guiliani N. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog. Front Microbiol 2016; 7:1365. [PMID: 27683573 PMCID: PMC5021923 DOI: 10.3389/fmicb.2016.01365] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022] Open
Abstract
While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270(T) and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidans (T), the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidans (T) cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270(T) genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis.
Collapse
Affiliation(s)
- Sigde Mamani
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche ScientifiqueMarseille, France; Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universitad de ChileSantiago, Chile
| | - Danielle Moinier
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche Scientifique Marseille, France
| | - Yann Denis
- Plateforme Transcriptome, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche Scientifique Marseille, France
| | - Laurent Soulère
- Université Lyon, Institut National des Sciences Appliquées de Lyon, UMR 5246, Centre National de la Recherche Scientifique, Université Lyon 1, École Supérieure de Chimie Physique Electronique de Lyon, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires Villeurbanne, France
| | - Yves Queneau
- Université Lyon, Institut National des Sciences Appliquées de Lyon, UMR 5246, Centre National de la Recherche Scientifique, Université Lyon 1, École Supérieure de Chimie Physique Electronique de Lyon, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires Villeurbanne, France
| | - Emmanuel Talla
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche Scientifique Marseille, France
| | - Violaine Bonnefoy
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche Scientifique Marseille, France
| | - Nicolas Guiliani
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universitad de Chile Santiago, Chile
| |
Collapse
|
35
|
Kucera J, Sedo O, Potesil D, Janiczek O, Zdrahal Z, Mandl M. Comparative proteomic analysis of sulfur-oxidizing Acidithiobacillus ferrooxidans CCM 4253 cultures having lost the ability to couple anaerobic elemental sulfur oxidation with ferric iron reduction. Res Microbiol 2016; 167:587-94. [DOI: 10.1016/j.resmic.2016.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/14/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
36
|
Nuñez H, Covarrubias PC, Moya-Beltrán A, Issotta F, Atavales J, Acuña LG, Johnson DB, Quatrini R. Detection, identification and typing of Acidithiobacillus species and strains: a review. Res Microbiol 2016; 167:555-67. [DOI: 10.1016/j.resmic.2016.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 01/10/2023]
|
37
|
Biogeography of sulfur-oxidizing Acidithiobacillus populations in extremely acidic cave biofilms. ISME JOURNAL 2016; 10:2879-2891. [PMID: 27187796 PMCID: PMC5148195 DOI: 10.1038/ismej.2016.74] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/17/2016] [Accepted: 03/24/2016] [Indexed: 02/01/2023]
Abstract
Extremely acidic (pH 0–1.5) Acidithiobacillus-dominated biofilms known as snottites are found in sulfide-rich caves around the world. Given the extreme geochemistry and subsurface location of the biofilms, we hypothesized that snottite Acidithiobacillus populations would be genetically isolated. We therefore investigated biogeographic relationships among snottite Acidithiobacillus spp. separated by geographic distances ranging from meters to 1000s of kilometers. We determined genetic relationships among the populations using techniques with three levels of resolution: (i) 16S rRNA gene sequencing, (ii) 16S–23S intergenic transcribed spacer (ITS) region sequencing and (iii) multi-locus sequencing typing (MLST). We also used metagenomics to compare functional gene characteristics of select populations. Based on 16S rRNA genes, snottites in Italy and Mexico are dominated by different sulfur-oxidizing Acidithiobacillus spp. Based on ITS sequences, Acidithiobacillus thiooxidans strains from different cave systems in Italy are genetically distinct. Based on MLST of isolates from Italy, genetic distance is positively correlated with geographic distance both among and within caves. However, metagenomics revealed that At. thiooxidans populations from different cave systems in Italy have different sulfur oxidation pathways and potentially other significant differences in metabolic capabilities. In light of those genomic differences, we argue that the observed correlation between genetic and geographic distance among snottite Acidithiobacillus populations is partially explained by an evolutionary model in which separate cave systems were stochastically colonized by different ancestral surface populations, which then continued to diverge and adapt in situ.
