1
|
Mangrum MM, Vogel AK, Wagner AS, King AE, Miao J, Zhou Y, Phillips EK, Peters BM, Reynolds TB. Disruption to de novo uridine biosynthesis alters β-1,3-glucan masking in Candida albicans. mSphere 2024; 9:e0028724. [PMID: 39115319 PMCID: PMC11423711 DOI: 10.1128/msphere.00287-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 08/18/2024] Open
Abstract
The uridine derivatives UDP-glucose and UDP-N-acetylglucosamine are important for cell wall construction as they are the precursors for the synthesis of β-1,3-glucan and chitin, respectively. Previous studies have demonstrated attenuated virulence of uridine auxotrophs in mice, which has been attributed to insufficient uridine levels for growth in the host. We have discovered that uridine deprivation in the uridine auxotroph ura3ΔΔ disrupts cell wall architecture by increasing surface mannans, exposing β-1,3-glucan and chitin, and decreasing UDP-sugar levels. Cell wall architecture and UDP-sugars can be rescued with uridine supplementation. The cell wall architectural disruptions in the ura3ΔΔ mutant also impact immune activation since the mutant elicited greater TNFα secretion from RAW264.7 macrophages than wild type. To determine if cell wall defects contributed to decreased virulence in the ura3ΔΔ mutant, we used a murine model of systemic infection. Mice infected with the ura3ΔΔ mutant exhibited increased survival and reduced kidney fungal burden compared with mice infected with wild type. However, suppression of the immune response with cyclophosphamide did not rescue virulence in mice infected with the ura3ΔΔ mutant, indicating the attenuation in virulence of uridine auxotrophs can be attributed to decreased growth in the host but not increased exposure of β-1,3-glucan. Moreover, the ura3ΔΔ mutant is unable to grow on ex vivo kidney agar, which demonstrates its inability to colonize the kidneys due to poor growth. Thus, although uridine auxotrophy elicits changes to cell wall architecture that increase the exposure of immunogenic polymers, metabolic fitness costs more strongly drive the observed virulence attenuation.IMPORTANCECandida albicans is a common cause of bloodstream infections (candidemia). Treatment of these bloodstream infections is made difficult because of increasing antifungal resistance and drug toxicity. Thus, new tactics are needed for antifungal drug development, with immunotherapy being of particular interest. The cell wall of C. albicans is composed of highly immunogenic polymers, particularly β-1,3-glucan. However, β-1,3-glucan is naturally masked by an outer layer of mannoproteins, which hampers the detection of the fungus by the host immune system. Alteration in cell wall components has been shown to increase β-1,3-glucan exposure; however, it is unknown how the inability to synthesize precursors to cell wall components affects unmasking. Here, we demonstrate how cell wall architecture is altered in response to a deficit in precursors for cell wall synthesis and how uridine is a crucial component of these precursors.
Collapse
Affiliation(s)
- Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Amanda K. Vogel
- Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Andrew S. Wagner
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Ainsley E. King
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jian Miao
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yue Zhou
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Elise K. Phillips
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Brian M. Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
2
|
Kane A, Dinh H, Campbell L, Cain AK, Hibbs D, Carter D. Spectrum of activity and mechanisms of azole-bisphosphonate synergy in pathogenic Candida. Microbiol Spectr 2024; 12:e0012124. [PMID: 38695556 PMCID: PMC11237636 DOI: 10.1128/spectrum.00121-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/12/2024] [Indexed: 06/06/2024] Open
Abstract
Candidiasis places a significant burden on human health and can range from common superficial vulvovaginal and oral infections to invasive diseases with high mortality. The most common Candida species implicated in human disease is Candida albicans, but other species like Candida glabrata are emerging. The use of azole antifungals for treatment is limited by increasing rates of resistance. This study explores repositioning bisphosphonates, which are traditionally used for osteoporosis, as antifungal synergists that can improve and revitalize the use of azoles. Risedronate, alendronate, and zoledronate (ZOL) were tested against isolates from six different species of Candida, and ZOL produced moderate antifungal activity and strong synergy with azoles like fluconazole (FLC), particularly in C. glabrata. FLC:ZOL combinations had increased fungicidal and antibiofilm activity compared to either drug alone, and the combination prevented the development of antifungal resistance. Mechanistic investigations demonstrated that the synergy was mediated by the depletion of squalene, resulting in the inhibition of ergosterol biosynthesis and a compromised membrane structure. In C. glabrata, synergy compromised the function of membrane-bound multidrug transporters and caused an accumulation of reactive oxygen species, which may account for its acute sensitivity to FLC:ZOL. The efficacy of FLC:ZOL in vivo was confirmed in a Galleria mellonella infection model, where combinations improved the survival of larvae infected with C. albicans and C. glabrata to a greater extent than monotherapy with FLC or ZOL, and at reduced dosages. These findings demonstrate that bisphosphonates and azoles are a promising new combination therapy for the treatment of topical candidiasis. IMPORTANCE Candida is a common and often very serious opportunistic fungal pathogen. Invasive candidiasis is a prevalent cause of nosocomial infections with a high mortality rate, and mucocutaneous infections significantly impact the quality of life of millions of patients a year. These infections pose substantial clinical challenges, particularly as the currently available antifungal treatment options are limited in efficacy and often toxic. Azoles are a mainstay of antifungal therapy and work by targeting the biosynthesis of ergosterol. However, there are rising rates of acquired azole resistance in various Candida species, and some species are considered intrinsically resistant to most azoles. Our research demonstrates the promising therapeutic potential of synergistically enhancing azoles with non-toxic, FDA-approved bisphosphonates. Repurposing bisphosphonates as antifungal synergists can bypass much of the drug development pipeline and accelerate the translation of azole-bisphosphonate combination therapy.
Collapse
Affiliation(s)
- Aidan Kane
- School of Life and Environmental Sciences and the Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| | - Hue Dinh
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
| | - Leona Campbell
- School of Life and Environmental Sciences and the Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| | - Amy K. Cain
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
| | - David Hibbs
- School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Dee Carter
- School of Life and Environmental Sciences and the Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Amich J. The many roles of sulfur in the fungal-host interaction. Curr Opin Microbiol 2024; 79:102489. [PMID: 38754292 DOI: 10.1016/j.mib.2024.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Sulfur is an essential macronutrient for life, and consequently, all living organisms must acquire it from external sources to thrive and grow. Sulfur is a constituent of a multitude of crucial molecules, such as the S-containing proteinogenic amino acids cysteine and methionine; cofactors and prosthetic groups, such as coenzyme-A and iron-sulfur (Fe-S) clusters; and other essential organic molecules, such as glutathione or S-adenosylmethionine. Additionally, sulfur in cysteine thiols is an active redox group that plays paramount roles in protein stability, enzyme catalysis, and redox homeostasis. Furthermore, H2S is gaining more attention as a crucial signaling molecule that influences metabolism and physiological functions. Given its importance, it is not surprising that sulfur plays key roles in the host-pathogen interaction. However, in contrast to its well-recognized involvement in the plant-pathogen interaction, the specific contributions of sulfur to the human-fungal interaction are much less understood. In this short review, I highlight some of the most important known mechanisms and propose directions for further research.
Collapse
Affiliation(s)
- Jorge Amich
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain.
| |
Collapse
|
4
|
Webb RJ, Rush C, Berger L, Skerratt LF, Roberts AA. Glutathione is required for growth and cadmium tolerance in the amphibian chytrid fungus, Batrachochytrium dendrobatidis. Biochimie 2023; 220:22-30. [PMID: 38104714 DOI: 10.1016/j.biochi.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Batrachochytrium dendrobatidis (Bd) is a lethal amphibian pathogen, partly due to its ability to evade the immune system of susceptible frog species. In many pathogenic fungi, the antioxidant glutathione is a virulence factor that helps neutralise oxidative stressors generated from host immune cells, as well as other environmental stressors such as heavy metals. The role of glutathione in stress tolerance in Bd has not been investigated. Here, we examine the changes in the glutathione pool after stress exposure and quantify the effect of glutathione depletion on cell growth and stress tolerance. Depletion of glutathione repressed growth and release of zoospores, suggesting that glutathione is essential for life cycle completion in Bd. Supplementation with <2 mM exogenous glutathione accelerated zoospore development, but concentrations >2 mM were strongly inhibitory to Bd cells. While hydrogen peroxide exposure lowered the total cellular glutathione levels by 42 %, glutathione depletion did not increase the sensitivity to hydrogen peroxide. Exposure to cadmium increased total cellular glutathione levels by 93 %. Glutathione-depleted cells were more sensitive to cadmium, and this effect was attenuated by glutathione supplementation, suggesting that glutathione plays an important role in cadmium tolerance. The effects of heat and salt were exacerbated by the addition of exogenous glutathione. The impact of glutathione levels on Bd stress sensitivity may help explain differences in host susceptibility to chytridiomycosis and may provide opportunities for synergistic therapeutics.
