1
|
Li Y, Yu Z, Fan X, Xu D, Liu H, Zhao X, Wang R. A novel pathogenic species of genus Stenotrophomonas: Stenotrophomonas pigmentata sp. nov. Front Cell Infect Microbiol 2024; 14:1410385. [PMID: 38903940 PMCID: PMC11188353 DOI: 10.3389/fcimb.2024.1410385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Stenotrophomonas is a prominent genus owing to its dual nature. Species of this genus have many applications in industry and agriculture as plant growth-promoting rhizobacteria and microbial biological control agents, whereas species such as Stenotrophomonas maltophilia are considered one of the leading gram-negative multi-drug-resistant bacterial pathogens because of their high contribution to the increase in crude mortality and significant clinical challenge. Pathogenic Stenotrophomonas species and most clinical isolates belong to the Stenotrophomonas maltophilia complex (SMc). However, a strain highly homologous to S. terrae was isolated from a patient with pulmonary tuberculosis (TB), which aroused our interest, as S. terrae belongs to a relatively distant clade from SMc and there have been no human association reports. Methods The pathogenicity, immunological and biochemical characteristics of 610A2T were systematically evaluated. Results 610A2T is a new species of genus Stenotrophomonas, which is named as Stenotrophomonas pigmentata sp. nov. for its obvious brown water-soluble pigment. 610A2T is pathogenic and caused significant weight loss, pulmonary congestion, and blood transmission in mice because it has multiple virulence factors, haemolysis, and strong biofilm formation abilities. In addition, the cytokine response induced by this strain was similar to that observed in patients with TB, and the strain was resistant to half of the anti-TB drugs. Conclusions The pathogenicity of 610A2T may not be weaker than that of S. maltophilia. Its isolation extended the opportunistic pathogenic species to all 3 major clades of the genus Stenotrophomonas, indicating that the clinical importance of species of Stenotrophomonas other than S. maltophilia and potential risks to biological safety associated with the use of Stenotrophomonas require more attention.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ruibai Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Shen J, Ni Y, Guan Q, Li R, Cao H, Geng Y, You Q. Stenotrophomonas maltophilia promotes lung adenocarcinoma progression by upregulating histone deacetylase 5. Front Microbiol 2023; 14:1121863. [PMID: 36819033 PMCID: PMC9929947 DOI: 10.3389/fmicb.2023.1121863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Lung cancer is the leading cause of cancer death worldwide, and lung adenocarcinoma (LADC) is the most common lung cancer. Lung cancer has a distinct microbiome composition correlated with patients' smoking status. However, the causal evidence of microbial impacts on LADC is largely unknown. Methods We investigated microbial communities' differences in Formalin-Fixed Paraffin-Embedded tissues of ever-smoke (n = 22) and never-smoke (n = 31) patients with LADC through bacterial 16S rRNA gene high-throughput sequencing. Then nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung cancer mouse model and A549 cells were used to study the effect of Stenotrophomonas maltophilia (S. maltophilia) in LADC. Results and Discussion We found a significant increase of genus Stenotrophomonas in LADC tissues of patients with primary tumor size greater than 3 cm and never-smoker patients. We further found that intratracheal infection with S. maltophilia promoted tumor progression in the NNK-induced lung cancer mouse model. We performed RNA-seq analysis on lung tissues and found that S. maltophilia treatment drove inflammation and upregulated tumor associated cell signaling, including Apelin signaling pathway. Mechanistically, histone deacetylase 5 (HDAC5) gene expression was significantly upregulated in S. maltophilia treated groups, and was required for S. maltophilia induced cell proliferation and migration in LADC cell line A549. Therefore, we provide in vivo and in vitro evidence to demonstrate that S. maltophilia promotes LADC progression, in part, through HDAC5.
Collapse
Affiliation(s)
- Jiyu Shen
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yalan Ni
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qijie Guan
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Rui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hong Cao
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yan Geng
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China,*Correspondence: Yan Geng, ✉
| | - Qingjun You
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China,Qingjun You, ✉
| |
Collapse
|
3
|
Mojica MF, Humphries R, Lipuma JJ, Mathers AJ, Rao GG, Shelburne SA, Fouts DE, Van Duin D, Bonomo RA. Clinical challenges treating Stenotrophomonas maltophilia infections: an update. JAC Antimicrob Resist 2022; 4:dlac040. [PMID: 35529051 PMCID: PMC9071536 DOI: 10.1093/jacamr/dlac040] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Stenotrophomonas maltophilia is a non-fermenting, Gram-negative bacillus that has emerged as an opportunistic nosocomial pathogen. Its intrinsic multidrug resistance makes treating infections caused by S. maltophilia a great clinical challenge. Clinical management is further complicated by its molecular heterogeneity that is reflected in the uneven distribution of antibiotic resistance and virulence determinants among different strains, the shortcomings of available antimicrobial susceptibility tests and the lack of standardized breakpoints for the handful of antibiotics with in vitro activity against this microorganism. Herein, we provide an update on the most recent literature concerning these issues, emphasizing the impact they have on clinical management of S. maltophilia infections.