Collapse
|
38
|
Klink C, Eisen S, Daus B, Heim J, Schlömann M, Schopf S. Investigation of Acidithiobacillus ferrooxidans
in pure and mixed-species culture for bioleaching of Theisen sludge from former copper smelting. J Appl Microbiol 2016; 120:1520-30. [DOI: 10.1111/jam.13142] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 02/18/2016] [Accepted: 03/11/2016] [Indexed: 11/26/2022]
Affiliation(s)
- C. Klink
- Institute of Biosciences; TU Bergakademie Freiberg; Freiberg Germany
| | - S. Eisen
- Institute of Biosciences; TU Bergakademie Freiberg; Freiberg Germany
| | - B. Daus
- Department Analytical Chemistry; UFZ - Helmholtz Center for Environmental Research; Leipzig Germany
| | - J. Heim
- Helmholtz Institute Freiberg for Resource Technology; Freiberg Germany
| | - M. Schlömann
- Institute of Biosciences; TU Bergakademie Freiberg; Freiberg Germany
| | - S. Schopf
- Institute of Biosciences; TU Bergakademie Freiberg; Freiberg Germany
| |
Collapse
|
39
|
Ullrich SR, Poehlein A, Tischler JS, González C, Ossandon FJ, Daniel R, Holmes DS, Schlömann M, Mühling M. Genome Analysis of the Biotechnologically Relevant Acidophilic Iron Oxidising Strain JA12 Indicates Phylogenetic and Metabolic Diversity within the Novel Genus "Ferrovum". PLoS One 2016; 11:e0146832. [PMID: 26808278 PMCID: PMC4725956 DOI: 10.1371/journal.pone.0146832] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/22/2015] [Indexed: 02/07/2023] Open
Abstract
Background Members of the genus “Ferrovum” are ubiquitously distributed in acid mine drainage (AMD) waters which are characterised by their high metal and sulfate loads. So far isolation and microbiological characterisation have only been successful for the designated type strain “Ferrovum myxofaciens” P3G. Thus, knowledge about physiological characteristics and the phylogeny of the genus “Ferrovum” is extremely scarce. Objective In order to access the wider genetic pool of the genus “Ferrovum” we sequenced the genome of a “Ferrovum”-containing mixed culture and successfully assembled the almost complete genome sequence of the novel “Ferrovum” strain JA12. Phylogeny and Lifestyle The genome-based phylogenetic analysis indicates that strain JA12 and the type strain represent two distinct “Ferrovum” species. “Ferrovum” strain JA12 is characterised by an unusually small genome in comparison to the type strain and other iron oxidising bacteria. The prediction of nutrient assimilation pathways suggests that “Ferrovum” strain JA12 maintains a chemolithoautotrophic lifestyle utilising carbon dioxide and bicarbonate, ammonium and urea, sulfate, phosphate and ferrous iron as carbon, nitrogen, sulfur, phosphorous and energy sources, respectively. Unique Metabolic Features The potential utilisation of urea by “Ferrovum” strain JA12 is moreover remarkable since it may furthermore represent a strategy among extreme acidophiles to cope with the acidic environment. Unlike other acidophilic chemolithoautotrophs “Ferrovum” strain JA12 exhibits a complete tricarboxylic acid cycle, a metabolic feature shared with the closer related neutrophilic iron oxidisers among the Betaproteobacteria including Sideroxydans lithotrophicus and Thiobacillus denitrificans. Furthermore, the absence of characteristic redox proteins involved in iron oxidation in the well-studied acidophiles Acidithiobacillus ferrooxidans (rusticyanin) and Acidithiobacillus ferrivorans (iron oxidase) indicates the existence of a modified pathway in “Ferrovum” strain JA12. Therefore, the results of the present study extend our understanding of the genus “Ferrovum” and provide a comprehensive framework for future comparative genome and metagenome studies.