Collapse
Affiliation(s)
- Rebecca J Webb
- James Cook University, Townsville, QLD, 4811, Australia; Melbourne Veterinary School, University of Melbourne, Werribee, VIC, 3030, Australia.
| | | | - Lee Berger
- Melbourne Veterinary School, University of Melbourne, Werribee, VIC, 3030, Australia
| | - Lee F Skerratt
- Melbourne Veterinary School, University of Melbourne, Werribee, VIC, 3030, Australia
| | | |
Collapse
|
5
|
The Role of the Glutathione System in Stress Adaptation, Morphogenesis and Virulence of Pathogenic Fungi. Int J Mol Sci 2022; 23:ijms231810645. [PMID: 36142553 PMCID: PMC9500636 DOI: 10.3390/ijms231810645] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Morphogenesis and stress adaptation are key attributes that allow fungal pathogens to thrive and infect human hosts. During infection, many fungal pathogens undergo morphological changes, and this ability is highly linked to virulence. Furthermore, pathogenic fungi have developed multiple antioxidant defenses to cope with the host-derived oxidative stress produced by phagocytes. Glutathione is a major antioxidant that can prevent cellular damage caused by various oxidative stressors. While the role of glutathione in stress detoxification is known, studies of the glutathione system in fungal morphological switching and virulence are lacking. This review explores the role of glutathione metabolism in fungal adaptation to stress, morphogenesis, and virulence. Our comprehensive analysis of the fungal glutathione metabolism reveals that the role of glutathione extends beyond stressful conditions. Collectively, glutathione and glutathione-related proteins are necessary for vitality, cellular development and pathogenesis.
Collapse
|
6
|
Abdulghani M, Iram R, Chidrawar P, Bhosle K, Kazi R, Patil R, Kharat K, Zore G. Proteomic profile of Candida albicans biofilm. J Proteomics 2022; 265:104661. [PMID: 35728770 DOI: 10.1016/j.jprot.2022.104661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Candida albicans biofilms are characterized by structural and cellular heterogeneity that confers antifungal resistance and immune evasion. Despite this, biofilm formation remains poorly understood. In this study, we used proteomic analysis to understand biofilm formation in C. albicans related to morphophysiological and architectural features. LC-MS/MS analysis revealed that 64 proteins were significantly modulated, of which 31 were upregulated and 33 were downregulated. The results indicate that metabolism (25 proteins), gene expression (13 proteins), stress response (7 proteins), and cell wall (5 proteins) composition are modulated. The rate of oxidative phosphorylation (OxPhos) and biosynthesis of UDP-N-acetylglucosamine, vitamin B6, and thiamine increased, while the rate of methionine biosynthesis decreased. There was a significant modification of the cell wall architecture due to higher levels of Sun41, Pir1 and Csh1 and increased glycosylation of proteins. It was observed that C. albicans induces hyphal growth by upregulating the expression of genes involved in cAMP-PKA and MAPK pathways. This study is significant in that it suggests an increase in OxPhos and alteration of cell wall architecture that could be contributing to the recalcitrance of C. albicans cells growing in biofilms. Nevertheless, a deeper investigation is needed to explore it further. SIGNIFICANCE: Candida sps is included in the list of pathogens with potential drug resistance threat due to the increased frequency especially colonization of medical devices, and tissues among the patients, in recent years. Significance of our study is that we are reporting traits like modulation in cell wall composition, amino acid and vitamin biosynthesis and importantly energy generation (OxPhos) etc. These traits could be conferring antifungal resistance, host immune evasion etc. and thus survival, in addition to facilitating biofilm formation. These findings are expected to prime the further studies on devising potent strategy against biofilm growth among the patients.
Collapse
Affiliation(s)
- Mazen Abdulghani
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Rasiqua Iram
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Priti Chidrawar
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Kajal Bhosle
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Rubina Kazi
- Division of Biochemical Sciences, CSIR-NCL, Pune 8, MS, India
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, MS, India
| | - Kiran Kharat
- Department of Biotechnology, Deogiri College, Aurangabad, MS, India
| | - Gajanan Zore
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India.
| |
Collapse
|
7
|
de Sousa LO, Oliveira LN, Naves RB, Pereira ALA, Santiago Freitas E Silva K, de Almeida Soares CM, de Sousa Lima P. The dual role of SrbA from Paracoccidioides lutzii: a hypoxic regulator. Braz J Microbiol 2021; 52:1135-1149. [PMID: 34148216 PMCID: PMC8382145 DOI: 10.1007/s42770-021-00527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022] Open
Abstract
The fungus Paracoccidioides lutzii is one of the species of the Paracoccidioides genus, responsible for a neglected human mycosis, endemic in Latin America, the paracoccidioidomycosis (PCM). In order to survive in the host, the fungus overcomes a hostile environment under low levels of oxygen (hypoxia) during the infectious process. The hypoxia adaptation mechanisms are variable among human pathogenic fungi and worthy to be investigated in Paracoccidoides spp. Previous proteomic results identified that P. lutzii responds to hypoxia and it has a functional homolog of the SrbA transcription factor, a well-described hypoxic regulator. However, the direct regulation of genes by SrbA and the biological processes it governs while performing protein interactions have not been revealed yet. The goal of this study was to demonstrate the potential of SrbA targets genes in P. lutzii. In addition, to show the SrbA three-dimensional aspects as well as a protein interaction map and important regions of interaction with predicted targets. The results show that SrbA-regulated genes were involved with several biological categories, such as metabolism, energy, basal processes for cell maintenance, fungal morphogenesis, defense, virulence, and signal transduction. Moreover, in order to investigate the SrbA's role as a protein, we performed a 3D simulation and also a protein-protein network linked to this hypoxic regulator. These in silico analyses revealed relevant aspects regarding the biology of this pathogen facing hypoxia and highlight the potential of SrbA as an antifungal target in the future.
Collapse
Affiliation(s)
- Lorena Ordones de Sousa
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil
| | - Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Raphaela Barbosa Naves
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil
| | - André Luiz Araújo Pereira
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil
| | - Kleber Santiago Freitas E Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Patrícia de Sousa Lima
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil.
| |
Collapse
|
8
|
Molecular targets for antifungals in amino acid and protein biosynthetic pathways. Amino Acids 2021; 53:961-991. [PMID: 34081205 PMCID: PMC8241756 DOI: 10.1007/s00726-021-03007-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 01/22/2023]
Abstract
Fungi cause death of over 1.5 million people every year, while cutaneous mycoses are among the most common infections in the world. Mycoses vary greatly in severity, there are long-term skin (ringworm), nail or hair infections (tinea capitis), recurrent like vaginal candidiasis or severe, life-threatening systemic, multiorgan infections. In the last few years, increasing importance is attached to the health and economic problems caused by fungal pathogens. There is a growing need for improvement of the availability of antifungal drugs, decreasing their prices and reducing side effects. Searching for novel approaches in this respect, amino acid and protein biosynthesis pathways appear to be competitive. The route that leads from amino acid biosynthesis to protein folding and its activation is rich in enzymes that are descriptive of fungi. Blocking the action of those enzymes often leads to avirulence or growth inhibition. In this review, we want to trace the principal processes of fungi vitality. We present the data of genes encoding enzymes involved in amino acid and protein biosynthesis, potential molecular targets in antifungal chemotherapy, and describe the impact of inhibitors on fungal organisms.