Collapse
Affiliation(s)
- Maria F. Mojica
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Western Reserve University-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | - Romney Humphries
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John J. Lipuma
- University of Michigan Medical School, Pediatric Infectious Disease, Ann Arbor, MI, USA
| | - Amy J. Mathers
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Clinical Microbiology Laboratory, Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Gauri G. Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center McGovern Medical School, Houston, TX, USA
| | - Derrick E. Fouts
- Genomic Medicine, The J. Craig Venter Institute, Rockville, MD, USA
| | - David Van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Robert A. Bonomo
- Case Western Reserve University-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Senior Clinician Scientist Investigator, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Medical Service and Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Departments of Medicine, Biochemistry, Pharmacology, Molecular Biology and Microbiology, and Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
4
|
Effectors of the Stenotrophomonas maltophilia Type IV Secretion System Mediate Killing of Clinical Isolates of Pseudomonas aeruginosa. mBio 2021; 12:e0150221. [PMID: 34182776 PMCID: PMC8262851 DOI: 10.1128/mbio.01502-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Previously, we documented that Stenotrophomonas maltophilia encodes a type IV secretion system (T4SS) that allows the organism to kill, in contact-dependent fashion, heterologous bacteria, including wild-type Pseudomonas aeruginosa. Bioinformatic screens based largely on the presence of both a C-terminal consensus sequence and an adjacent gene encoding a cognate immunity protein identified 13 potential antibacterial effectors, most of which were highly conserved among sequenced strains of S. maltophilia. The immunity proteins of two of these proved especially capable of protecting P. aeruginosa and Escherichia coli against attack from the Stenotrophomonas T4SS. In turn, S. maltophilia mutants lacking the putative effectors RS14245 and RS14255 were impaired for killing not only laboratory E. coli but clinical isolates of P. aeruginosa, including ones isolated from the lungs of cystic fibrosis patients. That complemented mutants behaved as wild type did confirmed that RS14245 and RS14255 are required for the bactericidal activity of the S. maltophilia T4SS. Moreover, a mutant lacking both of these proteins was as impaired as a mutant lacking the T4SS apparatus, indicating that RS14245 and RS14255 account for (nearly) all of the bactericidal effects seen. Utilizing an interbacterial protein translocation assay, we determined that RS14245 and RS14255 are bona fide substrates of the T4SS, a result confirmed by examination of mutants lacking both the T4SS and the individual effectors. Delivery of the cloned 14245 protein (alone) into the periplasm resulted in the killing of target bacteria, indicating that this effector, a putative lipase, is both necessary and sufficient for bactericidal activity.
Collapse
|
5
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen of significant concern to susceptible patient populations. This pathogen can cause nosocomial and community-acquired respiratory and bloodstream infections and various other infections in humans. Sources include water, plant rhizospheres, animals, and foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified several new genogroups and suggested adaptation of this pathogen to its habitats. The mechanisms used by S. maltophilia during pathogenesis continue to be uncovered and explored. S. maltophilia virulence factors include use of motility, biofilm formation, iron acquisition mechanisms, outer membrane components, protein secretion systems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to protect itself against antimicrobials. Surveillance studies have recorded increases in drug resistance for S. maltophilia, prompting new strategies to be developed against this opportunist. The interactions of this environmental bacterium with other microorganisms are being elucidated. S. maltophilia and its products have applications in biotechnology, including agriculture, biocontrol, and bioremediation.
Collapse
|
6
|
Cooperativity between Stenotrophomonas maltophilia and Pseudomonas aeruginosa during Polymicrobial Airway Infections. Infect Immun 2020; 88:IAI.00855-19. [PMID: 31932329 DOI: 10.1128/iai.00855-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/23/2019] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is a Gram-negative bacterium found ubiquitously in the environment that has historically been regarded as nonpathogenic. S. maltophilia is increasingly observed in patient sputa in cystic fibrosis (CF), and while existing epidemiology indicates that patients with S. maltophilia have poorer diagnoses, its clinical significance remains unclear. Moreover, as multidrug resistance is common among S. maltophilia isolates, treatment options for these infections may be limited. Here, we investigated the pathogenicity of S. maltophilia alone and during polymicrobial infection with Pseudomonas aeruginosa Colonization, persistence, and virulence of S. maltophilia were assessed in experimental respiratory infections of mice. The results of this study indicate that S. maltophilia transiently colonizes the lung accompanied by significant weight loss and immune cell infiltration and the expression of early inflammatory markers, including interleukin 6 (IL-6), IL-1α, and tumor necrosis factor alpha (TNF-α). Importantly, polymicrobial infection with P. aeruginosa elicited significantly higher S. maltophilia counts in bronchoalveolar lavages and lung tissue homogenates. This increase in bacterial load was directly correlated with the density of the P. aeruginosa population and required viable P. aeruginosa bacteria. Microscopic analysis of biofilms formed in vitro revealed that S. maltophilia formed well-integrated biofilms with P. aeruginosa, and these organisms colocalize in the lung during dual-species infection. Based on these results, we conclude that active cellular processes by P. aeruginosa afford a significant benefit to S. maltophilia during polymicrobial infections. Furthermore, these results indicate that S. maltophilia may have clinical significance in respiratory infections.