Collapse
Affiliation(s)
- Sophie R. Ullrich
- Institute of Biological Sciences, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg, Germany
- * E-mail: (SRU); (MM)
| | - Anja Poehlein
- Georg-August-University Göttingen, Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Grisebachstraße 8, Göttingen, Germany
| | - Judith S. Tischler
- Institute of Biological Sciences, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg, Germany
| | - Carolina González
- Center for System Biotechnology, Bio-Computing Division and Applied Genetics Division, Fraunhofer Chile Research Foundation, Avenida Mariano Sánchez Fontecilla 310, Santiago, Chile, and Center for Bioinformatics and Genome Biology, Fundación Ciencia y Vida, Zañartu 1482, and Facultad de Ciencias Biologicas, Universidad Andres Bello, Avenida Los Leones 745, Santiago, Chile
| | - Francisco J. Ossandon
- Center for Bioinformatics and Genome Biology, Fundación Ciencia y Vida, Zañartu 1482 and Facultad de Ciencias Biologicas, Universidad Andres Bello, Avenida Los Leones 745, Santiago, Chile
| | - Rolf Daniel
- Georg-August-University Göttingen, Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Grisebachstraße 8, Göttingen, Germany
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia y Vida, Zañartu 1482 and Facultad de Ciencias Biologicas, Universidad Andres Bello, Avenida Los Leones 745, Santiago, Chile
| | - Michael Schlömann
- Institute of Biological Sciences, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg, Germany
| | - Martin Mühling
- Institute of Biological Sciences, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg, Germany
- * E-mail: (SRU); (MM)
| |
Collapse
|
40
|
Abstract
Colonies of iron-oxidising acidophilic bacteria were isolated on solid media containing up to 500 mM NaCl from non-saline samples from the Rio Tinto (Spain). One of these isolates was identified as an "Acidithiobacillusferriphilus" strain. Laboratory cultures of the type strain ofAcidithiobacillusferriduransgrown on hydrogen for one year were also found to adapt to the presence of 500 mM salt. This culture also grew on sulfur, but not on ferrous iron, in media containing 500 mM NaCl. It regained its ability to oxidise iron only after protracted incubation in salt-free media. Molecular analysis found an insertion of about 1.5 kb in the regulatory region of therusoperon of the strain that was unable to oxidize iron. This insertion was lost in the strain that had subsequently regained this ability. Our results suggest that chloride tolerance and dissimilatory oxidation of iron by these bacteria do appear to be mutually exclusive.
Collapse
|
41
|
Falagán C, Johnson DB. Acidithiobacillus ferriphilus sp. nov., a facultatively anaerobic iron- and sulfur-metabolizing extreme acidophile. Int J Syst Evol Microbiol 2015; 66:206-211. [PMID: 26498321 DOI: 10.1099/ijsem.0.000698] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Acidithiobacillus includes three species that conserve energy from the oxidation of ferrous iron, as well as reduced sulfur, to support their growth. Previous work, based on multi-locus sequence analysis, identified a fourth group of iron- and sulfur-oxidizing acidithiobacilli as a potential distinct species. Eleven strains of 'Group IV' acidithiobacilli, isolated from different global locations, have been studied. These were all shown to be obligate chemolithotrophs, growing aerobically by coupling the oxidation of ferrous iron or reduced sulfur (but not hydrogen) to molecular oxygen, or anaerobically by the oxidation of reduced sulfur coupled to ferric iron reduction. All strains were mesophilic, although some were also psychrotolerant. Strain variation was also noted in terms of tolerance to extremely low pH and to elevated concentrations of transition metals. One strain was noted to display far greater tolerance to chloride than reported for other iron-oxidizing acidithiobacilli. All of the strains were able to catalyse the oxidative dissolution of pyrite and, on the basis of some of the combined traits of some of the strains examined, it is proposed that these may have niche roles in commercial mineral bioprocessing operations, such as for low temperature bioleaching of polysulfide ores in brackish waters. The name Acidithiobacillus ferriphilus sp. nov. is proposed to accommodate the strains described, with the type strain being M20T ( = DSM 100412T = JCM 30830T).