Collapse
|
9
|
F. Q. Smith D, Casadevall A. Fungal immunity and pathogenesis in mammals versus the invertebrate model organism Galleria mellonella. Pathog Dis 2021; 79:ftab013. [PMID: 33544836 PMCID: PMC7981337 DOI: 10.1093/femspd/ftab013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
In recent decades, Galleria mellonella (Lepidoptera: Pyralidae) have emerged as a model system to explore experimental aspects of fungal pathogenesis. The benefits of the G. mellonella model include being faster, cheaper, higher throughput and easier compared with vertebrate models. Additionally, as invertebrates, their use is subject to fewer ethical and regulatory issues. However, for G. mellonella models to provide meaningful insight into fungal pathogenesis, the G. mellonella-fungal interactions must be comparable to mammalian-fungal interactions. Indeed, as discussed in the review, studies suggest that G. mellonella and mammalian immune systems share many similarities, and fungal virulence factors show conserved functions in both hosts. While the moth model has opened novel research areas, many comparisons are superficial and leave large gaps of knowledge that need to be addressed concerning specific mechanisms underlying G. mellonella-fungal interactions. Closing these gaps in understanding will strengthen G. mellonella as a model for fungal virulence in the upcoming years. In this review, we provide comprehensive comparisons between fungal pathogenesis in mammals and G. mellonella from immunological and virulence perspectives. When information on an antifungal immune component is unknown in G. mellonella, we include findings from other well-studied Lepidoptera. We hope that by outlining this information available in related species, we highlight areas of needed research and provide a framework for understanding G. mellonella immunity and fungal interactions.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Oliveira LN, Lima PDS, Araújo DS, Portis IG, Santos Júnior ADCMD, Coelho ASG, de Sousa MV, Ricart CAO, Fontes W, Soares CMDA. iTRAQ-based proteomic analysis of Paracoccidioides brasiliensis in response to hypoxia. Microbiol Res 2021; 247:126730. [PMID: 33662850 DOI: 10.1016/j.micres.2021.126730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/29/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023]
Abstract
Aerobic organisms require oxygen for energy. In the course of the infection, adaptation to hypoxia is crucial for survival of human pathogenic fungi. Members of the Paracoccidioides complex face decreased oxygen tensions during the life cycle stages. In Paracoccidioides brasiliensis proteomic responses to hypoxia have not been investigated and the regulation of the adaptive process is still unknown, and this approach allowed the identification of 216 differentially expressed proteins in hypoxia using iTRAQ-labelling. Data suggest that P. brasiliensis reprograms its metabolism when submitted to hypoxia. The fungus reduces its basal metabolism and general transport proteins. Energy and general metabolism were more representative and up regulated. Glucose is apparently directed towards glycolysis or the production of cell wall polymers. Plasma membrane/cell wall are modulated by increasing ergosterol and glucan, respectively. In addition, molecules such as ethanol and acetate are produced by this fungus indicating that alternative carbon sources probably are activated to obtain energy. Also, detoxification mechanisms are activated. The results were compared with label free proteomics data from Paracoccidioides lutzii. Biochemical pathways involved with acetyl-CoA, pyruvate and ergosterol synthesis were up-regulated in both fungi. On the other hand, proteins from TCA, transcription, protein fate/degradation, cellular transport, signal transduction and cell defense/virulence processes presented different profiles between species. Particularly, proteins related to methylcitrate cycle and those involved with acetate and ethanol synthesis were increased in P. brasiliensis proteome, whereas GABA shunt were accumulated only in P. lutzii. The results emphasize metabolic adaptation processes for distinct Paracoccidioides species.
Collapse
Affiliation(s)
- Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Danielle Silva Araújo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Igor Godinho Portis
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | | | | | - Marcelo Valle de Sousa
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Carlos André Ornelas Ricart
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Wagner Fontes
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| |
Collapse
|
11
|
Arslan F, Caskurlu H, Sarı S, Dal HC, Turan S, Sengel BE, Gul F, Yesilbag Z, Eren G, Temel S, Alp E, Gol Serin B, Kose S, Calık S, Tuncel ZT, Senbayrak S, Sarı A, Karagoz G, Tomruk SG, Sen B, Hizarci B, Vahaboglu H. Risk factors for noncatheter-related Candida bloodstream infections in intensive care units: A multicenter case-control study. Med Mycol 2020; 57:668-674. [PMID: 30496520 DOI: 10.1093/mmy/myy127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/24/2018] [Accepted: 11/03/2018] [Indexed: 01/05/2023] Open
Abstract
Candida bloodstream infections are associated with high mortality among critically ill patients in intensive care units (ICUs). Studies that explore the risk factors for candidemia may support better patient care in intensive care units. We conducted a retrospective, multicenter case-control study to investigate the risk factors for noncatheter-related Candida bloodstream infections (CBSI) in adult ICUs. Participants selected controls randomly on a 1:1 basis among all noncase patients stayed during the same period in ICUs. Data on 139 cases and 140 controls were deemed eligible. Among the controls, 69 patients died. The stratified Fine-Gray model was used to estimate the subdistribution Hazard ratios. The subdistribution hazards and 95% confidence intervals for final covariates were as follows: prior exposure to antimycotic agents, 2.21 (1.56-3.14); prior exposure to N-acetylcysteine, 0.11 (0.03-0.34) and prior surgical intervention, 1.26 (0.76-2.11). Of the patients, those exposed to antimycotic drugs, 87.1% (54/62) had breakthrough candidemia. Serious renal, hepatic, or hematologic side effects were comparable between patients those exposed and not-exposed to systemic antimycotic drugs. Untargeted administration of antimycotic drugs did not improve survival among candidemic patients (not-exposed, 63.6% [49/77]; exposed % 66.1 [41/62]; P = .899). This study documented that exposure to an antifungal agent is associated with increased the risk of subsequent development of CBSIs among nonneutropenic adult patients admitted to the ICU. Only two centers regularly prescribed N-acetylcysteine. Due to the limited number of subjects, we interpreted the positive effect of N-acetylcysteine on the absolute risk of CBSIs with caution.
Collapse
Affiliation(s)
- Ferhat Arslan
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Hulya Caskurlu
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Sema Sarı
- Department of Intensive Care, Health Sciences University, Turkiye Yuksek Ihtisas Training and Research Hospital, Ankara, Turkey
| | - Hayriye Cankar Dal
- Department of Intensive Care, Health Sciences University, Turkiye Yuksek Ihtisas Training and Research Hospital, Ankara, Turkey
| | - Sema Turan
- Department of Intensive Care, Health Sciences University, Turkiye Yuksek Ihtisas Training and Research Hospital, Ankara, Turkey
| | - Buket Erturk Sengel
- Department of Infectious Diseases and Clinical Microbiology, Marmara University Faculty of Medicine, İstanbul, Turkey
| | - Fethi Gul
- Department of Anesthesiology and Reanimation, Marmara University Faculty of Medicine, İstanbul, Turkey
| | - Zuhal Yesilbag
- Department of Infectious Diseases and Clinical Microbiology, Health Sciences University, Bakirkoy Dr. Sadi Konuk Education and Research Hospital, Istanbul, Turkey
| | - Gulay Eren
- Department of Anesthesiology and Reanimation, Health Sciences University, Bakirkoy Dr. Sadi Konuk Education and Research Hospital, Istanbul
| | - Sahin Temel
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Emine Alp
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Basak Gol Serin
- Department of Infectious Diseases and Clinical Microbiology, Health Sciences University, İzmir Tepecik Training and Research Hospital, Izmir, Turkey
| | - Sukran Kose
- Department of Infectious Diseases and Clinical Microbiology, Health Sciences University, İzmir Tepecik Training and Research Hospital, Izmir, Turkey
| | - Sebnem Calık
- Department of Infectious Diseases and Clinical Microbiology, Health Sciences University, İzmir Bozyaka Training and Research Hospital, İzmir, Turkey
| | - Zeki Tekgul Tuncel
- Department of Anesthesiology and Reanimation, Health Sciences University, İzmir Bozyaka Training and Research Hospital, İzmir, Turkey
| | - Seniha Senbayrak
- Department of Infectious Diseases and Clinical Microbiology, Health Sciences University, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Ahmet Sarı
- Department of Anesthesiology and Reanimation, Health Sciences University, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Gul Karagoz
- Department of Infectious Diseases and Clinical Microbiology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Senay Goksu Tomruk
- Department of Anesthesiology and Reanimation, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Betul Sen
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Burcu Hizarci
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Haluk Vahaboglu
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
12
|
Traynor AM, Sheridan KJ, Jones GW, Calera JA, Doyle S. Involvement of Sulfur in the Biosynthesis of Essential Metabolites in Pathogenic Fungi of Animals, Particularly Aspergillus spp.: Molecular and Therapeutic Implications. Front Microbiol 2019; 10:2859. [PMID: 31921039 PMCID: PMC6923255 DOI: 10.3389/fmicb.2019.02859] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Fungal sulfur uptake is required for incorporation into the sidechains of the amino acids cysteine and methionine, and is also essential for the biosynthesis of the antioxidant glutathione (GSH), S-adenosylmethionine (SAM), the key source of methyl groups in cellular transmethylation reactions, and S-adenosylhomocysteine (SAH). Biosynthesis of redox-active gliotoxin in the opportunistic fungal pathogen Aspergillus fumigatus has been elucidated over the past 10 years. Some fungi which produce gliotoxin-like molecular species have undergone unexpected molecular rewiring to accommodate this high-risk biosynthetic process. Specific disruption of gliotoxin biosynthesis, via deletion of gliK, which encodes a γ-glutamyl cyclotransferase, leads to elevated intracellular antioxidant, ergothioneine (EGT), levels, and confirms crosstalk between the biosynthesis of both sulfur-containing moieties. Gliotoxin is ultimately formed by gliotoxin oxidoreductase GliT-mediated oxidation of dithiol gliotoxin (DTG). In fact, DTG is a substrate for both GliT and a bis-thiomethyltransferase, GtmA. GtmA converts DTG to bisdethiobis(methylthio)gliotoxin (BmGT), using 2 mol SAM and resultant SAH must be re-converted to SAM via the action of the Methyl/Met cycle. In the absence of GliT, DTG fluxes via GtmA to BmGT, which results in both SAM depletion and SAH overproduction. Thus, the negative regulation of gliotoxin biosynthesis via GtmA must be counter-balanced by GliT activity to avoid Methyl/Met cycle dysregulation, SAM depletion and trans consequences on global cellular biochemistry in A. fumigatus. DTG also possesses potent Zn2+ chelation properties which positions this sulfur-containing metabolite as a putative component of the Zn2+ homeostasis system within fungi. EGT plays an essential role in high-level redox homeostasis and its presence requires significant consideration in future oxidative stress studies in pathogenic filamentous fungi. In certain filamentous fungi, sulfur is additionally indirectly required for the formation of EGT and the disulfide-bridge containing non-ribosomal peptide, gliotoxin, and related epipolythiodioxopiperazines. Ultimately, interference with emerging sulfur metabolite functionality may represent a new strategy for antifungal drug development.