Collapse
|
7
|
Bayer-Santos E, Cenens W, Matsuyama BY, Oka GU, Di Sessa G, Mininel IDV, Alves TL, Farah CS. The opportunistic pathogen Stenotrophomonas maltophilia utilizes a type IV secretion system for interbacterial killing. PLoS Pathog 2019; 15:e1007651. [PMID: 31513674 PMCID: PMC6759196 DOI: 10.1371/journal.ppat.1007651] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 09/24/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial type IV secretion systems (T4SS) are a highly diversified but evolutionarily related family of macromolecule transporters that can secrete proteins and DNA into the extracellular medium or into target cells. It was recently shown that a subtype of T4SS harboured by the plant pathogen Xanthomonas citri transfers toxins into target cells. Here, we show that a similar T4SS from the multi-drug-resistant opportunistic pathogen Stenotrophomonas maltophilia is proficient in killing competitor bacterial species. T4SS-dependent duelling between S. maltophilia and X. citri was observed by time-lapse fluorescence microscopy. A bioinformatic search of the S. maltophilia K279a genome for proteins containing a C-terminal domain conserved in X. citri T4SS effectors (XVIPCD) identified twelve putative effectors and their cognate immunity proteins. We selected a putative S. maltophilia effector with unknown function (Smlt3024) for further characterization and confirmed that it is indeed secreted in a T4SS-dependent manner. Expression of Smlt3024 in the periplasm of E. coli or its contact-dependent delivery via T4SS into E. coli by X. citri resulted in reduced growth rates, which could be counteracted by expression of its cognate inhibitor Smlt3025 in the target cell. Furthermore, expression of the VirD4 coupling protein of X. citri can restore the function of S. maltophilia ΔvirD4, demonstrating that effectors from one species can be recognized for transfer by T4SSs from another species. Interestingly, Smlt3024 is homologous to the N-terminal domain of large Ca2+-binding RTX proteins and the crystal structure of Smlt3025 revealed a topology similar to the iron-regulated protein FrpD from Neisseria meningitidis which has been shown to interact with the RTX protein FrpC. This work expands our current knowledge about the function of bacteria-killing T4SSs and increases the panel of effectors known to be involved in T4SS-mediated interbacterial competition, which possibly contribute to the establishment of S. maltophilia in clinical and environmental settings.
Collapse
Affiliation(s)
- Ethel Bayer-Santos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - William Cenens
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Bruno Yasui Matsuyama
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Gabriel Umaji Oka
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Giancarlo Di Sessa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Izabel Del Valle Mininel
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Tiago Lubiana Alves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Chuck Shaker Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Stenotrophomonas maltophilia Encodes a VirB/VirD4 Type IV Secretion System That Modulates Apoptosis in Human Cells and Promotes Competition against Heterologous Bacteria, Including Pseudomonas aeruginosa. Infect Immun 2019; 87:IAI.00457-19. [PMID: 31235638 DOI: 10.1128/iai.00457-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
Stenotrophomonas maltophilia is an emerging opportunistic and nosocomial pathogen. S. maltophilia is also a risk factor for lung exacerbations in cystic fibrosis patients. S. maltophilia attaches to various mammalian cells, and we recently documented that the bacterium encodes a type II secretion system which triggers detachment-induced apoptosis in lung epithelial cells. We have now confirmed that S. maltophilia also encodes a type IVA secretion system (VirB/VirD4 [VirB/D4] T4SS) that is highly conserved among S. maltophilia strains and, looking beyond the Stenotrophomonas genus, is most similar to the T4SS of Xanthomonas To define the role(s) of this T4SS, we constructed a mutant of strain K279a that is devoid of secretion activity due to loss of the VirB10 component. The mutant induced a higher level of apoptosis upon infection of human lung epithelial cells, indicating that a T4SS effector(s) has antiapoptotic activity. However, when we infected human macrophages, the mutant triggered a lower level of apoptosis, implying that the T4SS also elaborates a proapoptotic factor(s). Moreover, when we cocultured K279a with strains of Pseudomonas aeruginosa, the T4SS promoted the growth of S. maltophilia and reduced the numbers of heterologous bacteria, signaling that another effector(s) has antibacterial activity. In all cases, the effect of the T4SS required S. maltophilia contact with its target. Thus, S. maltophilia VirB/D4 T4SS appears to secrete multiple effectors capable of modulating death pathways. That a T4SS can have anti- and prokilling effects on different targets, including both human and bacterial cells, has, to our knowledge, not been seen before.