Collapse
Affiliation(s)
- Carmen Falagán
- School of Biological Sciences, College of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - D Barrie Johnson
- School of Biological Sciences, College of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| |
Collapse
|
42
|
Pérez-Henarejos SA, Alcaraz LA, Donaire A. Blue Copper Proteins: A rigid machine for efficient electron transfer, a flexible device for metal uptake. Arch Biochem Biophys 2015; 584:134-48. [DOI: 10.1016/j.abb.2015.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/24/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
|
43
|
Martinez P, Vera M, Bobadilla-Fazzini RA. Omics on bioleaching: current and future impacts. Appl Microbiol Biotechnol 2015; 99:8337-50. [PMID: 26278538 PMCID: PMC4768214 DOI: 10.1007/s00253-015-6903-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 11/28/2022]
Abstract
Bioleaching corresponds to the microbial-catalyzed process of conversion of insoluble metals into soluble forms. As an applied biotechnology globally used, it represents an extremely interesting field of research where omics techniques can be applied in terms of knowledge development, but moreover in terms of process design, control, and optimization. In this mini-review, the current state of genomics, proteomics, and metabolomics of bioleaching and the major impacts of these analytical methods at industrial scale are highlighted. In summary, genomics has been essential in the determination of the biodiversity of leaching processes and for development of conceptual and functional metabolic models. Proteomic impacts are mostly related to microbe-mineral interaction analysis, including copper resistance and biofilm formation. Early steps of metabolomics in the field of bioleaching have shown a significant potential for the use of metabolites as industrial biomarkers. Development directions are given in order to enhance the future impacts of the omics in biohydrometallurgy.
Collapse
Affiliation(s)
- Patricio Martinez
- BioSigma 'S.A.', Parque Industrial Los Libertadores, Lote 106, Colina, Chile
| | - Mario Vera
- Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Universitätstraße 5, 45141, Essen, Germany
| | | |
Collapse
|
44
|
Kanaev ZK, Bulaev AG, Kanaev AT, Kondrat’eva TF. Physiological properties of Acidithiobacillus ferrooxidans strains isolated from sulfide ore deposits in Kazakhstan. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715030091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M. Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 2015; 6:475. [PMID: 26074887 PMCID: PMC4448039 DOI: 10.3389/fmicb.2015.00475] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/29/2015] [Indexed: 11/13/2022] Open
Abstract
Acid mine drainage (AMD) emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon, and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics-based methodologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and archaea recovered through sterile filtering (herein referred to as filterable fraction) in these environments demand their inclusion in the microbial characterization of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including filterable fraction), and eukaryotic diversity in these ecosystems, and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far.
Collapse
Affiliation(s)
| | - Ana I. Peláez
- Department of Functional Biology-IUBA, Universidad de OviedoOviedo, Spain
| | - Victoria Mesa
- Department of Functional Biology-IUBA, Universidad de OviedoOviedo, Spain
| | - Jesús Sánchez
- Department of Functional Biology-IUBA, Universidad de OviedoOviedo, Spain
| | | | - Manuel Ferrer
- Department of Applied Biocatalysis, Consejo Superior de Investigaciones Científicas, Institute of CatalysisMadrid, Spain
| |
Collapse
|
46
|
Hou Q, Fang D, Liang J, Zhou L. Significance of oxygen supply in jarosite biosynthesis promoted by Acidithiobacillus ferrooxidans. PLoS One 2015; 10:e0120966. [PMID: 25807372 PMCID: PMC4373806 DOI: 10.1371/journal.pone.0120966] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/27/2015] [Indexed: 11/28/2022] Open
Abstract
Jarosite [(Na+, K+, NH4+, H3O+)Fe3(SO4)2(OH)6] is an efficient scavenger for trace metals in Fe- and SO42--rich acidic water. During the biosynthesis of jarosite promoted by Acidithiobacillus ferrooxidans, the continuous supply of high oxygen levels is a common practice that results in high costs. To evaluate the function of oxygen in jarosite production by A. ferrooxidans, three groups of batch experiments with different oxygen supply levels (i.e., loading volume percentages of FeSO4 solution of 20%, 40%, and 70% v/v in the flasks), as well as three groups of sealed flask experiments with different limiting oxygen supply conditions (i.e., the solutions were not sealed at the initial stage of the ferrous oxidation reaction by paraffin but were rather sealed at the end of the ferrous oxidation reaction at 48 h), were tested. The formed Fe-precipitates were characterized via X-ray powder diffraction and scanning electron microscope-energy dispersive spectral analysis. The results showed that the biosynthesis of jarosite by A. ferrooxidans LX5 could be achieved at a wide range of solution loading volume percentages. The rate and efficiency of the jarosite biosynthesis were poorly correlated with the concentration of dissolved oxygen in the reaction solution. Similar jarosite precipitates, expressed as KFe3 (SO4) 2(OH)6 with Fe/S molar ratios between 1.61 and 1.68, were uniformly formed in unsealed and 48 h sealed flasks. These experimental results suggested that the supply of O2 was only essential in the period of the oxidation of ferrous iron to ferric but was not required in the period of ferric precipitation.