Collapse
Affiliation(s)
- Aimee M Traynor
- Department of Biology, Maynooth University, Maynooth, Ireland
| | | | - Gary W Jones
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - José A Calera
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
13
|
Lee SY, Chen HF, Yeh YC, Xue YP, Lan CY. The Transcription Factor Sfp1 Regulates the Oxidative Stress Response in Candida albicans. Microorganisms 2019; 7:E131. [PMID: 31091716 PMCID: PMC6560436 DOI: 10.3390/microorganisms7050131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is a commensal that inhabits the skin and mucous membranes of humans. Because of the increasing immunocompromised population and the limited classes of antifungal drugs available, C. albicans has emerged as an important opportunistic pathogen with high mortality rates. During infection and therapy, C. albicans frequently encounters immune cells and antifungal drugs, many of which exert their antimicrobial activity by inducing the production of reactive oxygen species (ROS). Therefore, antioxidative capacity is important for the survival and pathogenesis of C. albicans. In this study, we characterized the roles of the zinc finger transcription factor Sfp1 in the oxidative stress response against C. albicans. A sfp1-deleted mutant was more resistant to oxidants and macrophage killing than wild-type C. albicans and processed an active oxidative stress response with the phosphorylation of the mitogen-activated protein kinase (MAPK) Hog1 and high CAP1 expression. Moreover, the sfp1-deleted mutant exhibited high expression levels of antioxidant genes in response to oxidative stress, resulting in a higher total antioxidant capacity, glutathione content, and glutathione peroxidase and superoxide dismutase enzyme activity than the wild-type C. albicans. Finally, the sfp1-deleted mutant was resistant to macrophage killing and ROS-generating antifungal drugs. Together, our findings provide a new understanding of the complex regulatory machinery in the C. albicans oxidative stress response.
Collapse
Affiliation(s)
- Shao-Yu Lee
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Hsueh-Fen Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Ying-Chieh Yeh
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Yao-Peng Xue
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
14
|
Candida glabrata: A Lot More Than Meets the Eye. Microorganisms 2019; 7:microorganisms7020039. [PMID: 30704135 PMCID: PMC6407134 DOI: 10.3390/microorganisms7020039] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 01/17/2023] Open
Abstract
Candida glabrata is an opportunistic human fungal pathogen that causes superficial mucosal and life-threatening bloodstream infections in individuals with a compromised immune system. Evolutionarily, it is closer to the non-pathogenic yeast Saccharomyces cerevisiae than to the most prevalent Candida bloodstream pathogen, C. albicans. C. glabrata is a haploid budding yeast that predominantly reproduces clonally. In this review, we summarize interactions of C. glabrata with the host immune, epithelial and endothelial cells, and the ingenious strategies it deploys to acquire iron and phosphate from the external environment. We outline various attributes including cell surface-associated adhesins and aspartyl proteases, biofilm formation and stress response mechanisms, that contribute to the virulence of C. glabrata. We further discuss how, C. glabrata, despite lacking morphological switching and secreted proteolytic activity, is able to disarm macrophage, dampen the host inflammatory immune response and replicate intracellularly.
Collapse
|
15
|
Nicola AM, Albuquerque P, Paes HC, Fernandes L, Costa FF, Kioshima ES, Abadio AKR, Bocca AL, Felipe MS. Antifungal drugs: New insights in research & development. Pharmacol Ther 2018; 195:21-38. [PMID: 30347212 DOI: 10.1016/j.pharmthera.2018.10.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The need for better antifungal therapy is commonly accepted in view of the high mortality rates associated with systemic infections, the low number of available antifungal classes, their associated toxicity and the increasing number of infections caused by strains with natural or acquired resistance. The urgency to expand the range of therapeutic options for the treatment of fungal infections has led researchers in recent decades to seek alternative antifungal targets when compared to the conventional ones currently used. Although new potential targets are reported, translating the discoveries from bench to bedside is a long process and most of these drugs fail to reach the patients. In this review, we discuss the development of antifungal drugs focusing on the approach of drug repurposing and the search for novel drugs for classical targets, the most recently described gene targets for drug development, the possibilities of immunotherapy using antibodies, cytokines, therapeutic vaccines and antimicrobial peptides.
Collapse
Affiliation(s)
| | - Patrícia Albuquerque
- Faculty of Ceilândia, University of Brasília, Brazil; Graduate Programme in Microbial Biology, University of Brasília, Brazil
| | - Hugo Costa Paes
- Division of Clinical Medicine, University of Brasília Medical School, Brazil
| | - Larissa Fernandes
- Faculty of Ceilândia, University of Brasília, Brazil; Graduate Programme in Microbial Biology, University of Brasília, Brazil
| | - Fabricio F Costa
- Graduate Programme in Genomic Science and Biotechnology, Catholic University of Brasília, Brazil; MATTER, Chicago, IL, USA; Cancer Biology and Epigenomics Program, Ann & Robert Lurie Children's Hospital of Chicago Research Center, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, USA
| | - Erika Seki Kioshima
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Paraná, Brazil
| | - Ana Karina Rodrigues Abadio
- School for Applied Social and Agricultural Sciences, State University of Mato Grosso, Nova Mutum Campus, Mato Grosso, Brazil
| | | | - Maria Sueli Felipe
- Graduate Programme in Genomic Science and Biotechnology, Catholic University of Brasília, Brazil; Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brazil.
| |
Collapse
|
16
|
Schrevens S, Van Zeebroeck G, Riedelberger M, Tournu H, Kuchler K, Van Dijck P. Methionine is required for cAMP-PKA-mediated morphogenesis and virulence of Candida albicans. Mol Microbiol 2018; 108:258-275. [PMID: 29453849 DOI: 10.1111/mmi.13933] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2018] [Indexed: 12/24/2022]
Abstract
Candida albicans is a major human fungal pathogen, causing superficial, as well as life-threatening invasive infections. Therefore, it has to adequately sense and respond to the host defense by expressing appropriate virulence attributes. The most important virulence factor of C. albicans is the yeast-to-hyphae morphogenetic switch, which can be induced by numerous environmental cues, including the amino acid methionine. Here, we show an essential role for methionine permease Mup1 in methionine-induced morphogenesis, biofilm formation, survival inside macrophages and virulence. Furthermore, we demonstrate that this process requires conversion of methionine into S-adenosyl methionine (SAM) and its decarboxylation by Spe2. The resulting amino-propyl group is then used for biosynthesis of polyamines, which have been shown to activate adenylate cyclase. Inhibition of the SPE2 SAM decarboxylase gene strongly impairs methionine-induced morphogenesis on specific media and significantly delays virulence in the mouse systemic infection model system. Further proof of the connection between methionine uptake and initial metabolism and the cAMP-PKA pathway was obtained by showing that both Mup1 and Spe2 are required for cAMP production in response to methionine. Our results suggest that amino acid transport and further metabolism are interesting therapeutic targets as inhibitors of this may prevent the morphogenetic switch, thereby preventing virulence.