Collapse
|
9
|
Ramos-Hegazy L, Chakravarty S, Anderson GG. Phosphoglycerate mutase affects Stenotrophomonas maltophilia attachment to biotic and abiotic surfaces. Microbes Infect 2019; 22:60-64. [PMID: 31430538 DOI: 10.1016/j.micinf.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 10/26/2022]
Abstract
Stenotrophomonas maltophilia biofilm formation is of increasing medical concern, particularly for lung infections. However, the molecular mechanisms facilitating the biofilm lifestyle in S. maltophilia are poorly understood. We generated and screened a transposon mutant library for mutations that lead to altered biofilm formation compared to wild type. One of these mutations, in the gene for glycolytic enzyme phosphoglycerate mutase (gpmA), resulted in impaired attachment on abiotic and biotic surfaces. As adherence to a surface is the initial step in biofilm developmental processes, our results reveal a unique factor that could affect S. maltophilia biofilm initiation and, possibly, subsequent development.
Collapse
Affiliation(s)
- Layla Ramos-Hegazy
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | | | - Gregory G Anderson
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
10
|
Xu G, Tang X, Shang X, Li Y, Wang J, Yue J, Li Y. Identification of immunogenic outer membrane proteins and evaluation of their protective efficacy against Stenotrophomonas maltophilia. BMC Infect Dis 2018; 18:347. [PMID: 30053835 PMCID: PMC6062925 DOI: 10.1186/s12879-018-3258-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 07/17/2018] [Indexed: 12/27/2022] Open
Abstract
Background Stenotrophomonas maltophilia (S. maltophilia) is an emerging global multiple-drug-resistant organism. It becomes increasingly challenging to treat S. maltophilia infection effectively. Novel therapeutic and preventive approaches targeting S. maltophilia infection are still lacking. This study aims to isolate outer membrane proteins (Omps) from S. maltophilia and use immunoproteomic technology to identify potential vaccine candidates of Omps against S. maltophilia infections. Methods Omps from S. maltophilia culture were separated by two-dimensional electrophoresis and identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry and nano liquid chromatography coupled fourier transform ion cyclotron resonance tandem mass spectrometry. Recombinant Omps were prepared and used to immunize mice, and the potency of mouse anti-Omp serum was tested in opsonophagocytic killing assay (OPKA). The effects of immunization with recombinant Omp on blood and tissue bacterial loads in a mouse model of S. maltophilia-induced infection were analyzed. Results Outer membrane protein A (OmpA) and Smlt4123 were identified by mass spectrometry. Mouse anti-Smlt4123 serum significantly reduced the bacterial counts in healthy individuals’ blood in OPKA (P < 0.05) but mouse anti-OmpA serum did not. Enzyme-linked immunosorbent assay revealed that the antibody subtype of mouse anti-Smlt4123 antibody was IgG1. Eight hours after an intraperitoneal challenge with S. maltophilia, the bacterial loads in mouse blood were significantly lower in the mice receiving immunization with recombinant Smlt4123 than in the control mice receiving no immunization (P < 0.05), whereas the bacterial loads in other organs, such as the liver, spleen, lung, and kidney were similar in the two groups. Conclusions The results revealed that the immunoproteomic approach was an efficient way to screen the immunogenic protein of Stenotrophomonas maltophilia. Moreover, the recombinant Smlt4123 had potential to protect mice from bacteremia caused by S. maltophilia in the early stages. Electronic supplementary material The online version of this article (10.1186/s12879-018-3258-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangyang Xu
- No. 307 Hospital of PLA of Anhui Medical University, Hefei, 230032, China.,Department of Critical Care Medicine, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071, China.,Departmen of Respiratory Diseases, Taizhou Second People's Hospital, Taizhou, 225500, Jiangsu, China
| | - Xueping Tang
- Department of Critical Care Medicine, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xueyi Shang
- Department of Critical Care Medicine, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yan Li
- No. 307 Hospital of PLA of Anhui Medical University, Hefei, 230032, China.,Department of Critical Care Medicine, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071, China
| | - Jing Wang
- No. 307 Hospital of PLA of Anhui Medical University, Hefei, 230032, China.,Department of Critical Care Medicine, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071, China
| | - Junjie Yue
- Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Yan Li
- No. 307 Hospital of PLA of Anhui Medical University, Hefei, 230032, China. .,Department of Critical Care Medicine, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
11
|