Collapse
Affiliation(s)
- Qingjie Hou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Di Fang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianru Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- * E-mail:
| |
Collapse
|
47
|
Field EK, Sczyrba A, Lyman AE, Harris CC, Woyke T, Stepanauskas R, Emerson D. Genomic insights into the uncultivated marine Zetaproteobacteria at Loihi Seamount. THE ISME JOURNAL 2015; 9:857-70. [PMID: 25303714 PMCID: PMC4817698 DOI: 10.1038/ismej.2014.183] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 08/18/2014] [Accepted: 08/25/2014] [Indexed: 02/07/2023]
Abstract
The Zetaproteobacteria are a candidate class of marine iron-oxidizing bacteria that are typically found in high iron environments such as hydrothermal vent sites. As much remains unknown about these organisms due to difficulties in cultivation, single-cell genomics was used to learn more about this elusive group at Loihi Seamount. Comparative genomics of 23 phylogenetically diverse single amplified genomes (SAGs) and two isolates indicate niche specialization among the Zetaproteobacteria may be largely due to oxygen tolerance and nitrogen transformation capabilities. Only Form II ribulose 1,5-bisphosphate carboxylase (RubisCO) genes were found in the SAGs, suggesting that some of the uncultivated Zetaproteobacteria may be adapted to low oxygen and/or high carbon dioxide concentrations. There is also genomic evidence of oxygen-tolerant cytochrome c oxidases and oxidative stress-related genes, indicating that others may be exposed to higher oxygen conditions. The Zetaproteobacteria also have the genomic potential for acquiring nitrogen from numerous sources including ammonium, nitrate, organic compounds, and nitrogen gas. Two types of molybdopterin oxidoreductase genes were found in the SAGs, indicating that those found in the isolates, thought to be involved in iron oxidation, are not consistent among all the Zetaproteobacteria. However, a novel cluster of redox-related genes was found to be conserved in 10 SAGs as well as in the isolates warranting further investigation. These results were used to isolate a novel iron-oxidizing Zetaproteobacteria. Physiological studies and genomic analysis of this isolate were able to support many of the findings from SAG analyses demonstrating the value of these data for designing future enrichment strategies.
Collapse
Affiliation(s)
- Erin K Field
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | | | - Audrey E Lyman
- Department of Biology, Colby College, Waterville, ME, USA
| | | | - Tanja Woyke
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, USA
| | | | - David Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| |
Collapse
|
48
|
Yang X, Wang S, Liu Y, Zhang Y. Identification and characterization of Acidithiobacillus ferrooxidans YY2 and its application in the biodesulfurization of coal. Can J Microbiol 2015; 61:65-71. [DOI: 10.1139/cjm-2014-0250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The acidophilic Fe-oxidizing and S-oxidizing bacterium YY2 was isolated from the acid drainage of a coalmine. Based on morphological and physiological characteristics and phylogenetic analysis, it was identified as Acidithiobacillus ferrooxidans. Significant differences were observed in the oxidation efficiency and cell morphology when YY2 was cultured in 9K medium with ferrous ion (Fe2+), elemental sulfur (S0), and pyrite as the sole energy source. YY2 exhibited marked Fe2+ oxidation activity; 44.2 g·L−1 FeSO4·7H2O was completely oxidized in 30 h, but the rates of S0 and pyrite oxidization were slower. After 20 days, the efficiencies of oxidizing 10 g·L−1 S0 and 10 g·L−1 pyrite were approximately 9.6% and 20%, respectively. Cells cultured in pyrite as substrate secreted more extracellular polymeric substances than they did when cultured in Fe2+ or S0. Additionally, 75% total sulfur removal and 86% pyritic sulfur removal was achieved in a sequencing batch reactor of biodesulfurization of coal.