Collapse
Affiliation(s)
- Sanne Schrevens
- VIB - KU Leuven Center for Microbiology, Leuven 3001, Belgium.,Laboratory of Molecular Cell Biology, KU Leuven, Leuven 3001, Belgium
| | - Griet Van Zeebroeck
- VIB - KU Leuven Center for Microbiology, Leuven 3001, Belgium.,Laboratory of Molecular Cell Biology, KU Leuven, Leuven 3001, Belgium
| | - Michael Riedelberger
- Medical University of Vienna, Center of Medical Biochemistry, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
| | - Hélène Tournu
- VIB - KU Leuven Center for Microbiology, Leuven 3001, Belgium.,Laboratory of Molecular Cell Biology, KU Leuven, Leuven 3001, Belgium
| | - Karl Kuchler
- Medical University of Vienna, Center of Medical Biochemistry, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
| | - Patrick Van Dijck
- VIB - KU Leuven Center for Microbiology, Leuven 3001, Belgium.,Laboratory of Molecular Cell Biology, KU Leuven, Leuven 3001, Belgium
| |
Collapse
|
17
|
Yang P, Chen Y, Wu H, Fang W, Liang Q, Zheng Y, Olsson S, Zhang D, Zhou J, Wang Z, Zheng W. The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum. Curr Genet 2017; 64:285-301. [PMID: 28918485 DOI: 10.1007/s00294-017-0747-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/31/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
Abstract
In eukaryotic organisms, the 5-oxoprolinase is one of the six key enzymes in the γ-glutamyl cycle that is involved in the biosynthetic pathway of glutathione (GSH, an antioxidative tripeptide counteracting the oxidative stress). To date, little is known about the biological functions of the 5-oxoprolinase in filamentous phytopathogenic fungi. In this study, we investigated the 5-oxoprolinase in Fusarium graminearum for the first time. In F. graminearum, two paralogous genes (FgOXP1 and FgOXP2) were identified to encode the 5-oxoprolinase while only one homologous gene encoding the 5-oxoprolinase could be found in other filamentous phytopathogenic fungi or Saccharomyces cerevisiae. Deletion of FgOXP1 or FgOXP2 in F. graminearum led to significant defects in its virulence on wheat. This is likely caused by an observed decreased deoxynivalenol (DON, a mycotoxin) production in the gene deletion mutant strains as DON is one of the best characterized virulence factors of F. graminearum. The FgOXP2 deletion mutant strains were also defective in conidiation and sexual reproduction while the FgOXP1 deletion mutant strains were normal for those phenotypes. Double deletion of FgOXP1 and FgOXP2 led to more severe defects in conidiation, DON production and virulence on plants, suggesting that both FgOXP1 and FgOXP2 play a role in fungal development and plant colonization. Although transformation of MoOXP1into ΔFgoxp1 was able to complement ΔFgoxp1, transformation of MoOXP1 into ΔFgoxp2 failed to restore its defects in sexual development, DON production and pathogenicity. Taken together, these results suggest that FgOXP1 and FgOXP2 are likely to have been functionally diversified and play significant roles in fungal development and full virulence in F. graminearum.
Collapse
Affiliation(s)
- Piao Yang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yunyun Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiming Wu
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenqin Fang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qifu Liang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yangling Zheng
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Stefan Olsson
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Plant Immunity Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongmei Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jie Zhou
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zonghua Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Ocean College, Minjiang University, Fuzhou, 350108, China.
| | - Wenhui Zheng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
18
|
Lof M, Janus MM, Krom BP. Metabolic Interactions between Bacteria and Fungi in Commensal Oral Biofilms. J Fungi (Basel) 2017; 3:jof3030040. [PMID: 29371557 PMCID: PMC5715944 DOI: 10.3390/jof3030040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022] Open
Abstract
Oral health is more than just the absence of disease. The key to oral health is a diverse microbiome in an ecological balance. The oral microbiota is one of the most complex and diverse microbial communities in the human body. To maintain oral health, balance between the human host and the intrinsic microorganisms is essential. The healthy oral cavity is represented by a great microbial diversity, including both bacteria and fungi. The bacterial microbiome is very well studied. In contrast, fungi inhabiting the oral cavity are often overlooked. All microbial species in the oral cavity form communities which establish a variety of micro-niches and inter- and intra-species interactions. These interactions can be classified into three main groups: physical, chemical and metabolic interactions. Different metabolic interactions are reviewed in this report, among which are the metabolism of sugars, carbon, lactate and oxygen. This review set out with the aim of assessing the importance of metabolic interactions between fungi and bacteria in the healthy oral cavity.
Collapse
Affiliation(s)
- Marloes Lof
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and the University of Amsterdam, Amsterdam, 1081 LA, The Netherlands.
| | - Marleen M Janus
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and the University of Amsterdam, Amsterdam, 1081 LA, The Netherlands.
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and the University of Amsterdam, Amsterdam, 1081 LA, The Netherlands.
| |
Collapse
|
19
|
Fungicidal effect of thymoquinone involves generation of oxidative stress in Candida glabrata. Microbiol Res 2016; 195:81-88. [PMID: 28024529 DOI: 10.1016/j.micres.2016.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/17/2016] [Accepted: 11/14/2016] [Indexed: 01/16/2023]
Abstract
The antifungal effect of thymoquinone, a component of black seed essential oil, has been studied on different types of fungi. Its mechanism of action as an antifungal has not been described yet. This study demonstrates the fungicidal effect of thymoquinone on different Candida species with particular emphasis on C. glabrata planktonic cells and biofilms. Since cell death was induced via the generation of oxidative stress as evidenced by the abrogation of thymoquinone toxicity in cells incubated with antioxidants, a part of thymoquinone's mechanism of action includes a direct involvement as a pro-oxidant. This was further confirmed by measuring the generation of reactive oxygen species, glutathione level reduction and decrease in mitochondrial membrane potential. The oxidative stress caused by thymoquinone was confirmed to be the cause of death and not a result of cell death.
Collapse
|
20
|
Thangamani S, Eldesouky HE, Mohammad H, Pascuzzi PE, Avramova L, Hazbun TR, Seleem MN. Ebselen exerts antifungal activity by regulating glutathione (GSH) and reactive oxygen species (ROS) production in fungal cells. Biochim Biophys Acta Gen Subj 2016; 1861:3002-3010. [PMID: 27712973 DOI: 10.1016/j.bbagen.2016.09.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ebselen, an organoselenium compound and a clinically safe molecule has been reported to possess potent antifungal activity, but its antifungal mechanism of action and in vivo antifungal activity remain unclear. METHODS The antifungal effect of ebselen was tested against Candida albicans, C. glabrata, C. tropicalis, C. parapsilosis, Cryptococcus neoformans, and C. gattii clinical isolates. Chemogenomic profiling and biochemical assays were employed to identify the antifungal target of ebselen. Ebselen's antifungal activity in vivo was investigated in a Caenorhabditis elegans animal model. RESULTS Ebselen exhibits potent antifungal activity against both Candida spp. and Cryptococcus spp., at concentrations ranging from 0.5 to 2μg/ml. Ebselen rapidly eradicates a high fungal inoculum within 2h of treatment. Investigation of the drug's antifungal mechanism of action indicates that ebselen depletes intracellular glutathione (GSH) levels, leading to increased production of reactive oxygen species (ROS), and thereby disturbs the redox homeostasis in fungal cells. Examination of ebselen's in vivo antifungal activity in two Caenorhabditis elegans models of infection demonstrate that ebselen is superior to conventional antifungal drugs (fluconazole, flucytosine and amphotericin) in reducing Candida and Cryptococcus fungal load. CONCLUSION Ebselen possesses potent antifungal activity against clinically relevant isolates of both Candida and Cryptococcus by regulating GSH and ROS production. The potent in vivo antifungal activity of ebselen supports further investigation for repurposing it for use as an antifungal agent. GENERAL SIGNIFICANCE The present study shows that ebselen targets glutathione and also support that glutathione as a potential target for antifungal drug development.
Collapse
Affiliation(s)
- Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Hassan E Eldesouky
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Pete E Pascuzzi
- Faculty in Libraries, Purdue University, West Lafayette, IN 47906, USA
| | - Larisa Avramova
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47906, USA
| | - Tony R Hazbun
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47906, USA; Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47906, USA.