Nas MY, Cianciotto NP. Stenotrophomonas maltophilia produces an EntC-dependent catecholate siderophore that is distinct from enterobactin. MICROBIOLOGY-SGM 2017; 163:1590-1603. [PMID: 28984234 DOI: 10.1099/mic.0.000545] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stenotrophomonas maltophilia, a Gram-negative, multi-drug-resistant bacterium, is increasingly recognized as a key opportunistic pathogen. Thus, we embarked upon an investigation of S. maltophilia iron acquisition. To begin, we determined that the genome of strain K279a is predicted to encode a complete siderophore system, including a biosynthesis pathway, an outer-membrane receptor for ferrisiderophore, and other import and export machinery. Compatible with these data, K279a and other clinical isolates of S. maltophilia secreted a siderophore-like activity when grown at 25-37 °C in low-iron media, as demonstrated by a chrome azurol S assay, which detects iron chelation, and Arnow and Rioux assays, which detect catecholate structures. Importantly, these supernatants rescued the growth of iron-starved S. maltophilia, documenting the presence of a biologically active siderophore. A mutation in one of the predicted biosynthesis genes (entC) abolished production of the siderophore and impaired bacterial growth in low-iron conditions. Inactivation of the putative receptor gene (fepA) prevented the utilization of siderophore-containing supernatants for growth in low-iron conditions. Although the biosynthesis and import loci showed some similarity to those of enterobactin, a well-known catecholate made by enteric bacteria, the siderophore of K279a was unable to rescue the growth of an enterobactin-utilizing indicator strain, and conversely iron-starved S. maltophilia could not use purified enterobactin. Furthermore, the S. maltophilia siderophore displayed patterns of solubility in organic compounds and mobility upon thin-layer chromatography that were distinct from those of enterobactin and its derivative, salmochelin. Together, these data demonstrate that S. maltophilia secretes a novel catecholate siderophore.
Collapse
Affiliation(s)
- Megan Y Nas
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
12
|
Kumaraswamy M, Lin L, Olson J, Sun CF, Nonejuie P, Corriden R, Döhrmann S, Ali SR, Amaro D, Rohde M, Pogliano J, Sakoulas G, Nizet V. Standard susceptibility testing overlooks potent azithromycin activity and cationic peptide synergy against MDR Stenotrophomonas maltophilia. J Antimicrob Chemother 2016; 71:1264-9. [PMID: 26832758 DOI: 10.1093/jac/dkv487] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/18/2015] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The Gram-negative bacillus Stenotrophomonas maltophilia (SM) is an emerging MDR opportunistic pathogen. Recent studies identify a potentially relevant activity of azithromycin against Gram-negative bacteria overlooked in standard bacteriological testing. We investigated azithromycin activity against SM in testing conditions incorporating mammalian tissue culture medium and host defence factors. METHODS MIC testing, chequerboard assays, time-kill assays and fluorescence microscopy were performed for azithromycin, the cationic peptide antibiotic colistin and the human defence peptide cathelicidin LL-37 alone or in combination in cation-adjusted Mueller-Hinton broth or mammalian tissue culture media. Azithromycin sensitization of SM to host immune clearance was tested in a human neutrophil killing assay and a murine pneumonia model. RESULTS We observed potent bactericidal activity of azithromycin against SM in mammalian tissue culture medium absent in bacteriological medium. Colistin and LL-37 strongly potentiated azithromycin killing of SM by increasing drug entry. Additionally, azithromycin sensitized SM to neutrophil killing and increased SM clearance in the murine pneumonia model. CONCLUSIONS Despite lack of activity in standard MIC testing, azithromycin synergizes with cationic peptide antibiotics to kill SM in medium mimicking tissue fluid conditions. Azithromycin, alone or in combination with colistin, merits further exploration in therapy of drug-resistant SM infections.
Collapse
Affiliation(s)
- Monika Kumaraswamy
- Division of Infectious Diseases, University of California, San Diego, La Jolla, CA 92093, USA
| | - Leo Lin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua Olson
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ching-Fang Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Poochit Nonejuie
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ross Corriden
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Simon Döhrmann
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Syed Raza Ali
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Deirdre Amaro
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - George Sakoulas
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA Rady Children's Hospital, San Diego, CA 92123, USA
| |
Collapse
|
13
|
Roscetto E, Vitiello L, Muoio R, Soriano AA, Iula VD, Vollaro A, De Gregorio E, Catania MR. In vitro interaction of Stenotrophomonas maltophilia with human monocyte-derived dendritic cells. Front Microbiol 2015; 6:723. [PMID: 26236302 PMCID: PMC4504169 DOI: 10.3389/fmicb.2015.00723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/02/2015] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is increasingly identified as an opportunistic pathogen in immunocompromised, cancer and cystic fibrosis (CF) patients. Knowledge on innate immune responses to S. maltophilia and its potential modulation is poor. The present work investigated the ability of 12 clinical S. maltophilia strains (five from CF patients, seven from non-CF patients) and one environmental strain to survive inside human monocyte-derived dendritic cells (DCs). The effects of the bacteria on maturation of and cytokine secretion by DCs were also measured. S. maltophilia strains presented a high degree of heterogeneity in internalization and intracellular replication efficiencies as well as in the ability of S. maltophilia to interfere with normal DCs maturation. By contrast, all S. maltophilia strains were able to activate DCs, as measured by increase in the expression of surface maturation markers and proinflammatory cytokines secretion.