Collapse
Affiliation(s)
- Xinping Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Shimei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Yujiao Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Yuanyuan Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| |
Collapse
|
49
|
Mulopo J, Schaefer L. Biological regeneration of ferric (Fe3+) solution during desulphurisation of gaseous streams: effect of nutrients and support material. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 71:1672-1678. [PMID: 26038932 DOI: 10.2166/wst.2015.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper evaluates the biological regeneration of ferric Fe3+ solution during desulphurisation of gaseous streams. Hydrogen sulphide (H2S) is absorbed into aqueous ferric sulphate solution and oxidised to elemental sulphur, while ferric ions Fe3+ are reduced to ferrous ions Fe2+. During the industrial regeneration of Fe3+, nutrients and trace minerals usually provided in a laboratory setup are not present and this depletion of nutrients may have a negative impact on the bacteria responsible for ferrous iron oxidation and may probably affect the oxidation rate. In this study, the effect of nutrients and trace minerals on ferrous iron oxidation have been investigated and the results showed that the presence of nutrients and trace minerals affects the efficiency of bacterial Fe2+oxidation. The scanning electron microscopy analysis of the geotextile support material was also conducted and the results showed that the iron precipitate deposits appear to play a direct role on the bacterial biofilm formation.
Collapse
Affiliation(s)
- Jean Mulopo
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa E-mail:
| | - L Schaefer
- Council for Scientific and Industrial Research, Natural Resources and the Environment, Pretoria, Gauteng, South Africa
| |
Collapse
|
50
|
Tao H, Dongwei L. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy - a presentation. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2014; 4:107-119. [PMID: 28626669 PMCID: PMC5466140 DOI: 10.1016/j.btre.2014.09.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/20/2014] [Accepted: 09/10/2014] [Indexed: 12/16/2022]
Abstract
This review outlines classic and current research, scientific documents and research achievements in bioleaching, particularly in respect of the bioleaching of chalcopyrite and pyrite. The diversity and commonality of the microbial leaching process can be easily studied through comparing the bioleaching mechanism and the application of these two metal sulfides. The crystal, electronic and surface structures of chalcopyrite and pyrite are summarized in detail in this paper. It determines the specific and complicated interaction pathways, kinetics of the atmospheric/aqueous oxidation, and the control process of bioleaching of the minerals as the precondition. Bioleaching of metal sulfides is performed by a diverse group of microorganisms and microbial communities. The species of the bacteria which have a significant effect on leaching ores are miraculously diverse. The newly identified acidophilic microorganisms with unique characteristics for efficient bioleaching of sulfidic minerals are increasing sharply. The cell-to-cell communication mechanisms, which are still implicit, elusive and intangible at present day, have gradually become a research hotspot. The different mineralogy characteristics and the acid solubility of the metal sulfides (e.g., chalcopyrite and pyrite) cause two different dissolution pathways, the thiosulfate and the polysulfide pathways. The bioleaching mechanisms are categorized by contact (an electrostatic attachment) and noncontact (planktonic) process, with emphasis on the produce of extracellular polymeric substances and formation of biofilm on the surface of the metal sulfides in this paper. The division of the direct and indirect effect are not adopted due to the redox chain, the reduction of the ferric iron and oxidation of the ferrous iron. The molecular oxygen is reduced by the electrons extracted from the specific metal sulfide, via a redox chain forming a supercomplex spanning the periplasmic space and connecting both outer and inner membrane. The passivation of the mineral surface can obviously hinder the dissolution of metal sulfides during the bioleaching process, which is significantly affected by the kinetic model, microenvironment on the surface of ore and the leach conditions, such as temperature, pH and Eh. The new development of mechanism research, enhanced and intensified technologies on the bioleaching of chalcopyrite and pyrite, are conducted and summarized from the different branches of natural science. Some are depicted and explained based on molecular level in this paper. Catalyst and catalytic mechanisms in bioleaching and biooxidation for this two sulfide minerals have been concluded and applied for several decades, the continuous emergence of the new material and technology are also gradually applied into the biohydrometallurgy. The industrial applications of the bioleaching on chalcopyrite and pyrite are totally based on the understanding of the interaction mechanism between microbes and minerals, the optimization of ore leaching conditions and the development of new material and the leaching equipment. It is not incredible and unimaginable to take a different bioleaching process and diagram to deal with the two sulfuric metals, which is vital to succeed in elevating the leaching rate of copper.
Collapse
Affiliation(s)
- Huang Tao
- College of Resource and Environmental Science, Chongqing University, Chongqing 400044, China
- State Key Laboratory for Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Li Dongwei
- College of Resource and Environmental Science, Chongqing University, Chongqing 400044, China
- State Key Laboratory for Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| |
Collapse
|