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA; Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
21
|
Gergondey R, Garcia C, Serre V, Camadro J, Auchère F. The adaptive metabolic response involves specific protein glutathionylation during the filamentation process in the pathogen Candida albicans. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1309-23. [DOI: 10.1016/j.bbadis.2016.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/26/2016] [Accepted: 04/07/2016] [Indexed: 01/14/2023]
|
22
|
Padín-Irizarry V, Colón-Lorenzo EE, Vega-Rodríguez J, Castro MDR, González-Méndez R, Ayala-Peña S, Serrano AE. Glutathione-deficient Plasmodium berghei parasites exhibit growth delay and nuclear DNA damage. Free Radic Biol Med 2016; 95:43-54. [PMID: 26952808 PMCID: PMC4934901 DOI: 10.1016/j.freeradbiomed.2016.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 02/26/2016] [Accepted: 02/28/2016] [Indexed: 01/15/2023]
Abstract
Plasmodium parasites are exposed to endogenous and exogenous oxidative stress during their complex life cycle. To minimize oxidative damage, the parasites use glutathione (GSH) and thioredoxin (Trx) as primary antioxidants. We previously showed that disruption of the Plasmodium berghei gamma-glutamylcysteine synthetase (pbggcs-ko) or the glutathione reductase (pbgr-ko) genes resulted in a significant reduction of GSH in intraerythrocytic stages, and a defect in growth in the pbggcs-ko parasites. In this report, time course experiments of parasite intraerythrocytic development and morphological studies showed a growth delay during the ring to schizont progression. Morphological analysis shows a significant reduction in size (diameter) of trophozoites and schizonts with increased number of cytoplasmic vacuoles in the pbggcs-ko parasites in comparison to the wild type (WT). Furthermore, the pbggcs-ko mutants exhibited an impaired response to oxidative stress and increased levels of nuclear DNA (nDNA) damage. Reduced GSH levels did not result in mitochondrial DNA (mtDNA) damage or protein carbonylations in neither pbggcs-ko nor pbgr-ko parasites. In addition, the pbggcs-ko mutant parasites showed an increase in mRNA expression of genes involved in oxidative stress detoxification and DNA synthesis, suggesting a potential compensatory mechanism to allow for parasite proliferation. These results reveal that low GSH levels affect parasite development through the impairment of oxidative stress reduction systems and damage to the nDNA. Our studies provide new insights into the role of the GSH antioxidant system in the intraerythrocytic development of Plasmodium parasites, with potential translation into novel pharmacological interventions.
Collapse
Affiliation(s)
- Vivian Padín-Irizarry
- Department of Microbiology and Medical Zoology, University of Puerto Rico, School of Medicine, San Juan 00936-5067, Puerto Rico
| | - Emilee E Colón-Lorenzo
- Department of Microbiology and Medical Zoology, University of Puerto Rico, School of Medicine, San Juan 00936-5067, Puerto Rico
| | - Joel Vega-Rodríguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, School of Medicine, San Juan 00936-5067, Puerto Rico
| | - María Del R Castro
- Department of Pharmacology and Toxicology, University of Puerto Rico, School of Medicine, San Juan 00936-5067, Puerto Rico
| | - Ricardo González-Méndez
- Department of Radiological Sciences, University of Puerto Rico, School of Medicine, San Juan 00936-5067, Puerto Rico
| | - Sylvette Ayala-Peña
- Department of Pharmacology and Toxicology, University of Puerto Rico, School of Medicine, San Juan 00936-5067, Puerto Rico
| | - Adelfa E Serrano
- Department of Microbiology and Medical Zoology, University of Puerto Rico, School of Medicine, San Juan 00936-5067, Puerto Rico.
| |
Collapse
|
23
|
Fagan S, Owens R, Ward P, Connolly C, Doyle S, Murphy R. Biochemical Comparison of Commercial Selenium Yeast Preparations. Biol Trace Elem Res 2015; 166:245-59. [PMID: 25855372 DOI: 10.1007/s12011-015-0242-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/18/2015] [Indexed: 02/02/2023]
Abstract
The trace mineral selenium (Se) is an essential element for human and animal nutrition. The addition of Se to the diet through dietary supplements or fortified food/feed is increasingly common owing to the often sub-optimal content of standard diets of many countries. Se supplements commercially available include the inorganic mineral salts such as sodium selenite or selenate, and organic forms such as Se-enriched yeast. Today, Se yeast is produced by several manufacturers and has become the most widely used source of Se for human supplementation and is also widely employed in animal nutrition where approval in all species has been granted by regulatory bodies such as the European Food Safety Authority (EFSA). Characterisation and comparison of Se-enriched yeast products has traditionally been made by quantifying total selenomethionine (SeMet) content. A disadvantage of this approach, however, is that it does not consider the effects of Se deposition on subsequent digestive availability. In this study, an assessment was made of the water-soluble extracts of commercially available Se-enriched yeast samples for free, peptide-bound and total water-soluble SeMet. Using LC-MS/MS, a total of 62 Se-containing proteins were identified across four Se yeast products, displaying quantitative/qualitative changes in abundance relative to the certified reference material, SELM-1 (P value <0.05; fold change ≥2). Overall, the study indicates that significant differences exist between Se yeast products in terms of SeMet content, Se-containing protein abundance and associated metabolic pathways.
Collapse
Affiliation(s)
- Sheena Fagan
- Alltech Biotechnology Centre, Dunboyne, County Meath, Ireland,
| | | | | | | | | | | |
Collapse
|
24
|
Tillmann AT, Strijbis K, Cameron G, Radmaneshfar E, Thiel M, Munro CA, MacCallum DM, Distel B, Gow NAR, Brown AJP. Contribution of Fdh3 and Glr1 to Glutathione Redox State, Stress Adaptation and Virulence in Candida albicans. PLoS One 2015; 10:e0126940. [PMID: 26039593 PMCID: PMC4454436 DOI: 10.1371/journal.pone.0126940] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/09/2015] [Indexed: 01/04/2023] Open
Abstract
The major fungal pathogen of humans, Candida albicans, is exposed to reactive nitrogen and oxygen species following phagocytosis by host immune cells. In response to these toxins, this fungus activates potent anti-stress responses that include scavenging of reactive nitrosative and oxidative species via the glutathione system. Here we examine the differential roles of two glutathione recycling enzymes in redox homeostasis, stress adaptation and virulence in C. albicans: glutathione reductase (Glr1) and the S-nitrosoglutathione reductase (GSNOR), Fdh3. We show that the NADPH-dependent Glr1 recycles GSSG to GSH, is induced in response to oxidative stress and is required for resistance to macrophage killing. GLR1 deletion increases the sensitivity of C. albicans cells to H2O2, but not to formaldehyde or NO. In contrast, Fdh3 detoxifies GSNO to GSSG and NH3, and FDH3 inactivation delays NO adaptation and increases NO sensitivity. C. albicans fdh3⎔ cells are also sensitive to formaldehyde, suggesting that Fdh3 also contributes to formaldehyde detoxification. FDH3 is induced in response to nitrosative, oxidative and formaldehyde stress, and fdh3Δ cells are more sensitive to killing by macrophages. Both Glr1 and Fdh3 contribute to virulence in the Galleria mellonella and mouse models of systemic infection. We conclude that Glr1 and Fdh3 play differential roles during the adaptation of C. albicans cells to oxidative, nitrosative and formaldehyde stress, and hence during the colonisation of the host. Our findings emphasise the importance of the glutathione system and the maintenance of intracellular redox homeostasis in this major pathogen.
Collapse
Affiliation(s)
- Anna T. Tillmann
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Karin Strijbis
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gary Cameron
- Division of Applied Medicine, Mass Spectrometry Section, University of Aberdeen, Aberdeen, United Kingdom
| | - Elahe Radmaneshfar
- Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen, United Kingdom
| | - Marco Thiel
- Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen, United Kingdom
| | - Carol A. Munro
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Donna M. MacCallum
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Ben Distel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Neil A. R. Gow
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
25
|
Duggan S, Essig F, Hünniger K, Mokhtari Z, Bauer L, Lehnert T, Brandes S, Häder A, Jacobsen ID, Martin R, Figge MT, Kurzai O. Neutrophil activation by Candida glabrata but not Candida albicans promotes fungal uptake by monocytes. Cell Microbiol 2015; 17:1259-76. [PMID: 25850517 DOI: 10.1111/cmi.12443] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 03/11/2015] [Accepted: 03/30/2015] [Indexed: 01/09/2023]
Abstract
Candida albicans and Candida glabrata account for the majority of candidiasis cases worldwide. Although both species are in the same genus, they differ in key virulence attributes. Within this work, live cell imaging was used to examine the dynamics of neutrophil activation after confrontation with either C. albicans or C. glabrata. Analyses revealed higher phagocytosis rates of C. albicans than C. glabrata that resulted in stronger PMN (polymorphonuclear cells) activation by C. albicans. Furthermore, we observed differences in the secretion of chemokines, indicating chemotactic differences in PMN signalling towards recruitment of further immune cells upon confrontation with Candida spp. Supernatants from co-incubations of neutrophils with C. glabrata primarily attracted monocytes and increased the phagocytosis of C. glabrata by monocytes. In contrast, PMN activation by C. albicans resulted in recruitment of more neutrophils. Two complex infection models confirmed distinct targeting of immune cell populations by the two Candida spp.: In a human whole blood infection model, C. glabrata was more effectively taken up by monocytes than C. albicans and histopathological analyses of murine model infections confirmed primarily monocytic infiltrates in C. glabrata kidney infection in contrast to PMN-dominated infiltrates in C. albicans infection. Taken together, our data demonstrate that the human opportunistic fungi C. albicans and C. glabrata are differentially recognized by neutrophils and one outcome of this differential recognition is the preferential uptake of C. glabrata by monocytes.