Collapse
Affiliation(s)
- Emanuela Roscetto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II , Napoli, Italy
| | - Laura Vitiello
- Laboratorio di Immunologia Cellulare e Molecolare, Istituto di Ricovero e Cura a Carattere Scientifico , San Raffaele Pisana, Rome, Italy
| | - Rosa Muoio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II , Napoli, Italy
| | - Amata A Soriano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II , Napoli, Italy
| | - Vita D Iula
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II , Napoli, Italy
| | - Antonio Vollaro
- DAI Medicina di Laboratorio, Azienda Ospedaliera Universitaria Federico II , Napoli, Italy
| | - Eliana De Gregorio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II , Napoli, Italy
| | - Maria R Catania
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II , Napoli, Italy
| |
Collapse
|
14
|
Type II Secretion-Dependent Degradative and Cytotoxic Activities Mediated by Stenotrophomonas maltophilia Serine Proteases StmPr1 and StmPr2. Infect Immun 2015; 83:3825-37. [PMID: 26169274 DOI: 10.1128/iai.00672-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/09/2015] [Indexed: 02/07/2023] Open
Abstract
Stenotrophomonas maltophilia is an emerging opportunistic pathogen that primarily causes pneumonia and bacteremia in immunocompromised individuals. We recently reported that S. maltophilia strain K279a encodes the Xps type II secretion system and that Xps promotes rounding, actin rearrangement, detachment, and death in the human lung epithelial cell line A549. Here, we show that Xps-dependent cell rounding and detachment occur with multiple human and murine cell lines and that serine protease inhibitors block Xps-mediated rounding and detachment of A549 cells. Using genetic analysis, we determined that the serine proteases StmPr1 and StmPr2, which were confirmed to be Xps substrates, are predominantly responsible for secreted proteolytic activities exhibited by strain K279a, as well as the morphological and cytotoxic effects on A549 cells. Supernatants from strain K279a also promoted the degradation of type I collagen, fibrinogen, and fibronectin in a predominantly Xps- and protease-dependent manner, although some Xps-independent degradation of fibrinogen was observed. Finally, Xps, and predominantly StmPr1, degraded interleukin 8 (IL-8) secreted by A549 cells during coculture with strain K279a. Our findings indicate that while StmPr1 and StmPr2 are predominantly responsible for A549 cell rounding, extracellular matrix protein degradation, and IL-8 degradation, additional Xps substrates also contribute to these activities. Altogether, our data provide new insight into the virulence potential of the S. maltophilia Xps type II secretion system and its StmPr1 and StmPr2 substrates.
Collapse
|
15
|
Poroyko V, Meng F, Meliton A, Afonyushkin T, Ulanov A, Semenyuk E, Latif O, Tesic V, Birukova AA, Birukov KG. Alterations of lung microbiota in a mouse model of LPS-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2015; 309:L76-83. [PMID: 25957290 DOI: 10.1152/ajplung.00061.2014] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/12/2015] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury (ALI) and the more severe acute respiratory distress syndrome are common responses to a variety of infectious and noninfectious insults. We used a mouse model of ALI induced by intratracheal administration of sterile bacterial wall lipopolysaccharide (LPS) to investigate the changes in innate lung microbiota and study microbial community reaction to lung inflammation and barrier dysfunction induced by endotoxin insult. One group of C57BL/6J mice received LPS via intratracheal injection (n = 6), and another received sterile water (n = 7). Bronchoalveolar lavage (BAL) was performed at 72 h after treatment. Bacterial DNA was extracted and used for qPCR and 16S rRNA gene-tag (V3-V4) sequencing (Illumina). The bacterial load in BAL from ALI mice was increased fivefold (P = 0.03). The community complexity remained unchanged (Simpson index, P = 0.7); the Shannon diversity index indicated the increase of community evenness in response to ALI (P = 0.07). Principal coordinate analysis and analysis of similarity (ANOSIM) test (P = 0.005) revealed a significant difference between microbiota of control and ALI groups. Bacteria from families Xanthomonadaceae and Brucellaceae increased their abundance in the ALI group as determined by Metastats test (P < 0.02). In concordance with the 16s-tag data, Stenotrohomonas maltophilia (Xanthomonadaceae) and Ochrobactrum anthropi (Brucellaceae) were isolated from lungs of mice from both groups. Metabolic profiling of BAL detected the presence of bacterial substrates suitable for both isolates. Additionally, microbiota from LPS-treated mice intensified IL-6-induced lung inflammation in naive mice. We conclude that the morbid transformation of ALI microbiota was attributed to the set of inborn opportunistic pathogens thriving in the environment of inflamed lung, rather than the external infectious agents.
Collapse
Affiliation(s)
- Valeriy Poroyko
- Department of Pediatrics, The University of Chicago, Chicago, Illinois;
| | - Fanyong Meng
- Section of Pulmonary and Critical Medicine, Lung Injury Center, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Angelo Meliton
- Section of Pulmonary and Critical Medicine, Lung Injury Center, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Taras Afonyushkin
- Section of Pulmonary and Critical Medicine, Lung Injury Center, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Alexander Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign
| | - Ekaterina Semenyuk
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Omar Latif
- Department of Medicine, The University of Chicago, Chicago, Illinois; and
| | - Vera Tesic
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Anna A Birukova
- Section of Pulmonary and Critical Medicine, Lung Injury Center, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Konstantin G Birukov
- Section of Pulmonary and Critical Medicine, Lung Injury Center, Department of Medicine, The University of Chicago, Chicago, Illinois
| |
Collapse
|
16
|
Virulence genes in clinical and environmental Stenotrophomas maltophilia isolates: a genome sequencing and gene expression approach. Microb Pathog 2014; 67-68:20-30. [PMID: 24530922 DOI: 10.1016/j.micpath.2014.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/29/2014] [Accepted: 02/05/2014] [Indexed: 11/21/2022]
Abstract
The rate of nosocomial infections with the opportunistic pathogen Stenotrophomonas maltophilia has remarkably increased in the last decade. To determine S. maltophilia virulence genes, the complete genome sequences of two S. maltophilia isolates were compared. The clinical strain SKK35 was proved virulent in an amoeba host-pathogen model, and wastewater strain RA8 was determined as non-virulent in the amoeba model. The genome sequences of three additional S. maltophilia strains, K279a (clinical, non-virulent against amoeba), R511-3 and SKA14 (both environmental, non-virulent against amoeba) were taken into account as reference strains. We were able to show that all clinical and environmental S. maltophilia strains presented comparable distribution of so far identified potential virulence genes, regardless to their virulence potential against amoebae. Aside from that, strain SKK35 was found harboring a putative, strain specific pathogenicity island, encoding two proteins from the RTX (repeats-in-toxin) family. The actual expression of the RTX genes was verified in growth experiments in different culture media containing blood or blood components and in co-cultures with amoeba.
Collapse
|
17
|
Mahdi O, Eklund B, Fisher N. Laboratory culture and maintenance of Stenotrophomonas maltophilia. ACTA ACUST UNITED AC 2014; 32:Unit 6F.1.. [PMID: 24510848 DOI: 10.1002/9780471729259.mc06f01s32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stenotrophomonas maltophilia is a ubiquitous soil bacterium that is increasingly recognized as an emerging nosocomial pathogen. This unit includes protocols for the in vitro growth and maintenance of S. maltophilia.
Collapse
Affiliation(s)
- Osama Mahdi
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, North Dakota
| | | | | |
Collapse
|
18
|
Thomas R, Hamat RA, Neela V. Stenotrophomonas maltophilia: pathogenesis model using Caenorhabditis elegans. J Med Microbiol 2013; 62:1777-1779. [PMID: 23988629 DOI: 10.1099/jmm.0.063230-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Renjan Thomas
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Rukman Awang Hamat
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Vasanthakumari Neela
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
19
|
Involvement of mutation in ampD I, mrcA, and at least one additional gene in β-lactamase hyperproduction in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2013; 57:5486-91. [PMID: 23979761 DOI: 10.1128/aac.01446-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been reported that targeted disruption of ampD I or mrcA causes β-lactamase hyperproduction in Stenotrophomonas maltophilia. We show here that β-lactamase-hyperproducing laboratory selected mutants and clinical isolates can have wild-type ampD I and mrcA genes, implicating mutation of at least one additional gene in this phenotype. The involvement of mutations at multiple loci in the activation of β-lactamase production in S. maltophilia reveals that there are significant deviations from the enterobacterial paradigm of AmpR-mediated control of β-lactamase induction. We do show, however, that S. maltophilia ampD I can complement a mutation in Escherichia coli ampD. This suggests that an anhydromuropeptide degradation product of peptidoglycan is used to activate AmpR in S. maltophilia, as is also the case in enteric bacteria.