Collapse
Affiliation(s)
- Seána Duggan
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Fabian Essig
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany
| | - Kerstin Hünniger
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Zeinab Mokhtari
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Friedrich Schiller University Jena, Jena, Germany
| | - Laura Bauer
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Teresa Lehnert
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Friedrich Schiller University Jena, Jena, Germany
| | - Susanne Brandes
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Friedrich Schiller University Jena, Jena, Germany
| | - Antje Häder
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Ilse D Jacobsen
- Friedrich Schiller University Jena, Jena, Germany.,Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Ronny Martin
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Friedrich Schiller University Jena, Jena, Germany
| | - Oliver Kurzai
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany.,Friedrich Schiller University Jena, Jena, Germany.,German National Reference Center for Invasive Fungal Infections, Hans Knoell Institute, Jena, Germany
| |
Collapse
|
26
|
Khan A, Ahmad A, Ahmad Khan L, Padoa CJ, van Vuuren S, Manzoor N. Effect of two monoterpene phenols on antioxidant defense system in Candida albicans. Microb Pathog 2015; 80:50-6. [DOI: 10.1016/j.micpath.2015.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 11/25/2022]
|
27
|
Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1855-69. [PMID: 25018088 DOI: 10.1016/j.bbadis.2014.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 07/04/2014] [Accepted: 07/06/2014] [Indexed: 01/05/2023]
Abstract
Candida albicans is an opportunist pathogen responsible for a large spectrum of infections, from superficial mycosis to systemic diseases called candidiasis. Its ability to grow in various morphological forms, such as unicellular budding yeast, filamentous pseudohyphae and hyphae, contributes to its survival in the diverse microenvironments it encounters in the host. During infection in vivo, C. albicans is faced with high levels of reactive oxygen species (ROS) generated by phagocytes, and the thiol-dependent redox status of the cells reflects their levels of oxidative stress. We investigated the role of glutathione during the transition between the yeast and hyphal forms of the pathogen, in relation to possible changes in mitochondrial bioenergetic pathways. Using various growth media and selective mutations affecting the filamentation process, we showed that C. albicans filamentation was always associated with a depletion of intracellular glutathione levels. Moreover, the induction of hypha formation resulted in general changes in thiol metabolism, including the oxidation of cell surface -SH groups and glutathione excretion. Metabolic adaptation involved tricarboxylic acid (TCA) cycle activation, acceleration of mitochondrial respiration and a redistribution of electron transfer pathways, with an increase in the contribution of the alternative oxidase and rotenone-insensitive dehydrogenase. Changes in redox status and apparent oxidative stress may be necessary to the shift to adaptive metabolic pathways, ensuring normal mitochondrial function and adenosine triphosphate (ATP) levels. The consumption of intracellular glutathione levels during the filamentation process may thus be the price paid by C. albicans for survival in the conditions encountered in the host.
Collapse
|
28
|
Glutathione metabolism in Candida albicans resistant strains to fluconazole and micafungin. PLoS One 2014; 9:e98387. [PMID: 24896636 PMCID: PMC4045664 DOI: 10.1371/journal.pone.0098387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/02/2014] [Indexed: 11/19/2022] Open
Abstract
Currently available therapies for candidiasis are based on antifungal drugs belonging to azole and echinocandin families that interfere with different aspects of fungal metabolism. These drugs, beyond their specific effects, elicit also a cellular stress including an unbalance of redox state that is counteracted not only utilizing antioxidant species but also increasing the outcome export by transporters to detoxify the internal environment. These cellular actions are both based on the cytosolic concentration of reduced glutathione (GSH). In this paper we investigated the effects of two antifungal drugs fluconazole and micafungin on the redox state of the cell in C. albicans to understand if the resistance to these drugs is accompanied by variation of glutathione metabolism. Analyses of resistant strains showed a marked difference in glutathione contents in strains resistant to fluconazole (CO23RFLC) or micafungin (CO23RFK). In CO23RFLC, the total amount of glutathione was more than doubled with respect to CO23RFK thanks to the increased activity of γ-glutamilcysteine synthetase, the key enzyme involved in GSH synthesis. We demonstrated that the GSH increase in CO23RFLC conferred to this strain a clear advantage in counteracting oxidative toxic agents while assignment of other roles, such as a more efficient elimination of the drug from the cell, should be considered more speculative. As far as MCFG resistance is concerned, from our data a role of glutathione metabolism in supporting this condition is not evident. Overall our data indicate that glutathione metabolism is differently affected in the two resistant strains and that glutathione system may play an important role in the global organization of C.albicans cells for resistance to fluconazole. Such scenario may pave the way to hypothesize the use of oxidant drugs or inhibitors able to deplete reduced glutathione level as a novel approach, for counteracting the resistance to this specific antifungal drug.
Collapse
|
29
|
Briones-Martin-Del-Campo M, Orta-Zavalza E, Juarez-Cepeda J, Gutierrez-Escobedo G, Cañas-Villamar I, Castaño I, De Las Peñas A. The oxidative stress response of the opportunistic fungal pathogen Candida glabrata. Rev Iberoam Micol 2013; 31:67-71. [PMID: 24270068 DOI: 10.1016/j.riam.2013.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/27/2013] [Indexed: 11/28/2022] Open
Abstract
Organisms have evolved different strategies to respond to oxidative stress generated as a by-product of aerobic respiration and thus maintain the redox homeostasis within the cell. In particular, fungal pathogens are exposed to reactive oxygen species (ROS) when they interact with the phagocytic cells of the host which are the first line of defense against fungal infections. These pathogens have co-opted the enzymatic (catalases, superoxide dismutases (SODs), and peroxidases) and non-enzymatic (glutathione) mechanisms used to maintain the redox homeostasis within the cell, to resist oxidative stress and ensure survival within the host. Several virulence factors have been related to the response to oxidative stress in pathogenic fungi. The opportunistic fungal pathogen Candida glabrata (C. glabrata) is the second most common cause of candidiasis after Candida albicans (C. albicans). C. glabrata has a well defined oxidative stress response (OSR), which include both enzymatic and non-enzymatic mechanisms. C. glabrata OSR is controlled by the well-conserved transcription factors Yap1, Skn7, Msn2 and Msn4. In this review, we describe the OSR of C. glabrata, what is known about its core elements, its regulation and how C. glabrata interacts with the host. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).
Collapse
Affiliation(s)
- Marcela Briones-Martin-Del-Campo
- División de Biología Molecular, IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, San Luis Potosí, México
| | - Emmanuel Orta-Zavalza
- División de Biología Molecular, IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, San Luis Potosí, México
| | - Jacqueline Juarez-Cepeda
- División de Biología Molecular, IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, San Luis Potosí, México
| | - Guadalupe Gutierrez-Escobedo
- División de Biología Molecular, IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, San Luis Potosí, México
| | - Israel Cañas-Villamar
- División de Biología Molecular, IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, San Luis Potosí, México
| | - Irene Castaño
- División de Biología Molecular, IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, San Luis Potosí, México
| | - Alejandro De Las Peñas
- División de Biología Molecular, IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, San Luis Potosí, México.
| |
Collapse
|
30
|
Regulation of sulphur assimilation is essential for virulence and affects iron homeostasis of the human-pathogenic mould Aspergillus fumigatus. PLoS Pathog 2013; 9:e1003573. [PMID: 24009505 PMCID: PMC3757043 DOI: 10.1371/journal.ppat.1003573] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022] Open
Abstract
Sulphur is an essential element that all pathogens have to absorb from their surroundings in order to grow inside their infected host. Despite its importance, the relevance of sulphur assimilation in fungal virulence is largely unexplored. Here we report a role of the bZIP transcription factor MetR in sulphur assimilation and virulence of the human pathogen Aspergillus fumigatus. The MetR regulator is essential for growth on a variety of sulphur sources; remarkably, it is fundamental for assimilation of inorganic S-sources but dispensable for utilization of methionine. Accordingly, it strongly supports expression of genes directly related to inorganic sulphur assimilation but not of genes connected to methionine metabolism. On a broader scale, MetR orchestrates the comprehensive transcriptional adaptation to sulphur-starving conditions as demonstrated by digital gene expression analysis. Surprisingly, A. fumigatus is able to utilize volatile sulphur compounds produced by its methionine catabolism, a process that has not been described before and that is MetR-dependent. The A. fumigatus MetR transcriptional activator is important for virulence in both leukopenic mice and an alternative mini-host model of aspergillosis, as it was essential for the development of pulmonary aspergillosis and supported the systemic dissemination of the fungus. MetR action under sulphur-starving conditions is further required for proper iron regulation, which links regulation of sulphur metabolism to iron homeostasis and demonstrates an unprecedented regulatory crosstalk. Taken together, this study provides evidence that regulation of sulphur assimilation is not only crucial for A. fumigatus virulence but also affects the balance of iron in this prime opportunistic pathogen.