Collapse
|
20
|
Stenotrophomonas maltophilia encodes a type II protein secretion system that promotes detrimental effects on lung epithelial cells. Infect Immun 2013; 81:3210-9. [PMID: 23774603 DOI: 10.1128/iai.00546-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Gram-negative bacterium Stenotrophomonas maltophilia is increasingly identified as a multidrug-resistant pathogen, being associated with pneumonia, among other infections. Despite this increasing clinical problem, the genetic and molecular basis of S. maltophilia virulence is quite minimally defined. We now report that strain K279a, the first clinical isolate of S. maltophilia to be sequenced, encodes a functional type II protein secretion (T2S) system. Indeed, mutants of K279a that contain a mutation in the xps locus exhibit a loss of at least seven secreted proteins and three proteolytic activities. Unlike culture supernatants from the parental K279a, supernatants from multiple xps mutants also failed to induce the rounding, detachment, and death of A549 cells, a human lung epithelial cell line. Supernatants of the xps mutants were also unable to trigger a massive rearrangement in the host cell's actin cytoskeleton that was associated with K279a secretion. In all assays, a complemented xpsF mutant behaved as the wild type did, demonstrating that Xps T2S is required for optimal protein secretion and the detrimental effects on host cells. The activities that were defined as being Xps dependent in K279a were evident among other respiratory isolates of S. maltophilia. Utilizing a similar type of genetic analysis, we found that a second T2S system (Gsp) encoded by the K279a genome is cryptic under all of the conditions tested. Overall, this study represents the first examination of T2S in S. maltophilia, and the data obtained indicate that Xps T2S likely plays an important role in S. maltophilia pathogenesis.
Collapse
|
21
|
Functional characterization of the RNA chaperone Hfq in the opportunistic human pathogen Stenotrophomonas maltophilia. J Bacteriol 2012; 194:5864-74. [PMID: 22923593 DOI: 10.1128/jb.00746-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hfq is an RNA-binding protein known to regulate a variety of cellular processes by interacting with small RNAs (sRNAs) and mRNAs in prokaryotes. Stenotrophomonas maltophilia is an important opportunistic pathogen affecting primarily hospitalized and immunocompromised hosts. We constructed an hfq deletion mutant (Δhfq) of S. maltophilia and compared the behaviors of wild-type and Δhfq S. maltophilia cells in a variety of assays. This revealed that S. maltophilia Hfq plays a role in biofilm formation and cell motility, as well as susceptibility to antimicrobial agents. Moreover, Hfq is crucial for adhesion to bronchial epithelial cells and is required for the replication of S. maltophilia in macrophages. Differential RNA sequencing analysis (dRNA-seq) of RNA isolated from S. maltophilia wild-type and Δhfq strains showed that Hfq regulates the expression of genes encoding flagellar and fimbrial components, transmembrane proteins, and enzymes involved in different metabolic pathways. Moreover, we analyzed the expression of several sRNAs identified by dRNA-seq in wild-type and Δhfq S. maltophilia cells grown in different conditions on Northern blots. The accumulation of two sRNAs was strongly reduced in the absence of Hfq. Furthermore, based on our dRNA-seq analysis we provide a genome-wide map of transcriptional start sites in S. maltophilia.
Collapse
|
22
|
Miller MA, Stabenow JM, Parvathareddy J, Wodowski AJ, Fabrizio TP, Bina XR, Zalduondo L, Bina JE. Visualization of murine intranasal dosing efficiency using luminescent Francisella tularensis: effect of instillation volume and form of anesthesia. PLoS One 2012; 7:e31359. [PMID: 22384012 PMCID: PMC3286442 DOI: 10.1371/journal.pone.0031359] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/06/2012] [Indexed: 11/18/2022] Open
Abstract
Intranasal instillation is a widely used procedure for pneumonic delivery of drugs, vaccine candidates, or infectious agents into the respiratory tract of research mice. However, there is a paucity of published literature describing the efficiency of this delivery technique. In this report we have used the murine model of tularemia, with Francisella tularensis live vaccine strain (FTLVS) infection, to evaluate the efficiency of pneumonic delivery via intranasal dosing performed either with differing instillation volumes or different types of anesthesia. FTLVS was rendered luminescent via transformation with a reporter plasmid that constitutively expressed the Photorhabdus luminescens lux operon from a Francisella promoter. We then used an IVIS Spectrum whole animal imaging system to visualize FT dissemination at various time points following intranasal instillation. We found that instillation of FT in a dose volume of 10 µl routinely resulted in infection of the upper airways but failed to initiate infection of the pulmonary compartment. Efficient delivery of FT into the lungs via intranasal instillation required a dose volume of 50 µl or more. These studies also demonstrated that intranasal instillation was significantly more efficient for pneumonic delivery of FTLVS in mice that had been anesthetized with inhaled (isoflurane) vs. parenteral (ketamine/xylazine) anesthesia. The collective results underscore the need for researchers to consider both the dose volume and the anesthesia type when either performing pneumonic delivery via intranasal instillation, or when comparing studies that employed this technique.
Collapse
Affiliation(s)
- Mark A Miller
- The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|