Collapse
|
31
|
Gutiérrez-Escobedo G, Orta-Zavalza E, Castaño I, De Las Peñas A. Role of glutathione in the oxidative stress response in the fungal pathogen Candida glabrata. Curr Genet 2013; 59:91-106. [PMID: 23455613 DOI: 10.1007/s00294-013-0390-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/07/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
Candida glabrata, an opportunistic fungal pathogen, accounts for 18-26 % of all Candida systemic infections in the US. C. glabrata has a robust oxidative stress response (OSR) and in this work we characterized the role of glutathione (GSH), an essential tripeptide-like thiol-containing molecule required to keep the redox homeostasis and in the detoxification of metal ions. GSH is synthesized from glutamate, cysteine, and glycine by the sequential action of Gsh1 (γ-glutamyl-cysteine synthetase) and Gsh2 (glutathione synthetase) enzymes. We first screened for suppressor mutations that would allow growth in the absence of GSH1 (gsh1∆ background) and found a single point mutation in PRO2 (pro2-4), a gene that encodes a γ-glutamyl phosphate reductase and catalyzes the second step in the biosynthesis of proline. We demonstrate that GSH is important in the OSR since the gsh1∆ pro2-4 and gsh2∆ mutant strains are more sensitive to oxidative stress generated by H2O2 and menadione. GSH is also required for Cadmium tolerance. In the absence of Gsh1 and Gsh2, cells show decreased viability in stationary phase. Furthermore, C. glabrata does not contain Saccharomyces cerevisiae high affinity GSH transporter ortholog, ScOpt1/Hgt1, however, our genetic and biochemical experiments show that the gsh1∆ pro2-4 and gsh2∆ mutant strains are able to incorporate GSH from the medium. Finally, GSH and thioredoxin, which is a second redox system in the cell, are not essential for the catalase-independent adaptation response to H2O2.
Collapse
Affiliation(s)
- Guadalupe Gutiérrez-Escobedo
- IPICYT, Camino a la Presa San José 2055, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, 78216, San Luis Potosí, San Luis Potosí, México
| | | | | | | |
Collapse
|
32
|
Thriving within the host: Candida spp. interactions with phagocytic cells. Med Microbiol Immunol 2013; 202:183-95. [DOI: 10.1007/s00430-013-0288-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 01/04/2023]
|
33
|
Abstract
BACKGROUND Glutathione (GSH) is synthesized in the cytoplasm but there is a requirement for glutathione not only in the cytoplasm, but in the other organelles and the extracellular milieu. GSH is also imported into the cytoplasm. The transports of glutathione across these different membranes in different systems have been biochemically demonstrated. However the molecular identity of the transporters has been established only in a few cases. SCOPE OF REVIEW An attempt has been made to present the current state of knowledge of glutathione transporters from different organisms as well as different organelles. These include the most well characterized transporters, the yeast high-affinity, high-specificity glutathione transporters involved in import into the cytoplasm, and the mammalian MRP proteins involved in low affinity glutathione efflux from the cytoplasm. Other glutathione transporters that have been described either with direct or indirect evidences are also discussed. MAJOR CONCLUSIONS The molecular identity of a few glutathione transporters has been unambiguously established but there is a need to identify the transporters of other systems and organelles. There is a lack of direct evidence establishing transport by suggested transporters in many cases. Studies with the high affinity transporters have led to important structure-function insights. GENERAL SIGNIFICANCE An understanding of glutathione transporters is critical to our understanding of redox homeostasis in living cells. By presenting our current state of understanding and the gaps in our knowledge the review hopes to stimulate research in these fields. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
|
34
|
Desai PR, Thakur A, Ganguli D, Paul S, Morschhäuser J, Bachhawat AK. Glutathione utilization by Candida albicans requires a functional glutathione degradation (DUG) pathway and OPT7, an unusual member of the oligopeptide transporter family. J Biol Chem 2011; 286:41183-41194. [PMID: 21994941 DOI: 10.1074/jbc.m111.272377] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Candida albicans lacks the ability to survive within its mammalian host in the absence of endogenous glutathione biosynthesis. To examine the ability of this yeast to utilize exogenous glutathione, we exploited the organic sulfur auxotrophy of C. albicans met15Δ strains. We observed that glutathione is utilized efficiently by the alternative pathway of glutathione degradation (DUG pathway). The major oligopeptide transporters OPT1-OPT5 of C. albicans that were most similar to the known yeast glutathione transporters were not found to contribute to glutathione transport to any significant extent. A genomic library approach to identify the glutathione transporter of C. albicans yielded OPT7 as the primary glutathione transporter. Biochemical studies on OPT7 using radiolabeled GSH uptake revealed a K(m) of 205 μm, indicating that it was a high affinity glutathione transporter. OPT7 is unusual in several aspects. It is the most remote member to known yeast glutathione transporters, lacks the two highly conserved cysteines in the family that are known to be crucial in trafficking, and also has the ability to take up tripeptides. The transporter was regulated by sulfur sources in the medium. OPT7 orthologues were prevalent among many pathogenic yeasts and fungi and formed a distinct cluster quite remote from the Saccharomyces cerevisiae HGT1 glutathione transporter cluster. In vivo experiments using a systemic model of candidiasis failed to detect expression of OPT7 in vivo, and strains disrupted either in the degradation (dug3Δ) or transport (opt7Δ) of glutathione failed to show a defect in virulence.
Collapse
Affiliation(s)
- Prashant Ramesh Desai
- Institute of Microbial Technology (Council for Scientific and Industrial Research), Chandigarh 160036, India
| | - Anil Thakur
- Institute of Microbial Technology (Council for Scientific and Industrial Research), Chandigarh 160036, India
| | - Dwaipayan Ganguli
- Institute of Microbial Technology (Council for Scientific and Industrial Research), Chandigarh 160036, India
| | - Sanjoy Paul
- Institute of Microbial Technology (Council for Scientific and Industrial Research), Chandigarh 160036, India
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, 97080 Würzburg, Germany
| | - Anand K Bachhawat
- Institute of Microbial Technology (Council for Scientific and Industrial Research), Chandigarh 160036, India; Indian Institute of Science Education & Research Mohali, Knowledge City, S.A.S. Nagar, Punjab-140306, India.
| |
Collapse
|
35
|
Yadav AK, Bachhawat AK. CgCYN1, a plasma membrane cystine-specific transporter of Candida glabrata with orthologues prevalent among pathogenic yeast and fungi. J Biol Chem 2011; 286:19714-23. [PMID: 21507960 PMCID: PMC3103350 DOI: 10.1074/jbc.m111.240648] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/19/2011] [Indexed: 11/06/2022] Open
Abstract
We describe a novel plasma membrane cystine transporter, CgCYN1, from Candida glabrata, the first such transporter to be described from yeast and fungi. C. glabrata met15Δ strains, organic sulfur auxotrophs, were observed to utilize cystine as a sulfur source, and this phenotype was exploited in the discovery of CgCYN1. Heterologous expression of CgCYN1 in Saccharomyces cerevisiae met15Δ strains conferred the ability of S. cerevisiae strains to grow on cystine. Deletion of the CgCYN1 ORF (CAGL0M00154g) in C. glabrata met15Δ strains caused abrogation of growth on cystine with growth being restored when CgCYN1 was reintroduced. The CgCYN1 protein belongs to the amino acid permease family of transporters, with no similarity to known plasma membrane cystine transporters of bacteria and humans, or lysosomal cystine transporters of humans/yeast. Kinetic studies revealed a K(m) of 18 ± 5 μM for cystine. Cystine uptake was inhibited by cystine, but not by other amino acids, including cysteine. The structurally similar cystathionine, lanthionine, and selenocystine alone inhibited transport, confirming that the transporter was specific for cystine. CgCYN1 localized to the plasma membrane and transport was energy-dependent. Functional orthologues could be demonstrated from other pathogenic yeast like Candida albicans and Histoplasma capsulatum, but were absent in Schizosaccharomyces pombe and S. cerevisiae.
Collapse
Affiliation(s)
- Amit Kumar Yadav
- From the Institute of Microbial Technology (Council of Scientific and Industrial Research), Sector 39-A, Chandigarh 160 036, India and
| | - Anand Kumar Bachhawat
- From the Institute of Microbial Technology (Council of Scientific and Industrial Research), Sector 39-A, Chandigarh 160 036, India and
- the Indian Institute of Science Education and Research (IISER Mohali), Mahatma Gandhi State Institute of Public Administration Punjab Complex, Sector 26, Chandigarh 160 019, India
| |
Collapse
|